
Courses of June 9 (end) and June 12

At the end of the class of Friday, I also made various remarks and gave some examples.

Let R be a real closed field. (The theory RCF of real closed fields is axiomatised by saying that
every polynomial of odd degree has a root, and every square is a 4-th power.) Let Rfin be the
convex hull of Z inside R: {a 2 R | for some n 2 N,�n < a < n}. If R is non-archimedean,
this is a proper subring of R, and is a valuation ring: if a 2 R \Rfin, this is because |a| is very
large, hence |a�1| is very close to 0 and is in R

fin. The maximal ideal of Rfin is the ideal of
infinitesimals: M = {a 2 R | for all n 2 N>0

, 0 < |a| < 1/n}.
We define a valuation on R by setting v(x) � 0 if and only if x 2 R

fin. Note that R

>0 is a
torsion free divisible subgroup of R⇥, and therefore the value group � of v is also divisible, and
there is a cross section s : � ! K

>0 (i.e., a group homomorphism such that v � s = id). Let k
be the residue field of R. It is archimedean, and therefore isomorphic to a subfield of R.
Claim. R embeds into k((t�)).
One shows easily, using the Henselianity of R (why is it Henselian? Because it is real closed,
with residue field real closed) that R contains an isomorphic copy of k: without loss of generality
we identify k with this copy. Then, we notice that because R>0 is divisible, we can find a cross
section s of the valuation. So, R contains a copy of the ring k[t�], obtained by sending t

g to
s(g) for g 2 �. It also contains a copy of the field of fractions k(t�) of k[t�], and is an immediate
extension of k(t�). Let A ⇢ R be maximal such that there is an embedding f of A into k((t�)).
Then A is a Henselian valued field, hence relativaly algebraically closed in R. If a 2 R \ A,
then a is transcendental, and as usual we consider I = {v(c� a) | a 2 A}, select a sequence c↵,
↵ < , in A, such that �↵ = v(a � c↵) is cofinal in I, and strictly increasing with ↵. For any
g 2 � and b =

P
�2� b�t

� 2 k((t�)), we define the truncation of b at g to be b|g =
P

�g b�t
�.

Then b|g 2 k((t�)). We define b↵ = f(c↵)|�↵ . Note that for ↵ < � < , we have (b�)|�↵ = b↵,

and therefore the series b defined by supp(b) =
S

↵< supp(b↵) and b|�↵ = b↵ is uniquely defined

and belongs to k((t�)); the map A(a) ! f(A)(b) which sends a to b is an isomorphism of valued
fields.

Remarks 20. Some general remarks.

(1) Basically the same technique of proof (by truncation) shows that k((t�)) has no proper
immediate extension. It is therefore Henselian.

(2) Let K be a valued field. A sequence (a↵)↵< of elements of K is called a Cauchy sequence
if for every � 2 v(K⇥), there is some ↵0 such that for ↵0 < ↵ < � one has v(a� �a↵) > �.
One can also define it as a sequence such that the values v(a↵+1�a↵) are strictly increasing
and cofinal in v(K⇥).

(3) The valued field is complete if all Cauchy sequences have limits in K.

(4) The completion of a valued field K is defined as in the classical case: the cardinal  is the
cofinality of �, i.e., the smallest cardinal such that there is a sequence �↵,↵ < , which is
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cofinal in �. One then looks at all Cauchy sequences indexed by , puts a ring structure
on it, and quotients by the ideal of those whose limit is 0.

(5) You probably know that a field K is algebraically closed if and only if it is perfect and
Gal(Kalg

/K) = 1, and that a field K is real closed if and only if Gal(Kalg
/K) is finite,

if and only if Gal(Kalg
/K) ' Z/2Z. There is a similar result concerning Qp, by J.

Koenigsmann: A field K is elementarily equivalent to Qp if and only if Gal(Kalg
/K) '

Gal(Qalg
p /Qp).

Course of June 12

Study of the field of p-adic numbers
There are several languages in which they eliminate quantifiers. It turns out that the Pas
language is not quite enough, as it doesn’t capture e.g. the formula 9y yp = x. One introduces
a language with ! sorts: the VF and VG sorts as before; the RFn-sorts, with universe O/(pn),
and one defines the acn maps: K

⇥ ! O/(pn) in a manner analogous to the way the ac-map
was defined (multiplicative, coincides with the natural map on O⇥). One can then show that
the theory of Qp in this language eliminates the VF (and RFn) quantifiers. To get full qe, one
needs enlarge LV G to LPres. We will study another language.

The language of Macintyre.
Consider, for n � 2, the predicate Pn, which defines the set of n-powers: Pn(x) () 9y yn = x.
Then observe that in Qp one has:
(p 6= 2): v(x) � 0 () P2(1 + px

2),
(p = 2): v(x) � 0 () P3(1 + px

3).

One also has (contrary to what I said in class), that v(x) � v(y) () P2(px2 + y

2) (or
P3(2x3 + y

3)). We will show that the theory of Qp eliminates quantifiers in the language
LMac = {+,�, ·, 0, 1, Pn}n2N. The theory of Qp, pCF, is axiomatised by the following axioms:
Field K, and defining axioms for the Pn’s; P2(1 + px

2) defines a valuation subring O of K,
with p generating the maximal ideal, and O/(p) ' Fp; the valuation is Henselian, and the
value group � (isomorphic to K

⇥
/O⇥) has a smallest strictly positive element v(p) (which we

denote by 1), and for every n, the axiom 8x9y Wn�1
i=0 v(xynpi) = 0. (So the last series of axioms

axiomatise the theory of (Z,+,�, <, 0, 1).)
We will use the following result, which we will (maybe) prove later:

Lemma 21. Let K be a Henselian field of characteristic 0, and assume that its value group has
a smallest strictly positive element (denoted 1) and that v(p) = e1 for some integer e > 0 and
prime p. (So v(p) > 0, the residue characteristic is p). Then if L is a finite normal extension
of K, we have [L : K] = [�L : �K ][kL : kK ]. (I.e., in Ostrowski’s theorem, d = 1).

Theorem 22. The theory pCF eliminates quantifiers in the language LMac.

Proof. The strategy is similar to the one for proving Theorem 5. Take two @1-saturated
models of pCF, M and N , and countable subrings A of M , B of N , with an LMac-isomorphism
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f : A ! B, which we wish to extend to some a 2 M \A. We first take a countable elementary
substructure C of M which contains A and a, and we will extend f to C.
Step 0: extend f to the fraction field of A.
Note that Pn(ab�1) () Pn(abn�1). So f extends to an LMac-isomorphism.
Step 1 and 2 are unnecessary.
Step 3. Extend f to A

h (the henselization of A). That the field isomorphism extends is clear
(recall that f is an isomorphism of valued fields). Since A

h
/A is immediate, the extension

respects the Pn’s (cf Lemma 7).
In fact we will do all the remaining steps of the proof of Thm 5 at once. We know that the
residue field of C is Fp. Because C is countable, we can find a sequence of subfields (Cn)n2N
such that C =

S
n Cn, C0 = A

alg \ C, for every n, Calg
n \ C = Cn, and trdeg(Cn+1/Cn) = 1.

The extension C0 of A is purely ramified. Note the following:
(⇤) To extend f to C0, it su�ces to be able to extend f to any finitely generated subextension
E = A(a1, . . . , am) of C0.
This follows by compactness, and because N is @1-saturated. So, let E = A(a1, . . . , am). As
E ⇢ A

alg, we know that E is purely ramified (by Lemma 21), and that v(E⇥)/v(A⇥) is finite,
hence a direct sum of finite cyclic groups, say h�1i + v(A⇥) � · · · � h�ri + v(A⇥). By Lemma
7 (2), there are b1, . . . , br 2 E such that v(bi) = �i, and b

mi
i 2 A, where mi is the order of �i

modulo v(A⇥). As N |= Pmi(f(b
mi
i )) for all i, we may extend, by sending bi to an mi-th root

of f(bmi
i ). It will automatically be an isomorphism of valued fields.

Hence, using compactness, we extend f to all of C0. As C0 = A

alg \ C, if we show that
f(C0) = B

alg \N , then this f will also preserve the predicates Pn. But if this was not the case,
we would argue again that there would be some element c in B

alg \N with c

m 2 B, and reach
a contradiction, since f was preserving the Pn’s on A and hence on B.
Extending from Cn to Cn+1.
There are two possible cases for the extension Cn+1/Cn: either it is immediate, or it is ramified.
In the immediate case, we proceed as in the proof of Step 6 of Thm 5 (see pages 7 and 8 of the
notes): select an a, extend to A(a) and then to A(a)h; by Lemma 21, A(a)h = A(a)alg \ C.
In the ramified case. Observe that v(C⇥)/Z is divisible (where Z is the subgroup generated by
v(p)). And therefore, so is v(C⇥

n+1)/v(C
⇥
n ), and it is isomorphic to Q (because of the tr.deg 1

assumption). If E is a finitely generated extension of Cn contained in Cn+1, then v(E⇥)/v(C⇥
n )

is isomorphic to Z. Let � be a generator of v(E⇥) modulo v(C⇥
n ), let a 2 E be such that

v(a) = �. Then v(E⇥) = v(C⇥
n ) � h�i, E is an immediate extension of Cn(a) (because one

cannot increase the residue field), so is contained in Cn(a)h. Extend f by sending a to some
element b with v(b) = �

0, where �

0 satisfies the following set of formulas:

⌃(⇠) := {m⇠ + f�(↵) > 0 | �C |= m� + ↵ > 0, m 2 Z,↵ 2 v(C⇥
n )}.

As Cn(a)/Cn is purely ramified, and by our choice of �0 and b, this is an isomorphism of valued
fields. Then extend to Cn(a)h, which contains E.
So, using (⇤), this shows that we can extend f to all of Cn+1. As with C0 one shows that
f(Cn+1)alg\N = f(Cn+1). We know that f(Cn+1) is Henselian; also we know that v(f(C⇥

n+1))/v(f(C
⇥
n ))

is divisible, hence f(Cn+1)alg/f(Cn+1) cannot be ramified. This finishes the proof. (Henselian
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+ unramified + same residue field + Lemma 21 means equal).

Corollary 23. Consider the theory T of Qp in the language of rings. Then this theory is model
complete, i.e.: every formula is equivalent, modulo T , to an existential formula.

Proof. Pn(x) is equivalent to an existential formula in the language of rings. And so is ¬(Pn(x)):
As Q⇥

p /(Q⇥
p )

n is finite, and Z is dense in Zp, there are integers 1, i1, . . . , im which represent the
cosets of (Q⇥

p )
n in Q⇥

p . So ¬P (x) () Wm
j=1 Pn(ijx).
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