Courses of June 9 (end) and June 12

At the end of the class of Friday, I also made various remarks and gave some examples.

Let R be a real closed field. (The theory RCF of real closed fields is axiomatised by saying that every polynomial of odd degree has a root, and every square is a 4-th power.) Let R^{fin} be the convex hull of \mathbb{Z} inside R: $\{a \in R \mid \text{for some } n \in \mathbb{N}, -n < a < n\}$. If R is non-archimedean, this is a proper subring of R, and is a valuation ring: if $a \in R \setminus R^{fin}$, this is because |a| is very large, hence $|a^{-1}|$ is very close to 0 and is in R^{fin} . The maximal ideal of R^{fin} is the ideal of infinitesimals: $\mathcal{M} = \{a \in R \mid \text{for all } n \in \mathbb{N}^{>0}, 0 < |a| < 1/n\}$.

We define a valuation on R by setting $v(x) \ge 0$ if and only if $x \in R^{fin}$. Note that $R^{>0}$ is a torsion free divisible subgroup of R^{\times} , and therefore the value group Γ of v is also divisible, and there is a cross section $s : \Gamma \to K^{>0}$ (i.e., a group homomorphism such that $v \circ s = id$). Let k be the residue field of R. It is archimedean, and therefore isomorphic to a subfield of \mathbb{R} . Claim. R embeds into $k((t^{\Gamma}))$.

One shows easily, using the Henselianity of R (why is it Henselian? Because it is real closed, with residue field real closed) that R contains an isomorphic copy of k: without loss of generality we identify k with this copy. Then, we notice that because $R^{>0}$ is divisible, we can find a cross section s of the valuation. So, R contains a copy of the ring $k[t^{\Gamma}]$, obtained by sending t^{g} to s(g) for $g \in \Gamma$. It also contains a copy of the field of fractions $k(t^{\Gamma})$ of $k[t^{\Gamma}]$, and is an immediate extension of $k(t^{\Gamma})$. Let $A \subset R$ be maximal such that there is an embedding f of A into $k((t^{\Gamma}))$. Then A is a Henselian valued field, hence relativaly algebraically closed in R. If $a \in R \setminus A$, then a is transcendental, and as usual we consider $I = \{v(c-a) \mid a \in A\}$, select a sequence c_{α} , $\alpha < \kappa$, in A, such that $\gamma_{\alpha} = v(a - c_{\alpha})$ is cofinal in I, and strictly increasing with α . For any $g \in \Gamma$ and $b = \sum_{\gamma \in \Gamma} b_{\gamma} t^{\gamma} \in k((t^{\Gamma}))$, we define the truncation of b at g to be $b_{|_{g}} = \sum_{\gamma \leq g} b_{\gamma} t^{\gamma}$. Then $b_{|_{g}} \in k((t^{\Gamma}))$. We define $b_{\alpha} = f(c_{\alpha})|_{\gamma_{\alpha}}$. Note that for $\alpha < \beta < \kappa$, we have $(b_{\beta})|_{\gamma_{\alpha}} = b_{\alpha}$, and therefore the series b defined by $\sup (b) = \bigcup_{\alpha < \kappa} \sup (b_{\alpha})$ and $b_{|_{\gamma_{\alpha}}} = b_{\alpha}$ is uniquely defined and belongs to $k((t^{\Gamma}))$; the map $A(a) \to f(A)(b)$ which sends a to b is an isomorphism of valued fields.

Remarks 20. Some general remarks.

- (1) Basically the same technique of proof (by truncation) shows that $k((t^{\Gamma}))$ has no proper immediate extension. It is therefore Henselian.
- (2) Let K be a valued field. A sequence $(a_{\alpha})_{\alpha < \kappa}$ of elements of K is called a Cauchy sequence if for every $\gamma \in v(K^{\times})$, there is some α_0 such that for $\alpha_0 < \alpha < \beta$ one has $v(a_{\beta} - a_{\alpha}) > \gamma$. One can also define it as a sequence such that the values $v(a_{\alpha+1} - a_{\alpha})$ are strictly increasing and cofinal in $v(K^{\times})$.
- (3) The valued field is complete if all Cauchy sequences have limits in K.
- (4) The completion of a valued field K is defined as in the classical case: the cardinal κ is the cofinality of Γ , i.e., the smallest cardinal such that there is a sequence $\gamma_{\alpha}, \alpha < \kappa$, which is

cofinal in Γ . One then looks at all Cauchy sequences indexed by κ , puts a ring structure on it, and quotients by the ideal of those whose limit is 0.

(5) You probably know that a field K is algebraically closed if and only if it is perfect and $\mathcal{G}al(K^{alg}/K) = 1$, and that a field K is real closed if and only if $\mathcal{G}al(K^{alg}/K)$ is finite, if and only if $\mathcal{G}al(K^{alg}/K) \simeq \mathbb{Z}/2\mathbb{Z}$. There is a similar result concerning \mathbb{Q}_p , by J. Koenigsmann: A field K is elementarily equivalent to \mathbb{Q}_p if and only if $\mathcal{G}al(K^{alg}/K) \simeq \mathcal{G}al(\mathbb{Q}_p^{alg}/\mathbb{Q}_p)$.

Course of June 12

Study of the field of *p*-adic numbers

There are several languages in which they eliminate quantifiers. It turns out that the Pas language is not quite enough, as it doesn't capture e.g. the formula $\exists y \ y^p = x$. One introduces a language with ω sorts: the VF and VG sorts as before; the RF_n-sorts, with universe $\mathcal{O}/(p^n)$, and one defines the <u>ac</u>_n maps: $K^{\times} \to \mathcal{O}/(p^n)$ in a manner analogous to the way the <u>ac</u>-map was defined (multiplicative, coincides with the natural map on \mathcal{O}^{\times}). One can then show that the theory of \mathbb{Q}_p in this language eliminates the VF (and RF_n) quantifiers. To get full qe, one needs enlarge \mathcal{L}_{VG} to $\mathcal{L}_{\text{Pres}}$. We will study another language.

The language of Macintyre.

Consider, for $n \ge 2$, the predicate P_n , which defines the set of *n*-powers: $P_n(x) \iff \exists y \ y^n = x$. Then observe that in \mathbb{Q}_p one has:

 $(p \neq 2)$: $v(x) \ge 0 \iff P_2(1+px^2),$ (p=2): $v(x) \ge 0 \iff P_3(1+px^3).$

(p=2). $v(x) \ge 0 \iff r_3(1+px)$.

One also has (contrary to what I said in class), that $v(x) \geq v(y) \iff P_2(px^2 + y^2)$ (or $P_3(2x^3 + y^3)$). We will show that the theory of \mathbb{Q}_p eliminates quantifiers in the language $\mathcal{L}_{\text{Mac}} = \{+, -, \cdot, 0, 1, P_n\}_{n \in \mathbb{N}}$. The theory of \mathbb{Q}_p , pCF, is axiomatised by the following axioms: Field K, and defining axioms for the P_n 's; $P_2(1 + px^2)$ defines a valuation subring \mathcal{O} of K, with p generating the maximal ideal, and $\mathcal{O}/(p) \simeq \mathbb{F}_p$; the valuation is Henselian, and the value group Γ (isomorphic to $K^{\times}/\mathcal{O}^{\times}$) has a smallest strictly positive element v(p) (which we denote by 1), and for every n, the axiom $\forall x \exists y \bigvee_{i=0}^{n-1} v(xy^n p^i) = 0$. (So the last series of axioms axiomatise the theory of $(\mathbb{Z}, +, -, <, 0, 1)$.)

We will use the following result, which we will (maybe) prove later:

Lemma 21. Let K be a Henselian field of characteristic 0, and assume that its value group has a smallest strictly positive element (denoted 1) and that v(p) = e1 for some integer e > 0 and prime p. (So v(p) > 0, the residue characteristic is p). Then if L is a finite normal extension of K, we have $[L:K] = [\Gamma_L:\Gamma_K][k_L:k_K]$. (I.e., in Ostrowski's theorem, d = 1).

Theorem 22. The theory pCF eliminates quantifiers in the language \mathcal{L}_{Mac} .

Proof. The strategy is similar to the one for proving Theorem 5. Take two \aleph_1 -saturated models of pCF, M and N, and countable subrings A of M, B of N, with an \mathcal{L}_{Mac} -isomorphism

 $f: A \to B$, which we wish to extend to some $a \in M \setminus A$. We first take a countable elementary substructure C of M which contains A and a, and we will extend f to C.

Step 0: extend f to the fraction field of A.

Note that $P_n(ab^{-1}) \iff P_n(ab^{n-1})$. So f extends to an \mathcal{L}_{Mac} -isomorphism.

Step 1 and 2 are unnecessary.

Step 3. Extend f to A^h (the henselization of A). That the field isomorphism extends is clear (recall that f is an isomorphism of valued fields). Since A^h/A is immediate, the extension respects the P_n 's (cf Lemma 7).

In fact we will do all the remaining steps of the proof of Thm 5 at once. We know that the residue field of C is \mathbb{F}_p . Because C is countable, we can find a sequence of subfields $(C_n)_{n \in \mathbb{N}}$ such that $C = \bigcup_n C_n, C_0 = A^{alg} \cap C$, for every $n, C_n^{alg} \cap C = C_n$, and $trdeg(C_{n+1}/C_n) = 1$. The extension C_0 of A is purely ramified. Note the following:

The extension C_0 of A is purely ramified. Note the following:

(*) To extend f to C_0 , it suffices to be able to extend f to any finitely generated subextension $E = A(a_1, \ldots, a_m)$ of C_0 .

This follows by compactness, and because N is \aleph_1 -saturated. So, let $E = A(a_1, \ldots, a_m)$. As $E \subset A^{alg}$, we know that E is purely ramified (by Lemma 21), and that $v(E^{\times})/v(A^{\times})$ is finite, hence a direct sum of finite cyclic groups, say $\langle \gamma_1 \rangle + v(A^{\times}) \oplus \cdots \oplus \langle \gamma_r \rangle + v(A^{\times})$. By Lemma 7 (2), there are $b_1, \ldots, b_r \in E$ such that $v(b_i) = \gamma_i$, and $b_i^{m_i} \in A$, where m_i is the order of γ_i modulo $v(A^{\times})$. As $N \models P_{m_i}(f(b_i^{m_i}))$ for all i, we may extend, by sending b_i to an m_i -th root of $f(b_i^{m_i})$. It will automatically be an isomorphism of valued fields.

Hence, using compactness, we extend f to all of C_0 . As $C_0 = A^{alg} \cap C$, if we show that $f(C_0) = B^{alg} \cap N$, then this f will also preserve the predicates P_n . But if this was not the case, we would argue again that there would be some element c in $B^{alg} \cap N$ with $c^m \in B$, and reach a contradiction, since f was preserving the P_n 's on A and hence on B. Extending from C_n to C_{n+1} .

There are two possible cases for the extension C_{n+1}/C_n : either it is immediate, or it is ramified. In the immediate case, we proceed as in the proof of Step 6 of Thm 5 (see pages 7 and 8 of the notes): select an a, extend to A(a) and then to $A(a)^h$; by Lemma 21, $A(a)^h = A(a)^{alg} \cap C$.

In the ramified case. Observe that $v(C^{\times})/\mathbb{Z}$ is divisible (where \mathbb{Z} is the subgroup generated by v(p)). And therefore, so is $v(C_{n+1}^{\times})/v(C_n^{\times})$, and it is isomorphic to \mathbb{Q} (because of the tr.deg 1 assumption). If E is a finitely generated extension of C_n contained in C_{n+1} , then $v(E^{\times})/v(C_n^{\times})$ is isomorphic to \mathbb{Z} . Let γ be a generator of $v(E^{\times})$ modulo $v(C_n^{\times})$, let $a \in E$ be such that $v(a) = \gamma$. Then $v(E^{\times}) = v(C_n^{\times}) \oplus \langle \gamma \rangle$, E is an immediate extension of $C_n(a)$ (because one cannot increase the residue field), so is contained in $C_n(a)^h$. Extend f by sending a to some element b with $v(b) = \gamma'$, where γ' satisfies the following set of formulas:

$$\Sigma(\xi) := \{ m\xi + f_{\Gamma}(\alpha) > 0 \mid \Gamma_C \models m\gamma + \alpha > 0, \ m \in \mathbb{Z}, \alpha \in v(C_n^{\times}) \}.$$

As $C_n(a)/C_n$ is purely ramified, and by our choice of γ' and b, this is an isomorphism of valued fields. Then extend to $C_n(a)^h$, which contains E.

So, using (*), this shows that we can extend f to all of C_{n+1} . As with C_0 one shows that $f(C_{n+1})^{alg} \cap N = f(C_{n+1})$. We know that $f(C_{n+1})$ is Henselian; also we know that $v(f(C_{n+1}^{\times}))/v(f(C_n^{\times}))$ is divisible, hence $f(C_{n+1})^{alg}/f(C_{n+1})$ cannot be ramified. This finishes the proof. (Henselian

+ unramified + same residue field + Lemma 21 means equal).

Corollary 23. Consider the theory T of \mathbb{Q}_p in the language of rings. Then this theory is model complete, *i.e.*: every formula is equivalent, modulo T, to an existential formula.

Proof. $P_n(x)$ is equivalent to an existential formula in the language of rings. And so is $\neg (P_n(x))$: As $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^n$ is finite, and \mathbb{Z} is dense in \mathbb{Z}_p , there are integers $1, i_1, \ldots, i_m$ which represent the cosets of $(\mathbb{Q}_p^{\times})^n$ in \mathbb{Q}_p^{\times} . So $\neg P(x) \iff \bigvee_{j=1}^m P_n(i_j x)$.