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Abstract. A major open question in statistical mechanics, known as the Gaussian spin wave conjecture,

predicts that the low temperature phase of the Abelian spin systems with continuous symmetry behave like
Gaussian free fields. In this paper we consider the classical Villain rotator model in Zd, d ≥ 3 at sufficiently low
temperature, and prove that the truncated two-point function decays asymptotically as ∣x∣2−d, with an algebraic

rate of convergence. We also obtain the same asymptotic decay separately for the transversal two-point
functions. This quantifies the spontaneous magnetization result for the Villain model at low temperatures
and constitutes a first step toward a more precise understanding of the spin-wave conjecture. We believe that

our method extends to finite range interactions, and to other Abelian spin systems and Abelian gauge theory
in d ≥ 3. We also develop a quantitative perspective on homogenization of uniformly convex gradient Gibbs
measures.
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1. Introduction

1.1. Rotator models and the spin wave picture. Rotator models, such as the XY and the Villain
models, have drawn considerable attention from distinct research communities in mathematical and theoretical
physics. They are of much interest in statistical mechanics, as they exhibit new types of phase transition for
ferromagnetic systems and can be applied to the design of novel materials. A canonical rotator model is the
XY model defined as follows: given a finite set U ⊆ Zd, we assign to each function θ ∶ U → (−π,π] satisfying
θ = 0 on the external vertex boundary ∂U the energy

HXY
U (θ) ∶= − ∑

x,y∈U+

x∼y

cos(θ(x) − θ(y)),

where U+ ∶= U ∩∂U and the notation x ∼ y means that the points x and y are nearest neighbor in the lattice Zd.
The Gibbs measure of the XY model with zero boundary condition at inverse temperature β > 0 is then defined
the probability distribution

(1.1) dµXYβ,U(dθ) ∶= 1

ZXYβ,U
exp (−βHXY

U (θ)) ∏
x∈U

dθ(x)1θ∣∂U=0.
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The XY model can be equivalently seen as a spin system with spin valued in the circle S1 by setting Sx ∶= eiθx .
In this article, we will be interested in another closely related rotator model, the Villain model [90] is defined
by the Gibbs weight

(1.2) dµVill
β,U(dθ) ∶= 1

ZVill
U

∏
x∼y

vβ(θ(x) − θ(y))dθ(x)1θ∣∂U=0,

where is the heat kernel on S1 defined according to the identity

(1.3) vβ(θ) ∶= ∑
m∈Z

exp(−β
2
(θ + 2πm)2).

The two models belong to the class of spin systems with continuous Abelian symmetry. They exhibit a
similar behavior and have been extensively studied in the literature. We collect below some of their main
features.

Since the spins take values in the compact space S1, the existence of a thermodynamic limit for the XY
model (i.e., an infinite-volume limit as U →∞) is guaranteed along subsequences by standard compactness
arguments. It is additionally known that this limit is unique, and we denote it by µXYβ (see [78]). The Griffiths

correlation inequalities [57, 25, 78] imply that that the expected value of the spins and the two-point function
are monotone in the domain U and in particular show the convergences

⟨Sx⟩µXY
β,U

Ð→
U↑Zd

⟨Sx⟩µXY
β

and ⟨Sx ⋅ Sy⟩µXY
β,U

Ð→
U↑Zd

⟨Sx ⋅ Sy⟩µXY
β

.

The same results hold for the Villain model, and we denote by µVβ the corresponding thermodynamic limit1.

In two dimensions, the Mermin-Wagner theorem [77] shows that there is no continuous symmetry breaking
at any temperature, i.e., for any β > 0,

(1.4) ⟨Sx⟩µXY
β

= 0.

In particular, the system does not undergo an order/disorder phase transition. Nevertheless, the system is
known to exhibit a phase transition of a different type, characterized by a different asymptotic behavior of the
correlation function: there exists a critical inverse temperature βc ∈ (0,∞) such that in the low temperature
regime (β > βc), the two-point function ⟨Sx ⋅ S0⟩µβ decays polynomially fast (which characterizes a so-called

topological long-range order [71]), while, in the high temperature regime (β ≤ βc), the two-point function decays
exponentially fast. This phase transition is known as the Berezinskii–Kosterlitz–Thouless transition became
the basis of the Nobel prize in Physics in 2016 to Haldane, Kosterlitz and Thouless. From a mathematical
perspective, the existence of this transition was established in the celebrated work of Fröhlich and Spencer [49],
and has been the subject of recent developments [74, 89, 4].

In the low temperature regime (β > βc), additional predictions can be made regarding the behavior of the
model. A simple heuristics suggests that, as the temperature goes to zero, the spins tend to align with each
other so as to minimize the Hamiltonian. Using the approximations, when ∣δθ∣ ≪ 1,

(1.5) exp(β cos(δθ)) ≈ ∑
m∈Z

exp(−β
2
(δθ + 2πm)2) and cos (2π (δθ)) ≈ 1 − (δθ)2 /2,

it is expected that at low temperature, both the XY and the Villain Gibbs measures on large scales behave
like the Gaussian measure

(1.6) µGFFβ (dφ) ∶= 1

Z
exp

⎛
⎝
−β

2
∑
x∼y

(φ(x) − φ(y))2⎞
⎠∏x

dφ(x).

The Gibbs measure (1.6) is the Gaussian free field, and its law is fully characterized by its covariance matrix
given by the lattice Green’s function. This heuristic computation is the starting point of the celebrated spin
wave picture originating in the work of Dyson [42] (see also [77]). The spin wave conjecture predicts that at
low temperatures both the XY and the Villain Gibbs measures behave on large scales like a Gaussian free field
of the form (1.6) with a notable difference: since the approximations (1.5) are not exact (and does not recover
the information of the periodized field in (1.1) and (1.2)), a corrective term, corresponding to the so-called
vortex lines, has to be taken into account in the analysis, and the limiting Gaussian free field describing the

1The monotonicity of the correlation function and the uniqueness of the infinite volume Gibbs state were first established for
the XY model [78]. However, the Villain model can be represented as a metric graph limit of the XY model [84, 49]. By taking
this limit, we obtain the corresponding monotonicity and the uniqueness of Gibbs state for the Villain model.
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large-scale behaviors of the XY and Villain models should display an effective temperature βeff ≠ β (with
βeff = (1 + o(1))β as β →∞).

More precisely, the spin wave picture in the case of the two-point function asserts that, for d = 2 and β > βc,
there exists an effective inverse temperature βeff > 0 (with βeff ≠ β) such that

(1.7) ⟨ei(θ(0)−θ(x))⟩
µV
β

= ⟨ei(φ(0)−φ(x))⟩
µGFF
βeff

(1 + o(1)) = ∣x∣−
1

2πβeff + o (∣x∣−
1

2πβeff ) .

Rigorous (but non-optimal) power law upper and lower bounds for the two-point function were established in
the 1980s in the celebrated works of McBryan-Spencer [76] and Fröhlich-Spencer [48] in the low temperature
regime, namely, for β ≫ 1,

c1∣x∣−
1

2πβ1 ≤ ⟨S0 ⋅ Sx⟩µV
β
≤ c2∣x∣−

1
2πβ ,

where β1 = β1(β) and satisfies β1 = β(1 + o(1)) as β →∞. For a closely related model, the two dimensional
two-component Coulomb gas with small activity, Falco justified the spin wave picture (with an effective βeff

in the exponent) for all the inverse temperatures in the Kosterlitz-Thouless phase, in a series of impressive
works [44, 45]. For the two dimensional XY and Villain models, the asymptotic two point function (1.7) still
remains an important open question.

In three dimensions and higher, the breakthrough work of Fröhlich, Simon and Spencer [47] shows that
these models undergo an order/disorder phase transitions: there exists an critical inverse temperature βc > 0
such that

for any β > βc, ⟨Sx⟩µβ ≠ 0 and for any β < βc, ⟨Sx⟩µβ = 0.

In the low temperature phase (β > βc), the spin wave picture predicts that there exist two coefficients c1, c2
such that

(1.8) ⟨S0 ⋅ Sx⟩µV
β
= c1 +

c2
∣x∣d−2

+ o( 1

∣x∣d−2
) .

Considerable progress towards quantitative information for the XY/Villain model at low temperature were
made in the 1980s. In dimensions d ≥ 3, the best known result is the one of Fröhlich and Spencer [50] who
observed that the classical Villain model in Zd can be mapped, via duality, to a statistical mechanical model
of lattice Coulomb gas. They obtained the following next order description of the correlation function at low
temperature.

Proposition 1.1 (Fröhlich and Spencer [50]). Let µVβ be the thermodynamic limit of the Villain model in Zd,

for d ≥ 3. There exist constants β0 = β0(d), c0 = c0(β, d), such that for all β > β0,

⟨S0 ⋅ Sx⟩µV
β
= c0 +O ( 1

∣x∣d−2
) .

Moreover, denote by G the lattice Green’s function in Zd, then we have as β →∞,

exp( 1

β
(G(0) −G(x))) ≥ ⟨S0 ⋅ Sx⟩µV

β
≥ exp(( 1

β
+ o( 1

β
)) (G(0) −G(x)))) .

This suggests that the truncated two-point function may be related to a massless free field in Rd, which
corresponds to the emergence of a (conjectured) Goldstone boson. Similar results were also obtained for the
Abelian gauge theory in four dimensions (see [50, 65]). Kennedy and King in [69] obtained a similar low
temperature expansion for the Abelian Higgs model, which couples an XY model with a gauge fixing potential.
Their proofs rely on a different approach, via a transformation introduced by [14] and a polymer expansion.

It is also of much interest to justify the spin wave conjecture separately for the longitudinal and transver-
sal two-point functions of the rotator models, i.e., observables of the form ⟨cos θ(0) cos θ(x)⟩µXY

β
and

⟨sin θ(0) sin θ(x)⟩µXY
β

. The best known result is due to Bricmont, Fontaine, Lebowitz, Lieb, and Spencer [26],

where, relies on a combination of the infrared bound [47], a Mermin-Wagner type argument, and correlation
inequalities, they perform a low temperature expansion of the truncated correlation function of the XY model
and obtain the following expansion.

Proposition 1.2 (Bricmont, Fontaine, Lebowitz, Lieb, and Spencer [26]). There exist an inverse temperature
β1 < ∞ and two constants c1 > c2 > 0 such that, for any β ≥ β1,

c2
β∣x∣d−2

≤ ⟨sin θ(0) sin θ(x)⟩µXY
β

≤ c1
β∣x∣d−2

.
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Despite these considerable progress, the rigorous derivations of the spin wave conjecture (1.8) remain
largely open. The main result of our paper, stated below, identifies the next-order term for the Villain
model in dimensions three and higher, by obtaining the precise asymptotics of the two-point functions at low
temperature.

Theorem 1. For any dimension d ≥ 3, there exist β0 = β0(d) and α = α(d) > 0 such that, for any β ≥ β0, there
exist constants c0 = c0(β, d), c1 = c1(β, d), c2 = c2(β, d), and such that, for all β > β0, the transversal two-point
function has the asymptotics

(1.9) ⟨sin θ(0) sin θ(x)⟩µV
β
= c2

∣x∣d−2
+O ( 1

∣x∣d−2+α ) ,

and the spin-spin correlation function satisfies

(1.10) ⟨S0 ⋅ Sx⟩µV
β
= c0 +

c1
∣x∣d−2

+O ( 1

∣x∣d−2+α ) .

Remark 1.3. The proof of Theorem 1 yields the following characterization for the constant c0

c0 = ⟨S0⟩2µV
β
.

Regarding the constants c1 and c2, the free field computation (1.5) indicates that they should be close to the
constant

C = − 1

β
exp (G(0)/β) Γ(d/2 − 1)

4πd/2
,

where Γ is the standard Gamma function. The constant C is defined so as to satisfy

⟨ei(φ(0)−φ(x))⟩
µGFF
β

= exp( 1

β
(G(0) −G(x))) = exp (G(0)/β) + C

∣x∣d−2
+O ( 1

∣x∣d−1
) .

In this direction, the proof of Theorem 1 yields the identities

c1 = C +O(e−cβ) and c2 = −C +O(e−cβ).

Remark 1.4. It follows from (1.9) and (1.10) that the two-point correlation function is asymptotically rotation
invariant. Indeed, the proof yields rotation invariance for the Villain Gibbs measures that are invariant under
the π/2-degree rotations and the reflections of the lattice. For more general Villain models, i.e., replacing the
potential (1.3) by

vβ,x,y(θ) ∶= ∑
m∈Z

exp(−
βJx,y

2
(θ + 2πm)2),

for strictly positive, nearest neighbor and periodic coupling constants Jx,y, one expects the second order term
to take the form of a more general (2 − d)-homogeneous function.

We remark here that an alternative approach, based on elaborate renormalization group analysis, was
developed in a series of works of Balaban, and culminated in [15]. They studied a class of Euclidean field
theories that are invariant under the O(N) symmetry group, for N ≥ 2, and obtained results similar to
Theorem 1 for these models.

We conclude the introduction by mentioning two open questions. The Gaussian spin wave approximation
predicts that the two-point function of the XY model in d ≥ 3 also admits a low temperature expansion like
that stated in Theorem 1. The main challenge is a technical one: in the first step of the proof (described in
Section 1.2 below), a duality transformation and a cluster expansion step are used to prove that the model
can be expressed as gradient model with a strictly convex potential (this part of the proof follows well-known
arguments [50, 16]). The specific structure of the Hamiltonian of the Villain model (1.2) allows an exact
factorisation (in particular, the two-point function can be factorized as a Gaussian contribution and a vortex
contribution, see Section 3, (3.6)). Such an exact factorization does not hold for the XY model and a new idea
for renormalization is required to implement the argument.

The spin wave conjecture and the asymptotic two-point function (1.7) remains open for the XY and
Villain model in d = 2. The renormalization argument developed by Falco [44, 45] does not directly apply,
because by applying a duality transform to the XY and Villain model, one obtains a lattice Coulomb gas with
infinite activity (instead of small activity). Building new insights into the renormalization group analysis,
Bauerschmidt, Park and Rodriguez showed recently that the scaling limit of the two-dimensional Discrete
Gaussian at high temperature is a continuous Gaussian free field (with an effective inverse temperature)
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in [17, 18]. Their result makes another progress toward the spin-wave conjecture for the two-dimensional
Villain model in the low temperature regime (β ≫ 1). Resolving the conjecture requires extending the results
of [17, 18] to more singular test functions.

1.2. Strategy of the proof. We initiate a renormalization-Helffer-Sjöstrand-homogenization program to
prove Theorem 1. The periodic potential of the XY and Villain model makes the interaction highly non-
convex, and poses significant challenges to study their large scale behavior. Indeed, the ground states at
zero temperature already leads to highly nontrivial variational problems (see, e.g. [5]). To overcome these
difficulties, we start from the insight of Fröhlich and Spencer [50] (see also [16, Section 5]), applying a duality
transformation and a cluster expansion to the Villain Gibbs measure. In the low temperature regime (β ≫ 1),
this argument shows that two-point function can be expressed as a non-linear and non-local observable of a
uniformly convex gradient model (or uniformly convex ∇φ model). Contrary to the Villain and XY models,
tools from PDE and homogenization theory can be applied to study the behavior over large-scales of the
uniformly convex ∇φ model (see Section 1.2.2), which can thus be used to study the Villain model via the
duality transformation of [50]. The general strategy described above encounters two difficulties. Firstly the
convex model is not nearest neighbor, and has an infinite-range with exponential tail. Secondly the two-point
function of the Villain model is mapped via the duality transform to a non-linear and non-local observable
(see Proposition 3.1). Understanding the behavior of this observable requires a precise, quantitative theory to
describe the large-scale behavior of the convex gradient model.

This first part of the proof thus consists of applying a duality transformation and cluster expansion to
relate the Villain model to a uniformly convex ∇φ model. It is the subject of Section 3 and mostly follows [50]
and [16, Section 5]. The second part of the proof consists of studying quantitatively the large-scale behavior of
the convex gradient Gibbs model and treating the non-linear, non-local observable arising from the arguments
of [50] and [16, Section 5], and is the subject of the remaining sections.

One of the main tools to study ∇φ model is the so-called Helffer-Sjöstrand equation, originally introduced by
Helffer and Sjöstrand [67], Naddaf and Spencer [81] and Giacomin, Olla and Spohn [54] to identify the scaling
limit of the model. The main insight of [67, 81] is that the large-scale behavior of the ∇φ model is related to
the large-scale behavior of the solutions of an infinite-dimensional elliptic equation called the Helffer-Sjöstrand
equation. The crucial observation of [81] is that the large-scale behavior of these solutions can be studied using
techniques of homogenization.

At a high level, the proof of Theorem 1 consists of developing a quantitative homogenization theory for
the Helffer-Sjöstrand equation and exploits the insights of the following three works: the work of Naddaf and
Spencer [81], that relates large-scale behavior of the convex gradient Gibbs measure to an elliptic homogenization
problem for the Helffer-Sjöstrand equation; the quantitative theory for homogenization by Armstrong, Kuusi
and Mourrat [8, 7]; and the application of quantitative homogenization to the ∇φ model by Armstrong and
Wu [9]. However there is a distinct difference of our method compared to [81, 8, 9]. Firstly, the results of
[81] are qualitative, and a quantitative theory is required to understand the behavior of the Villain model.
To obtain a quantitative rate of homogenization it is crucial to have some decorrelation of the underlying
random field. In [8], a straightforward mixing condition of the coefficient field is assumed. The argument
in [9] relies on couplings based on the probabilistic interpretation of the equation to obtain decorrelation of
the gradient field. In the present paper, we rely on the observation that this information can be obtained by
studying another infinite-dimensional equation, the second-order Helffer-Sjöstrand equation (see [29, (2.12)]
or Section 1.2.4); in particular, the decorrelation is a consequence of the decay estimates for the Green’s
function associated with the second-order Helffer-Sjöstrand operator. We note that the second-order equation
appears in the work [29], and is closely related to techniques used to develop a quantitative theory of stochastic
homogenization in [60, 61, 58, 59].

The following subsections provide a more detailed outline of the argument.

1.2.1. Sine-Gordon representation and polymer expansion. The spin wave computation (1.8) is only heuristic
and does not give the correct constants C1,C2. The main problem for the spin wave heuristics (1.8) is that
it ignores the formation of vortices, which are defined on the faces of Zd. Kosterlitz and Thouless [71] gave
a heuristic argument, indicating that the vortices interact like a neutral Coulomb gas taking integer-valued
charges.

Our proof of Theorem 1 starts from an insight of Fröhlich and Spencer [50], which makes this observation
rigorous. In particular, the correlation function of the Villain model in Zd, d ≥ 3 can be mapped, by duality,
to a statistical mechanical model with integer-valued and locally neutral charges on discrete 2-forms Λ2(Zd),
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interacting with Coulomb potential (see Section 3.1). By performing a Fourier transform of this Gibbs measure
with respect to the charge variable, we obtain a helpful random field representation of the Coulomb gas, known
as the sine-Gordon representation (see e.g. [48, 49]). When the temperature is low enough, opposite charges
tend to bind together into neutral (short range) dipoles, therefore on large scales this Coulomb gas behaves like
an effective dipole gas with a reduced effective activity of the charges. This can be formalized by applying a
one-step renormalization argument and a cluster expansion, following the presentation of [16, Chapter 5]. The
renormalized Gibbs measure (see (3.16)) is a vector-valued random interface model in Λ2(Zd) with infinite
range and uniformly convex potential. The question of the asymptotic behavior of the Villain correlation
function is thus reduced to the question of the quantitative understanding of the large-scale properties of the
random interface model.

1.2.2. Random surfaces and Helffer-Sjöstrand equation. Our study of the large-scale properties of the random
interface model starts from the insight of Naddaf and Spencer [81] that the fluctuations of the field are closely
related to an elliptic homogenization problem for the Helffer-Sjöstrand equation [67, 88]. This approach has
been used by Giacomin, Olla and Spohn in [54] to prove that the large-scale space-time fluctuations of the
field is described by an infinite-dimensional Ornstein-Uhlenbeck process and by Deuschel, Giacomin and Ioffe
to establish concentration properties and large deviation principles on the random surface (we also refer
to [87, 21, 22, 31, 30] for extension of these results to some non-convex potentials, and [72] for a study of a
more general class of Hamiltonians). The strategy presented in many of the aforementioned articles relies
on a probabilistic approach: one can, through the Helffer-Sjöstrand representation, reduce the problem to
a question of random walk in dynamic random environment, and then prove properties on this object, e.g.
invariance principles, using the results Kipnis and Varadhan [70], or annealed upper bounds on the heat kernel,
using Delmotte and Deuschel [41]. However, the results obtained so far using this probabilistic approach
are not quantitative. A more analytical approach was developed by Armstrong and Wu in [9], where they
extend and quantify the homogenization argument of Naddaf and Spencer [81], resolved an open question
posed by Funaki and Spohn [52] regarding the C2 regularity of surface tension, and the fluctuation-dissipation
conjecture of [54].

Besides the approach based on the Helffer-Sjöstrand equation and the random walk representation, various
techniques have been successfully used on the model. Funaki and Spohn [52] established the hydrodynamic
limit of the model relying on methods developed in the setting of the Ginzburg-Landau equation with a
conserved order parameter [64]. A renormalization group approach has been implemented in the works of
Adams, Kotecký, Müller [3] and Adams, Buchholz, Kotecký, Müller [2]. In these contributions, the authors
study the ∇φ model for a general class of (perturbative) non-convex potentials (in a low temperature regime)
and establish (among other results) regularity properties as well as the strict convexity of the surface tension
of the model. The articles [3, 2] differ from ours in various aspects. In [3, 2], the authors consider a nonconvex
perturbation of Gaussian, and proved after successive renormalizations the surface tension (i.e., the log partition
function under different tilts) gains sufficient regularity and convexity. In the present article, the gradient-type
model obtained from the Villain model by duality is uniformly convex, and the main difficulty relies on the
specific structure of the model: the Hamiltonian has infinite-range, the observable we wish to study is highly
non-linear and non-local. Therefore it is not enough to prove the Gibbs measure converges to a Gaussian free
field in the scaling limit, and we need to estimate the correlation of nonlinear functions of the field with high
precision, which we do by implementing methods from PDE and homogenization theory.

On a high level, we follow the analytical approach, namely the program developed in [81, 9] on homogenization
for the random interface models. Since the sine-Gordon representation and the polymer expansion give a

random interface model valued in the vector space R(d
2
) with long range and uniformly convex potential, an

application of the strategy of Naddaf and Spencer [81] to this model leads to the Helffer-Sjöstrand operator

(1.11) L ∶= −∆φ + Lspat,

which is an infinite-dimensional elliptic operator acting on functions defined in the space Ω ×Zd where Ω is

the set of functions φ ∶ Zd → R(d
2
) (see (3.57) for the precise definition of this operator), where Ω is the space

of functions from Zd to R(d
2
) in which the vector-valued random interface considered in this article takes its

values. The operator ∆φ is the (infinite-dimensional) Laplacian computing derivatives with respect to the
height of the random surface and L is an operator associated with a uniformly elliptic system of equations with
infinite range (and with exponential decay on the size of the long range coefficients) on the discrete lattice Zd.
The analysis of these systems requires to overcome some difficulties; a number of properties which are valid for
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elliptic equations, and used to study the random interface models, are known to be false for elliptic systems. It
is for instance the case for the maximum principle, which is used to obtain a random walk representation, the
De Giorgi-Nash-Moser regularity theory for uniformly elliptic and parabolic PDE (see [83, 39], [56, Section 8]
and the counterexample of De Giorgi [40]) and the Nash-Aronson estimate on the heat kernel (see [11]).

To resolve this lack of regularity, we rely on a perturbative argument, and make use of ideas from Schauder
theory (see [66, Section 3]), as well as the ones from the large-scale regularity in homogenization (see Avellaneda,
Lin [12, 13] and Armstrong, Smart [10]); we leverage on the fact that the inverse temperature β is chosen very
large so that the elliptic operator L can be written

Lspat ∶= −
1

2β
∆ + Lpert,

where the operator Lpert is a perturbative term; its typical size is of order β−
3
2 ≪ β−1. One can thus

prove that any solution u of the equation (1.11) is well-approximated on every scale by a solution u of the
equation −∆φ − 1

2β
∆ for which the regularity can be easily established. It is then possible to borrow the strong

regularity properties of the function u and transfer it to the solution of (1.11). This strategy is implemented
in Section 5 and allows us to prove the C0,1−ε-regularity of the solution of the Helffer-Sjöstrand equation, and
to deduce from this regularity property various estimates on other quantities of interest (e.g, decay estimates
on the heat kernel in dynamic random environment, decay and regularity for the Green’s matrix associated
with the Helffer-Sjöstrand operator). The regularity exponent ε depends on the dimension d and the inverse
temperature β, and tends to 0 as β tends to infinity; in the perturbative regime, the result turns out to be
much stronger than the C0,α-regularity provided by the De Giorgi-Nash-Moser theory (for some tiny exponent
α > 0) in the case of elliptic equations, and allows to quantify (precisely) the mixing properties of the random
field.

1.2.3. Stochastic homogenization. The main difficulty to establish Theorem 1 is that since the Villain model is
not exactly solvable, the dependence of the constants c1 and c2 on the dimension d and the inverse temperature β
is highly non explicit; one does not expect to have a simple formula for these coefficients. However, it is
necessary to analyze them in order to prove the expansions (1.9) and (1.10); this is achieved by using tools
from the quantitative theory of stochastic homogenization.

This theory is typically interested in the understanding of the large-scale behavior of the solutions of the
elliptic equation

(1.12) −∇ ⋅ a(x)∇u = 0 in Rd,

where a is a random, uniformly elliptic coefficient field that is stationary and ergodic. The general objective is
to prove that, on large scales, the solutions of (1.12) behave like the solutions of the elliptic equation

(1.13) −∇ ⋅ a∇u = 0 in Rd,

where a is a constant uniformly elliptic coefficient called the homogenized matrix. The theory was initially
developed in the 80’s, in the works of Kozlov [73], Papanicolaou and Varadhan [85], and Yurinskĭı [91]. Dal
Maso and Modica [32, 33] extended these results a few years later to non-linear equations using variational
arguments inspired by Γ-convergence. All of these results rely on the ergodic theorem, and are therefore purely
qualitative.

The main difficulty in the establishment of a quantitative theory is to transfer the quantitative ergodicity
encoded in the coefficient field a to the solutions of the equation. This problem was addressed in a satisfactory
fashion for the first time by Gloria and Otto in [60, 61], where, building upon the ideas of [82], they used
spectral gap inequalities (or concentration inequalities) to transfer the quantitative ergodicity of the coefficient
field to the solutions of (1.12). These results were then further developed in [62, 63, 58, 59].

Another approach, which is the one pursued in this article, was initiated by Armstrong and Smart in [10],
who extended the techniques of Avellaneda and Lin [12, 13], the ones of Dal Maso and Modica [32, 33] and
obtained an algebraic, suboptimal rate of convergence for the homogenization error of the Dirichlet problem
associated with the non-linear version of the equation (1.12). These results were then improved in [6, 7, 8]
to obtain optimal rates. Their approach relies on mixing conditions on the coefficient fields and on the
quantification of the closeness of dual monotone quantities (see Section 6). An extension of the techniques
of [8] to the setting of differential forms (which also appear in this article in the dual Villain model) can be
found in [35], and to the uniformly convex gradient field model in [34]. In [80], Mourrat and Otto study the
correlation structure of the corrector and prove that it is similar, in the large-scale limit, to the one of a variant
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of a Gaussian free field. Their strategy shares some similarities with ours: under some suitable assumptions
on the coefficient field, they use a Helffer-Sjöstrand representation formula to study the correlation of the
corrector, and reduce the problem to the question of the quantitative homogenization of the Green’s function
associated with the heterogeneous operator (1.12).

To prove Theorem 1, we apply the techniques of [8] to the Helffer-Sjöstrand equation to prove the quantitative
homogenization of the mixed derivative of the Green’s matrix associated with this operator. The strategy can
be decomposed into two steps.

The first one relies on the variational structure of the Helffer-Sjöstrand operator and is the main subject
of Section 6: following the arguments of [8, Section 2], we define two subadditive quantities, denoted by ν
and ν∗. The first one corresponds to the energy of the Dirichlet problem associated with the Helffer-Sjöstrand
operator (1.11) in a domain U ⊆ Zd and subject to affine boundary condition, the second one corresponds to the
energy of the Neumann problem of the same operator with an affine flux. Each of these two quantities depends
on two parameters: the domain of integration U and the slope of the affine boundary condition, denoted by p
(for ν) and p∗ (for ν∗). These energies are quadratic, uniformly convex with respect to the variables p and p∗,
and are approximately convex dual to one another. They additionally satisfy a subadditivity property with
respect to the domain U , and one can show that they converge as the size of the domain tends to infinity to a
pair of quadratic, convex dual functions, i.e., there exists a positive definite matrix a such that

ν (U, p) Ð→
∣U ∣→∞

1

2
p ⋅ ap and ν∗ (U, p∗) Ð→

∣U ∣→∞

1

2
p∗ ⋅ a−1p∗.

The matrix a plays a similar role as the homogenized matrix in (1.13); in the case of the present random
interface model, it gives the covariance matrix of the continuous (homogenized) Gaussian free field which
describes the large-scale behavior of the random surface as established in [81]. The objective of the proofs of
Section 6 is to quantify this convergence and to obtain an algebraic rate: we show that, for large β, there
exists an exponent α > 0 depending only on the dimension d such that for any cube ◻ ⊆ Zd of size R > 0,

(1.14) ∣ν (◻, p) − 1

2
p ⋅ ap∣ + ∣ν (◻, p∗) − 1

2
p∗ ⋅ a−1p∗∣ ≤ CR−α.

The strategy to prove the quantitative rate (1.14) relies on the approximate convex duality of the maps p↦
ν (U, p) and p∗ ↦ ν∗ (U, p∗). Following [8], we use a multiscale argument to prove that, as one passes to a
larger scale, the convex duality defect

p↦ inf
p∗∈Rd

[ν (◻, p) + ν∗ (◻, p∗) − p ⋅ p∗] ,

must contract by a multiplicative factor strictly smaller than 1, and thus it is equal to 0 in the infinite volume
limit. More precisely we show that the convex duality defect can be controlled by the subadditivity defect,
and then iterate the result over all the scales from 1 to R to obtain (1.14) (see Section 6.1.3). As a byproduct
of the proof, we obtain a quantitative control on the sublinearity of the finite-volume corrector defined as the
solution of the Dirichlet problem: given an affine function lp of slope p, and a cube ◻R ∶= [−R,R]d ∩Zd of size
R,

{
L(lp + χR,p) = 0 in ◻R ×Ω,

χR,p = 0 on ∂ ◻R ×Ω.

This estimate takes the following form

(1.15) ∥χR,p∥L2(◻R,µβ) ≤
C

R1−α ,

where the average L2-norm is considered over both the spatial variable and the random field (see (2.5)).
The second step in the argument, which extends the results of [9], is to prove quantitative homogenization

of the mixed derivative of the Green’s matrix associated with the Helffer-Sjöstrand operator (1.11); it is the
subject of Section 7. In the setting of the divergence form elliptic operator (1.12), the properties of the Green’s
function are well-understood: moment bounds on the Green’s function, its gradient and mixed derivative are
proved in [41, 19, 28], and quantitative homogenization estimates are proved in [8, Sections 8 and 9] and in [20].
The argument used here relies on a common strategy in stochastic homogenization: the two-scale expansion.

It is implemented as follows: the large-scale behavior of the fundamental solution G ∶ Ω ×Zd → R(d
2
)×(d2) of the

elliptic system

LG = δ0 in Zd ×Ω,
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is described by the (deterministic) fundamental solution G ∶ Zd → R(d
2
)×(d2) of the homogenized elliptic system

−∇ ⋅ a∇G = δ0 in Zd.
The proof of this result relies on a two-scale expansion for systems of equations: we select a suitable cube
◻ ⊆ Rd and define the function, for any k ∈ {1, . . . , (d

2
)}

H⋅k ∶= G⋅k +
d

∑
i=1

(d
2
)

∑
j=1

χR,eij∇iGjk.

We then compute the value of LH and prove, by using the quantitative information obtained on the correc-
tor (1.15), that this value is small in a suitable functional space. This argument shows that the function H
(resp. its gradient) is quantitatively close to the functions G (resp. its gradient). Once this is achieved, we can
iterate the argument to obtain a quantitative homogenization result for the mixed derivative of the Green’s
matrix. The overall strategy is similar to the one in the case of the divergence form elliptic equations (1.12)
but a number of technicalities need to be treated along the way pertaining to either the Witten Laplacian ∆φ

(this difficulty has been successfully addressed in [9]), and the infinite range of the elliptic operator Lspat (using
the exponential decay of the interaction is enough to adapt the arguments developed in the nearest-neighbor
setting).

1.2.4. Second-order Helffer-Sjöstrand equation. As we mentioned, the method pursued in this paper differs
from [8] and [9] and is based on the regularity theory of the second-order Helffer-Sjöstrand equation. We note
that, contrary to the case of the homogenization of the elliptic equation (1.12), the subadditive quantities
are deterministic objects and are applied to the operator (1.11) which is essentially infinite-dimensional. To
quantify the subadditive ergodic theorem and obtain the rate of convergence (1.14), it is crucial that the
random fields ∇φ that appears in the definition of ν and ν∗ decorrelates (see Definition 6.4). While the
proofs of quantitative rate of convergence in [8, Section 2] rely on a finite range dependence assumption of the
coefficient field, we rely here on the regularity properties of the Helffer-Sjöstrand operator to prove sufficient
decorrelation estimates on the field. The same issues were addressed in the work of Armstrong and Wu [9], to
study the ∇φ model and prove C2-regularity of the surface tension conjectured by Funaki and Spohn [52]; the
arguments presented there are different as they rely on couplings based on the probabilistic interpretation of
the equation to obtain sufficient decorrelation of the discrete gradient ∇φ. In the present paper, we rely on the
observation of Conlon and Spencer [29] that if u is a solution to the Helffer-Sjöstrand equation (1.11), then
the derivative of the function u with respect to the field φ, i.e., the map v ∶ (x,φ, y) ↦ ∂yu(x,φ), for x, y ∈ Zd
and φ ∈ Ω, solves a second-order Helffer-Sjöstrand equation of the form

(1.16) ∆φv(x, y, φ) + Lspat,xv(x, y, φ) + Lspat,yv(x, y, φ) + (∂yL) v = 0 in Zd ×Zd ×Ω.

We refer to Section 5.4 for a precise definition. This operator is then used in [29] to obtain uniform third
moment bounds for the ∇φ Gibbs measure. We note that this strategy is very similar to the one developed
in stochastic homogenization in [60, 61, 58, 59]. In this paper we exploit more precise information of the
operator, and apply the C0,1−ε regularity theory to obtain decay estimates on the Green’s function associated
with (1.16). In particular, we obtain the regularity theory for the second-order Helffer-Sjöstrand operator for
large β, namely, the off-diagonal decay of the associated Green’s matrix, its gradient, and its mixed derivative
(see Corollary 5.13). These properties can be used to quantify the ergodicity of the Helffer-Sjöstrand equation
and obtain the quantitative rate of convergence (1.14).

The second-order Helffer-Sjöstrand equation also plays a crucial role to derive Theorem 1 from the
homogenization results. Applying the duality, we map the two-point function of the Villain model to a non-
local observable (see Proposition 3.1). This non-local observable is then analyzed by repeated applications of
the Helffer-Sjöstrand representation to single out the main contribution (thus the second-order Helffer-Sjöstrand
operator emerges), and the C0,1−ε regularity theory is crucially applied to control the remainder terms (see
Section 4.4 and Section 4.5 for the details).

1.2.5. First order expansion of the two-point functions. The first order expansion of the two-point function
stated in Theorem 1 is obtained by post-processing all the arguments above. We first use the sine-Gordon
representation and the polymer expansion to reduce the question to the understanding of the large scale
behavior of a vector-valued random surface model, whose Hamiltonian is a perturbation of the one of a
Gaussian free field, and use the properties of the Helffer-Sjöstrand equation to treat the problem. The proof of
Theorem 1 is decomposed into three parts:
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● We establish a C0,1−ε-regularity theory for the solutions of the Helffer-Sjöstrand and second-order
Helffer-Sjöstrand operators by using the techniques of Schauder regularity (through a perturbative
argument) in order to obtain a precise understanding of the correlation structure of the random field,
this is done in Section 5;

● We prove a quantitative homogenization theorem for the mixed derivative associated with the Helffer-
Sjöstrand operator (Theorem 2), this is done in Sections 6 and 7;

● We post-process the results of the two arguments above to prove Theorem 1. The proof relies on
the study of the non-local observable introduced in Proposition 3.1; it requires to analyze a number
of terms, to isolate the leading order terms, and to estimate quantitatively the lower order ones. It
is rather technical and is split into two sections: in Section 4, we present a detailed sketch of the
argument, isolate the leading order from the lower order terms, and state the estimates on each of
these terms. Section 8 is devoted to the proof of the technical estimates.

1.3. Organization of the paper. This article is the short version of the v1 of arxiv preprint [36], which
contains in addition some detailed but standard computations which are recalled here without a proof. In the
next section, we introduce some preliminary notation and results. In Section 3, we recall the dual formulation
of the Villain model in terms of a vector-valued random interface model, based on the ideas of Fröhlich
and Spencer [50] and following the presentation of Bauerschmidt [16]. We then derive the Helffer-Sjöstrand
equation for the renormalized measure and state the main regularity estimates on the Green’s matrix proved
in Section 5, and the quantitative homogenization of the mixed derivative of the Green’s matrix proved in
Sections 6 and 7. In Section 4, we sketch the proof of the main theorem, assuming the C0,1−ε regularity for
the solutions of the Helffer-Sjöstrand equation (established in Section 5), and the quantitative homogenization
of the mixed derivative of the Green’s matrix (established in Sections 7 and 8). Finally in Section 8, we give
detailed proofs of the claims in Section 4.

Acknowledgments. P.D. is supported by the Israel Science Foundation grants 861/15 and 1971/19 and
by the European Research Council starting grant 678520 (LocalOrder). W.W. is supported in part by the
EPSRC grant EP/T00472X/1. We thank T. Spencer for many insightful discussions that inspired the project,
R. Bauerschmidt for kindly explaining the arguments in [16], and S. Armstrong for many helpful discussions.
We also thank S. Armstrong and J.-C. Mourrat for helpful feedbacks on a previous version of the paper.
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2. Preliminaries

2.1. Notation and assumptions.

2.1.1. General notation. We work on the Euclidean lattice Zd in dimension d ≥ 3, and denote by ∣⋅∣ the
Euclidean norm on the lattice Zd. We say that two points x, y ∈ Zd are neighbors, and denote it by x ∼ y, if
∣x − y∣ = 1. We denote by e1, . . . , ek the canonical basis of Rd. Given a subset U ⊆ Zd, we define its interior U○

and its inner boundary ∂U by the formulae

U○ ∶= {x ∈ U ∶ x ∼ y Ô⇒ y ∈ U} and ∂U ∶= U ∖U○.

If the subset U ⊆ Zd is finite, we denote by ∣U ∣ its cardinality and refer to this quantity as the volume of U .
We denote by diamU the diameter of U defined by the formula diamU ∶= supx,y∈U ∣x− y∣. Given a point x ∈ Zd
and a radius r > 0, we denote by B(x, r) the discrete Euclidean ball of center x and radius r. We frequently
use the notation Br to mean B(0, r). We also define the annulus AR ∶= B2R ∖BR.

A discrete cube ◻ of Zd is a subset of the form

(2.1) ◻ ∶= x + [−N,N]d ∩Zd with x ∈ Zd and N ∈ N.

We refer to the point x as the center of the cube ◻, and to the integer 2N + 1 as its length. For L ∈ N, we also

denote by ◻L ∶= [−N,N]d ∩Zd.
Given three real numbers X,Y ∈ R and κ ∈ [0,∞), we write

X = Y +O(κ) if and only if ∣X − Y ∣ ≤ κ.

We frequently consider functions defined from Zd and valued in R of the form x→ ∣x∣−k. We implicitly extend
these functions at the point x = 0 by the value 1 so that they are defined on the entire lattice Zd.

2.1.2. Notation for vector-valued functions. For each integer k ∈ N, we let F (Zd,Rk) be the set of functions

defined on Zd and taking values in Rk. Given a function g ∈ F (Zd,Rk), we denote by g1, . . . , gk its components

on the canonical basis of Rk and write g = (g1, . . . , gk). We define the support of the function g to be the set

supp g ∶= {x ∈ Zd ∶ g(x) ≠ 0} .

For each integer i ∈ {1, . . . , d}, we define its discrete i-th derivative ∇ig ∶ Zd → Rk and its adjoint ∇∗
i g ∶ Zd → Rk

by the formulae, for each x ∈ Zd,

∇ig(x) ∶= g(x + ei) − g(x) and ∇∗
i g(x) ∶= g(x) − g(x − ei).

The discrete gradient ∇g ∶ Zd → Rd×k is then defined by

(2.2) ∇g(x) = (∇igj(x))1≤i≤d,1≤j≤k and ∇∗g(x) = (∇∗
i gj(x))1≤i≤d,1≤j≤k .

We define similarly the divergence, for any function g ∶ Zd → Rd,

∇ ⋅ g(x) =
d

∑
i=1

gi(x) − gi(x − ei),

We extend this definition to a more general class of vector-valued functions as follows: for an integer k ∈ N,
and a function g = (gij)1≤i≤d,1≤j≤k ∶ Zd → Rd×k, we define ∇ ⋅ g ∶ Zd → Rk by the identity

∇ ⋅ g(x) = (
d

∑
i=1

gi,1(x) − gi,1(x − ei), . . . ,
d

∑
i=1

gi,k(x) − gi,k(x − ei)) .

The Laplacian is then defined by the identity ∆ = ∇ ⋅ ∇ and is equivalently given by the explicit formula: for
any g ∶ Zd → Rk,

(2.3) ∆g(x) = ∑
y∼x

(g(y) − g(x)) .

Given two functions f, g ∶ Zd → Rk and a point x ∈ Zd, we define the scalar product f(x)⋅g(x) ∶= ∑di=1 fi(x)gi(x).
To ease the notation, we may write f(x)g(x) to mean f(x) ⋅ g(x). Given a finite subset U ⊆ Zd, we define the
L2-scalar products (⋅, ⋅) and (⋅, ⋅)U according to the formulae

(2.4) (f, g) = ∑
x∈Zd

f(x)g(x) and (f, g)U ∶= ∑
x∈U

f(x)g(x).
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For each subset U ⊆ Zd, we define the L2 (U)-norm

∥g∥L2(U) ∶= (∑
x∈U

∣g(x)∣2)
1
2

.

where the notation ∣ ⋅ ∣ refers to the Euclidean norm on Rk. Given a bounded subset U ⊆ Zd, we denote by
L2(U) the normalized norm

∥g∥L2(U) ∶= ( 1

∣U ∣ ∑x∈Zd
∣g(x)∣2)

1
2

.

We introduce the normalized Sobolev norms H1(U) by the formula

∥g∥H1(U) ∶=
1

diamU
∥g∥L2(U) + ∥∇g∥L2(U) .

We denote by H1
0(U) the set of functions from U to Rk which are equal to 0 outside the set U (by analogy to

the Sobolev space).

2.1.3. Notation for Gibbs measures. We let Ω be the set of vector-valued functions φ ∶ Zd → R(d
2
). We then

introduce the set of smooth local and compactly supported functions of the set Ω

C∞
c (Ω) ∶= {F ∶ Ω→ R ∶ ∃n ∈ N,∃x1, . . . , xn ∈ Zd and ∃ f ∈ C∞

c (Rn)
such that F (φ) = f(φ(x1), . . . , φ(xn))} .

For k ∈ N, we extend the previous notation to vector-valued functions F ∶ Ω→ Rk and write F ∈ C∞
c (Ω) if all

the components of F belong to C∞
c (Ω) (i.e., if F = (F1, . . . , Fk) and for any i ∈ {1, . . . , k}, Fi ∈ C∞

c (Ω)).
Given a probability measure µ on Ω and measurable function X ∶ Ω→ R which is integrable with respect to the

measure µ, we denote by ⟨X⟩µ and varµ [X] its expectation and variance respectively. As before, we extend the

notation to vector-valued functions by writing ⟨X⟩µ = (⟨X1⟩µ , . . . , ⟨Xk⟩µ) ∈ Rk and varµ [X] = ∑ki=1 varµ [Xi]
for X = (X1, . . . ,Xk).

Fix u ∶ Ω→ Rk. For x ∈ Zd and each integer i ∈ {1, . . . , (d
2
)}, we define the differential operators ∂x,i and ∂x

by the formulae

∂x,iu(φ) ∶= lim
h→0

u(φ + hei1x) − u(φ)
h

∈ Rk and ∂xu(φ) = (∂x,1u, . . . , ∂x,(d2)u) ∈ R
(d
2
)×k,

where (e1, . . . , e(d
2
)) is the canonical basis of R(d

2
). We define the space H1 (µ) to be the closure of the space

C∞
loc(Ω) with respect to the norm

∥u∥H1(µ) ∶= ∥u∥L2(µ) + ( ∑
x∈Zd

∥∂xu∥2
L2(µ))

1
2

.

For any subset U ⊆ Zd, we define the L2 (U,µ) to be the set of functions u ∶ U ×Ω→ R such that

∥u∥L2(U,µ) ∶= (∑
x∈U

∥u(x, ⋅)∥2
L2(µ))

1
2

If U ⊆ Zd is finite, we additionally define

(2.5) ∥u∥L2(U,µ) ∶= ( 1

∣U ∣ ∑x∈U
∥u(x, ⋅)∥2

L2(µ))
1
2

.

We similarly define the H1(U,µ)-norms by the formulae

(2.6) ∥u∥H1(U,µ) ∶= (∑
x∈U

∥u(x, ⋅)∥2
H1(µ) + ∥∇u∥2

L2(U,µ))
1
2

as well as

(2.7) ∥u∥Ḣ1(U,µ) ∶=
⎛
⎝ ∑x∈Zd

∑
y∈U

∥∂xu(y, ⋅)∥2
L2(µ) + ∥∇u∥2

L2(U,µ)
⎞
⎠

1
2

.
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2.1.4. Discrete differential forms. For each integer k ∈ {1, . . . , d}, a k-cell of the lattice Zd is a set of the form,
for a subset {i1, . . . , ik} ⊆ {1, . . . , d}, and a point x ∈ Zd,

{x +
k

∑
l=1

λleil ∈ R
d ∶ 0 ≤ λ1, . . . , λk ≤ 1} .

We equip the set of k-cells with an orientation induced by the canonical orientation of the lattice Zd and denote
by Λk(Zd) the set of oriented k-cells of the lattice Zd. Given a k-cell ck, we denote by ∂ck the boundary of
the cell; it can be decomposed into a disjoint union of (k − 1)-cells. The values k = 0, 1, 2 are of specific interest
to us; they correspond to the set of vertices, edges and faces of the lattice Zd. We will denote these spaces by
V (Zd), E(Zd) and F (Zd) respectively. Given a box ◻ ⊆ Zd, we denote by Λk(◻) the set of oriented k-cells
which are included in the cube ◻, and by V (◻), E(◻) and F (◻) the set of vertices, edges and faces of the
cube ◻ respectively.

For each k-cell ck, we denote by c−1
k the same k-cell as ck with reverse orientation and by ∂ck the boundary

this cell. A k-form u is a mapping from Λk(◻) to R such that u (c−1
k ) = −u (ck) .

Given a k-form u, we define its exterior derivative du according to the formula, for each oriented (k + 1)-
cell ck+1,

(2.8) du (ck+1) = ∑
ck⊆∂ck+1

u(ck),

where the orientation of the face ck is given by the orientation of the (k + 1)-cell ck+1; we set the convention
du = 0 for any d-form u. We define the codifferential d∗ according to the formula, for each (k − 1)-cell ck−1 and
each k-form u ∶ Λk (◻) → R,

(2.9) d∗u (ck−1) ∶= ∑
∂ck∋ck−1

u(ck).

Clearly, du is a (k + 1)-form and d∗u is a (k − 1)-form; we set d∗u = 0 for any 0-form u. One also verifies the
properties, for each k-form u ∶ Λk(◻) → R, ddu = 0 and d∗d∗u = 0. For arbitrary k-forms u, v ∶ Λk(Zd) → R
with finite support, we define the scalar product (⋅, ⋅) by the formula

(2.10) (u, v) = ∑
ck∈Λk(Zd)

u(ck)v(ck).

We may restrict the scalar product (⋅, ⋅) to forms which are only defined in a cube ◻; we denote the corresponding
scalar product by (⋅, ⋅)◻. It is defined by the formula, for each pair of k-forms u, v ∶ Λk(◻) → R,

(u, v) = ∑
ck∈Λk(◻)

u(ck)v(ck).

The codifferential d∗ is the formal adjoint of the exterior derivative d with respect to this scalar product:
Given a k-form u ∶ Λk(Zd) → R and a (k + 1)-form v ∶ Λk+1(Zd) → R with finite supports, one has the identity

(2.11) (du, v) = (u,d∗v) .
For an integer k ∈ {0, . . . , d − 1} and a cube ◻ ⊆ Zd, we define the tangential boundary of the cube ∂k,t◻ to be

the set of all the k-cells which are included in the boundary of the cube ◻. Given a k-form u ∶ Λk(◻) → R, we
define its tangential trace tu to be the restriction of the form u to the set ∂k,t◻. One has the formula, for each

k-form u ∶ Λk(◻) → R such that tu = 0 and each (k + 1)-form v ∶ Λk(◻) → R,

(du, v)◻ = (u,d∗v)◻ .

2.1.5. Differential forms as vector-valued functions. Given a subset I = (i1, . . . , ik) ⊆ {1, . . . , d} of cardinality k.
We denote by ΛkI (Zd) the set of oriented k-cells of the hypercubic lattice Zd which are parallel to the vectors
(ei1 , . . . , eik). This set can be characterized as follows: if we let cI be the k-cell defined by the formula

cI ∶= {
k

∑
l=1

λleil ∈ R
d ∶ 0 ≤ λ1, . . . , λk ≤ 1} ,

then we have

(2.12) ΛkI (Zd) = {x + cI ∶ x ∈ Zd} .

The identity (2.12) allows to identify the vector space of k-forms to the vector space of functions defined on Zd

and valued in R(d
k
) according the procedure described below. Note that there are (d

k
) subsets of {1, . . . , d} of
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cardinality k and consider an arbitrary enumeration I1, . . . , I(d
k
) of these sets. To each k-form û ∶ Λk(Zd) → R,

we can associate a vector-valued function u ∶ Zd → R(d
k
) defined by the formula, for each point x ∈ Zd,

(2.13) u(x) = (û (x + cI1) , . . . , û(x + cI
(
d
k
)

)) .

This identification is enforced in most of the article; in fact, except in Section 3.1, we always work with
vector-valued functions instead of differential forms. We use the identification (2.13) to extend the formalism
described in Section 2.1 to differential forms; we may for instance refer to the gradient of a form, or the
Laplacian of a form etc. Reciprocally, we extend the formalism described in Section 2.1.4 to vector-valued

functions; given a function u ∶ Zd → R(d
k
), we may refer to the exterior derivative, the codifferential, which we

still denote by du, d∗u respectively. We note that the two definitions of the scalar products (2.4) for vector
valued functions and (2.10) for differential forms coincide through the identification (2.13).

From the definition of the exterior derivative d and the codifferential d∗ given in (2.8) and (2.9) and the
identification (2.13), one sees that the differential operators d and d∗ are linear functionals of the gradient ∇.

We record the following identity which relates the Laplacian ∆ defined in (2.3) to the exterior derivative d
and the codifferential d∗,

(2.14) −∆ = dd∗ + d∗d.

Using the identities d ○ d = 0 and d∗ ○ d∗ = 0, one obtains that the Laplacian commutes with the exterior
derivative and codifferential.

2.1.6. Charges. An important role is played by the set of integer-valued, compactly supported 2-forms q which
satisfy dq = 0 and have connected support. These functions are often called charges in connection with the
Coulomb gas of Section 3. We denote by Q the set of these forms, i.e.,

(2.15) Q ∶= {q ∶ Zd → Z(d
2
) ∶ ∣supp q∣ < ∞, supp q is connected and dq = 0} .

We may restrict our considerations to the charges of Q whose support is included in a cube ◻ ⊆ Zd; to this
end, we introduce the notation

Q◻ ∶= {q ∶ Zd → Z(d
2
) ∶ supp q ⊆ ◻, supp q is connected and dq = 0} .

An important result about the exterior derivative is the Poincaré lemma. We will need to use the following
version of the lemma in the discrete setting for integer-valued forms. The result is stated in [50, Lemma 1]. A
proof can be found in [27, Lemma 2.2]. We mention that the inequality (2.16) is not proved in [27, Lemma 2.2],
but can be deduced from the argument (essentially, the inductive argument developed there can be combined
with [27, (2.4)] to obtain the result).

Lemma 2.1 (Poincaré for integer-valued forms). Let k be an integer of the set {1, . . . , d−1} and q be a k-form
with values in Z such that dq = 0, then there exists a (k − 1)-form nq with values in Z such that q = dnq.
Moreover, nq can be chosen such that suppnq is contained in the smallest hypercube containing the support of
q and such that

(2.16) ∥nq∥L∞ ≤ C ∥q∥1 .

Given a point (x, y) ∈ Zd × Zd, we denote by Qx and Qx,y the set of charges q ∈ Q such that the point x
and the points x, y belong to the support of nq respectively, i.e.,

(2.17) Qx ∶= {q ∈ Q ∶ x ∈ suppnq} and Qx,y ∶= {q ∈ Q ∶ x ∈ suppnq and y ∈ suppnq} .

Similarly, we define

(2.18) Q◻,x ∶= {q ∈ Q◻ ∶ x ∈ suppnq} and Q◻,x,y ∶= {q ∈ Q◻ ∶ x ∈ suppnq and y ∈ suppnq} .

2.2. Convention for constants and exponents. Throughout this article, the symbols c and C denote
positive constants which may vary from line to line. These constants may depend only on the dimension d and
the inverse temperature β. We use the symbols α, β, γ, δ to denote positive exponents which depend only on
the dimension d. Usually, we use the letter C for large constants (whose value is expected to belong to [1,∞))
and c for small constants (whose value is expected to be in (0,1]). The values of the exponents α, β, γ, δ are
always expected to be small. When the constants and exponents depend on other parameters, we write it
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explicitly and use the notation C ∶= C(d, β, t) to mean that the constant C depends on the parameters d, β
and t.

When the constants depend on the charges q ∈ Q (see (2.15)), we frequently keep track of their dependence
on this parameter; more specifically we need that the growth of the constant C is at most algebraic in the
parameter ∥q∥1. We usually denote by Cq a constant which depends on the parameters d, β and q and which

satisfies the growth condition Cq ≤ C ∥q∥k1 , for some C ∶= C(d, β) < ∞ and k ∶= k(d) < ∞. We allow the values
of C and k to vary from line to line and we may write

Cq +Cq ≤ Cq or CqCq ≤ Cq.
We usually do not keep track of the dependence of the constants on the inverse temperature β (even though

we believe it should be possible with our techniques) except in Sections 5 and 6. In these two sections, we
assume that the constants depend only on the dimension d and make it explicit if they depend on the inverse
temperature β.
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3. Duality and Helffer-Sjöstrand representation

3.1. From Villain model to solid on solid model. In this section we recall the duality relation between the
Villain model in Zd and a statistical mechanical model of lattice Coulomb gas, with integer-valued and locally
neutral charges (which can also be viewed as a solid-on-solid model) defined on Λ2(Zd), as observed in [50].
One may then perform a Fourier transform with respect to the charge variable, and obtain a classical random
field representation of the Coulomb gas, known as the sine-Gordon representation. When the temperature is
low enough, we may apply a one-step renormalization argument, following the presentation of Bauerschmidt
[16] (see also [50]), to reduce the effective activity of the charges, thus obtain an effective, real valued random
interface model on 2-forms with a uniformly convex potential.

Recall that the partition function for the Villain model in a cube ◻ ⊆ Zd with zero boundary condition is
given by

Z◻,0 ∶= ∫ ∏
e⊆E(◻)

∑
m∈Z

exp(−β
2
(∇θ(e) − 2πm)2) ∏

x∈∂◻
δ0 (θ(x)) ∏

x∈◻○
1[−π,π)(θ(x))dθ(x).

Since we will need to use the formalism of discrete differential forms in this section, we note that the function
θ ∶ ◻ ↦ R can be seen as a 0-form, in that case the discrete gradient ∇θ can be seen as a 1-form and is equal to
the exterior derivative dθ. We may thus rewrite

Z◻,0 ∶= ∫ ∏
e⊆E(◻)

∑
m∈Z

exp(−β
2
(dθ(e) − 2πm)2) ∏

x∈∂◻
δ0 (θ(x)) ∏

x∈◻○
1[−π,π)(θ(x))dθ(x).

Permuting the sum with the product and the integral, we obtain

(3.1) Z◻,0 = ∑
m∈ZE(◻)t=0

∫ ∏
e⊆E(◻)

exp(−β
2
(dθ(e) − 2πm(e))2) ∏

x∈∂◻
δ0 (θ(x)) ∏

x∈◻○
1[−π,π)(θ(x))dθ(x),

where we have used the notation

ZE(◻)
t=0 ∶= {m ∶ E(◻) ↦ Z ∶ tm = 0 on ∂◻} .

Observe that we may split the sum according to

(3.2) ∑
m∈ZE(◻)t=0

= ∑
q∈ZF (◻)t=0 ,dq=0

∑
m∈ZE(◻)t=0 ,dm=q

,

where we have set

ZF (◻)
t=0 ∶= {q ∶ F (◻) ↦ Z ∶ tq = 0 on ∂◻} .

A combination of (3.1) and (3.2) yields

Z◻,0 = ∑
q∈ZF (◻)t=0 ,dq=0

∑
m∈ZE(◻)t=0 ,dm=q

∫ ∏
e⊆E(◻)

exp(−β
2
(dθ(e) − 2πm(e))2) ∏

x∈∂◻
δ0 (θ(x)) ∏

x∈◻○
1[−π,π)(θ(x))dθ(x).

Here q ∶ F (◻) → Z is the “vortex charge” on each plaquette of ◻, which arises, informally, from

∮
F

dθ(e) = 2πq(F ).

For each q ∈ ZF (◻)
t=0 satisfying dq = 0, we denote by nq an element of ZE(◻)

t=0 such that dnq = q, chosen arbitrarily
among all the possible candidates (the set of candidates is not empty by Proposition 2.1). Using that each

1-form m ∈ ZE(◻)
t=0 satisfying dm = 0 can be uniquely written dw, for some w ∶ ◻ ↦ Z satisfying w = 0 on the

boundary ∂◻, one can rewrite the previous display according to

Z◻,0 = ∑
q∈ZF (◻)t=0 ,dq=0

∑
w∈Z◻0

∫ ∏
e⊆E(◻)

exp(−β
2
(dθ(e) − 2π (nq + dw) (e))2) ∏

x∈∂◻
δ0 (θ(x)) ∏

x∈◻○
1[−π,π)(θ(x))dθ(x),

where we have set

Z◻0 ∶= {w ∶ ◻ ↦ Z ∶ w = 0 on ∂◻} .
Using the change of variable φ ∶= θ − 2πw, and summing over all the maps w ∈ Z◻0 , one obtains

Z◻,0 = ∑
q∈ZF (◻)t=0 ,dq=0

∫
R◻

∏
e⊆E(◻)

exp(−β
2
(dφ(e) − 2πnq(e))2) ∏

x∈∂◻
δ0 (φ(x)) ∏

x∈◻○
dφ(x).
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We then decompose the function nq as a sum of an exact and co-exact form. Specifically, one can prove that

there exists a function φnq ∈ Z◻0 and a two form ψnq ∈ Z
F (◻)
t=0 such that

(3.3) nq = dφnq + d∗ψnq ,

The function ψnq can in fact be identified more precisely: there exists a linear operator (−∆◻)−1
(which

corresponds to inverting the Laplacian in the box ◻ with the suitable boundary condition as explained below)
such that

ψnq = (−∆◻)−1
q.

To be more specific, the operator (−∆◻)−1
is defined for general k-forms as follows. For each i ∈ {1, . . . , (d

2
)},

let us denote by ∂Ii◻ the subset of faces of the boundary ∂◻ which are parallel to the cell cIi , and fix a k-form
q ∈ Λk(◻). We then let w ∶= (w1, . . . ,w(d

k
)) be the solution of the boundary value problem

(3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆wi = qi in ◻,
wi = 0 in ∂Ii◻,

∇wi ⋅ n = 0 on ∂ ◻ ∖∂Ii◻,
that is, we solve the Laplace equation with Dirichlet boundary condition on the faces parallel to the cell cIi
and Neumann boundary condition on the cells orthogonal to cIi (see Proposition A.5). We then define

(−∆◻)−1
q ∶= w.

Then using the translation invariance of the Lebesgue measure, we obtain

Z◻,0 = ∑
q∈ZF (◻)t=0 ,dq=0

∫
R◻

∏
e⊆E(◻)

exp(−β
2
(dφ(e) − 2πd∗ (−∆◻)−1

q(e))
2
) ∏
x∈∂◻

δ0 (φ(x))∏
x∈◻

dφ(x).

The previous identity can be simplified

Z◻,0 = ZGFF ×Z(0)(3.5)

∶= ∫
R◻

exp(−β
2
(dφ,dφ)) ∏

x∈∂◻
δ0 (φ(x))∏

x∈◻
dφ(x) × ∑

q∈ZF (◻)t=0 ,dq=0

exp (−2π2β (q, (−∆◻)−1
q)) .

Using the identity dφ = ∇φ (valid for 0-forms), we see that the first term in the left hand side of (3.5) is the
partition function of the discrete Gaussian free field in the cube ◻ with Dirichlet boundary condition. In other
words, the Villain partition function factorizes into the partition function of a Gaussian free field, and the
vortex charges that form a (neutral) Coulomb gas.

One can use the same argument to study the two-point function

⟨ei(θ(x)−θ(0))⟩
µV
β,◻,0

.

For any point x ∈ ◻, define the string observable h0x ∶ E(Zd) ↦ Z to be the indicator function of a (arbitrarily
chosen) line joining 0 to x such that d∗h0x = 1x − 10 and h{◻,x} ∶ E(◻) ↦ Z be the indicator of the straight
line connecting x to the boundary of the box ◻ in the direction e1. We have by definition d∗h0x = 1x − 10 in
Zd and d∗h{◻,x} = 1x in the box ◻. With the same computation, we obtain

(3.6) ⟨ei(θ(x)−θ(0))⟩
µV
β,◻,0

= ⟨ei(φ(x)−φ(0))⟩
GFF

⟨e−2iπ(q,(−∆◻)−1dh0x)⟩
µC(β)

and

⟨eiθ(x)⟩
µV
β,◻,0

= ⟨eiφ(x)⟩
GFF

⟨e−2iπ(q,(−∆◻)−1dh{◻,x})⟩
µC(β)

.

Here

⟨ei(φ(x)−φ(0))⟩
GFF

∶= Z−1
GFF × ∫R◻

ei(φ(x)−φ(0)) exp(−β
2
(∇φ,∇φ)) ∏

x∈∂◻
δ0 (φ(x)) ∏

x∈◻○
dφ(x)

and

⟨e−2iπ(q,(−∆◻)−1dh0x)⟩
µC(β)

= Z(0)−1 × ∑
q∈ZF (◻)t=0 ,dq=0

e−2π2β(q,(−∆◻)−1q)e−2iπ(q,(−∆◻)−1dh0x).

Following [16], we define the functions

σ{◻,x} ∶= (−∆◻)−1
dh{◻,x} and σ{◻,0x} ∶= (−∆◻)−1

dh0x.
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For later purposes, we note that one has the pointwise convergences

(3.7) σ{◻,0} Ð→◻↑∞ (−∆)−1
dh0, σ{◻,x} Ð→◻↑∞ (−∆)−1

dhx and σ{◻,0x} Ð→◻↑∞ (−∆)−1
dh0x,

where h0 (resp. hx) is the indicator of the straight line starting from 0 (resp. x) in the direction e1. To ease
the notation, we denote the limiting functions in (3.7) by

σ0 ∶= (−∆)−1
dh0, σx ∶= (−∆)−1

dhx and σ0x ∶= (−∆)−1
dh0x.

In particular, using that the Laplacian commutes with the operators d and d∗, we obtain

(3.8) d∗σ0 = (−∆)−1
d∗dh0 = −h0 − (−∆)−1

dd∗h0 = −h0 − (−∆)−1
d10 = −h0 −∇G,

where G is the standard random walk Green’s function on the lattice Zd. A consequence of the identity (3.8)
is the equality

(3.9) e−2iπ(q,σ0) = e−2iπ(nq,∇G).

Similar statements hold for the maps σx and σ0x, and we may write

(3.10) e−2iπ(q,σx) = e−2iπ(nq,∇Gx) and e−2iπ(q,σ0x) = e−2iπ(nq,∇Gx−∇G)

where we have used the notation Gx ∶= G(⋅ − x).
We next collect the following identity: for each q ∈ ZE(◻)

t=0 satisfying dq = 0, one has

(3.11) (q, σ{◻,x} − σ{◻,0}) = (q, σ{◻,0x}) mod Z.

To justify the identity (3.11), we note that, with the same argument as in (3.3), we may write

h{◻,x} − h{◻,0} − h{◻,0x} = dφ + d∗σ{◻,x} − d∗σ{◻,0} − d∗σ{◻,0x},

for some field φ ∶ ◻ → R satisfying φ = 0 on the boundary ∂◻. Taking the scalar product with the 1-form dφ,
and performing integrations by parts, we obtain that

(dφ,h{◻,x} − h{◻,0} − h0x) = (φ,d∗h{◻,x} − d∗h{◻,0} − d∗hx) = (φ,1x − 10 − (1x − 10)) = 0

and

(dφ + d∗σ{◻,x} − d∗σ{◻,0} − d∗σ{◻,0x},dφ) = (dφ,dφ) + (σ{◻,x} − σ{◻,0} − σ{◻,0x},ddφ) = (dφ,dφ) .

A combination of the two previous displays implies dφ = 0 and thus h{◻,x} −h{◻,0} −h0x = d∗σ{◻,x} − d∗σ{◻,0} −
d∗σ{◻,0x}. We then use that q = dnq for some nq ∈ ZE(◻)

t=0 to write

(q, σ{◻,x} − σ{◻,0} − σ{◻,0x}) = (nq,d∗σ{◻,x} − d∗σ{◻,0} − d∗σ{◻,0x}) = (nq, h{◻,x} − h{◻,0} − h0x) ∈ Z.

This is (3.11). A consequence of (3.11) is that for each q ∈ ZE(◻)
t=0 satisfying dq = 0,

e−2iπ(q,σ{◻,x}−σ{◻,0}) = e−2iπ(q,σ{◻,0x}).

We set the notation, for each σ ∶ F (◻) → R,

(3.12) Z (σ) ∶= ∑
q∈ZF (◻)t=0 ,dq=0

e−2π2β(q,(−∆◻)−1q)e−2iπ(q,σ).

So that
Z (σ{◻,x})
Z (0)

= ⟨e−2iπ(q,σ{◻,x})⟩
µC(β)

and
Z (σ{◻,0x})
Z (0)

= ⟨e−2iπ(q,σ{◻,0x})⟩
µC(β)

.

Next, we introduce the functional space C(◻) defined as follows

C(◻) ∶= {φ ∶= (φ1, . . . , φ(d
2
)) ∶ ◻ → R(d

2
) ∶ ∀i ∈ {1, . . . ,(d

2
)} , φi = 0 on ∂ ◻ ∖∂Ii◻} .

and denote by φ ∶= (φ1, . . . , φ(d
k
)) the vector-valued Gaussian free field valued in the space C(◻) (or more

specifically, the Gaussian field whose covariance matrix is given by the finite volume Green’s function associated
with the Laplace equation described in (3.4)). Using the previous definition, we see that, for each q ∈ ZE(◻)

satisfying dq = 0 and tq = 0,

E [e2iπ(q,φ)] = e−2π2β(q,(−∆◻)−1q) = e−2π2β(q,(−∆◻)−1q).
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Consequently,

Z (σ{◻,0x}) = ∑
q∈ZF (◻)t=0 ,dq=0

E [e−2iπ(q,φ+σ{◻,0x})] .

Thus the partition function of this lattice Coulomb gas can be represented in terms of a characteristic function
with respect to a Gaussian measure. We then claim that, for β sufficiently large, a one-step renormalization
maps the Coulomb gas model to an effective one with very small effective activity. Using that the discrete

Laplacian is bounded from above, one has that (−∆◻)−1 ≥ c, for some c ∶= c(d) > 0. We then choose the inverse
temperature β larger than the value c2 and decompose the Gaussian field φ as the sum of two independent

Gaussian fields φ1 +φ2, such that φ1 and φ2 have covariance matrices β ((−∆◻)−1 − β− 1
2 Id) and β

1
2 Id. We can

thus write

Z (σ{◻,0x}) = ∑
q∈ZF (◻)t=0 ,dq=0

E [e−2iπ(q,φ1+φ2+σ{◻,0x})] = ∑
q∈ZF (◻)t=0 ,dq=0

e−π
2β1/2(q,q)Eµ1 [e−2iπ(q,φ1+σ{◻,0x})] ,

where µ1 is a Gaussian measure on C(◻), given by

dµ1(φ1) = Const × exp(− 1

2β
(φ1, ((−∆◻)−1 − β−

1
2 Id)

−1
φ1))dφ1,

where dφ1 denotes the Lebesgue measure on the space C(◻). For β sufficiently large, we may expand

((−∆◻)−1 − β− 1
2 Id)

−1
into a convergent sum

((−∆◻)−1 − β−
1
2 Id)

−1
= −∆ + ∑

n≥1

1

βn/2
(−∆)n+1,

where in the right-hand side, the symbol ∆ refers to the discrete Laplacian acting on the space C(◻) (with the
corresponding boundary condition so that it can be iterated). Thus

dµ1(φ1) = Z−1
1 × exp( 1

2β
(φ1,∆φ1) − ∑

n≥1

1

2β

1

βn/2
(φ1, (−∆)n+1φ1))1φ1∈C(◻) dφ1.

Following [16], (especially Lemmas 5.14 and 5.15 there), since e−π
2β1/2(q,q) decays to zero rapidly in ∥q∥1 ∶=

∑x∈F (◻) ∣q(x)∣, we may apply a cluster expansion to conclude that for β large enough, one can re-sum Z (σ0x)
as

Z(σ0x) = Eµ1

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝ ∑q∈Q◻

z(β, q)e−2iπ(q,φ1+σ{◻,0x})⎞
⎠

⎤⎥⎥⎥⎥⎦
= Eµ1

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝ ∑q∈Q◻

z(β, q) cos (2π (q, φ1 + σ{◻,0x}))
⎞
⎠

⎤⎥⎥⎥⎥⎦
,

where the sum is over all lattice animals q ∈ Q◻ with connected support satisfying dq = 0 in the cube ◻ and
tq = 0 on the boundary ∂◻ (see (2.15)), and z(β, q) is a real number given by the formula (see [16, (5.71)])

(3.13) z(β, q) =
∞
∑
n=1

1

n!
I(G(supp q1, . . . , supp qn)) ∑

q1+...+qn=q
e−

1
2 cβ∑i(qi,qi),

where the sum runs over all the charges q1, . . . , qn with connected support satisfying dqi = 0, and the
combinatorial factor I(G(supp q1, . . . , supp qn)) is defined as follows: we let G(supp q1, . . . , supp qn) be the
connection graph of the sets supp q1, . . . , supp qn (i.e., the graph whose vertices are supp q1, . . . , supp qn, and
with an edge between supp qi and supp qj if and only if the two sets have nonempty intersection), and for a
connected graph G, we define

I(G) ∶= ∑
H⊆G

(−1)∣E(H)∣,

where the sum runs over all the connected spanning subgraphs of G. These definitions and formulae are the
ones of [16, Section 5.5.3]. A few observations can be deduced from them:

● The real number z(β, q) depends only on the charge q, and the inverse temperature β in particular, it
does not depend on the box ◻ or on the vertex x;

● The coefficient z(β, q) satisfies some invariance properties with respect to the charge q and is not
affected by translation or rotations of the charge as well as reflections (in fact the coefficient is invariant
under any linear transformation preserving the lattice Zd applied to the charge q);

● By [16, Lemma 5.15], one has the estimate

(3.14) ∣z(β, q)∣ ≤ e−cβ
1/2∥q∥1 , for some c ∶= c(d) > 0.
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Similarly,

Z(0) = Eµ1

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝ ∑q∈Q◻

z(β, q)e−2iπ(q,φ1)⎞
⎠

⎤⎥⎥⎥⎥⎦
= Eµ1

⎡⎢⎢⎢⎢⎣
exp

⎛
⎝ ∑q∈Q◻

z(β, q) cos (2π (q, φ1))
⎞
⎠

⎤⎥⎥⎥⎥⎦
.

Using the trigonometric identity

cos (2π (q, φ1 + σ{◻,0x})) = cos (2π (q, φ1)) cos (2π (q, σ{◻,0x})) − sin (2π (q, φ1)) sin (2π (q, σ{◻,0x})) ,
we may write

(3.15)
Z(σ{◻,0x})
Z(0)

= ⟨exp
⎛
⎝ ∑q∈Q◻

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻,0x}, q)) + ∑
q∈Q◻

z(β, q) cos (2π(φ, q)) (cos ((2π(σ{◻,0x}, q))) − 1)
⎞
⎠
⟩
µβ,◻

.

Here µβ,◻ is defined as a measure on the space C(◻) by

(3.16) dµβ,◻(φ) ∶= Const × exp
⎛
⎝

1

2β
(φ,∆φ) − ∑

n≥1

1

2β

1

βn/2
(φ, (−∆)n+1φ) + ∑

q∈Q◻

z(β, q) cos (2π (q, φ))
⎞
⎠
dφ.

Combining (3.6) and (3.15), we have the following dual representation for the two-point function of the Villain
model. Let G◻ be the Dirichlet Green’s function defined on the vertices of the cube ◻,

(3.17) {
−∆G◻(⋅, x) = δx in ◻,

G◻(⋅, x) = 0 on ∂ ◻ .

Proposition 3.1. There exists an inverse temperature β1 ∶= β1(d) < ∞ such that for any β ≥ β1,

(3.18) ⟨ei(θ(x)−θ(0))⟩
µV
β,◻,0

exp( 1

2β
(G◻(x,x) +G◻(0,0) − 2G◻(0, x)))

= ⟨exp
⎛
⎝ ∑q∈Q◻

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻,0x}, q)) + ∑
q∈Q◻

z(β, q) cos (2π(φ, q)) (cos ((2π(σ{◻,0x}, q))) − 1)
⎞
⎠
⟩
µβ,◻

.

Following the same argument, we also obtain the dual representation for ⟨ei(θ(x)+θ(0))⟩
µV
β,◻,0

. Define

σ{◻,0x} ∶= σ{◻,0} + σ{◻,x}. We then have

(3.19) ⟨ei(θ(x)+θ(0))⟩
µV
β,◻,0

exp( 1

2β
(G◻(x,x) +G◻(0,0) − 2G◻(0, x)))

= ⟨exp
⎛
⎝ ∑q∈Q◻

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻,0x}, q)) + ∑
q∈Q◻

z(β, q) cos (2π(φ, q)) (cos (2π(σ{◻,0x}, q)) − 1)
⎞
⎠
⟩
µβ,◻

.

In view of (3.6), to study the two-point function of the (finite-volume) Villain model, it suffices to compute
the expectation of a non-linear functional (3.18) with respect to the Gibbs measure µβ,◻. Notice that the
neutrality condition dq = 0 indicates µβ,◻ is a measure of gradient-type, i.e., the Hamiltonian only depends on
the discrete gradient ∇φ. Additionally, for β large, the exponential smallness of z(β, q) implies that µβ,◻ is a
smooth perturbation of the discrete Gaussian free field

µGFF (dφ) ∶= Const × exp( 1

2β
(φ,∆φ))dφ.

These observations imply that the measure µβ,◻ belongs to the class of models in statistical physics known
as the uniformly convex ∇φ model. This category of models has been extensively studied in the literature,
and we refer to [51] for a description of its literature. In particular, one can apply the techniques and tools
developed in the context of the ∇φ model to study the asymptotic behavior of the measure µβ,◻. This is the
subject on the next sections where:

● We apply the Brascamp-Lieb inequality [24] to the measure µβ,◻ and use it to prove the existence of a
thermodynamic limit, denoted by µβ , for the measure µβ,◻ (i.e., the existence of an infinite-volume
limiting measure when ∣ ◻ ∣ → ∞).
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● We present the standard tool used to study the macroscopic behavior of the model known as the
Helffer-Sjöstrand representation and combine it with quantitative homogenization to show that on
large scales the measure µβ behaves like an effective Gaussian free field, with the covariance matrix
depending on β.

Remark 3.2. On a heuristical level, the second point above (asserting that the measure µβ behaves over
large scales as an effective Gaussian free field) is sufficient to justify that the subleading order of (3.15) (and
therefore, of the truncated two-point function) should decay asymptotically as C ∣x∣2−d, for some constant C
depending on β.

To see this, we first note that, for β sufficiently large, the inequality (3.14) implies that the coefficient
z(β, q) decays exponentially fast as the L1-norm of the charge q increases. On a heuristical level, we may make
the following simplifying assumption: we assume that the coefficient z(β, q) is equal to 0 for all the charges
except on the simplest ones satisfying the neutrality condition, i.e., the charges of the form q = (δx − δx+ei), for
i = 1, . . . , d (also called dipoles), for which it takes a nonzero value denoted by z(β). Thus the right side of
(3.18) is approximately (after taking the limit ∣ ◻ ∣ → ∞ to replace the finite-volume Gibbs measure µβ,◻ by the
infinite-volume measure µβ , the function σ◻,0x by σ0x and using the identity (3.10))

⟨exp
⎛
⎝ ∑
e∈E(◻)

z(β) sin (2π(∇φ(e))) sin (2π(∇G(e) − ∇Gx(e)))
⎞
⎠

× exp
⎛
⎝ ∑
e∈E(◻)

z(β) cos (2π(∇φ(e))) (cos (2π(∇G(e) − ∇Gx(e))) − 1)
⎞
⎠
⟩
µβ

.

Since ∣ cos (2π(∇G(e) − ∇Gx(e))) − 1∣ ≤ C(∇G(e) − ∇Gx(e))2 decays fast away from 0 and x, let us assume
for now that the term ∑e∈E(◻) z(β) cos (2π(∇φ(e))) (cos (2π(∇G(e) − ∇Gx(e))) − 1) only contributes to the
lower order. By further making the approximation sina ≈ a for small a, we may further approximate the
expression above by

⟨exp
⎛
⎝ ∑
e∈E(◻)

z(β)2π(∇φ(e))2π(∇G(e) − ∇Gx(e))
⎞
⎠
⟩
µβ,◻

.

Using an integration by parts, this equals to ⟨exp(z(β)4π2(φ(0) − φ(x)))⟩
µβ,◻

. Assuming that over large scales

the measure µβ behaves like a Gaussian free field, we may conclude

⟨exp(z(β)4π2(φ(0) − φ(x)))⟩
µβ,◻

≈ exp(1

2
varµβ,◻(z(β)4π

2(φ(0) − φ(x)))) ≈ C0(d, β) +C1(d, β)∣x∣2−d.

We remark that the computation above is only heuristical and the constants C0,C1 obtained are not the right
constants. Indeed, the non-local charges in Q◻, the non-linear functions sinx and cosx, and the non-Gaussian
field µβ,◻ contribute to a nontrivial correction of these constants. Such corrections can be obtained rigorously
through the homogenization of the Helffer-Sjöstrand PDE.

3.2. Brascamp-Lieb inequality. As we discussed, when β is sufficiently large, the measure µβ,◻ is a small
smooth perturbation of a discrete Gaussian free field, and is in particular log-concave. In this framework, one
is able to apply the celebrated Brascamp-Lieb inequality [24, 23] described below. We let H ∶ C(◻) → R be a
(strictly) convex function satisfying ∫C(◻) exp(−H(φ))dφ < ∞, and introduce the probability measure

µ(dφ) ∶= 1

Z
exp (−H(φ))dφ.

The Brascamp Lieb inequality estimates the variance of a general (differentiable) functional F ∶ C(◻) → R of
the field φ under the measure µ. In order to state it, we will need the following notation

(3.20) ⟨∂F, (HessH)−1∂F ⟩
µ
∶= ∑
x,y∈◻○

(d
2
)

∑
i=1

⟨∂x,iF (HessH)−1
(x,i),(y,j) ∂y,jF ⟩

µ
,

where (HessH)−1
is the inverse of the Hessian of H defined by HessH ∶= (∂x,i∂y,jH)(x,i),(y,j)∈◻×(d2).
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Proposition 3.3 (Brascamp-Lieb inequality for log-concave measures [24, 23]). Let µ be the log-concave
measure defined in (3.20). For any smooth and compactly supported function F ∶ C(◻) → R, one has the upper
bound

varµ [F ] ≤ ⟨∂F, (HessH)−1∂F ⟩
µ
.

We next apply the Brascamp-Lieb inequality to the measure µ◻,β . Specifically, we apply it to a class of
observables which will be useful to study the Villain model and upgrade it to obtain an estimate on exponential
moments (following the techniques of [51, Theorem 4.9]). In order to state the result, we first need to identify

the Green’s function associated with the Laplace equation (3.4). For each x ∈ ◻ and each i ∈ {1, . . . , (d
2
)}, we

let GC(◻),i ∶ ◻ → R be the solution of the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆GC(◻),i(⋅, x) = δx in ◻,
GC(◻),i(⋅, x) = 0 in ∂ ◻ ∖∂Ii◻,

n ⋅ ∇GC(◻),i(⋅, x) = 0 in ∂Ii ◻ .

We note that, in dimension d ≥ 3, the Green’s function GC(◻),i(⋅, x) is bounded uniformly in the vertex x, the
box ◻ and the index i. We record two properties of this finite-volume Green’s function. First, for any box ◻,
any index i ∈ {1, . . . , (d

2
)}, and any pair of vertices x, y ∈ ◻,

0 ≤ GC(◻),i(y, x) ≤
C

∣x − y∣d−2
.

In the discrete setting and in dimensions d ≥ 3, the Green’s function is bounded and we have GC(◻),i(x,x) ≤ C,

for any i ∈ {1, . . . , (d
2
)}, ◻ ⊆ Zd, and x ∈ ◻. To include this case in the notation, we implicitly extend all the

functions of the form x↦ ∣x∣−k for k ≥ 0 by the value 1 when x = 0 (as mentioned in Section 2.1).
Additionally, the finite-volume Green’s function converges to the infinite-volume one and we have: for any

index i ∈ {1, . . . , (d
k
)}, and any pair of vertices x, y ∈ Zd,

GC(◻),i(y, x) Ð→◻→∞
G(y, x).

In the case of the finite-volume Green’s function defined on a box with Dirichlet boundary condition, they can
be found in [75, Section 4.6]. They can be easily extended to the case considered here (where the boundary
condition is a combination of the Dirichlet and Neumann boundary conditions).

Proposition 3.4 (Brascamp-Lieb inequality for µβ,◻). Fix two constants C0 < ∞ and c > 0. There exists an
inverse temperature β1 ∶= β1(d,C0, c) < ∞ and a constant C ∶= C(d) such that for any β ≥ β1, the following
two properties hold:

● For any vertex x ∈ ◻,

(3.21) ⟨exp (∣φ(x)∣)⟩µβ,◻ ≤ C.

● For every collection of coefficients (g(β, q))q∈Q◻

satisfying ∣g(β, q)∣ ≤ C0 exp(−cβ1/2∥q∥1), if we denote

by Z ∶= ∑q∈Q◻
g(β, q) sin (2π(φ, q)), then

(3.22) ⟨exp (Z)⟩µβ,◻ ≤ exp
⎛
⎜
⎝
∑
x,y∈◻

(d
2
)

∑
i=1

GC(◻),i(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ,◻
⎞
⎟
⎠
.

Proof. We first apply the Brascamp-Lieb inequality with the map

(3.23) H(φ) ∶= − 1

2β
(φ,∆φ) + ∑

n≥1

1

2β

1

βn/2
(φ, (−∆)n+1φ) − ∑

q∈Q◻

z(β, q) cos (2π (q, φ)) .

The Hessian of the Hamiltonian H can then be explicitly computed: the first two terms of (3.23) are quadratic
(thus their Hessian is constant), and the Hessian of the third term can be obtained by differentiating the cosine
twice. We obtain the following identity: for any φ,ψ ∈ C(◻),

(ψ,HessH(φ)ψ) = − 1

2β
(ψ,∆ψ) + ∑

n≥1

1

2β

1

βn/2
(ψ, (−∆)n+1ψ) − ∑

q∈Q◻

z(β, q) (q,ψ)2
cos (2π (q, φ)) .
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Using that the second term is nonnegative and that the absolute value of the cosine is always smaller than 1,
we deduce that

(ψ,HessH(φ)ψ) ≥ 1

2β
∥∇ψ∥2

L2(◻) − ∑
q∈Q◻

∣z(β, q)∣ (q,ψ)2
.

We then estimate the second term in the right-hand side and prove that it is small compared to the first one.
To this end, we write

(3.24) ∑
q∈Q◻

∣z(β, q)∣ (q,ψ)2 ≤ ∑
q∈Q◻

e−cβ∥q∥1 (q,ψ)2 = ∑
q∈Q◻

e−cβ∥q∥1(nq,d∗ψ)2.

We then use the Cauchy-Schwarz inequality and deduce

∑
q∈Q◻

e−cβ∥q∥1 (nq,d∗ψ)
2 ≤ ∑

q∈Q◻

e−cβ∥q∥1 ∥nq∥2
L2 ∥d∗ψ∥2

L2(suppnq)

= ∑
q∈Q◻

∑
y∈suppnq

e−cβ∥q∥1 ∥nq∥2
L2 ∣d∗ψ(y)∣2

≤ ∑
y∈◻

∣d∗ψ(y)∣2
⎛
⎝ ∑
q∈Q◻,y

e−cβ∥q∥1 ∥nq∥2
L2

⎞
⎠
.

We then observe that the term in the right-hand side can be bounded as follows: one has the estimate, for any
y ∈ Zd,

(3.25) ∑
q∈Q◻,y

e−cβ∥q∥1 ∥nq∥2
L2 ≤ Ce−c

√
β .

To prove this inequality, we first absorb the polynomial factor by using (A.17) and writing

∥nq∥2
L2 e

−cβ∥q∥1 ≤ ∥q∥d+2
1 e−c

√
β∥q∥1 ≤ Ce−c

′
√
β∥q∥1

for some constant c′ ∈ (0, c). We then decompose over the supports of the charges. To this end, let us denote
by Ay the set of the finite connected subsets of Zd containing the vertex y. We then write

∑
q∈Qy

e−c
√
β∥q∥1 = ∑

X∈Ay
∑
q∈Q◻

supp q=X

e−c
′
√
β∥q∥1 = ∑

X∈Ay
∑
q∈Q◻

supp q=X

(∏
x∈X

e−c
′
√
β∣q(x)∣) .

Exchanging the sum and the product, we see that

∑
q∈Q◻

supp q=X

(∏
x∈X

e−c
′
√
β∣q(x)∣) ≤ ∏

x∈X

⎛
⎝

∞
∑

q(x)=1

e−c
′
√
β∣q(x)∣⎞

⎠
=
⎛
⎝

e−c
√
β

1 − e−c
√
β

⎞
⎠

∣X ∣

.

We thus obtain

∑
q∈Qy

e−c
√
β∥q∥1 ≤ C ∑

X∈Ay
e−c

√
β∣X ∣ = C

∞
∑
n=1

∣{X ∈ Ay ∶ ∣X ∣ = n}∣ e−c
√
βn.

We next note that

(3.26) ∣{X ∈ Ay ∶ ∣X ∣ = n}∣ ≤ eCn.
The inequality (3.26) can be established by associating each connected set of n vertices with one of its spanning
trees, and then bounding the number of such spanning trees. Choosing the inverse temperature β large enough
(i.e., such that c

√
β ≥ 2C), we deduce that

∑
q∈Qy

e−c
√
β∥q∥1 ≤ e−c

√
β ,

where we have reduced the value of the exponent c in the right-hand side. Additionally, we have the estimate

∥d∗ψ∥2
L2(◻) ≤ C ∥∇ψ(y)∥2

L2(◻) (this follows form the definition of the codifferential). Combining the previous

displays, we obtain

∑
q∈Q◻

∣z(β, q)∣ (nq,d∗ψ)
2 ≤ Ce−c

√
β ∥∇ψ∥L2(◻) .

Combining the four previous displays and choosing β small enough, we obtain

(3.27) (ψ,HessH(φ)ψ) ≥ 1

2β
∥∇ψ∥2

L2(◻) −Ce
−c

√
β ∥∇ψ∥L2(◻) ≥

1

4β
∥∇ψ∥2

L2(◻) =
1

4β
(ψ,−∆ψ) .



24 PAUL DARIO, WEI WU

We have thus proved the following inequality of symmetric operator on the space C(◻): for any φ ∈ C(◻)

HessH(φ) ≥ − 1

4β
∆.

Noting that the inverse of the discrete Laplacian on the space C(◻) is the Green’s function, we obtain: for any
φ,ψ ∈ C(◻),

(ψ,HessH(φ)−1ψ) ≤ 4β ∑
x,y∈◻

(d
2
)

∑
i=1

ψi(x)GC(◻),i(x, y)ψi(y).

For any i ∈ {1, . . . , (d
2
)} and any x ∈ ◻, we can apply the Brascamp-Lieb inequality with the function

Fx,i(φ) ∶= φi(x). We obtain

(3.28) var [φi(x)] ≤ 4βGC(◻),i(x,x) ≤ C,

where in the second inequality, we used that the Green’s function is bounded uniformly in the box ◻ and the
vertex x ∈ ◻. We next upgrade the estimate (3.28) from an upper bound on the variance to an upper bound
on exponential moments. To this end, we follow the techniques of [51, Theorem 4.9] and consider the function

t↦ log ⟨exp (tφi(0))⟩µβ,◻ .

The second derivative of this map is given by the formula

∂2

∂t2
log ⟨exp (tφi(0))⟩µβ,◻ = varµt (φ(0)) ,

where the measure µt is defined via density

dµt =
1

Z
× exp (H(φ) + tφi(0))dφ.

We then note that the Hessian of the Hamiltonian φ↦H(φ) + tφi(0) is the same as the one of H. We may
thus apply the Brascamp-Lieb inequality to the measure µt. We obtain, for any t ∈ [0,1],

∂2

∂t2
log ⟨exp (tφi(0))⟩µβ,◻ = varµt (φ(0)) ≤ C.

Integrating over t ∈ [0,1] twice and noting that ⟨φ(0)⟩µβ,◻ = 0 (by the φ ↦ −φ symmetry of the field) yields

the bound

⟨exp (φi(0))⟩µβ,◻ ≤ C.
Using once again the φ↦ −φ symmetry of the field, we also have

⟨exp (−φi(0))⟩µβ,◻ ≤ C.

Combining that the two previous estimates and noting that they hold for any i ∈ {1, . . . , (d
2
)} completes the

proof of (3.21).
We then prove the inequality (3.22). By the Brascamp-Lieb inequality, we have

varµβ,◻ [Z] ≤ 4β ∑
x,y∈◻

(d
2
)

∑
i=1

GC(◻),i(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ,◻ .

We next upgrade the previous inequality from an estimate on the variance to an estimate on exponential
moments using the same strategy as before. We first note that

∂2

∂t2
log ⟨exp (tZ)⟩µβ,◻ = varµt (Z) ,

where the measure µt is defined via the density

dµt = Const × exp (H(φ) + tZ(φ))dφ.

We will then apply the Brascamp-Lieb inequality to the measure µt. To this end, we need to show that: for
any φ,ψ ∈ C(◻) and any t ∈ [0,1],

(3.29) (ψ,Hess (H + tZ)(φ)ψ) ≥ 1

8β
(ψ, (−∆)ψ) .
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From (3.27), we see that it is sufficient to prove

∣(ψ,HessZ(φ)ψ)∣ ≤ 1

8β
(ψ, (−∆)ψ) .

Using the definition Z ∶= ∑q∈Q◻
g(β, q) sin (2π(φ, q)), we can compute the Hessian of the map X by differenti-

ating the sine twice. We obtain the identity

(ψ,HessZ(φ)ψ) = −4π2 ∑
q∈Q◻

g(β, q) sin (2π(φ, q)) (q,ψ)2.

Using the assumption on the coefficient g(β, q), we deduce that

∣(ψ,HessZ(φ)ψ)∣ ≤ ∑
q∈Q◻

e−cβ∥q∥1 (nq,d∗ψ)
2
.

The proof is then identical to the proof (3.21) (specifically the term in the right-hand side appears in (3.24)).
Applying the Brascamp-Lieb inequality, we obtain, for any t ∈ [0,1],

∂2

∂t2
log ⟨exp (tZ)⟩µβ,◻ = varµt (Z) ≤ 8β ∑

x,y∈◻

(d
2
)

∑
i=1

GC(◻),i(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ,◻ .

Integrating over t ∈ [0,1] twice and noting that ⟨Z⟩µβ,◻ = 0 (by the φ↦ −φ symmetry of the field) completes

the proof of (3.22). �

3.3. Thermodynamic limit. The Brascamp-Lieb inequality allows us to prove the existence of a thermody-
namic limit for the measures µβ,◻ as ◻ → ∞. Specifically, by Proposition 3.4 (since all the constants in the
statement do not depend on the volume) and a tightness argument, there exists a sequence of boxes (◻Lk)k∈N
centered at 0 and of side length Lk such that Lk tends to infinity as k tends to infinity and such that the
sequence of measures µβ,◻Lk converges weakly in the space Ω to an infinite-volume, translation-invariant Gibbs

measure denoted by µβ . By taking the limit in the finite volume identity (3.6), and using that µVβ,◻,0 converges

to the unique Gibbs state µVβ , we see that any possible limit µβ gives the same contribution to the correlation
functions of the Villain model, thus it suffices to study any of such µβ .

We record below three properties of the measure µβ , which are direct consequences of Proposition 3.4 and
the definition of µβ :

● There exists a constant C ∶= C(d, β) < ∞ such that, for any x ∈ Zd,

⟨exp (∣φ(x)∣)⟩µβ ≤ C and ⟨φ(x)⟩µβ = 0.

● For any box L ∈ N, any collection of coefficients (g(β, q))q∈QL satisfying ∣g(β, q)∣ ≤ C exp(−cβ1/2∥q∥1),
if we denote by Z ∶= ∑q∈QL g(β, q) sin (2π(φ, q)), then

(3.30) ⟨exp (Z)⟩µβ ≤ exp
⎛
⎜
⎝
∑

x,y∈Zd

(d
2
)

∑
i=1

G(x, y) ⟨(∂x,iZ) (∂y,iZ)⟩µβ
⎞
⎟
⎠
.

Combining with the thermodynamic limit results for the Villain model [25, 57], we are now ready to state the

following dual representation in infinite volume. To this end, for L ∈ N denote by XL ∶ Ω→ R and Y L ∶ Ω→ R
the two random variables

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

XL ∶= ∑
q∈Q◻L

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻L,0x}, q)) + ∑
q∈Q◻L

z(β, q) cos (2π(φ, q)) (cos (2π(σ{◻L,0x}, q)) − 1) ,

Y L ∶= ∑
q∈Q◻L

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻L,0x}, q)) .

We first prove that the random variables XL and YL converge in L2(µβ) as L tends to infinity.

Proposition 3.5. There exists an inverse temperature β1 ∶= β1(d) < ∞ such that for any β ≥ β1, the sequences
of random variables XL and YL converge as L→∞ in L2(µβ).



26 PAUL DARIO, WEI WU

Proof. We first introduce the two random variables

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

XL ∶= ∑
q∈Q◻L

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) + ∑
q∈Q◻L

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1) ,

YL ∶= ∑
q∈Q◻L

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) .

and prove that the function YL converges in L2(µβ). In the argument below, we will denote by Cx a generic

and typically large constant depending on the parameters d, β and on the vertex x ∈ Zd (which is fixed through
the proof). By the Brascamp-Lieb inequality, we have

varµβ [Y2L − YL] ≤ ∑
y,z∈◻2L

4β
(d
2
)

∑
i=1

G◻,i(y, z) ⟨(∂y,i(Y2L − YL)) (∂z,i(Y2L − YL))⟩µβ .

An explicit computation shows

∂y,i(Y2L − YL) = ∑
q∈Q2L∖Q◻L

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) qi(y).

By definition of σ0x, the identity q = dnq and the bound ∣sin θ∣ ≤ ∣θ∣ for θ ∈ R, we have

∣z(β, q)q(y) sin (2π(σ0x, q)) ∣ ≤ Ce−c
√
β∥q∥1 ∣q(y)∣∣(σ0x, q)∣(3.31)

≤ Ce−c
√
β∥q∥1 ∣q(y)∣∣(d∗σ0x, nq)∣

≤ Ce−c
√
β∥q∥1 ∣q(y)∣ ∥d∗σ0x∥L2(suppnq) ∥nq∥L2(Zd)

≤ Ce−c
√
β∥q∥1 ∣q(y)∣ ∥∇G(⋅,0) − ∇G(⋅, x)∥L2(suppnq) ∥nq∥L2(Zd) .

We next use the bound ∣∇∇G(0, z)∣ ≤ C ∣z∣−d on the mixed derivative of the Green’s function and obtain

∥∇G(⋅,0) − ∇G(⋅, x)∥L2(suppnq) ≤ ∣suppnq ∣
1
2 sup
z∈suppnq

∣∇G(z,0) − ∇G(z, x)∣

≤ Cx ∣suppnq ∣
1
2
(diamnq)d

∣y∣d
.

Combining the two previous displays and reducing the value of the constant c in the exponential to absorb all
the terms involving the diameter, support and L2-norm of the charge nq, we obtain

(3.32) e−c
√
β∥q∥1 ∣q(y)∣∣(σ0x, q)∣ ≤

Cxe
−c

√
β∥q∥1 ∣q(y)∣
∣y∣d

.

Thus,

∣∂y,i(Y2L − YL)∣ ≤
Cx
∣y∣d ∑

q∈Q2L∖Q◻L

e−c
√
β∥q∥1 ∣q(y)∣(3.33)

≤ Cx
∣y∣d

e−
c
2

√
β dist(y,◻2L∖◻L) ∑

q∈Q2L∖Q◻L

e−
c
2

√
β∥q∥1 ∣q(y)∣

≤ Cx
∣y∣d

e−
c
2

√
β dist(y,◻2L∖◻L) ∑

q∈Qy
e−

c
2

√
β∥q∥1 ∣q(y)∣

≤ Cx
∣y∣d

e−
c
2

√
β dist(y,◻2L∖◻L).

The second inequality relies on the observation that a charge satisfying q ∈ Q2L ∖Q◻L and q(y) ≠ 0 must have
a diameter larger than dist(y,◻2L ∖ ◻L) (and thus ∥q∥1 ≥ dist(y,◻2L ∖ ◻L) since q is integer-valued with a
connected support). The third inequality is a consequence of (A.20) of Appendix A (choosing the value k = 1,
and noting that, by the definition of the L1-norm, ∣q(y)∣ ≤ ∥q∥1). Consequently

varµβ [Y2L − YL] ≤ Cx ∑
y,z∈Zd

1

∣y − z∣d−2

e−c
√
β dist(y,◻2L∖◻L)

∣y∣d
e−c

√
β dist(z,◻2L∖◻L)

∣z∣d
.
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Summing over the dyadic scales, we obtain

∞
∑
n=1

varµβ [Y2n+1 − Y2n] ≤ Cx∣x∣2
∞
∑
n=1

∑
y,z∈Zd

1

∣y − z∣d−2

e−c
√
β dist(y,◻2n+1∖◻2n)

∣y∣d
e−c

√
β dist(z,◻2n+1∖◻2n)

∣z∣d
(3.34)

≤ Cx ∑
y,z∈Zd

1

∣y − z∣d−2

1

∣y∣d
1

∣z∣d

≤ Cx.

Using that, for any L ∈ N, the φ ↦ −φ invariance of the measure µβ implies ⟨YL⟩µβ = 0, we deduce that the

sequence of random variables YL converges in L2(µβ) to a limit that we denote by

(3.35) Y = ∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) .

We next prove the convergence of the random variables XL. By the definition of σ0x, the identity q = dnq, the

estimate ∣∇∇G(y)∣ ≤ C ∣y∣−d and a computation similar to the one of (3.31), we have, for each vertex y ∈ Zd,
and each charge q ∈ Qy,

(3.36) ∣z(β, q) (cos (2π(σ0x, q)) − 1) ∣ ≤ C exp(−c
√
β∥q∥1)(σ0x, q)2 ≤ Cxe

−c
√
β∥q∥1

∣y∣2d
.

Since the map x→ ∣x∣−2d is summable in Zd, we deduce that for any field φ ∈ Ω,

∑
q∈Q

∣z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)∣ ≤ ∑
y∈Zd

∑
q∈Qy

∣z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)∣(3.37)

≤ Cx ∑
y∈Zd

1

∣y∣2d ∑
q∈Qy

exp(−c
√
β∥q∥1)

≤ Cx ∑
y∈Zd

1

∣y∣2d

≤ Cx.

The previous inequality implies that the sequence of random variables

∑q∈Q◻L
z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1) converges uniformly over all the possible values of

the field φ ∈ Ω. In particular it converges in L∞(µβ) (and thus in L2(µβ)). We denote the limit by

(3.38) X = ∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) + ∑
q∈Q

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1) .

The proof of the convergences of the random variables YL and XL is complete. To complete the proof of
Proposition 3.5, it is sufficient to show that

(3.39) varµβ [YL − Y L] Ð→
L→∞

0 and varµβ [XL −XL] Ð→
L→∞

0.

We only sketch the proof of the first convergence. Using the definition of the maps σ{◻L,0x} and (standard)
regularity estimates on the finite-volume Green’s functions, we have the bound

(3.40) ∣∇σ{◻L,0x}(y)∣ ≤
Cx
∣y∣d

.

Using the previous upper bound and the same computation as the one leading to (3.34), we obtain that for
any ε > 0 there exists Rε > 0 such that for any L ≥ Rε

varµβ

⎡⎢⎢⎢⎢⎣
∑

q∈Q◻L
∖Q◻Rε

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻L,0x}, q))
⎤⎥⎥⎥⎥⎦
≤ ε

and

varµβ

⎡⎢⎢⎢⎢⎣
∑

q∈Q◻L
∖Q◻Rε

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q))
⎤⎥⎥⎥⎥⎦
≤ ε
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Additionally, using the convergence (3.7), we see that

(3.41) sup
φ∈Ω

RRRRRRRRRRRRR
∑

q∈Q◻Rε

z(β, q) sin (2π(φ, q)) (sin (2π(σ0x, q)) − sin (2π(σ{◻L,0x}, q)))
RRRRRRRRRRRRR
Ð→
L→∞

0.

A combination of the three previous displays yields the convergence (3.39) for the variance of the random

variable YL − Y L.
Finally, the convergence of the variance of the random variable XL −XL can be deduced form the one of the

variable YL −Y L and the following result: as in (3.37), we can use the convergence (3.7) with the bound (3.40)
(together with the bound ∣cos θ − 1∣ ≤ θ2/2 and the summability of the function y ↦ ∣y∣−2d on Zd) to obtain

(3.42)

sup
φ∈Ω

RRRRRRRRRRRR
∑

q∈Q◻L

z(β, q) cos (2π(φ, q)) (cos (2π(σ{◻L,0x}, q)) − 1) − ∑
q∈Q

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)
RRRRRRRRRRRR
Ð→
L→∞

0.

�

Using the previous proposition, we are able to establish an infinite-volume version of Proposition 3.1.

Proposition 3.6. There exists an inverse temperature β1 ∶= β1(d) < ∞ such that for any β ≥ β1,

(3.43) ⟨ei(θ(x)−θ(0))⟩
µV
β

exp( 1

2β
(G(0,0) − 2G(0, x)))

= ⟨exp
⎛
⎝∑q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) + ∑
q∈Q

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)
⎞
⎠
⟩
µβ

and

(3.44) ⟨ei(θ(x)+θ(0))⟩
µV
β

exp( 1

2β
G(0, x))

= ⟨exp
⎛
⎝∑q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) + ∑
q∈Q

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)
⎞
⎠
⟩
µβ

.

Proof. We give the proof of (3.43) below, (3.44) follows from the same argument. By [25, 57], there exists a

thermodynamic limit for the Villain model, denoted by µVβ such that ⟨ei(θ(x)−θ(0))⟩
µV
β,◻Lk

→ ⟨ei(θ(x)−θ(0))⟩
µV
β

as k →∞. We also have that the finite-volume Green’s function G◻Lk (⋅,0) converges to G(⋅,0) as k tends to
infinity.

In the argument below, we will (still) denote by Cx a generic and typically large constant depending on the
parameters d, β and on the vertex x ∈ Zd (which is fixed through the proof). By Proposition 3.1, it is enough
to show the convergence

(3.45) ⟨exp (XLk)⟩µβ,◻Lk
Ð→
k→∞

⟨exp (X)⟩µβ .

We first prove the (simpler) convergence

(3.46) ⟨exp (XLk)⟩µβ,◻Lk
Ð→
k→∞

⟨exp (X)⟩µβ .

We first fix k,R ∈ N satisfying ∣x∣ ≪ R≪ Lk, and write

⟨exp(XLk)⟩µβ,◻Lk
= ⟨exp(XR)⟩µβ,◻Lk

+ ⟨exp(XR) (exp(XLk −XR) − 1)⟩µβ,◻Lk
and

⟨exp(X)⟩µβ = ⟨exp(XR)⟩µβ + ⟨exp(XR) (exp(X −XR) − 1)⟩µβ .
We then note that, for any R > 0, the random variable XR is a bounded Lipschitz function (with a large
Lipschitz constant depending on R) which only depends on the values of the field φ inside the box [−R,R]d.
Thus,

⟨exp(XR)⟩µβ,◻Lk
Ð→
k→∞

⟨exp(XR)⟩µβ .



MASSLESS PHASES FOR THE VILLAIN MODEL IN d ≥ 3 29

We next apply the Hölder inequality and obtain

(3.47) ⟨exp(XR) (exp(XLk −XR) − 1)⟩µβ,◻Lk
≤ ⟨exp(2XR)⟩1/2µβ,◻Lk

⟨(exp(XLk −XR) − 1)2⟩
1/2

µβ,◻Lk

.

We estimate the two terms in the right side. For the first one, let us first observe that, by (3.37), there exists a
constant Cx ∶= Cx(d, β, x) < ∞ such that

(3.48) XR ≤ YR +Cx.

Combining the previous estimate with the Brascamp-Lieb inequality (Proposition 3.4) and obtain, for some
constant Cx ∶= Cx(d, β, x) < ∞,

⟨exp(2XR)⟩µβ,◻Lk
≤ C exp

⎛
⎜
⎝
∑

x,y∈◻○

(d
2
)

∑
i=1

GC(◻),i(x, y) ⟨(∂x,iYR) (∂y,iYR)⟩µβ,◻Lk

⎞
⎟
⎠
.

Using the estimates (3.30) (with Z = YR), (3.48), and an explicit computation, we obtain the upper bound

(3.49) ⟨exp(2XR)⟩µβ,◻Lk
≤ Cx.

There remains to estimate the second term in the right side of (3.47). We claim that

(3.50) ⟨(exp(XLk −XR) − 1)2⟩
µβ,◻Lk

≤ Cx

R
d
2−1

.

Using (3.36) and the same computation as in (3.37), we see that, for any L > R, and any field φ ∈ Ω,

RRRRRRRRRRR
∑
q∈QL

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1) − ∑
q∈QR

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)
RRRRRRRRRRR
≤ Cx
Rd

.

This result implies that to prove the estimate (3.50), it is sufficient to show

(3.51) ⟨(exp(YLk − YR) − 1)2⟩
µβ,◻Lk

≤ Cx

R
d
2−1

.

We can Taylor expand the left side of (3.51) and use the φ→ −φ symmetry of the field to obtain

LHS = ⟨(∑
k≥1

1

k!
(YLk − YR)

k)
2

⟩
µβ,◻Lk

= ∑
l≥1

⟨
2l

∑
j=1

1

j!(2l − j)!
(YLk − YR)

2l⟩
µβ,◻Lk

.

We then apply the exponential Brascamp-Lieb inequality to obtain, for any C ≥ 1 and β chosen sufficiently
large (depending on C),

⟨(YLk − YR)
2l⟩

µβ,◻Lk

≤ (2l)!
C2l

(⟨eC(YLk−YR) + e−C(YLk−YR)⟩
µβ,◻Lk

− 2)

≤ (2l)!
C2l

⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝

2C ∑
y,z∈◻Lk

(d
2
)

∑
i=1

GC(◻),i(y, z) ⟨(∂y,i(YLk − YR)) (∂z,i(YLk − YR))⟩µβ,◻Lk

⎞
⎟
⎠
− 1

⎤⎥⎥⎥⎥⎥⎦
.

Summing over l, and choosing C large enough (universally), we obtain
(3.52)

⟨(exp(YLk − YR) − 1)2⟩
µβ,◻Lk

≤ C
⎡⎢⎢⎢⎢⎢⎣
exp

⎛
⎜
⎝

2C ∑
y,z∈◻Lk

(d
2
)

∑
i=1

GC(◻),i(y, z) ⟨(∂y,i(YLk − YR)) (∂z,i(YLk − YR))⟩µβ,◻Lk

⎞
⎟
⎠
− 1

⎤⎥⎥⎥⎥⎥⎦
.

We claim that, the term in the right side of (3.52) is bounded by C ∣x∣R2−d. Using the same computation as
in (3.33), we have

∣∂y,i(YLk − YR)∣ ≤
Cxe

− c2
√
β dist(y,◻Lk∖◻R)

∣y∣d
.
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Using the estimate (3.32) and the bound GC(◻),i(y, z) ≤ C
∣y−z∣d−2 , we obtain

∑
y,z∈◻Lk

(d
2
)

∑
i=1

GC(◻),i(y, z) ⟨(∂y,i(YLk − YR)) (∂z,i(YLk − YR))⟩µβ,◻Lk

≤ Cx ∑
y,z∈◻Lk∖◻R

1

∣y − z∣d−2

e−
c
2

√
β dist(y,◻Lk∖◻R)

∣y∣d
e−

c
2

√
β dist(z,◻Lk∖◻R)

∣z∣d

≤ Cx
Rd−2

,

which, together with (3.47), (3.49), and (3.52), implies

⟨exp(XR) exp(X −XR)⟩µβ ≤
Cx

R
d
2−1

.

The same computation yields

⟨exp(XR) (exp(X −XR) − 1)⟩µβ ≤
Cx

R
d
2−1

.

So that the proof of (3.46) is complete. To prove (3.45), it is thus sufficient to show

(3.53) ⟨exp (XLk)⟩µβ,◻Lk
− ⟨exp (XLk)⟩µβ,◻Lk

Ð→
k→∞

0.

This is a consequence of the convergences (3.41) and (3.41), the bound (3.51) and the bound: for any R ≥ 0
and any L ≥ R,

XXXXXXXXXXX
exp

⎛
⎝ ∑
q∈QL∖QR

z(β, q) sin (2π(φ, q)) sin (2π(σ{◻L,0x}, q))
⎞
⎠
− 1

XXXXXXXXXXX

2

L2(µβ,◻L)

≤ Cx

R
d
2−1

.

The proof of the previous inequality is identical to the proof of (3.51) (the only difference is that the bound (3.40)
needs to be used instead of the decay estimates on the Green’s function).

�

3.4. The Helffer-Sjöstrand representation. Proposition 3.6 shows that, in order to understand the
asymptotic behavior as x tends to infinity of the two point function, it is sufficient to understand the behavior
of the expectation of the random variable exp(X) under the measure µβ as x tends to infinity.

The Gibbs measure µβ is a specific example of a model of stochastic interface model extensively studied in
the literature called the ∇φ model [51]. In particular, following the ideas and techniques of [67, 88, 81, 54],
the large-scale behavior of the ∇φ model can be understood by studying the large-scale behavior of an infinite
dimensional PDE called the Helffer-Sjöstrand equation [67, 81]. In this section, we adapt the tools developed
by Helffer-Sjöstrand and Naddaf and Spencer [81] to our framework, and introduce the Helffer-Sjöstrand PDE
associated with the measure µβ .

Specifically, in Sections 3.4.1 and 3.4.2, we introduce the Helffer-Sjöstrand PDE, present two equivalent
approaches to solve this PDE: the first one is based on variational techniques of [81], the second one is based
on a dynamical interpretation of the equation and is the one of [54]. We then show, following [81], how its
solutions can be used to identify the covariance of general functionals of the field φ distributed according to the
measure µβ . In Section 3.4.4, we introduce the Green’s matrix associated with the Helffer-Sjöstrand operator
and state a quantitative homogenization theorem for this map. This result is a crucial step in the proof of
Theorem 1, and its proof occupies a large part of this article: it is the subject of Sections 6 and 7, where we
combine the ideas of [81, 54] with the recent development in quantitative stochastic homogenization of [8, 9].

3.4.1. The Witten Laplacian. Following the techniques of [52, 81, 54], we know that the measure µβ is stationary,

ergodic and reversible with respect to the Langevin dynamics defined as follows. We let {Bt(x) ∶ t ≥ 0, x ∈ Zd}
is a collection of independent Brownian motions valued in R(d

2
) and let φ ∶ [0,∞] ×Zd → R(d

2
) be the solution

of the system of stochastic differential equation: for t ≥ 0 and x ∈ Zd,

(3.54) dφt(x) = −
1

2β
∆φt(x) + ∑

n≥0

1

2β

1

βn/2
(−∆)n+1φt(x) − ∑

q∈Q
2πz(β, q)q(x) sin (2π (q, φ)) +

√
2dBt(x).
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We refer to [52] for the justification of this property and a proof of the solvability of the Langevin dynamics (3.54).
Following the idea of [81], one observes that the Langevin dynamics is a Markov process whose infinitesimal
generator is the operator ∆φ defined on the set of (real-valued) functions F ∈ C∞

c (Ω) by the formula: for any
φ ∈ Ω,

(3.55) ∆φF (φ)

∶= ∑
x∈◻○

∂2
xF (φ) − ∑

x∈Zd

⎡⎢⎢⎢⎢⎣

1

2β
∆φ(x) − ∑

n≥1

1

2β

1

βn/2
(−∆)n+1φ(x) − ∑

q∈Q
2πz(β, q)q(x) sin (2π (q, φ))

⎤⎥⎥⎥⎥⎦
∂xF (φ),

where the notation ∂2
x means ∑

(d
2
)

i=1 ∂
2
x,i, and we implicitly take the scalar product between the two terms in the

right side of (3.55). The operator ∆φ is thus symmetric with respect to the measure µβ,L, and one has the
identities

⟨F∆φG⟩µβ = ⟨G∆φF ⟩µβ = − ∑
x∈Zd

⟨∂xF,∂xG⟩µβ , ∀F,G ∈ C∞
c (Ω).

3.4.2. Helffer-Sjöstrand operator. In this section, we introduce the Helffer-Sjöstrand operator. This operator is

defined in (3.57) and acts on function defined on Zd ×Ω and valued in R(d
2
). Its definition requires to introduce

a few spaces and definitions. We first introduce the space of smooth and compactly supported functions defined
on Zd ×Ω

C∞
c (Zd ×Ω)

∶= {F ∶ Zd ×Ω→ R(d
2
) ∶ ∀x ∈ Zd, F (x, ⋅) ∈ C∞

c (Ω) and F (x, ⋅) = 0 for all but finitely many x ∈ Zd } .

We then extend the domain of the Witten Laplacian −∆φ to the functions of C∞
c (Zd ×Ω) as follows: for any

F ∈ C∞
c (Zd ×Ω), any (y, φ) ∈ Zd ×Ω,

(3.56) ∆φF (y, φ)

∶= ∑
x∈Zd

∂2
xF (y, φ) − ∑

x∈Zd

⎡⎢⎢⎢⎢⎣

1

2β
∆φ(x) − ∑

n≥1

1

2β

1

βn/2
(−∆)n+1φ(x) − ∑

q∈Q
2πz(β, q)q(x) sin (2π (q, φ))

⎤⎥⎥⎥⎥⎦
∂xF (y, φ),

where all the partial derivative are with respect to the field φ (for a fixed point y ∈ Zd). We next extend the
definition of the discrete Laplacian ∆ to functions of C∞

c (Zd ×Ω) by setting: for any (y, φ) ∈ Zd ×Ω,

∆F (y, φ) ∶= ∑
x∼y

(F (x,φ) − F (y, φ)).

We similarly define the iteration of the Laplacian (−∆)k by iterating the previous definition. For q ∈ Q, and
φ ∈ Ω, we define the coefficient

aq(φ) ∶= 4π2z (β, q) cos (2π (φ, q)) .

Given a function F ∈ C∞
c (Zd ×Ω) and φ ∈ Ω, we introduce the notation

∇qF (φ) ∶= (q,F (⋅, φ)).

We finally combine the two previous definitions, and introduce the operator

∇∗
q ⋅ aq∇qF (φ,x) = 4π2z (β, q) cos (2π (φ, q)) (F (⋅, φ), q) q(x).

The notation is motivated by the following symmetry property satisfied by the operator ∇∗
q ⋅ aq∇q: for any

F,G ∈ C∞
c (Zd ×Ω),

∑
x∈Zd

⟨∇∗
q ⋅ aq∇qF (⋅, x)G(⋅, x)⟩

µβ
= ∑
x∈Zd

⟨∇∗
q ⋅ aq∇qG(φ,x)F (φ,x)⟩

µβ

= ⟨aq (F, q) (G, q)⟩µβ
= ⟨aq∇qF∇qG⟩µβ .
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Additionally, due to the assumption dq = 0, the function ∇∗
q ⋅ aq∇qF depends only on the discrete gradient ∇F .

Equipped with these definitions, we introduce the Helffer-Sjöstrand operator acting on functions F ∶ Ω ×Zd →
R(d

2
)

(3.57) L ∶= −∆φ −
1

2β
∆ + 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1 + ∑
q∈Q

∇∗
q ⋅ aq∇q.

The following definition introduce a notion of weak solutions for the Helffer-Sjöstrand operator.

Definition 3.7 (Solution of the Helffer-Sjöstrand equation). Let f ∶ Zd×Ω→ R(d
2
) be such that f ∈ L2(Zd, µβ).

A function u ∶ Zd ×Ω→ R(d
2
) is called a weak solution of the Helffer-Sjöstrand equation

Lu = f in Ω ×Zd,

if, for any function F ∈ C∞
c (Zd ×Ω), one has the identity

∑
x∈Zd

⟨u(x, ⋅),LF (x, ⋅)⟩µβ = ∑
x∈Zd

⟨f(x, ⋅), F (x, ⋅)⟩µβ .

The next proposition establishes the solvability of the Helffer-Sjöstrand using the variational approach used
by Naddaf-Spencer [81]. We recall the definition of the space Ḣ1(Zd, µβ) introduced in (2.7) of Section 2.

Proposition 3.8 (Variational solvability). For any f ∶ Zd ×Ω→ Rd×(
d
2
) satisfying f ∈ L2(Zd, µβ), there exists

a unique weak solution u ∶ Zd ×Ω→ R(d
2
) in the space Ḣ1(Zd, µβ) of the equation

(3.58) Lu = ∇ ⋅ f in Zd ×Ω,

which satisfies, for some C(d, β) < ∞,

(3.59) sup
x∈Zd

∥u(x, ⋅)∥2
L2(µβ) + ∑

x∈Zd
∥∂xu∥2

L2(Zd,µβ) + ∥∇u∥2
L2(Zd,µβ) ≤ C ∥f∥2

L2(Zd,µβ) .

Remark 3.9. We require that the right-hand side (3.58) is in divergence form. This assumption simplifies the
proof but is not strictly necessary. Indeed, using the Gagliardo-Nirenberg-Sobolev inequality, one could prove
the existence and uniqueness of variational solutions of the Helffer-Sjöstrand equation Lu = f if the function

f ∶ Zd ×Ω→ R(d
2
) satisfies

(3.60) ( ∑
x∈Zd

∣f(x, ⋅)∣2d/(d−2))
d−2
2d

∈ L2(µβ).

Proof. Using that the space C∞
c (Zd ×Ω) is dense in Ḣ1(Zd, µβ), we see that a function u ∈ Ḣ1(Zd, µβ) is a

solution of (3.58) if and only if

(3.61) ∑
x,y∈Zd

⟨(∂yu(x, ⋅))(∂yw(x, ⋅))⟩µβ +
1

2β
∑
x∈Zd

⟨∇u(x, ⋅)∇w(x, ⋅)⟩µβ

+ 1

2β
∑
n≥1

1

β
n
2
∑
x∈Zd

⟨∇n+1u(x, ⋅),∇n+1w(x, ⋅)⟩
µβ

+ ∑
q∈Q

⟨∇qu ⋅ aq∇qw⟩µβ

= − ∑
x∈Zd

⟨f(x, ⋅)∇w(x, ⋅)⟩µβ , ∀w ∈ Ḣ1(Zd, µβ).

As in the proof of Proposition 3.4, we may use the estimate ∣aq ∣ ≤ Ce−cβ∥q∥1 to show that, if β is sufficiently

large, the bilinear form on the left side of the previous display is coercive with respect to the Ḣ1(Zd, µβ)-norm.

The Lax-Milgram Theorem therefore yields the existence of a unique solution u ∈ Ḣ1(Zd, µβ). Applying the
Gagliardo-Nirenberg-Sobolev inequality (for a fixed field φ ∈ Ω) yields

(3.62) sup
x∈Zd

∣u(x,φ)∣2 ≤
⎛
⎝ ∑y∈Zd

∣u(y, φ)∣2d/(d−2)⎞
⎠

(d−2)/d

≤ ∑
y∈Zd

∣∇u(y, φ)∣2 .

Integrating over the measure µβ completes the proof of Proposition 3.8. �
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As it has been observed in the literature [81, 54], there exists a dynamical representation for the solution u
of the Helffer-Sjöstrand PDE Lu = ∇ ⋅ f . The formula is stated in Proposition 3.12, and we will use it in this
article to obtain upper bounds on the solution u. In order to state the result, we introduce a few additional
definitions. Given a field φ ∈ Ω, we consider the solution of the Langevin dynamics started from φ at time
t = 0, that is,

(3.63)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dφt(x) =
1

2β
∆φt(x)dt −

1

2β
∑
n≥1

1

β
n
2

(−∆)n+1φt(x)dt + ∑
q∈Q

(∇∗
q ⋅ aq(φt)∇qφt) (x)dt +

√
2dBt(x),

φ0(x) = φ(x).

We denote by Pφ the law of the dynamics (φt)t≥0 starting from φ and by Eφ the expectation with respect to
the measure Pφ. The solvability of the SDE (3.63) is guaranteed for µβ-almost every φ ∈ Ω by the arguments
of [54, Section 2.1.3] or [52, Section 2.2].

For y ∈ Zd, we define the Dirac mass δy ∶ Zd → R(d
2
)×(d2) to be the diagonal matrix

δy(x) ∶= (1{x=y} ⋅ 1{i=j})1≤i,j≤(d2)
.

For any fixed realization of the dynamics {φt(x) ∶ t ≥ 0, x ∈ Zd}, we let Pφ ∶ [0,∞] ×Zd ×Zd → R(d
2
) ×R(d

2
) be

the fundamental solution (also referred to as heat kernel) of the parabolic system of equations
(3.64)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tP
φ⋅ (⋅, ⋅; y) − 1

2β
∆Pφ⋅ (⋅, ⋅; y) + 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1Pφ⋅ (⋅, ⋅; y) + ∑
q∈Q

∇∗
q ⋅ aq(φt)∇qPφ⋅ (⋅, ⋅; y) = 0 in [0,∞] ×Zd,

Pφ⋅ (0, ⋅, y) = δy in Zd.

To be more specific, we follow the standard technique to define the fundamental solution of a system of
parabolic equations: For any fixed column in the matrix δy, we solve the system (3.64) with this specific

column and obtain a function valued in the space R(d
2
). We then use the (d

2
) solutions obtained this way to

define the matrix valued function Pφ.
There are two important properties about the fundamental solution Pφ⋅ . First, the bound ∣aq ∣ ≤ Ce−cβ∥q∥1

shows that, for β large enough, the system (3.64) is a small perturbation of the heat equation (or equivalently
has a small ellipticity contrast). This observation implies that the system of equations (3.64) is in the range of
applicability of the Schauder regularity theory. This is the subject of Section 5, where we adapt the arguments
of the Schauder regularity to the system (3.64) and obtain the bounds on the heat kernel Pφ⋅ , its gradient and
mixed derivative collected in the following proposition.

Proposition 3.10 (Nash-Aronson estimate and regularity for the heat kernel). There exists an inverse
temperature β1 ∶= β1(d) < ∞ such that for any β ≥ β1, there exists a constant C ∶= C(d, β) < ∞ such that, for
any realization of the dynamics (φt)t≥0, any (t, x, y) ∈ [1,∞] ×Zd ×Zd,

∣Pφ⋅ (t, x; y)∣ ≤ C

td/2
exp(−∣x − y∣

Ct
) .

Additionally, for any regularity exponent ε > 0, there exists an inverse temperature β1(d, ε) < ∞ such that, for
any β ≥ β1,

∣∇xPφ⋅ (t, x; y)∣ ≤ C

td/2+1/2−ε exp(−∣x − y∣
Ct

) and ∣∇x∇yPφ⋅ (t, x; y)∣ ≤ C

td/2+1−ε exp(−∣x − y∣
Ct

) .

Remark 3.11. The bounds on the coefficients aq show that the ellipticity contrast of the system (3.64)
does not depend on the realization of the dynamics (φt)t≥0. A consequence of this observation is that the
Schauder regularity theory applies uniformly in the realization of the dynamics, and thus the upper bounds of
Proposition 3.10 are uniform over the dynamics (φt)t≥0.

The proof of these properties can be found in Proposition 5.7 of Section 5. The second important property
of the heat kernel Pφ⋅ is that, as observed in [81, Section 2.2.2] and [54, Section 3], it is related to the solutions
of the Helffer-Sjöstrand equation as explained below.

Proposition 3.12 (Dynamical solvability of the Helffer-Sjöstrand equation [81, 54]). Fix f ∶ Zd ×Ω→ Rd×(
d
2
)

such that f ∈ L2(Zd, µβ) and let u ∈ Ḣ1(Zd, µβ) be the solution of the Helffer-Sjöstrand equation Lu = ∇ ⋅ f
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defined in Proposition 3.8. Then, one has the identity

(3.65) u (x,φ) = ∫
∞

0
∑
y∈Zd

Eφ [f(y, φt)∇yPφ⋅(t, y;x)] dt.

The rigorous justification of the formula (3.65) requires to use tools from spectral theory. The argument in
the case of the dual Villain model is identical to the one presented for the uniformly elliptic ∇φ model in the
articles of Naddaf and Spencer [81, Section 2.2.2] and Giacomin, Olla and Spohn [54, Section 3].

3.4.3. The Helffer-Sjöstrand representation formula. The main reason to introduce the Helffer-Sjöstrand
operator is that it can be used to compute the covariance of general functional of the field φ through the
Helffer-Sjöstrand representation formula. The result was initially introduced by Helffer-Sjöstrand [67] and
Naddaf and Spencer [81, (1.10)] and is stated below.

Proposition 3.13 (Helffer-Sjöstrand representation formula [67, 81, 54]). Consider two functions F,G ∈
H1(µβ) and assume that there exist f, g ∶ Zd ×Ω→ Rd×(

d
2
) satisfying f, g ∈ L2 (Zd, µβ) and such that

(3.66) ∂xF = ∇ ⋅ f(x, ⋅) and ∂xG = ∇ ⋅ g(x, ⋅).

Let u ∈ Ḣ1(Zd, µβ) be the solution of the Helffer-Sjöstrand equation Lu = ∇ ⋅ f . Then one has the identity

(3.67) covµβ [F,G] = ∑
x∈Zd

⟨g(x, ⋅)∇u(x, ⋅)⟩µβ .

An example of function F ∈H1(µβ) satisfying (3.66) is the function F (φ) ∶= φ(0) −φ(x) for any x ∈ Zd. For
any charge q ∈ Q, the neutrality condition dq = 0 ensures that the function Fq(φ) ∶= (q, φ) satisfies (3.66). In
general, any reasonable function which depends only on the discrete gradient of the field satisfy this condition.
In the rest of this article, we will apply it to general functional of the field such as the random variables X
and Y defined in (3.38) and (3.35), which, still due to the neutrality condition dq = 0, satisfy (3.66).

The proof of this result for the ∇φ model can be found in [81, (1.10)] and [54, Proposition 3.1]. The proof
for the measure µβ follows from the same arguments.

3.4.4. The Green’s matrix. In this section, we introduce the Green’s matrix associated with the Helffer-Sjöstrand
operator L and state some of its main properties regarding existence, decay and homogenization.

Proposition 3.14. For any function f ∶ Ω → R satisfying f ∈ L2 (µβ) and any y ∈ Zd, there exists a unique

variational solution Gf (⋅; y) ∶ Zd ×Ω→ R(d
2
)×(d2) of the Helffer-Sjöstrand equation

LGf (⋅; y) = fδy in Zd ×Ω.

The map Gf (⋅; y) is the fundamental solution of the operator L. As it was the case for the heat kernel Pφ⋅ ,
since the operator L is an elliptic system, the fundamental solution takes its values in the set of matrices of
size (d

2
) × (d

2
). We will refer to it as the Green’s matrix.

The Green’s function can be used to decompose general solutions the Helffer-Sjöstrand equation. If we let u
be the solution of the equation (3.58) and assume that f ∈ L2(Zd, µβ) takes the specific form f(y, φ) = f(φ)g(y)
for some f ∈ L2(µβ) and g ∈ L2(Zd), then we have

u(x,φ) = ∑
y∈Zd

∇yGf (x,φ; y)g(y).

Proof. Using the Gagliardo-Nirenberg-Sobolev inequality, and specifically the inequality (3.62), we have the
upper bound

∀u ∈ Ḣ1(Zd, µβ), ∥u(y, ⋅)∥2
L2(µβ) ≤ ∑

y∈Zd
∥∇u(y, φ)∥2

.

The previous inequality implies that the bilinear form

∑
x,y∈Zd

⟨(∂yu(x, ⋅))(∂yw(x, ⋅))⟩µβ +
1

2β
∑
x∈Zd

⟨∇u(x, ⋅)∇w(x, ⋅)⟩µβ

+ 1

2β
∑
n≥1

1

β
n
2
∑
x∈Zd

⟨∇n+1u(x, ⋅),∇n+1w(x, ⋅)⟩
µβ

+ ∑
q∈Q

⟨∇qu ⋅ aq∇qw⟩µβ − ⟨fw(y, ⋅)⟩µβ .

is coercive. The result then follows from the Lax-Milgram Theorem. �
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As it was the case for the variational solutions of the Helffer-Sjöstrand equation, the Green’s matrix admits
a dynamical interpretation relying on the heat kernel Pφ⋅ as stated in the following proposition.

Proposition 3.15. Fix f ∈ L2(µβ) and y ∈ Zd. The Green’s matrix Gf (⋅; y) satisfies the identity

(3.68) Gf (x,φ; y) = ∫
∞

0
Eφ [f(φt)Pφ⋅(t, y, x)] dt.

Remark 3.16. Using the previous proposition with the bound of Proposition 3.10 on the heat kernel, one
can extend the definition of the Green’s matrix to functions f ∈ L1(µβ) (instead of f ∈ L2(µβ)).

Combining Proposition 3.10 and Proposition 3.15, we obtain the following upper bounds on the Green’s
function Gf , its gradient and mixed derivative.

Proposition 3.17. For any regularity exponent ε > 0, there exists an inverse temperature β1(d, ε) < ∞ such
that for any β > β1 the following result holds. There exists a constant C(d, β) < ∞ such that for any x, y ∈ Zd,

∥Gf (x, ⋅; y)∥L2(µβ) ≤
C ∥f∥L2(µβ)

∣x − y∣d−2
,

and the regularity estimates on the gradient and the mixed derivative

∥∇xGf (x, ⋅; y)∥L2(µβ) ≤
C ∥f∥L2(µβ)

∣x − y∣d−1−ε and ∥∇x∇yGf (x, ⋅; y)∥L2(µβ) ≤
C ∥f∥L2(µβ)

∣x − y∣d−ε
.

In the second part of this section, we investigate the homogenization properties of the Green’s matrix, which
are a crucial ingredient in the proof of Theorem 1. The main result we establish is stated in Theorem 2. The
proof of this result is the subject of Sections 6 and 7.

From the theory of stochastic homogenization and its application to the Helffer-Sjöstrand equation [58, 8,
81, 9], one expects that there exists a deterministic, positive definite matrix aβ (which is a small perturbation
of the matrix 1

2β
Id) such that the Green’s matrix associated with the Helffer-Sjöstrand operator (3.57), defined

by

LG = δ0 in Zd ×Ω

homogenizes to the Green’s matrix G associated with the Laplacian operator ∇ ⋅ aβ∇

(3.69) −∇ ⋅ aβ∇G = δ0 in Zd,

in the sense that, as x→∞,

∥G(x, ⋅) −G(x)∥
L2(µβ)

= o( 1

∣x∣d−2
) .

When applying to the Villain model (see computations in Section 4) we need more precise result: specifically,
we need to prove quantitative homogenization for the mixed derivative associated with the Green’s matrix.
Results of this nature have been established in the homogenization literature (see e.g., [8, Section 8.6] or [20]).
The main contribution of Sections 6 and 7 is to adapt the techniques developed in [9, 8] to the setting of the
Helffer-Sjöstrand operator L.

In order to state Theorem 2, we need to introduce an important quantity in stochastic homogenization:
the first-order corrector. For i, j ∈ {1, . . . , d} × {1, . . . , (d

2
)}, we recall the notation lij for the affine function

introduced in Section 2

lij ∶=
⎧⎪⎪⎨⎪⎪⎩

Rd → R(d
2
),

x↦ (0, . . . ,0, x ⋅ ei,0, . . . ,0) ,
where the term x ⋅ ei appears in the j-th position. We denote by ∇χij the gradient of the first-order corrector,
defined to be the unique stationary solution of the Helffer-Sjöstrand equation

L(lij + χij) = 0 in Zd ×Ω.

It is precisely defined in Proposition 6.29. Once equipped with the gradient of the corrector, we can define the
exterior derivative d∗χij by using that the codifferential d∗ is a linear functional of the gradient (see (A.23)).
The following theorem proves a quantitative homogenization result for a version of the mixed derivative of the
Green’s function (3.68), the specific form of the function (3.70) is justified by the fact that it is the correct
object to consider in order to prove Theorem 1 in Section 4.
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Theorem 2 (Homogenization of the mixed derivative of the Green’s matrix). We fix a charge q1 ∈ Q such
that 0 belongs to the support of nq1 , let Uq1 be the solution of the Helffer-Sjöstrand equation

(3.70) LUq1 = cos (2π (φ, q1)) q1 in Zd ×Ω,

and let Gq1 ∶= (Gq1,1, . . . ,Gq1,(d2)) be the map defined by the formula, for each integer k ∈ {1, . . . , (d
2
)},

(3.71) Gq1,k = ∑
1≤i≤d

∑
1≤j≤(d2)

⟨cos (2π (φ, q1)) (nq1 ,d∗leij + d∗χij)⟩µβ ∇iGjk.

There exist an inverse temperature β1 ∶= β1(d) < ∞, an exponent γ ∶= γ(d) > 0 and a constant Cq1 which

satisfies the estimate ∣Cq1 ∣ ≤ C ∥q1∥k1 for some C ∶= C(d, β) < ∞ and k ∶= k(d) < ∞, such that for each β ≥ β0,
and each radius R ≥ 1, one has the inequality

(3.72)

XXXXXXXXXXXXX
∇Uq1 − ∑

1≤i≤d
∑

1≤j≤(d2)
(eij +∇χij)∇iGq1,j

XXXXXXXXXXXXXL2(B2R∖BR,µβ)

≤
Cq1
Rd+γ

.

Remark 3.18. The functions ∇Uq1 and ∇iGq1 behave like mixed derivative of Green’s matrices, in particular,

they should decay like the map x→ ∣x∣−d. Theorem 2 states that their difference is quantitatively smaller than
the typical size of the two functions: we obtain an algebraic rate of convergence with additional exponent
γ > 0 in the right side of (3.72).

Remark 3.19. For the purposes of Section 4, we record here that the statement of Theorem 2 can be simplified
by using the formalism of discrete differential forms and exploiting the symmetries of the system. In particular,
we have the following properties:

● The operator −∇ ⋅ aβ∇ can be written

(3.73) −∇ ⋅ aβ∇ = 1

2β
(d∗d + (1 + λβ)dd∗) ,

where λβ is a real coefficient which is small and tends to 0 as β tends to infinity. This property is
stated in Remark 6.11;

● The gradient of the infinite volume corrector only depends on the value of the codifferential d∗leij (in
particular, it is equal to 0 if d∗leij = 0) as mentioned in Remarks 6.27 and 6.30. We use the notation
of Remark 6.30: given an integer k ∈ {1, . . . , d}, we let select a vector p ∶= ∑1≤i≤d∑1≤j≤(d2)

pijeij such

that d∗lp = ek and denote by ∇χk ∶= ∑1≤i≤d∑1≤j≤(d2)
pij∇χij .

Using these ingredients, we can rewrite the definition of the map Gq1,k stated in (3.71): we have

Gq1,k = ∑
1≤i≤d

⟨cos (2π (φ, q1)) (nq1 , ei + d∗χi)⟩µβ (d∗G⋅k) ⋅ ei.

We then use that, by definition, the map G⋅,k solves the equation −∇ ⋅ aβ∇G = δ0, and the identities
−∆ = dd∗ + d∗d, d ○ d = 0, and d∗ ○ d∗ = 0 to write

−(1 + λβ)∆d∗G⋅,k = (1 + λβ) (dd∗ + d∗d)d∗G⋅k = (1 + λβ)d∗dd∗G⋅k

= d∗ (d∗dG⋅k + (1 + λβ)dd∗)G⋅k

= d∗ (−∇ ⋅ aβ∇G⋅,k)
= d∗δ0.

The exterior derivative d∗G can thus be explicitly computed in terms of the gradient of the Green’s matrix
associated with the operator −(1 + λβ)∆, which is equal to the standard random walk Green’s function on

the lattice Zd multiplied by the value (1 + λβ)
−1

.
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4. First-order expansion of the two-point function: Overview of the proof

In this section, we show that Theorem 1 can be obtained by combining Theorem 2, which gives a quantitative
rate of convergence of the mixed gradients of the Helffer-Sjöstrand Green’s matrix, with the regularity theory
for the Helffer-Sjöstrand operator established in Section 5.

In order to prove Theorem 1 it is enough, by Proposition 3.6, to prove the expansion stated in the following
theorem.

Theorem 3. There exist constants β0 ∶= β0(d), c0 ∶= c0 (β, d) , c1 (β, d), and an exponent γ′ ∶= γ′(d) > 0 such
that for every β > β0, and every x ∈ Zd,

Z (σ0x)
Z(0)

= c0 +
c1

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) ,

and

Z (σ0x)
Z(0)

= c0 +
c1

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

The proof of Theorem 3 requires to use the following statements stated in Section 3 and proved in Sections 5, 6
and 7:

● We use the quantitative homogenization of the mixed derivative of the Green’s matrix associated with
the Helffer-Sjöstrand operator L. The precise statement we need to use is stated in Theorem 2. The
proof of this theorem is the subject of Sections 6 and 7;

● We use the C0,1−ε-regularity theory established in Section 5; more specifically, we need to use the
regularity estimates for the Helffer-Sjöstrand Green’s matrix stated in Proposition 3.17 and on the
Green’s matrix associated with the second-order Helffer-Sjöstrand operator stated in Proposition 5.13.
We additionally make the assumption that the regularity exponent ε is very small compared to the
exponent γ which appears in the statement of Theorem 2 (for instance, we assume that the ratio γ/ε
is larger than 100d). This condition can always be ensured by increasing the inverse temperature β
(as the exponent γ depends only on the dimension).

Apart from these three results, the proof of Theorem 3, which is contained in this section (and Section 8 for
the technical estimates), is largely independent from Sections 5, 6 and 7.

This section is organized as follows. We first set up the argument and introduce some preliminary notation in
Section 4.1. We then simplify the expression (4.1) below in a series of technical lemmas stated in Sections 4.2, 4.3
and 4.4. In particular, in Sections 4.3 and 4.4, we sketch the argument that one can decouple the Helffer-
Sjöstrand Green’s matrix from the exponential terms arising from the dual model in Section 3. The proofs of
these lemmas rely on the C0,1−ε-regularity theory established in Section 5, we give an outline of the arguments
and postpone the proofs to Section 8. The core of the proof of Theorem 3 (thus Theorem 1) is given in
Section 4.5. This section is decomposed into two subsections. We first write an outline of the argument in
Section 4.5.1 and then present the details of the proof in Section 4.5.2.

4.1. Preliminary notation. We first recall that we have the identity
(4.1)

Zβ(σ0x)
Zβ(0)

= ⟨exp
⎛
⎝∑q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(σ0x, q)) + ∑
q∈Q

z(β, q) cos (2π(φ, q)) (cos (2π(σ0x, q)) − 1)
⎞
⎠
⟩
µβ

.

We also recall that, by the definition of the function σ0x given in Section 3.1, we have the equality

d∗σ0x = d∗d (−∆)−1
h0x = h0,x − dd∗ (−∆)−1

h0x = h0,x − d (−∆)−1
d∗h0x

= h0,x − d (−∆)−1 (1x − 10)
= h0,x +∇G −∇Gx.

We then use the identity q = dnq, that the maps q, nq and h0,x take values in Z, and the periodicity of the sine
and the cosine to deduce that

sin (2π(σ0x, q)) = sin (2π(∇G −∇Gx, nq)) and cos (2π(σ0x, q)) = cos (2π(∇G −∇Gx, nq)) .
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One can then expand the sine and the cosine by using the trigonometric formulae. We obtain the identities

(4.2) sin (2π(∇G −∇Gx, nq)) = sin (2π(∇G,nq)) − sin (2π(∇Gx, nq))
+ (cos (2π(∇Gx, nq)) − 1) sin (2π(∇G,nq)) − (cos (2π(∇G,nq)) − 1) sin (2π(∇Gx, nq)) ,

and

(4.3) cos (2π(∇G −∇Gx, nq)) − 1 = (cos (2π(∇G,nq)) − 1) (cos (2π(∇Gx, nq)) − 1)
+ (cos (2π(∇G,nq)) − 1) + (cos (2π(∇Gx, nq)) − 1) + sin (2π(∇G,nq)) sin (2π(∇Gx, nq)) .

We then combine the identities (4.2) and (4.3) with the right side of (4.1). To ease the notation, we introduce
the following random variables
(4.4)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xx ∶= exp
⎛
⎝
− ∑
q∈Q

z(β, q) (sin (2π(φ, q)) sin (2π(∇Gx, nq)) −
1

2
cos (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1))

⎞
⎠
,

Y0 ∶= exp
⎛
⎝∑q∈Q

z(β, q) (sin (2π(φ, q)) sin (2π(∇G,nq)) +
1

2
cos (2π(φ, q)) (cos (2π(∇G,nq)) − 1))

⎞
⎠
,

Yx ∶= exp
⎛
⎝∑q∈Q

z(β, q) (sin (2π(φ, q)) sin (2π(∇Gx, nq)) +
1

2
cos (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1))

⎞
⎠
,

Xsin cos ∶= exp
⎛
⎝
− ∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇Gx, nq)) (cos (2π(∇G,nq)) − 1)
⎞
⎠

× exp
⎛
⎝∑q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇G,nq)) (cos (2π(∇Gx, nq)) − 1)
⎞
⎠
,

Xcos cos ∶= exp
⎛
⎝∑q∈Q

z(β, q) cos (2π(φ, q)) (cos (2π(∇G,nq)) − 1) (cos (2π(∇Gx, nq)) − 1)
⎞
⎠
,

Xsin sin ∶= exp
⎛
⎝∑q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎞
⎠
.

In this notation we have

(4.5)
Zβ(σ0x)
Zβ(0)

= ⟨Y0XxXsin cosXcos cosXsin sin⟩µβ .

Our aim is to first simplify the identity (4.5) and then to apply Theorem 2.

4.2. Removing the terms Xsin cos, Xcos cos and Xsin sin. We first show that the terms Xsin cos, Xcos cos and
Xsin sin are lower order terms which can be removed from the analysis. We prove the following lemma.

Lemma 4.1. There exist constants β0 ∶= β0(d) < ∞, c ∶= c(d, β), and C ∶= C(d, β) such that, for each β > β0,

(4.6)
Zβ(σ0x)
Zβ(0)

= ⟨Y0Xx⟩µβ +
c ⟨Y0Xx⟩µβ

∣x∣d−2
+O ( C

∣x∣d−1
) .

A consequence of the identity (4.6) is the equivalence

∃c1, c2 ∈ R,
Zβ(σ0x)
Zβ(0)

= c1 +
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ )

⇐⇒ ∃c1, c2 ∈ R, ⟨Y0Xx⟩µβ = c1 +
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

This lemma is technical and its proof is not the core of the argument; the proof is thus deferred to Section 8.
We provide here a sketch of the argument.
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Sketch of the proof of Lemma 4.1. To prove the identity (4.6), we first record four standard inequalities, for
each y ∈ Zd, and each a ∈ R,

(4.7) ∣∇G(y)∣ ≤ C

∣y∣d−1
, ∣∇Gx(y)∣ ≤

C

∣y − x∣d−1
, ∣sina∣ ≤ ∣a∣, and ∣cosa − 1∣ ≤ 1

2
∣a∣2.

Using the estimates (4.7) and the exponential decay of the coefficient z(β, q), we prove the following estimates:

(i) The random variables Xsin cos and Xcos cos belong to the space L∞ (µβ) and satisfy the estimates

(4.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥Xsin cos − 1∥L∞ ≤ C

∣x∣d−1
,

∥Xcos cos − 1∥L∞ ≤ C

∣x∣d−1
.

(ii) We prove that the random variable Xsin sin also belongs to the space L∞ (µβ) and that its fluctuations

around the value 1 are of order ∣x∣2−d. This is larger than the fluctuations of the random variables
Xsin cos and Xcos cos and one needs to be more precise in the analysis: we prove the following estimates
on the expectation and the variance of Xsin sin

(4.9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

varµβ Xsin sin ≤ C

∣x∣2d−2
,

⟨Xsin sin⟩µβ = 1 + c

∣x∣d−2
+O ( C

∣x∣d−1
) .

The variance is estimated thanks to the Brascamp-Lieb inequality and the expectation is estimated
thanks to the estimates (4.7) and a Taylor expansion of the exponential.

A combination of the estimates (4.8) and (4.9) is then sufficient to prove Lemma 4.1. �

Remark 4.2. The same proof also yields

(4.10)
Zβ(σ0x)
Zβ(0)

= ⟨Y0Yx⟩µβ +
c ⟨Y0Yx⟩µβ

∣x∣d−2
+O ( C

∣x∣d−1
) .

In general, c ≠ c since the O(∣x∣d−2) term above is contributed by ⟨X−1
sin sin⟩µβ instead of ⟨Xsin sin⟩µβ .

4.3. Removing the contributions of the cosines. From Lemma 4.1, we see that to prove Theorem 1, it
is sufficient to obtain the following expansion

(4.11) ∃c1, c2 ∈ R, ⟨Y0Xx⟩µβ = c1 +
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

Let us note that, by the translation invariance of the measure µβ , the expectation of the random variable

Xx does not depend on the point x ∈ Zd: we have, for each x ∈ Zd, ⟨Xx⟩µβ = ⟨X0⟩µβ . A consequence of this

observation is that to prove (4.11), it is sufficient to show

(4.12) cov [Xx, Y0] =
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

Indeed, the expansion (4.12) implies (4.11) with the value c1 = ⟨Y0⟩µβ ⟨X0⟩µβ . To prove the identity (4.11), we

use the Helffer-Sjöstrand representation formula and write the covariance in the following form

(4.13) cov [Xx, Y0] = ∑
y∈Zd

⟨(∂yXx)Y(y, ⋅)⟩µβ ,

where Y ∶ Zd ×Ω→ R(d
2
) is the solution of the Helffer-Sjöstrand equation, for each (y, φ) ∈ Zd ×Ω,

(4.14) LY(y, φ) = ∂yY0(φ).

For each point x ∈ Zd, we introduce the notation Qx ∶ Zd ×Ω→ R(d
2
) to denote the following function: for each

pair (y, φ) ∈ Zd ×Ω,

(4.15) Qx(y, φ) ∶= 2π ∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇Gx, nq)) q(y).
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These charges are defined so as to have the identities, for each y ∈ Zd,

(4.16) ∂yY0(φ) =
⎛
⎝
Q0(y, φ) −

1

2
2π ∑

q∈Q
z (β, q) sin (2π(φ, q)) (cos (2π(∇G,nq)) − 1) q(y)

⎞
⎠
Y0(φ)

and

(4.17) ∂yXx(φ) = −
⎛
⎝
Qx(y, φ) +

1

2
2π ∑

q∈Q
z (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1) q(y)

⎞
⎠
Xx(φ).

We also define the random charges nQx ∶ Zd ×Ω→ Rd according to the formula

(4.18) nQx ∶= ∑
q∈Q

2πz(β, q) (cos (2π(φ, q)) sin (2π(∇Gx, nq)))nq so that dnQx = Qx.

We note that, by the exponential decay ∣z (β, q)∣ ≤ Ce−c
√
β∥q∥1 , the decay of the gradient of the Green’s matrix

stated in (4.7), and the inequality ∣ sina∣ ≤ ∣a∣, the random charges Qx and nQx satisfy the L∞ (µβ)-estimate:

for each y ∈ Zd,

(4.19) ∥Qx(y, ⋅)∥L∞(µβ) ≤
C

∣y − x∣d−1
and ∥nQx(y, ⋅)∥L∞(µβ) ≤

C

∣y − x∣d−1
.

By a similar argument, but using this time the inequality ∣ cosa − 1∣ ≤ 1
2
∣a∣2, one obtains the inequality, for

each y ∈ Zd,

(4.20)
RRRRRRRRRRR
∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1) q(y)
RRRRRRRRRRR
≤ C

∣y − x∣2d−2

and

(4.21)
RRRRRRRRRRR
∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1)nq(y)
RRRRRRRRRRR
≤ C

∣y − x∣2d−2
.

The reason we record the inequalities (4.20) and (4.21) is that, since 2d − 2 > d − 1, the function x ↦ ∣x∣2d−2

decays faster than x↦ ∣x∣d−1. From this observation, we expect that the terms Q0(y)Y0 and Qx(y)Xx are the
leading order terms in the identities (4.16) and (4.17), and that the terms involving the cosine of the gradient
of the Green’s functions are lower order terms which can be removed from the analysis. This is what is proved
in the following lemma.

Lemma 4.3 (Removing the contributions of the cosines). One has the identity

(4.22) cov [Xx, Y0] = ∑
y∈Zd

⟨XxQx(y)V(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) ,

where V ∶ Zd ×Ω→ R(d
2
) is the solution of the Helffer-Sjöstrand equation, for each pair (y, φ) ∈ Zd ×Ω,

(4.23) LV(y, φ) = Q0(y, φ)Y0(φ).

A consequence of the identity (4.22) is the equivalence

∃c2 ∈ R, cov [Xx, Y0] =
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) ⇐⇒ ∃c2 ∈ R, ∑
y∈Zd

⟨XxQx(y)V(y, ⋅)⟩µβ =
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

The proof of this result is again technical and does not represent the core of the argument; it is thus deferred
to Section 8. The argument relies on two ingredients:

(i) We use the decay estimates for the Helffer-Sjöstrand Green’s matrix, its gradient and its mixed
derivative stated in Proposition 3.17;

(ii) We use the estimates (4.19) and (4.21) and take advantage of the fact that the function x ↦ ∣x∣2d−2

decays faster than the map x↦ ∣x∣d−1.

We complete this section by recording that we may also prove

(4.24) ∃c1, c2 ∈ R, ⟨Y0Yx⟩µβ = c1 +
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ )
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by showing

(4.25) cov [Yx, Y0] =
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

Indeed, we have the following analogue of (4.22)

cov [Yx, Y0] = ∑
y∈Zd

⟨YxQx(y)V(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) .

The proof of this identity is almost the same as (4.22) with only notational changes, and is therefore omitted.

4.4. Decoupling the exponentials. The next (and final) technical step consists in removing the exponential
terms Xx and Y0 from the computation. To this end, we prove the decorrelation estimate stated in the
following lemma.

Lemma 4.4 (Decoupling the exponential terms). One has the expansions

(4.26) cov [Xx, Y0] = ⟨Y0⟩µβ ⟨X0⟩µβ ∑
y∈Zd

⟨Qx(y, ⋅)U(y, ⋅)⟩µβ +O ( C

∣x∣d−1+ε ) ,

and

(4.27) cov [Yx, Y0] = ⟨Y0⟩2µβ ∑
y∈Zd

⟨Qx(y, ⋅)U(y, ⋅)⟩µβ +O ( C

∣x∣d−1+ε ) .

where the function U ∶ Zd ×Ω→ R(d
2
) is the solution of the Helffer-Sjöstrand equation

LU = Q0 in Zd ×Ω.

The identity (4.26) implies the equivalence

∃c2 ∈ R, ∑
y∈Zd

⟨XxQx(y, ⋅)V(y, ⋅)⟩µβ =
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ )

⇐⇒ ∃c2 ∈ R, ∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ =
c2

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

Remark 4.5. The function U can be decomposed according to the following procedure: if, for each charge

q ∈ Q, we denote by Uq ∶ Zd ×Ω→ R(d
2
) the solution of the Helffer-Sjöstrand equation

(4.28) LUq = cos (2π (φ, q)) q in Zd ×Ω,

then we have the identity

(4.29) U = 2π ∑
q∈Q

z(β, q) sin (2π(∇G,nq))Uq.

Remark 4.6. By writing q = dnq, we can rewrite the equation (4.28) in the following form

LUq = d (cos (2π (⋅, q1))nq) in Zd ×Ω.

As a consequence the function Uq can be expressed in terms of the Helffer-Sjöstrand Green’s matrix according

to the formula, for each pair (y, φ) ∈ Zd ×Ω,

(4.30) Uq(y, φ) = ∑
z∈suppnq

d∗zGcos(2π(⋅,q))(y, φ; z)nq(z).

Using the decay estimate on the gradient and mixed derivative of the Green’s matrix stated in Proposition 3.17,
we obtain that the map Uq satisfies the upper bounds, for each y ∈ Zd,

(4.31) ∥Uq(y, ⋅)∥L∞(µβ) ≤
Cq

∣y − z∣d−1−ε and ∥∇Uq(y, ⋅)∥L∞(µβ) ≤
Cq

∣y − z∣d−ε
,

where z is a point which belongs to the support of the charge nq (chosen arbitrarily).
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Remark 4.7. A consequence of the estimate (4.31) is that by using the exponential decay of the coefficient
z (β, q) (see (3.14)) and the inequality, for each charge q ∈ Q,

∣sin (2π(∇G,nq))∣ ≤ 2π ∣(∇G,nq)∣ ≤ 2π ∥∇G∥L2(suppnq) ∥nq∥2 ≤
Cq

∣z∣d−1
,

where z is a point in the support of nq (chosen arbitrarily), we deduce the inequality, for each point y ∈ Zd,
∥U(y, ⋅)∥L∞(µβ) ≤ 2π ∑

z∈Zd
∑
q∈Qz

∣z(β, q) sin (2π(∇G,nq))∣ ∥Uq(y, ⋅)∥L∞(µβ)

≤ ∑
z∈Zd

∑
q∈Qz

e−c
√
β∥q∥1 Cq

∣z∣d−1 × ∣y − z∣d−1−ε

≤ C ∑
z∈Zd

1

∣z∣d−1 × ∣y − z∣d−1−ε

≤ C

∣y∣d−2−ε .

where we used the exponential decay of the term e−c
√
β∥q∥1 to absorb the algebraic growth of the term

Cq ≤ C ∥q∥k1 in the third inequality. The same argument also yields the estimate

∥∇U(y, ⋅)∥L∞(µβ) ≤
C

∣y∣d−1−ε .

We now give an heuristic argument explaining why we expect the decoupling estimate (4.26) to hold.

Heuristic of the proof of Lemma 4.4. The strategy of the proof is to first decouple the exponential term Xx

and then decouple the exponential term Y0; to decouple the term Xx, we prove the expansion

(4.32) ∑
y∈Zd

⟨XxQx(y, ⋅)V(y, ⋅)⟩µβ = ⟨X0⟩µβ ∑
y∈Zd

⟨Qx(y, ⋅)V(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) .

A heuristic reason justifying why one can expect the expansion (4.32) to hold is the following. By the definition
of the random variable Xx given in (4.4) and the decay of the gradient of the Green’s function ∇Gx stated
in (4.7), we expect the random variable Xx to essentially depend on the value of the gradient of the field around
the point x. The statement is voluntarily vague; one could give a mathematical meaning to it by arguing that
if one considers a large constant C depending only on the dimension d, then the conditional expectation of
the random variable Xx with respect to the sigma-algebra generated by the fields (∇φ(y))y∈B(x,C) is a good

approximation of the random variable Xx in the space L2 (µβ).
Additionally, using similar arguments to the one presented in Remarks 4.6 and 4.7, but using the L2 (µβ)-

estimate ∥Y0∥L2(µβ) ≤ C instead of the (stronger) pointwise upper bound ∣cos (2π (φ, q))∣ ≤ 1, one obtains the

L2(µβ)-estimate, for each y ∈ Zd,

(4.33) ∥∇V(y, ⋅)∥L2(µβ) ≤
C

∣y∣d−1−ε .

While we can prove the estimate (4.33) using Proposition 3.17, we expect that its real decay is of order ∣y∣1−d,
and make this assumption for the rest of the argument. We use an integration by parts to write, for each field
φ ∈ Ω,

∑
y∈Zd

Qx(y, φ)V(y, φ) = ∑
y∈Zd

nQx(y, φ)d∗V(y, φ).

Since we expect the random charge nQx(y) to decay like ∣y − x∣1−d (see the estimate (4.19)), and the random

variable d∗V(y, ⋅) to decay ∣y∣1−d (since the codifferential d∗ is a linear functional of the gradient ∇), we have

(4.34) ∑
y∈Zd

nQx(y, φ)d∗V(y, φ) ≃ ∑
y∈Zd

1

∣y − x∣d−1
× 1

∣y∣d−1
≃ 1

∣x∣d−2
.

The point of the identity (4.34) is that while we expect the sum ∑y∈Zd nQx(y, φ)d∗V(y, φ) to be of order ∣x∣2−d,
its restriction to the ball B(x,C) is of lower-order since we have

∑
y∈B(x,C)

nQx(y, φ)d∗V(y, φ) ≃ ∑
y∈B(x,C)

1

∣y − x∣d−1
× 1

∣y∣d−1
≃ 1

∣x∣d−1
.
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A consequence of this result is that we expect the main contribution of the sum ∑y∈Zd nQx(y, φ)d∗V(y, φ) to
come mostly from the points y outside the ball B(x,C).

To summarize the heuristic explanation, one should expect that:

● The random variable Xx depends mostly on the gradient of the field inside a ball B(x,C) for some
large but fixed constant C depending only on the dimension;

● The random variable ∑y∈Zd nQx(y, φ)d∗V(y, φ) depends mostly on the value of the gradient of the
field outside the ball B(x,C).

Since the gradient of the field decorrelates (sufficiently fast in our case), we expect the random variable

∑y∈Zd nQx(y, φ)d∗V(y, φ) and Xx to decorrelate; this is what is proved by (4.32).
Once we have proved the identity (4.32), we can prove the expansion (4.22) by applying the same argument,

and by using the symmetry of the Helffer-Sjöstrand operator. �

4.5. First order expansion of the two-point function. Once the Lemmas 4.1, 4.3 and 4.4 are established,
we have showed that, to prove Theorem 3, it is enough to obtain the expansion

(4.35) ∃c ∈ R, ∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ =
c

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

This section is devoted to the proof of (4.35). We first give a sketch of the proof in Section 4.5.1 and provide
the details of the argument in Section 4.5.2.

4.5.1. Heuristic argument. In this section, we present a heuristic argument for the proof of the expansion (4.35).
A large part of the proof is concerned with the treatment of the technicalities inherent to the dual Villain
model (sum over all the charges q ∈ Q, presence of a sine etc.). In order to highlight the main ideas of the
argument, we make the following simplifications:

● We assume that for β large enough, one may essentially reduce the charges to the collection of dipoles
(d1{y,y+ei})y∈Zd,1≤i≤d. The exponential decay on the coefficient z (β, q) constraints the L1-norm of

the charge q to be small. One can thus assume that only the charges q ∈ Q which minimize the
value ∥q∥1 contribute to the sum; this leads us to considering the dipoles (d1{x,x+ei})x∈Zd,1≤i≤d. We

will thus assume that only the dipoles (d1{x,x+ei})x∈Zd,1≤i≤d count in the sum, and we will denote by

z(β) = z(β; d1{x,x+ei}).
An important, but mostly technical, part of the argument presented in Section 4.5.2 is devoted to

proving that this dipole approximation yields the correct picture. Under this assumption, one has the
simplifications

Qx = z(β)
d

∑
i=1

∑
y∈Zd

2π sin (2π∇iG(y))d1{y,y+ei} and U = z(β)
d

∑
i=1

∑
y∈Zd

2π sin (2π∇iGx(y))Uy,i,

where the function Uy,i is the solution of the Helffer-Sjöstrand equation

LUy,i = d (cos (2π (d∗φ(y) ⋅ ei))1{y,y+ei}) in Zd ×Ω.

● Since the gradients of the Green’s functions ∇iG(y) are usually small, we consider the first-order
expansion of the sine and replace the value sin (2π∇iGx(y)) by 2π∇iGx(y). With this assumption,
we have

Qx = z(β)(2π)2
d

∑
i=1

∑
y∈Zd

∇iG(y)d1{y,y+ei} and U = z(β)(2π)2
d

∑
i=1

∑
y∈Zd

∇iGx(y)Uy,i.

Using these simplifications, we compute
(4.36)

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = z(β)
2(4π2)2

d

∑
i,j=1

∑
y,y1∈Zd

∇iG(y)∇jGx(y1) ⟨cos(2πd∗φ(y1) ⋅ ei)d∗Uy,j(y1, φ) ⋅ ei⟩µβ .

Using the translation invariance of the measure µβ , one has the identity, for each pair of points y, y1 ∈ Zd,

(4.37) ⟨cos(2πd∗φ(y1) ⋅ ei)d∗Uy,j(y1, φ) ⋅ ei⟩µβ = ⟨cos(2πd∗φ(y1 − y) ⋅ ei)d∗U0,j(y1 − y, φ) ⋅ ei⟩µβ .
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Putting the identity (4.37) into the equality (4.36) and performing the change of variable κ ∶= y1 − y, we obtain
(4.38)

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = z(β)
2(4π2)2

d

∑
i,j=1

∑
y,κ∈Zd

∇iG(y)∇jGx(κ − y) ⟨cos(2πd∗φ(κ) ⋅ ei)d∗U0,j(κ,φ) ⋅ ei⟩µβ .

The strategy is then to simplify the right side of (4.38) by arguing that the term d∗U0,j behaves like the mixed
derivative of a deterministic Green’s function. Proving a quantitative version of this result is the subject
of Theorem 2 which is proved in Sections 7 and 8; in this setting, it can be stated as follows: there exists
an exponent γ ∶= γ(d) > 0 and, for each pair of integers i, j ∈ {1, . . . , d}, there exist deterministic constants
ci,j ∶= ci,j(d, β) such that, for each radius R ≥ 1,

(4.39) ∑
κ∈B2R∖BR

RRRRRRRRRRR
⟨cos(2πd∗φ(κ) ⋅ ei)d∗U0,j(κ,φ) ⋅ ei⟩µβ −

d

∑
i1,j1=1

ci,i1cj,j1∇i1∇j1G(κ)
RRRRRRRRRRR
≤ C

Rγ
.

Once equipped with this estimate, we let Ei,j ∶ Zd ↦ R be the error term defined according to the formula, for

each κ ∈ Zd,

Ei,j(κ) ∶= ⟨cos(d∗φ(κ) ⋅ ei)d∗U0,j(κ,φ) ⋅ ei⟩µβ −
d

∑
i1,j1=1

ci,i1cj,j1∇i1∇j1G(κ).

According to the regularity estimate on the gradient of the Helffer-Sjöstrand Green’s matrix stated in
Proposition 3.17 (via the formula (4.30)) and the homogenization estimate (4.39), this term satisfies the L1

and pointwise estimates

(4.40) ∀R ≥ 1,
1

Rd
∑

κ∈B2R∖BR
∣Ei,j(κ)∣ ≤

C

Rd+γ
and ∀κ ∈ Zd, ∣Ei,j(κ)∣ ≤

C

∣κ∣d−ε
.

We can use the definition of the term Ei,j to rewrite the identity (4.38). We obtain

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = z(β)
2(4π2)2

d

∑
i,i1,j,j1=1

ci,i1cj,j1 ∑
y,κ∈Zd

∇iG(y)∇jGx(κ − y)∇i1∇j1G(κ)(4.41)

+ z(β)2(4π2)2
d

∑
i,j=1

∇iG(y)∇jGx(κ − y)Ei,j(κ).

The right side of the identity (4.41) can then be refined. First using the estimates (4.40) on the error term
Ei,j and Proposition 8.4 proved in Section 8.5, we can show the following expansion: there exists an exponent
γ′ ∶= γ′(d) > 0 such that

(4.42)
d

∑
i,j=1

∑
y,κ∈Zd

∇iG(y)∇jGx(κ − y)Ei,j(κ) =
d

∑
i,j=1

Ki,j ∑
y,κ∈Zd

∇iG(y)∇jGx(κ − y) +O ( C

∣x∣d−2+γ′ ) ,

where the constants Ki,j are obtained from the error terms Ei,j according to the formula

Ki,j ∶= z(β)2 (4π2)2
∑
κ∈Zd
Ei,j(κ),

which, by the estimate (4.40), is well-defined. A combination of the identity (4.41) with the expansion (4.42)
then shows

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = z(β)
2(4π2)2

d

∑
i,i1,j,j1=1

ci,i1cj,j1 ∑
y,κ∈Zd

∇iG(y)∇jGx(κ − y)∇i1∇j1G(κ)(4.43)

+
d

∑
i,j=1

Ki,j ∑
y,κ∈Zd

∇iG(y)∇jGx(κ − y) +O ( C

∣x∣d−2+γ′ ) .

This expansion does not give the result (4.35) directly and we need to exploit the symmetries of the dual Villain
model to conclude. The argument relies on the following observation: since the Villain and dual Villain model
are invariant under the action of the group H of the lattice preserving transformations introduced in Section 2,
the same property holds for the two-point function, and thus for the map x↦ ∑y∈Zd ⟨Qx(y)U(y, ⋅)⟩µβ .
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One can then use this invariance property together with the expansion (4.43) to prove that this expansion
must take the simpler form

(4.44) ∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ =
c

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

This is achieved by using the property of the discrete Green’s function and relies on tools from Fourier analysis.
The proof can be found in Section 8.4. The expansion (4.44) is exactly (4.35); the proof is thus complete.

4.5.2. Proof of the expansion (4.35). We first write Qx = dnQx , perform an integration by parts, and use the
identities (4.18) and (4.29) to expand the sum ∑y∈Zd ⟨Qx(y)U(y, ⋅)⟩µβ . We obtain

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ

(4.45)

= ∑
y∈Zd

⟨nQx(y)d∗U(y, ⋅)⟩µβ

= (4π2)2 ∑
y∈Zd

∑
q1,q2∈Q

z(β, q1)z(β, q2) sin (2π(∇G,nq2)) sin (2π(∇Gx, nq1)) ⟨cos (2π(φ, q1))d∗Uq2(y, φ)⟩µβ nq1(y).

To simplify the sum over all the charges q1, q2, we introduce an equivalence relation on the set of charges Q:
we say that two charges q and q′ are equivalent, and denote it by q ∼ q′, if and only if one is the translation of
the other, i.e.,

q ∼ q′ ⇐⇒ ∃z ∈ Zd, q(z + ⋅) = q′.
This relation gives rise to a quotient space, which we denote by Q/Zd. For each charge q ∈ Q, we denote by [q]
its equivalence class. For each equivalence class [q] ∈ Q/Zd, we select a charge q ∈ Q0 which belongs to this
equivalent class (and break ties among the possible candidates by using an arbitrary criterion). We note that,
for each charge q ∈ Q, by the definition of the charge nq and of the coefficient z (β, q), we have the identities,

for each point z ∈ Zd,
(4.46) z (β, q) = z (β, q(⋅ − z)) , nq(⋅−z) = nq(⋅ − z) and (nq(⋅−z)) = (nq) .
We also note that, by using the translation invariance of the measure µβ and the definition of the function Uq2
given in (4.28), we have the equality, for each pair of points (y, z) ∈ Zd,

⟨cos (2π(φ, q1))d∗Uq2(⋅−z)(y, φ)⟩µβ = ⟨cos (2π(φ, q1(⋅ + z)))d∗Uq2(y − z, φ)⟩µβ .

Additionally, we can decompose the sum over the charges q ∈ Q along the equivalence classes, i.e., we can write,
for any summable function F ∶ Q → R,

(4.47) ∑
q∈Q

F (q) = ∑
[q]∈Q/Zd

∑
z∈Zd

F (q (⋅ − z)).

Combining the identities (4.46) and (4.47), we can rewrite the equality (4.45),

(4.48) ∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = (4π2)2 ∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)

×
⎡⎢⎢⎢⎢⎣

∑
z1,z2,y∈Zd

sin (2π(∇G,nq2(⋅ − z2))) sin (2π(∇Gx, nq1(⋅ − z1))) ⟨cos (2π(φ, q1(⋅ − z1 + z2)))d∗Uq2(y − z2, φ)⟩µβ nq1(y − z1)
⎤⎥⎥⎥⎥⎦
.

We first rearrange the identity (4.48). We use the identities (∇Gx, nq1(⋅−z1)) = (∇Gx(⋅+z1), nq1), (∇G,nq2(⋅−
z2)) = (∇G(⋅ + z2), nq2), and perform the change of variable y ∶= y − z1. We obtain

(4.49) ∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = (4π2)2 ∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)

×
⎡⎢⎢⎢⎢⎣

∑
z1,z2,y∈Zd

sin (2π(∇G(⋅ + z2), nq2)) sin (2π(∇Gx(⋅ + z1), nq1)) ⟨cos (2π(φ, q1(⋅ − z1 + z2)))d∗Uq2(y + z1 − z2, φ)⟩µβ nq1(y)
⎤⎥⎥⎥⎥⎦
.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.49)−(q1,q2)

The rest of the proof is decomposed into two steps:
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● In the first step, we use Theorem 2 and the regularity estimates established in Proposition 3.17 to
prove the following result: there exists an exponent γ′ ∶= γ′(d) > 0 such that for each pair of charges

q1, q2 ∈ Q, and each pair of integers (i, j) ∈ {1, . . . , d}2
, there exist constants Kq1,q2 ∶=Kq1,q2(q1, q2, d, β),

Cq1,q2 ∶= Cq1,q2(q1, q2, d, β), cq1ij ∶= cq1ij (i, j, q1, d, β) such that the term (4.49) − (q1, q2) satisfies the
expansion

(4.50) (4.49) − (q1, q2) =
d

∑
i,j,k,l=1

cq1ij c
q2
kl ∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x − z2)

+Kq1,q2 ∑
z1∈Zd

∇G(z1) ⋅ (nq2) × ∇Gx(x − z1) ⋅ (nq1) +O (
Cq1,q2

∣x∣d−2+γ′ ) .

We recall that the vectors (nq1) and (nq2) belongs to Rd and are defined by the formulae

(nq1) ∶= ∑
y∈Zd

nq1(y) and (nq2) ∶= ∑
y∈Zd

nq2(y).

We also record that all the constants Kq1,q2 , cq1,q2ij and Cq1,q2 grow at most algebraically fast in the

values ∥q1∥1 and ∥q2∥1, i.e., there exist an exponent k ∶= k(d) < ∞ and a constant C ∶= C(d, β) < ∞
such that one has the estimates

(4.51) ∣cq1ij ∣ ≤ C ∥q1∥k1 , ∣Kq1,q2 ∣ ≤ C ∥q1∥k1 ∥q2∥k1 , and ∣Cq1,q2 ∣ ≤ C ∥q1∥k1 ∥q2∥k1 .

● In the second step, we use the symmetry and rotation invariance of the dual Villain model to prove
that the expansion (4.50) implies the expansion (4.35).

We focus on the proof of (4.50) and first simplify the term (4.49) − (q1, q2) by removing the sine. To this
end, we use the following ingredients:

● We use the inequality, ∣sina − a∣ ≤ 1
6
a3, valid for any real number a ∈ R, and the inequality, for each

charge q ∈ Q0, and each point z ∈ Zd,

∣(∇G,nq(⋅ − z))∣ ≤
Cq

∣z∣d−1
.

We deduce that, for each pair of points z1, z2 ∈ Zd,

(4.52) ∣sin (2π(∇G(⋅ + z2), nq2)) − 2π(∇G(⋅ + z2), nq2)∣ ≤
Cq2

∣z2∣3d−3
,

and

(4.53) ∣sin (2π(∇Gx(⋅ + z1), nq1)) − 2π(∇Gx(⋅ + z1), nq1)∣ ≤
Cq1

∣z1 − x∣3d−3
;

● We further simplify the terms 2π(∇G,nq2(⋅ − z2)) and 2π(∇Gx, nq1(⋅ − z1)). We use that the double

gradient of the Green’s function decays like ∣z∣−d, and the assumption that the point 0 belongs to the
supports of the charges nq1 and nq2 . We obtain

∣2π(∇Gx(⋅ + z1), nq1) − 2π (nq1) ⋅ ∇Gx(z1)∣ = ∣2π(∇Gx(z1 + ⋅) − ∇Gx(z1), nq1)∣ ≤
Cq2

∣z2 − x∣d
.

The same argument shows the estimate

(4.54) ∣2π(∇G,nq2(⋅ − z2)) − 2π (nq2) ⋅ ∇G(z2)∣ ≤
Cq2
∣z2∣d

.

We then combine the inequalities (4.52) and (4.54) on the one hand, (4.53) and (4.54) on the other
hand, and use the inequality 3d − 3 > d. We obtain the two estimates

(4.55) ∣sin (2π(∇Gx, nq2(⋅ − z2))) − 2π (nq2) ⋅ ∇Gx(z2)∣ ≤
Cq2

∣x − z1∣d
,

and

(4.56) ∣sin (2π(∇Gx, nq1(⋅ − z1))) − 2π (nq1) ⋅ ∇G(z1)∣ ≤
Cq1
∣z1∣d

;
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● We use the estimate (4.31) and deduce that, for each point y in the support of nq1 ,

∣⟨cos (2π(φ, q1(⋅ − z1 + z2)))d∗Uq2(y + z1 − z2, φ)⟩µβ ∣ ≤
Cq1,q2

∣z1 − z2∣d−ε
;

● We have the inequalities, for each point x ∈ Zd,

∑
z1,z2∈Zd

1

∣x − z1∣d
× 1

∣z1 − z2∣d−ε
× 1

∣z2∣d−1
≤ C ln ∣x∣

∣x∣d−1−ε and ∑
z1,z2∈Zd

1

∣x − z1∣d−1
× 1

∣z1 − z2∣d−ε
× 1

∣z2∣d
≤ C

∣x∣d−1−ε .

A combination of the four items listed above implies the expansion

(4.57) (4.49) − (q1, q2)
= (4π2)2 ∑

z1,z2,y∈Zd
∇G(z2) ⋅ (nq2)∇Gx(z1) ⋅ (nq1) ⟨cos (2π(φ, q1(⋅ − z1 + z2)))d∗Uq2(y + z1 − z2, φ)⟩µβ nq1(y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(4.57)−(q1,q2)

+O (
Cq1,q2
∣x∣d−1−ε ) .

A consequence of the identity (4.57) is that to prove the expansion (4.50), it is enough to prove the following
result

(4.57) − (q1, q2) =
d

∑
i,j,k,l=1

cq1ij c
q2
kl ∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x − z2)(4.58)

+Kq1,q2 ∑
z1,y∈Zd

∇G(z2) ⋅ (nq2)∇Gx(z2 + κ) ⋅ (nq1) +O (
Cq1,q2
∣x∣d−2+γ ) .

The rest of the argument is devoted to the proof of (4.58) and relies on the homogenization of the mixed
derivative of the Helffer-Sjöstrand Green’s matrix stated in Theorem 2.

We first consider the term (4.57) − (q1, q2) and perform the change of variable κ ∶= z1 − z2. We obtain

(4.59) (4.57) − (q1, q2)
= (4π2)2 ∑

z1,κ,y∈Zd
∇G(z2) ⋅ (nq2)∇Gx(z2 + κ) ⋅ (nq1) ⟨cos (2π(φ, q1(⋅ − κ)))d∗Uq2(y + κ,φ)⟩µβ nq1(y).

We then post-process the result of Theorem 2 so that it can be used to estimate the term (4.57) − (q1, q2); the
objective is to prove the estimate (4.63) below. We use that the codifferential d∗ is a linear functional of the
gradient to deduce from Theorem 2 that, for each radius R ≥ 1,

(4.60)

XXXXXXXXXXXXX
d∗Uq2 − ∑

1≤i≤d
∑

1≤j≤(d2)
(d∗leij + d∗χij)∇iGq2,j

XXXXXXXXXXXXXL2(B2R∖BR,µβ)

≤
Cq2
Rd+γ

.

We recall the notation AR ∶= B2R ∖BR. Using the arguments and notation introduced in Remark 3.19, we
obtain the identity

∑
1≤i≤d

∑
1≤j≤(d2)

(d∗leij + d∗χij)∇iGq2,j = ∑
1≤i≤d

(ei + d∗χi) (d∗Gq2 ⋅ ei) .

The estimate (4.60) then implies, by using the stationarity of the gradient of the infinite-volume corrector and
the Cauchy-Schwarz inequality,

(4.61)

∑
κ∈AR

∣⟨cos (2π(φ, q1(⋅ − κ)))d∗Uq2(κ,φ)⟩µβ − ∑
1≤i≤d

⟨cos (2π(φ, q1)) (ei + d∗χi(0, φ))⟩µβ (d∗Gq2(κ) ⋅ ei)∣ ≤
Cq2
Rγ

.
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The inequality (4.61) can be generalized into the following result: for each point y ∈ Zd,

(4.62)

∑
κ∈AR

∣⟨cos (2π(φ, q1(⋅ − κ)))d∗Uq2(y + κ,φ)⟩µβ − ∑
1≤i≤d

⟨cos (2π(φ, q1)) (ei + d∗χi(y, φ))⟩µβ (d∗Gq2(κ) ⋅ ei)∣

≤
Cq2(1 + ∣y∣2d+γ)

Rγ
.

The proof of the estimate (4.62) relies on a technical argument, we omit it here and refer to the long version of
the article for the details ([36, Chapter 4, Section 5.2]).

We then consider the estimate (4.62) for a point y in the support of the charge nq1 , take the scalar product
with the vector nq1(y), and sum over all the points y in the support of nq1 . We obtain

(4.63)

∑
κ∈AR

∣⟨cos (2π(φ, q1(⋅ − κ))) (nq1 ,d∗Uq2(⋅ + κ,φ))⟩µβ − ∑
1≤i≤d

⟨cos (2π(φ, q1)) (nq1 , ei + d∗χi(y, φ))⟩µβ (d∗Gq2(κ) ⋅ ei)∣

≤
Cq1,q2
Rγ

.

We then focus on the term (4.57) − (q1, q2) (and more specifically on the right side of (4.59)) and use the
inequality (4.63) to simplify it. To ease the notation, we introduce the following definitions:

● We let Eq1,q2 be the map from Zd to R defined according to the formula, for each point κ ∈ Zd,

Eq1,q2(κ) ∶= ⟨cos (2π(φ, q1(⋅ − κ))) (nq1 ,d∗Uq2(⋅ + κ,φ))⟩µβ
− ∑

1≤i≤d
⟨cos (2π(φ, q1)) (nq1 , ei + d∗χi)⟩µβ (d∗Gq2(κ) ⋅ ei) .

It is an error term which is small; in view of the estimate (4.63), Remark 4.6, and the definition of the
map Gq2,j stated in (3.71), it satisfies the inequalities

(4.64) ∀R ≥ 1, ∑
κ∈AR

∣Eq1,q2(κ)∣ ≤
Cq1,q2
Rγ

and ∀κ ∈ Zd, ∣Eq1,q2(κ)∣ ≤
Cq1,q2

∣κ∣d−ε
;

● We recall the definition of the coefficient λβ stated in Remark 4.6. For each pair of integers (i, j) ∈
{1, . . . , d}2

, we define the coefficient cqij according to the formula

cqij ∶= 4π2 (1 + λβ)
− 1

2 [(nq) ⋅ ei] × ⟨cos (2π(φ, q1)) (nq1 , ej + d∗χj)⟩µβ .

Using these notation together with Remark 3.19 and an explicit computation (which we omit here), we obtain
the formula

∑
1≤i≤d

⟨cos (2π(φ, q1)) (nq1 , ei + d∗χi(y, φ))⟩µβ (d∗Gq2(κ) ⋅ ei)

= (1 + λβ)
−1

∑
1≤i,j≤d

⟨cos (2π (φ, q1)) (nq1 , ei + d∗χi)⟩µβ ⟨cos (2π (φ, q2)) (nq2 , ej + d∗χj)⟩µβ ∇i∇jG.

The term (4.57) − (q1, q2) then becomes

(4.57) − (q1, q2) =
d

∑
i,j,k,l=1

cq1ij c
q2
kl ∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x − z2)

+ 4π2 ∑
z2,κ∈Zd

∇G(z2) ⋅ (nq2)∇G(z2 + κ − x) ⋅ (nq1)Eq1,q2(κ).

To prove the estimate (4.58), it is thus sufficient to prove that there exists a constant Kq1,q2 such that

4π2 ∑
z2,κ∈Zd

∇G(z2) ⋅ (nq2)∇Gx(z2 + κ) ⋅ (nq1)Eq1,q2(κ)

=Kq1,q2 ∑
z1∈Zd

∇G(z2) ⋅ (nq2)∇Gx(z2) ⋅ (nq1) +O (
Cq1,q2
Rd+γ′

) .
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The proof of this result relies on the estimates (4.64); it is the subject of Proposition 8.4 and is deferred to
Section 8. We note that the argument gives the following explicit value for the constant Kq1,q2

Kq1,q2 = 4π2 ∑
κ∈Zd
Eq1,q2(κ).

By the estimates (4.64), the constant Kq1,q2 is well-defined and grows at most algebraically fast in the
parameters ∥q1∥1 and ∥q2∥1 as required. The proof of the expansion (4.50) is complete.

We complete the proof of Theorem 1 by showing that (4.50) implies the result. We first sum the expan-
sion (4.50) over all the equivalence classes [q1], [q2] ∈ Q/Zd, and use the exponential decay of the coefficients
z (β, q1) and z (β, q2) to absorb the algebraic growth of the constants cq1ij , cq2ij and Cq1,q2 . We obtain

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ = 4π2 ∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2) × (4.49) − (q1, q2)

(4.65)

= 4π2 ∑
[q1],[q2]∈Q/Zd

d

∑
i,j,k,l=1

z (β, q1) z (β, q2) cq1ij c
q1
kl ∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x − z2)

+ 4π2 ∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)Kq1,q2 ∑
z1∈Zd

∇G(z1) ⋅ (nq2) × ∇G(x − z1) ⋅ (nq1)

+ 4π2 ∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)O (
Cq1,q2

∣x∣d−2+γ′ )

=
d

∑
i,j,k,l=1

cijckl ∑
z1,z2∈Zd

∇iG(z1)∇j∇kG(z1 − z2)∇lG(x − z2)

+
d

∑
i,j=1

Ki,j ∑
z1∈Zd

∇iG(z1)∇jG(x − z1) +O ( C

∣x∣d−2+γ′ ) ,

where we have set

cij ∶= 4π2 ∑
[q]∈Q/Zd

z (β, q) cqij and Ki,j ∶= 4π2 ∑
[q1],[q2]∈Q/Zd

z (β, q1) z (β, q2)Kq1,q2 [(nq1) ⋅ ei] × [(nq1) ⋅ ej] ,

which are well-defined by the exponential decay of the coefficient z(β, q).
We then simplify the expansion (4.65) by noting that, since the measure µβ is invariant under the symmetries

and rotations of the lattice Zd, the function x↦ ∑y∈Zd ⟨Qx(y)U(y, ⋅)⟩µβ satisfies the same invariance property.

It is proved in Proposition 8.4 in Section 8 that this invariance property combined with the expansion (4.65)
implies that there exists a constant c ∶= c(d, β) such that

∑
y∈Zd

⟨Qx(y)U(y, ⋅)⟩µβ =
c

∣x∣d−2
+O ( C

∣x∣d−2+γ′ ) .

This is precisely the expansion (4.35). The proof of Theorem 1 is complete.
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5. Regularity theory for low temperature dual Villain model

In this section, we study the regularity properties of the solutions of the Helffer-Sjöstrand operator

(5.1) L ∶= −∆φ −
1

2β
∆ + 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1 + ∑
q∈Q

∇∗
q ⋅ aq∇q,

where we recall the notation, for each charge q ∈ Q,

(5.2) ∇∗
q ⋅ aq∇qu = z (β, q) cos (2π (φ, q)) (u, q) q.

We decompose this operator into two terms: the Witten Laplacian −∆φ which acts on the field φ and the
spatial term Lspat defined by the formula

Lspat ∶= −
1

2β
∆ + 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1 + ∑
q∈Q

∇∗
q ⋅ aq∇q.

The operator Lspat is uniformly elliptic. The purpose of this section is to apply the techniques from the theory
of elliptic regularity to understand the large-scale behavior of the solutions of the equation Lu = 0. We study
three types of objects:

● In Sections 5.1 and 5.2, we study the solutions of the equation Lu = 0. We establish a Caccioppoli
inequality (Proposition 5.1) and C0,1−ε-regularity estimates (Proposition 5.6);

● In Section 5.3, we study the Helffer-Sjöstrand Green’s matrix and heat kernel. We prove Gaussian
bounds on the heat kernel, decay estimates on the Green’s matrix, and C0,1−ε-regularity estimates for
both functions;

● In Section 5.4, we introduce the last important tool in the proof of Theorem 1: the second-order
Helffer-Sjöstrand equation. This equation is used to understand how a solution of the Helffer-Sjöstrand
equation depends on the underlying field φ, and is used to compute convariances of the form cov [u,X],
where X is an explicit random variable (depending on φ) and u is a solution of the Helffer-Sjöstrand
equation;

Let us give a few comments and heuristic of the proofs presented in this section. The demonstrations rely
on two main ingredients:

● If we decompose the Helffer-Sjöstrand operator L as follows

(5.3) L = −∆φ −
1

2β
∆

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L0

+ 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1 + ∑
q∈Q

∇∗
q ⋅ aq∇q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lpert

,

then the operator Lpert is a perturbation of L0 if the inverse temperature β is large enough. The
operator L0 has properties similar to the ones of the Laplacian and a complete regularity theory
is available. The strategy to obtain regularity estimates relies on Schauder theory (see [66, Section
3]): since the operator Lpert is a perturbation of the operator L0, one can prove that each solution
of the equation Lu = 0 is well-approximated on every scale by a solution u of the equation L0u = 0.
One can then borrow the regularity of the function u and transfer it to the function u. This process
causes a deterioration of the regularity for the function u: one obtains a C0,1−ε-regularity theory for
the solutions of the system Lu = 0, for some strictly positive exponent ε. The size of the exponent ε
depends on the size of the perturbative term and thus on the inverse temperature β; it tends to 0 as β
tends to infinity.

● The second ingredient is the dynamical solvability of Proposition 3.12 which allows to express the
Helffer-Sjöstrand Green’s matrix as the integral over time of a heat-kernel associated to a parabolic,
time-dependent, uniformly elliptic system of equations. The system we obtain is a small perturbation
of the standard discrete heat equation, and we can apply the Schauder regularity theory described
in the previous item to prove regularity properties on the heat-kernel (e.g., Nash-Aronson estimate,
C0,1−ε-regularity estimates). We then transfer these properties to the Helffer-Sjöstrand Green’s matrix
by an integration over time.

We complete the introduction of this section by mentioning that we need to keep track of the dependence of
the constants on the inverse temperature β, since one of our objectives is to prove that the regularity exponent
ε tends to 0 as the inverse temperature β tends to infinity. The constants are thus only allowed to depend on
the dimension.
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5.1. Caccioppoli inequality for the solutions of the Helffer-Sjöstrand equation. In this section, we
prove a Caccioppoli inequality for the operator L, the proof follows the standard technique but some technical
difficulties have to be taken into account due the infinite range of the operator L. In particular, the result
obtained is slightly different from the one of the standard Caccioppoli inequality: there is a long range term in
the right sides of (5.5) and (5.6). Since the coefficients of the operator L decay exponentially fast, the long
range terms in the right sides of (5.5) and (5.6) exhibit the same decay. Before stating the result, we recall the

notation for the average (over the space variable) of a function over a ball: for u ∶ Zd ×Ω→ R(d
2
),

(u)BR ∶ φ↦
1

∣BR∣
∑
x∈BR

u(x,φ).

Proposition 5.1 (Caccioppoli inequality). Fix a radius R ≥ 1 and let u ∶ Zd ×Ω→ R(d
2
) be a solution of the

Helffer-Sjöstrand equation

(5.4) Lu = 0 in B2R ×Ω.

Then there exist a constant C ∶= C(d) < ∞ and an exponent c ∶= c(d) > 0 such that the following estimates hold

(5.5) β ∑
y∈Zd

∥∂yu∥L2(BR,µβ) + ∥∇u∥L2(BR,µβ) ≤
C

R
∥u∥L2(B2R,µβ) + ∑

x∈Zd∖B2R

e−c(lnβ)∣x∣ ∥u(x, ⋅)∥L2(µβ) ,

and

(5.6) ∥∇u∥L2(BR,µβ) ≤
C

R
∥u − (u)B2R

∥
L2(B2R,µβ)

+ ∑
x∈Zd

e−c(lnβ)(R∨∣x∣) ∥u(x, ⋅)∥L2(µβ) .

Remark 5.2. The two long range terms in the right sides of (5.5) and (5.6) are error terms which are small
and are caused by the infinite range of the operator Lspat. They decay exponentially fast and are typically of
order e−R.

Proof. The argument follows the standard outline of the proof of the Caccioppoli inequality; a number of
technical details, pertaining to the interation of the Laplacian and the discrete differential forms need to be
taken into account in the analysis. Since the argument does not contain any new idea regarding the method,
we omit it here and refer to the long version of this article for the details ([36, Chapter 5, Proposition 1.1]). �

5.2. Regularity theory for the Helffer-Sjöstrand operator. The purpose of this section is to prove the
C0,1−ε-regularity of the solutions of the Helffer-Sjöstrand equation (5.1). The result is stated in Proposition 5.6.

The proof relies on Schauder theory; as is explained in (5.3), the strategy is to decompose the Helffer-
Sjöstrand operator L into two terms: the operators L0 and Lpert. The operator L0 is the leading order term.
For this operator a C0,1-regularity theory is available. This result is stated in Proposition 5.3 and the proof is
essentially equivalent to the standard proof of the regularity for harmonic functions.

The second operator Lpert is a perturbative term; it is small when the inverse temperature β is large. The
strategy is to argue that any solution u of the Helffer-Sjöstrand equation is well-approximated on every scale
by a solution u of the equation −∆φu+ 1

2β
∆u = 0 and to transfer the regularity of the function u to the solution

u. This section can be decomposed into three propositions:

● Proposition 5.3 establishes a regularity theory for the solutions u of the equation L0u = 0;
● Proposition 5.4 states that if a function u is well-approximated, in the sense of the estimate (5.9)

below, by a solution of the equation −∆φu − 1
2β

∆u = 0, then a C0,1−ε-regularity estimate holds for the

function u;
● Proposition 5.6 establishes the regularity for the solutions of the Helffer-Sjöstrand equation. We prove

that any solution u of the equation Lu = 0 is well-approximated by a solution u of the equation L0u = 0
and apply Proposition 5.6 to conclude.

5.2.1. Regularity theory for the operator −∆φ − 1
2β

∆. In this section, we establish a regularity theory for the

operator −∆φ − 1
2β

∆.

Proposition 5.3 (Regularity theory for the operator −∆φ − 1
2β

∆). Fix a radius R > 0, and let u ∶ B2R ×Ω be

a solution of the equation

−∆φu −
1

2β
∆u = 0 in B2R ×Ω.



52 PAUL DARIO, WEI WU

Then, for any integer k ∈ N, there exists a constant Ck < ∞ depending on the dimension d and the integer k
such that the following estimate holds

(5.7) sup
x∈BR

∥∇ku(x, ⋅)∥
L2(µβ)

≤ Ck

Rk+
d
2

∥u − (u)B2R
∥
L2(B2R,µβ)

.

Proof. The proof is standard and relies on two ingredients: the Caccioppoli inequality and the observation
that the spatial gradient ∇ commutes with the two Laplacians −∆φ and ∆. First by the Caccioppoli inequality,
one has

∥∇u∥L2(BR,µβ) ≤
C

R
∥u − (u)B2R

∥
L2(B2R,µβ)

.

We then note that, since u is a solution of the equation L0u = 0, the gradient of u is also a solution of the
equation L0∇u = 0. One can thus apply the Caccioppoli inequality to the gradient of u and deduce

∥∇2u∥
L2(BR,µβ)

≤ C
R

∥∇u∥L2(B2R,µβ) .

An iteration of this argument shows that, for any integer k ≥ 1, the L2 (BR, µβ)-norm of the iterated gradient

∇ku is controlled by the L2 (B2R, µβ)-norm of the function u with the appropriate scaling. By an application
of the Sobolev embedding theorem (see [1, Section 4]), we obtain the regularity estimate (5.7). �

5.2.2. Regularity theory for the Helffer-Sjöstrand operator. The next proposition states that if a map u is
well-approximated on every scale by a solution u of the equation L0u = 0, then the function u satisfies a
C0,1−ε-regularity estimate for some exponent ε depending only on the dimension d and the precision of the
approximation. The proof follows a well-known strategy of Campanato (see e.g. [55]). The proof written below
is an adaptation of the one of Hofmann and Kim [68].

Proposition 5.4. Fix X ≥ 1, a regularity exponent ε > 0, and a constant K > 0. There exists two constants
δε > 0 and C ∶= C(d, ε) < ∞, depending on the parameters d and ε such that the following statement holds.
For any R ≥ 2X, if a function u ∈ L2 (BR, µβ) satisfies the property that, for any r ∈ [X, 1

2
R], there exists a

solution u ∈ L2 (B2r, µβ) of the equation

(5.8) −∆φu −
1

2β
∆u = 0 in B2r ×Ω,

such that

(5.9) ∥∇(u − u)∥L2(Br,µβ) ≤ δε ∥∇u∥L2(B2r,µβ) +K,

then for every r ∈ [X,R],

∥∇u∥L2(Br,µβ) ≤ C (R
r
)
ε

∥∇u∥L2(BR,µβ) +CK.

Before starting the proof, we record the following lemma, which is a consequence of Giaquinta [55, Lemma
2.1].

Lemma 5.5. Fix two non-negative real numbers X,R such that R ≥ 2X ≥ 2 and two non-negative constants
C0,K. For any regularity exponent ε > 0, there exist two constants δε ∶= δε (C, ε, d) and C1 ∶= C1 (C, ε, d) such
that the following statement holds. If φ ∶ R+ → R is a non-negative and non-decreasing function which satisfies
the estimate, for each pair of real numbers ρ, r ∈ [X,R] satisfying ρ ≤ r,

(5.10) φ (ρ) ≤ C0

⎛
⎝
(ρ
r
)
d
2

+ δε
⎞
⎠
φ(r) +K,

then one has the estimate, for any ρ, r ∈ [X,R] satisfying ρ ≤ r,

(5.11) φ (ρ) ≤ C1

⎛
⎝
(ρ
r
)
d
2−ε

φ(r) +Kρ
d
2
⎞
⎠
.

Proof. This lemma can be extracted from [55, Lemma 2.1 p86] by setting α = d
2
, β = d

2
− ε and by using that

the radii R, r are larger than 1. �
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Proof of Proposition 5.4. We fix a regularity exponent ε > 0, let δε > 0 be the constant provided by Lemma 5.5,
and fix two radii ρ, r ∈ [X, 1

2
R] with ρ ≤ r. We let u be the solution of the equation (5.8) in the set Br ×Ω

such that the estimate (5.9) holds. We note that the estimate (5.9) implies the inequality ∥∇u∥L2(Br,µβ) ≤
C ∥∇u∥L2(B2r,µβ) +K. By the regularity theory for the map u established in Proposition 5.3, we have

(5.12) ∥∇u∥L2(Bρ,µβ) ≤ C (ρ
r
)
d
2

∥∇u∥L2(Br,µβ) .

By combining the estimates (5.9) and (5.12) and the estimate on the L2-norm of the gradient of u mentioned
above, we compute

∥∇u∥L2(Bρ,µβ) ≤ ∥∇(u − u)∥L2(Bρ,µβ) + ∥∇u∥L2(Bρ,µβ)

≤ ∥∇(u − u)∥L2(Br,µβ) + (ρ
r
)
d
2

∥∇u∥L2(Br,µβ)

≤ δε ∥∇u∥L2(B2r,µβ) +K + (ρ
r
)
d
2

(C ∥∇u∥L2(B2r) +K)

≤ C
⎛
⎝
(ρ
r
)
d
2

+ δε
⎞
⎠
∥∇u∥L2(B2r,µβ) + 2K.

We apply Lemma 5.5 with the function φ(ρ) = ∥∇u∥L2(Bρ). The inequality (5.11) with the choice r = R gives,

for any radius ρ ∈ [X,R],

∥∇u∥L2(Bρ,µβ) ≤ C1

⎛
⎝
( ρ
R

)
d
2−ε

∥∇u∥L2(BR,µβ) + 2Kρ
d
2
⎞
⎠
.

Dividing both side of the estimate by ρ
d
2 completes the proof. �

We now use Propositions 5.3 and 5.4 to obtain C0,1−ε-regularity for the solutions of the Helffer-Sjöstrand
equation.

Proposition 5.6 (C0,1−ε-regularity theory). For any regularity exponent ε > 0, there exists an inverse
temperature β0 ∶= β0 (d, ε) < ∞ such that the following statement holds. There exist two constants C ∶= C(d, ε) <
∞ and c ∶= c(d) > 0 such that for any radius R ≥ 1, any inverse temperature β ≥ β0, and any function
u ∶ Zd ×Ω→ R solution of the equation

Lu = 0 in BR ×Ω,

one has the estimate

(5.13) ∥∇u(0, ⋅)∥L2(µβ) ≤
C

R1−ε ∥u − (u)BR∥L2(BR,µβ)
+ ∑
x∈Zd

e−c(lnβ)(R∨∣x∣) ∥u(x, ⋅)∥L2(µβ) .

Proof. The strategy of the proof is to apply Proposition 5.4 to the function u and then to apply the Caccioppoli
inequality. We fix a regularity exponent ε > 0, a radius R ≥ 1, and split the argument into two steps:

● In Step 1, we prove that the map u satisfies the following property: there exist an inverse temperature

β0 (ε, d) < ∞, and a constant C ∶= C(d) < ∞ such that for every β > β0, and every radius r ≥ (lnR)2
,

the following estimate holds

(5.14) ∥∇u∥L2(Br,µβ) ≤ C (R
r
)
ε
2

∥∇u∥L2(BR,µβ) + ∑
x∈Zd∖BR

e−c(lnβ)∣x∣ ∥∇u(x, ⋅)∥L2(µβ) .

● In Step 2, we deduce from (5.14) and the Caccioppoli inequality stated in Proposition 5.1, the pointwise
estimate (5.13).

Step 1. To prove the estimate (5.14), the strategy is to apply Proposition 5.4. To this end, we set

X ∶= (lnR)2
, and fix a radius r ∈ [X, 1

2
R]. We then define the function u to be the solution of the boundary

value problem

(5.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆φu −
1

2β
∆u = 0 in Br ×Ω,

u = u on ∂Br ×Ω.
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We first prove that the map u is a good approximation of the map u. Specifically, we prove that there exist
two constants C ∶= C(d) < ∞ and c ∶= c(d) > 0 such that

(5.16) ∥∇(u − u)∥L2(Br,µβ)

≤ C

β
1
2

∥∇u∥L2(B2r,µβ) +Ce
−c(lnβ)(lnR)2 ∥∇u∥L2(BR,µβ) +C ∑

x∈Zd∖BR
e−c(lnβ)∣x∣ ∥∇u(x, ⋅)∥L2(µβ) .

To prove the estimate (5.16), we note that the map u − u is a solution of the following system of equations

(5.17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆φ(u − u) −
1

2β
∆(u − u) = − 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1u − ∑
q∈Q

∇∗
q ⋅ aq∇qu in Br ×Ω,

u − u = 0 on ∂Br ×Ω.

We extend the function (u − u) by 0 outside the ball BR so that it is defined on the entire space Zd and use it
as a test function in the system (5.17). We obtain

(5.18) ∑
y∈Zd

∥∂y (u − u)∥2
L2(Br,µβ) +

1

2β
∥∇(u − u)∥2

L2(Br,µβ)

= − 1

2β
∑
n≥1

1

β
n
2
∑
x∈Zd

⟨∇n+1u(x, ⋅) ⋅ ∇n+1(u − u)(x, ⋅)⟩
µβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(5.18)−(i)

− ∑
q∈Q

⟨∇qu ⋅ aq∇q(u − u)⟩µβ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(5.18)−(ii)

.

The terms (5.18)-(i) and (5.18)-(ii) are perturbative terms which can be proved to be small by using the two
following ingredients:

● The discrete gradient is a bounded operator and the inverse temperature β is chosen large, this is used
to estimate the term (5.18)-(i);

● The coefficient aq satisfy the upper bound ∣aq ∣ ≤ e−c
√
β∥q∥1 , this is used to estimate the term (5.18)-(ii).

We omit the technical details here which can be found in the long version of this article ([36, Chapter 5,
Proposition 2.4]); the result we obtain is the one stated in (5.16).

We complete Step 1 by proving that the estimate (5.16) implies the estimate (5.14). We consider the
regularity exponent ε fixed at the beginning of the proof and the parameter δ ε

2
provided by Proposition 5.4

(associated with the exponent ε
2
). We let C ∶= C(d) < ∞ and c ∶= c(d) > 0 be the constants which appear in the

inequality (5.16) and set

X ∶= (lnR)2
and K ∶= Ce−c lnβ(lnR)2 ∥∇u∥L2(BR,µβ) +C ∑

x∈Zd∖BR
e−c(lnβ)∣x∣ ∥∇u(x, ⋅)∥L2(µβ) .

An application of Proposition 5.4 shows the inequality: for any radius r ∈ [X,R],
(5.19)

∥∇u∥L2(Br,µβ) ≤ C (R
r
)
ε
2

∥∇u∥L2(BR,µβ) +Ce
−c lnβ(lnR)2 ∥∇u∥L2(BR,µβ) +C ∑

x∈Zd∖BR
e−c(lnβ)∣x∣ ∥∇u(x, ⋅)∥L2(µβ) .

We then note that the exponential term e−c(lnβ)(lnR)2 decays faster than any power of R, so the second term
on the right side of (5.19) can be bounded from above by the first term on the right side. This completes the
proof of the inequality (5.14).

Step 2. We select r = (lnR)2
, apply the Caccioppoli inequality to estimate the right side of the inequal-

ity (5.14), and use that the discrete gradient is a bounded operator to replace the term ∥∇u(x, ⋅)∥L2(µβ) by

∑y∼x ∥u(y, ⋅)∥L2(µβ). We obtain

∥∇u∥
L2(B

(lnR)2 ,µβ)
≤ C ( R

(lnR)2
)
ε
2 1

R
∥u − (u)BR∥L2(BR,µβ)

+C ∑
x∈Zd

e−c(lnβ)(R∨∣x∣) ∥u(x, ⋅)∥L2(µβ) .

We apply the discrete L∞ −L2 -estimate

∥∇u(0)∥L2(µβ) ≤ ∥∇u∥
L2(B

(lnR)2 ,µβ)
≤ (lnR)d ∥∇u∥

L2(B
(lnR)2 ,µβ)

.
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We then combine the two previous displays and the estimate (lnR)d ≤ CR ε
2 to obtain the inequality (5.13).

The proof of Proposition 5.6 is complete. �

5.3. Nash-Aronson estimate and regularity theory for heat kernels. In this section, we study the
dynamical solvability of the Helffer-Sjöstrand equation and prove the bounds stated in Section 3 (and specifically
Proposition 3.12).

We first recall the definition of the Langevin dynamics associated wiht the Gibbs measure µβ . Given a field
φ ∈ Ω, we let (φt)t≥0 be the diffusion process evolving according to the Langevin dynamics

(5.20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dφt(x) =
1

2β
∆φt(x)dt −

1

2β
∑
n≥1

1

β
n
2

(−∆)n+1φt(x)dt + ∑
q∈Q

(∇∗
q ⋅ aq(φt)∇qφt) (x)dt +

√
2dBt(x),

φ0(x) = φ(x),

where {Bt(x) ∶ t ≥ 0, x ∈ Zd} is a collection of independent normalized R(d
2
)-valued independent Brownian

motions. We denote by Pφ the law of the dynamics (φt)t≥0 starting from φ and by Eφ the expectation with

respect to the measure Pφ. Given a realization of the dynamics, we let Pφ be the solution of the parabolic
system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tP
φ⋅ (⋅, ⋅; y) − 1

2β
∆Pφ⋅ (⋅, ⋅; y) + 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1Pφ⋅ (⋅, ⋅) + ∑
q∈Q

(∇∗
q ⋅ aq(φt)∇qPφ⋅ (⋅, ⋅; y)) = 0 in [0,∞] ×Zd,

Pφ⋅ (0, ⋅; y) = δy in Zd.

The main purpose of this section is to prove upper bounds on the heat kernel Pφ⋅ and on its spatial
derivatives. We introduce the following definition. For each constant C > 0, we let ΦC be the function defined
from (0,∞) ×Zd to R by the formula, for each pair (t, x) ∈ (0,∞) ×Zd,

(5.21) ΦC(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t−
d
2 exp(−∣x∣2

Ct
) if ∣x∣ ≤ t,

exp(−∣x∣
C

) if ∣x∣ ≥ t.

The next proposition is the main result of this section.

Proposition 5.7 (Gaussian bounds and C0,1−ε-regularity for the heat kernel). For any regularity exponent
ε > 0, there exists an inverse temperature β1(d, ε) < ∞, and a constant C ∶= C(d, ε) < ∞ such that for every
β > β1, for any realization of the dynamics (φt)t≥0, any (t, x, y) ∈ [1,∞] ×Zd ×Zd,

(5.22) ∣Pφ⋅(t, x; y)∣ ≤ CΦC ( t
β
, x − y) .

Moreover, one has the following C0,1−ε-regularity estimate on the gradient of the heat kernel

(5.23) ∣∇xPφ⋅(t, x; y)∣ ≤ C (β
t
)

1
2−ε

ΦC ( t
β
, x − y) ,

and on the mixed derivative of the heat kernel

(5.24) ∣∇x∇yPφ⋅(t, x; y)∣ ≤ C (β
t
)

1−ε
ΦC ( t

β
, x − y) .

Remark 5.8. Due to the discrete setting of the problem and the infinite range of the operator L, the heat
kernel does not have Gaussian decay when the value ∣x∣ tends to infinity. Instead it decays exponentially fast;
this justifies the introduction of the function ΦC .

Remark 5.9. For later use, we need to keep track of the dependence of the constants in the inverse
temperature β.

In the rest of Section 5.3, we give an outline of the proof of Proposition 5.7; the details of the argument can
be found in the long version of this article ([36, Chapter 5, Sections 3.1 and 3.2]).
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Outline of the proof of Proposition 5.7. Gaussian bounds on the heat kernel are usually a consequence of the
Nash-Aronson estimate (see [11, 43]) for uniformly elliptic operators. This result cannot be applied here since

the operator ∂t +Lφtspat is a parabolic system of equations, and we refer to the counter-example of De Giorgi [40]

disproving the Liouville property and the C0,α-regularity theory for systems of elliptic equations. To prove
Gaussian bounds and regularity on the heat kernel, we use a different strategy and proceed according to the
following outline:

(1) We use that the elliptic operator Lφtspat is a perturbation of the Laplacian to establish C0,1−ε-regularity
for the solutions of the system

(5.25) ∂tu + Lφtspatu = 0;

(2) We use the C0,1−ε-regularity and an interpolation argument to obtain L∞-bounds on the solutions of
the equation (5.25). More precisely, we prove that every solution of the system (5.25) in the parabolic
cylinder Q2r satisfies the pointwise estimate

∥u∥L∞(Qr) ≤ C ∥u∥L2(Q2r) + ∫
0

−r2
∑

x∈Zd∖Br
e−c(lnβ)∣x∣ ∣u(t, x)∣2 dt;

(3) We prove that the solutions of the adjoint of the parabolic operator ∂t + Lφtspat satisfies the same
pointwise estimate;

(4) We use the pointwise regularity estimates and the technique of Fabes and Stroock [43], which is based
on the technique of Davies [37, 38] (see also the article of Hofmann and Kim [68]) to establish the
Gaussian bounds on the heat kernel stated in (5.22);

(5) We combine the Gaussian bounds on the heat kernel with the C1−ε-regularity theory for the solutions
of (5.25) to obtain the upper bounds on the gradient and mixed derivative of the heat kernel stated
in (5.23) and (5.24).

�

5.4. Definition and regularity for the second-order Helffer-Sjöstrand operator. We introduce and
study the second-order Helffer-Sjöstrand operator. We mention that this operator was initially introduced in
the article of Conlon and Spencer [29], and the general underlying philosophy is closely related to the one
developed in stochastic homogenization in [60, 61, 58, 59].

Let us fix a function G ∈ C∞
c (Zd ×Ω) and let u be the solution of the Helffer-Sjöstrand equation

Lu = G in Ω ×Zd.

As mentioned above, in Section 8.3, we will have to estimate covariances of the form cov [u,X] , where X is
an explicit functional of the field φ. By the Helffer-Sjöstrand representation formula (Proposition 3.13), it is
sufficient to understand the properties of the functions ∂xu, for x ∈ Zd.

The strategy is then to find an equation satisfied by the map ∂xu. In this direction, we may apply (formally)
the operator ∂x to both the left and right hand sides of the identity Lu = G. We obtain the identity

(5.26) ∂x −∆φu −
1

2β
∆∂xu +

1

2β
∑
n≥1

1

β
n
2

(−∆)n+1∂xu + ∂x
⎛
⎝∑q∈Q

∇∗
q ⋅ aq∇qu

⎞
⎠
= ∂xG.

To go further in the computation, let us introduce the following notation:

● We define the function v, h ∶ Zd ×Zd ×Ω↦ R(d
2
)×(d2) by the formulae, for each for (x, y, φ) ∈ Zd ×Zd ×Ω,

v(x, y, φ) = ∂xu(y, φ) and h(x, y, φ) = ∂xG(y, φ).

● Given a map h ∶ Zd × Zd ×Ω ↦ R(d
2
)×(d2), we denote by ∆x the spatial Laplacian in the first variable

and by ∆y the Laplacian in the second variable. We also denote by ∑qx∈Q∇
∗
qx ⋅ aqx∇qxh and by

∑qy∈Q∇
∗
qy ⋅ aqy∇qyh the operators

∑
qx∈Q

∇∗
qx ⋅ aqx∇qxh ∶ (x, y, φ) ↦ ∑

q∈Q
aq(φ) (h (⋅, y, φ) , q) q(x)

and

∑
qy∈Q

∇∗
qy ⋅ aqy∇qyh ∶ (x, y, φ) ↦ ∑

q∈Q
aq(φ) (h (x, ⋅, φ) , q) q(y).
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● Finally, we denote by Lspat,x and Lspat,y the operators

Lspat,x ∶= −
1

2β
∆xu +

1

2β
∑
n≥1

1

β
n
2

(−∆x)n+1u + ∑
qx∈Q

∇∗
qx ⋅ aqx∇qxu,

and

Lspat,y ∶= −
1

2β
∆yu +

1

2β
∑
n≥1

1

β
n
2

(−∆y)n+1u + ∑
qy∈Q

∇∗
qy ⋅ aqy∇qyu.

The term ∂⋅ −∆φu can be computed by using the same strategy as the one used to derive the Helffer-Sjöstrand

equation in Section 3.4, and we obtain, for each (x, y, φ) ∈ Zd ×Zd ×Ω,

∂x −∆φu(y, φ) = −∆φv(x, y, φ) −
1

2β
∆xv(x, y, φ) +

1

2β
∑
n≥1

1

β
n
2

(−∆x)n+1v(x, y, φ) + ∑
qx∈Q

∇∗
qx ⋅ aqx∇qxv(x, y, φ)

(5.27)

= −∆φv(x, y, φ) + Lspat,xv(x, y, φ)

The term ∂x (∑q∈Q∇∗
q ⋅ aq∇qu) can be computed by using the exact formula stated in (5.2):

∂x
⎛
⎝∑q∈Q

∇∗
q ⋅ aq∇qu(y, φ)

⎞
⎠
= ∂x

⎛
⎝∑q∈Q

aq (u, q) q(y)
⎞
⎠

(5.28)

= ∑
q∈Q

∂xaq (u, q) q(y) + ∑
q∈Q

aq (v(x, ⋅, φ), q) q

= ∑
q∈Q

2πz (β, q) cos (2π (φ, q)) (u, q) q(x) ⊗ q(y) + ∑
qy∈Q

∇∗
qyaqy∇qyv(x, y, φ).

Combining the identities (5.26), (5.27), and (5.28), we obtain that the map v solves the equation

(5.29) −∆φv(x, y, φ) + Lspat,xv(x, y, φ) + Lspat,yv(x, y, φ)
= − ∑

q∈Q
2πz (β, q) cos (2π (φ, q)) (u, q) q(x) ⊗ q(y) + ∂xG(y, φ).

This equality can be rigorously justified using the arguments of Section 3.4 and of [81, 54]. The identity (5.29)
motivates the definition of the second-order Helffer-Sjöstrand operator acting on functions defined on Ω×Zd×Zd

and valued in R(d
2
)×(d2)

(5.30) Lsec ∶= −∆φ + Lspat,x + Lspat,y.

This operator has the same properties than the one satisfied by the Helffer-Sjöstrand operator and listed in
Section 3. In particular, it can be solved using the variational techniques of Proposition 3.8 or the dynamical
interpretation of Proposition 3.12.

As it was the case for the Helffer-Sjöstrand operator, it is natural to consider the Green’s function associated
with the second-order operator It is introduced in the following definition.

Definition 5.10 (Green matrix for the second-order Helffer-Sjöstrand equation). For any (y, y1) ∈ Zd ×Zd,
we let δ(y,y1) ∶ Zd ×Zd → R(d

2
)2×(d2)

2

be the Dirac mass defined by the formula

δ(y,y1)((x,x1)) ∶= (1{(x,x1)=(y,y1)} ⋅ 1{i=j})1≤i,j≤(d2)
2 .

For any function f ∶ Ω→ R satisfying f ∈ L2(µβ), we define the Green’s function associated with the second-order

equation Gsec,f ∶ Ω ×Zd ×Zd → R(d
2
)2×(d2)

2

according to the formula

(5.31) LsecGsec,f = fδ(y,y1) in Ω ×Zd ×Zd.

As in Proposition 3.14 of Section 3.4.4, the existence of the Green’s function can be established variationally,
by applying the Gagliardo-Nirenberg-Sobolev inequality.

As in Section 3.4.4, one can solve the second-order Helffer-Sjöstrand equation dynamically as stated in the
following proposition.
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Proposition 5.11. Fix f ∈ L2(µβ) and (y, y1) ∈ Zd × Zd. The Green’s matrix Gsec,f (⋅; y, y1) satisfies the
identity

Gsec,f (x,x1, φ; y, y1) ∶= ∫
∞

0
Eφ [f(φt)Pφ⋅sec(t, y, y1;x,x1)] dt,

where Pφ⋅sec(⋅, ⋅ ;x,x1) is the solution of the system of equations,

⎧⎪⎪⎨⎪⎪⎩

∂tP
φ⋅
sec (⋅, ⋅, ⋅ ;x,x1) + (Lφtspat,x + L

φt
spat,y)P

φ⋅
sec (⋅, ⋅, ⋅ ;x,x1) = 0 in (0,∞) ×Zd ×Zd,

Pφ⋅sec (0, ⋅, ⋅ ;x,x1) = δ(x,x1) in Zd ×Zd.

5.4.1. Gaussian bounds and regularity estimates for the Green’s matrix. In this section, we study the decay
properties of the Green’s matrix associated with the second-order Helffer-Sjöstrand operator.

The operator Lφ⋅spat,x + L
φ⋅
spat,y is a uniformly elliptic operator on the 2d-dimensional space Zd ×Zd. If the

inverse temperature β is chosen large enough, then this operator is a perturbation of the 2d-dimensional
Laplacian ∆x + ∆y. Hence the same arguments as in Section 5.3 can be used to prove Gaussian bounds

and C0,1−ε-regularity estimates on the heat kernel Pφ⋅sec; the only difference is that the underlying space is
2d-dimensional.

The result stated in Proposition 5.12 is strictly stronger than the one obtained by the previous argument
since we obtain estimates on the triple and quadruple gradients of the heat kernel. These properties are
obtained by making use of the specific structure of the problem and relies on the observation that the elliptic
operators Lspat,x and Lspat,y only act on the x and y variables respectively. This remark implies that these

operators commute and thus the heat kernel Pφ⋅sec can be factorised as follows.

If we let δy ∶ Zd → R(d
2
)2×(d2)

2

be the Dirac mass defined by the formula

δy(x) ∶= (1{x=y} ⋅ 1{i=j})1≤i,j≤(d2)
2 .

and consider the solution Pφ⋅sec,x ∶ Zd ↦ R(d
2
)2×(d2)

2

of the system of equations,

⎧⎪⎪⎨⎪⎪⎩

∂tP
φ⋅
sec,x (⋅, ⋅ ;x) + L

φt
spat,xP

φ⋅
sec,x (⋅, ⋅ ;x) = 0 in (0,∞) ×Zd,

Pφ⋅sec (0, ⋅, ⋅ ;x) = δx in Zd.

and define similarly the solution Pφ⋅sec,y. Then we have the identity

(5.32) Pφ⋅sec (t, y, y1 ;x,x1) = Pφ⋅ (t, y ;x)Pφ⋅ (t, y1 ;x1) ,

where the product in the right-hand side refers to the product of matrices of size (d
2
)

2
× (d

2
)

2
. Thanks to this

property, one can obtain additional regularity estimates on the map Pφ⋅sec; for instance, if we denote by ∇x, ∇y,
∇x1 , ∇y1 the gradient with respect to the first, second, third, and fourth spatial variable, then we have

(5.33) ∇x∇y∇x1∇y1Pφ⋅sec(y, y1;x,x1) = ∇x∇yPφ⋅ (t, y ;x)∇x1∇y1Pφ⋅ (t, y1 ;x1) .

The strategy is then to combine the regularity estimates proved in Proposition 5.7 with the factorization
formula (5.32) to obtain additional regularity properties on the heat kernel associated with the second-order
equation. The results are collected in the following proposition.

Proposition 5.12. For any regularity exponent ε > 0, there exists an inverse temperature β0 (d, ε) < ∞ such
that the following statement holds. For any inverse temperature β > β0 and any realization of the dynamics

(φt)t≥0, there exists a constant C(d, ε) < ∞ such that for each (x, y, x1, y1) ∈ (Zd)4
, one has the estimate

∣Pφ⋅sec (t, x, x1; y, y1)∣ ≤ CΦC ( t
β
, x − x1)ΦC ( t

β
, y − y1) ,

and the C0,1−ε-regularity estimates: if we let ∇1,∇2,∇3 and ∇4 be any permutation of the set of gradients
∇x,∇x1 ,∇y and ∇y1 , then one has the four inequalities:

(i) On the gradient of the heat kernel

∣∇1P
φ⋅
sec (t, x, x1; y, y1)∣ ≤ C (β

t
)

1
2−ε

ΦC ( t
β
, x − x1)ΦC ( t

β
, y − y1) ;
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(ii) On the double gradient of the heat kernel

∣∇1∇2P
φ⋅
sec (t, x, x1; y, y1)∣ ≤ C (β

t
)

1−ε
ΦC ( t

β
, x − x1)ΦC ( t

β
, y − y1) ;

(iii) On the triple gradient of the heat kernel

∣∇1∇2∇3P
φ⋅
sec (t, x, x1; y, y1)∣ ≤ C (β

t
)

3
2−ε

ΦC ( t
β
, x − x1)ΦC ( t

β
, y − y1) ;

(iv) On the quadruple gradient of the heat kernel

∣∇1∇2∇3∇4P
φ⋅
sec (t, x, x1; y, y1)∣ ≤ C (β

t
)

2−ε
ΦC ( t

β
, x − x1)ΦC ( t

β
, y − y1) .

Proposition 5.12 is obtained by combining Proposition 5.7 with the factorization identity (5.33).
From these estimates, we deduce the bounds on the elliptic Green’s matrix and its gradients stated in the

following proposition.

Proposition 5.13. For any regularity exponent ε > 0, there exists an inverse temperature β0 (d, ε) < ∞ such
that the following statement holds. For any inverse temperature β > β0, there exists a constant C(d, ε) < ∞
such that for each (x, y, x1, y1) ∈ (Zd)4

, one has the estimate

∥Gsec,f (x, y, ⋅;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

∣x − x1∣2d−2 + ∣y − y1∣2d−2
.

Additionally, for any permutation ∇1,∇2,∇3 and ∇4 of the set of gradients ∇x,∇x1 ,∇y and ∇y1 , one has the
estimates:

(i) On the gradient of the Green’s matrix

∥∇1Gsec,f (x, y, ⋅;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

∣x − x1∣2d−1−ε + ∣y − y1∣2d−1−ε ;

(ii) On the double gradient of the Green’s matrix

∥∇1∇2Gsec,f (x, y, ⋅;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

∣x − x1∣2d−ε + ∣y − y1∣2d−ε
;

(iii) On the triple gradient of the Green’s matrix

∥∇1∇2∇3Gsec,f (x, y, ⋅;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

∣x − x1∣2d+1−ε + ∣y − y1∣2d+1−ε ;

(iv) On the quadruple gradient of the Green’s matrix

∥∇1∇2∇3∇4Gsec,f (x, y, ⋅;x1, y1)∥L2(µβ) ≤
Cβ ∥f∥L2(µβ)

∣x − x1∣2d+2−ε + ∣y − y1∣2d+2−ε .

The estimates on the elliptic Green’s matrix are obtained by integrating the inequalities of Proposition 5.12
over the times t in [0,∞) and applying the Cauchy-Schwarz inequality.
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6. Quantitative convergence of the subadditive quantities

The objective of this section and of Section 7 is to prove Theorem 2. The strategy adopted follows the one
of [8], and relies on the introduction of two subadditive energy quantities related to the variational formulation
associated with the Helffer-Sjöstrand operator. The first one, denoted by ν(◻, p), represents the energy of
the minimizer associated with the Dirichlet problem in a cube ◻ with affine boundary condition lp(x) ∶= p ⋅ x.
The second one, denoted by ν∗(◻, q), represents the energy of the minimizer associated with the Neumann
problem with boundary flux ∇lq. These two quantities satisfy a subadditivity property with respect to the
domain of integration and converge as the sidelength of the cube tends to infinity. Moreover, the quantities
ν and ν∗ are convex with respect to the slopes of the boundary conditions, and are approximately convex
dual to each other. The main focus of this section is to prove by a multiscale argument that, as the size of
the domains tends to infinity, these quantities converge to a pair of dual convex conjugate functions, and to
extract from the proof a quantification of the rate of convergence.

While the general strategy comes from the theory of quantitative stochastic homogenization presented in [8],
the adaptation of the techniques presented in this monograph requires to overcome three types of difficulties:

● One needs to take into account the Laplacian with respect to the φ-variable;
● One needs to take into account the infinite range of the operator L;
● We need to homogenize an elliptic system instead of an elliptic PDE.

While the first point has been successfully treated in [9] to study the ∇φ model, the last two points are intrinsic
to the Coulomb gas representation of the Villain model and will be treated in this section.

This section is organized as follows. In Sections 6.1 and 6.2, we define the subadditive energy quantities ν
and ν∗, and collect some of their basic properties. In Section 6.3, we obtain a quantitative rate of convergence
for these quantities. In Section 6.4, we introduce a finite-volume version of first-order corrector associated
with the Helffer-Sjöstrand operator L. We use the quantitative rate of convergence of the energy ν to establish
quantitative sublinearity of the corrector and to prove a quantitative estimate on the weak norm of its flux.
This function and its properties are crucial to prove the quantitative homogenization of the mixed derivative
of the Green’s matrix in Section 7.

Throughout this entire section, we fix a regularity exponent ε which is small compared to 1 and depends
only on the dimension d. We assume that the inverse temperature β is large enough so that all the results
presented in Section 5 hold with the regularity exponent ε.

We complete this introduction by mentioning that in this section, the constants are only allowed to depend
in the dimension d as we need to keep track of their dependence on the inverse temperature β. The objective
is to prove that the quantitative rate of convergence α obtained in Proposition 6.10 and 6.28 remains bounded
away from 0 as β tends to infinity.

6.1. Definition of the subadditive quantities and basic properties.

6.1.1. Definition of the energy quantities. Let ◻ be a cube of Zd, we define the energy functional E◻ according
to the formula, for each function u ∈H1 (Zd, µβ),

E◻ [u] ∶= β ∑
y∈Zd

∥∂yu∥2
L2(◻,µβ) +

1

2
∥∇u∥2

L2(◻,µβ) +
1

2
∑
n≥1

1

β
n
2

∥∇n+1u∥2

L2(Zd,µβ)
− β ∑

supp q∩◻≠∅
⟨∇qu ⋅ aq∇qu⟩µβ .

We introduce the bilinear form associated with the energy E◻: for each function u ∈H1 (Zd, µβ),

B◻ [u, v] ∶= β∑
x∈◻

∑
y∈Zd

⟨∂yu(x, ⋅), ∂yv(x, ⋅)⟩µβ +
1

2
∑
x∈◻

⟨∇u(x, ⋅),∇v(x, ⋅)⟩µβ

+ 1

2
∑
n≥1

∑
x∈Zd

1

β
n
2

⟨∇n+1u(x, ⋅),∇n+1v(x, ⋅)⟩
µβ

− ∑
supp q∩◻≠∅

β ⟨∇qu ⋅ aq∇qv⟩µβ .

This energy and bilinear form are useful to define the energy quantity ν. To define the dual energy ν∗, we
need to introduce an alternative definition of the mappings E◻ and B◻. The technical difficulty encountered is
the following: one cannot consider the energy E◻ of a function v only defined in the cube ◻ since the infinite
range of the operator L requires to know the values of the function in the entire space Zd. To fix this issue, we
restrict the summation over the set of charges q ∈ Q whose support is included in the cube ◻, and over the sets
of integers n and points x such that the value ∆nv(x) can be computed by only knowing the values of the
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function v in the cube ◻. As it will be useful later in the proofs, we also remove a boundary layer term, and we
recall the definition of trimmed cube stated in (A.2) of Appendix A. We define the energy E∗

◻ by the formula

E∗
◻ [u] ∶= β ∑

y∈Zd
∥∂yu∥2

L2(◻,µβ) +
1

2
∑
n≥0

∑
x∈◻,dist(x,∂◻)≥n

1

β
n
2

∥∇n+1u(x, ⋅)∥2

L2(µβ)

− 1

β
1
4

∥∇u∥2
L2(◻∖◻−,µβ) − β ∑

supp q⊆◻
⟨∇qu ⋅ aq∇qu⟩µβ ,

as well as the corresponding bilinear form B∗
◻, for each u, v ∈H1 (◻, µβ),

B∗
◻ [u, v] ∶= β∑

x∈◻
∑
y∈Zd

⟨∂yu(x, ⋅), ∂yv(x, ⋅)⟩µβ +
1

2
∑
n≥1

∑
x∈◻,dist(x,∂◻)≥n

1

β
n
2

⟨∇n+1u(x, ⋅),∇n+1v(x, ⋅)⟩
µβ

− 1

β
1
4

∑
x∈◻∖◻−

⟨∇u(x, ⋅),∇v(x, ⋅)⟩µβ − β ∑
supp q⊆◻

⟨∇qu ⋅ aq∇qv⟩µβ .

Let us make a few remarks about the definition of the energy E∗
◻.

Remark 6.1. The iterated Laplacian ∆n has range 2n; given a point x ∈ ◻, we only consider the iteration of
the Laplacian until the integer n ∶= dist(x, ∂◻). This ensures that for any function v ∈H1 (◻, µβ), the quantity
∆nv is well-defined.

Remark 6.2. We only consider the charges q whose support is included in the cube ◻, this ensures that for
any function v ∈H1 (◻, µβ), the quantity ∇q ⋅ aq∇qv is well-defined.

Remark 6.3. We subtract an additional term in the boundary layer {x ∈ ◻ ∶ dist(x, ∂◻) ≤
√
R/10}, where

R denotes the sidelength of the cube ◻. This term is a perturbative terms for two reasons: (i) we are only

summing on a small boundary layer of size
√
R/10 of the cube ◻, and (ii) the multiplicative factor β−

1
4 is

much smaller than the leading order term of the energy E∗
◻, which is of order 1. The reason justifying the

presence of this term is that it is useful to deal with the infinite range of the operator L; in particular, it is
useful to prove the subadditivity of the energy functional ν∗ in Proposition 6.17. The specific choice for the
exponent 1/4 for the power of β is arbitrary; we only need an exponent which is strictly between 0 and 1/2.

By choosing the inverse temperature β sufficiently large, one can prove that the energy E◻ satisfies the
following coercivity and boundedness properties: there exist constants c(d) > 0 and C(d) < ∞ such that, for
each map u ∈H1

0 (Zd, µβ),

(6.1) c JuKH1(◻,µβ) ≤ E◻ [u] ≤ C JuKH1(◻,µβ) ,

where we recall the notation JuKH1(◻,µβ) introduced in Section 2.1.3. The same estimate holds for the energy

functional E∗
◻: for each u ∈H1 (◻, µβ),

(6.2) c JuKH1(◻,µβ) ≤ E∗
◻ [u] ≤ C JuKH1(◻,µβ) .

We now proceed by giving the definitions of the subadditive quantities ν and ν∗.

Definition 6.4 (Subadditive quantities). For each cube ◻ of Zd, and each pair of vectors p, p∗ ∈ Rd×(
d
2
), we

define the energies

(6.3) ν (◻, p) ∶= inf
u∈lp+H1

0 (◻,µβ)

1

2∣ ◻ ∣
E◻[u],

and

(6.4) ν∗ (◻, p∗) ∶= sup
v∈H1(◻,µβ)

− 1

2∣ ◻ ∣
E∗
◻[v] +

1

∣ ◻ ∣ ∑x∈◻
p∗ ⋅ ⟨∇v(x)⟩µβ .

Remark 6.5. We recall the definition of the affine function lp stated in (A.4). We implicitly extend the
functions of the space lp +H1

0 (◻, µβ) by the affine function lp outside the cube ◻.

It is clear from the estimate (6.1) that the energy quantities ν and ν* are well-defined, quadratic in the
variables p and p∗ respectively, and that they satisfy the upper and lower bounds, for each cube ◻ ⊆ Zd and

each pair of vectors p, p∗ ∈ Rd×(
d
2
),

(6.5) c ∣p∣2 ≤ ν (◻, p) ≤ C ∣p∣2 and c ∣p∗∣2 ≤ ν∗ (◻, p∗) ≤ C ∣p∗∣2 .
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Figure 1. The picture on the left represents the cube ◻n+1, the white interior cubes are the cubes (z+◻n)z∈Zn
and the set in black is the boundary layer BLn.

It follows from the standard argument of the calculus of variations that the minimizer in the variational
definition (6.3) exists and is unique; we denote it by u (⋅,◻, p). The maximizer in the variational formulation (6.4)
exists and is unique up to additive constant. This property is not a direct consequence of the standard arguments;
it requires to use the properties of the Helffer-Sjöstrand equation and the regularity estimates established in
Section 5. We omit the details of the argument and refer to the long version of this article ([36, Appendix
B], first version of the arXiv submission). We denote by v (⋅,◻, p∗) the unique maximizer which satisfies

∑x∈◻ ⟨v (x, ⋅,◻, p∗)⟩µβ = 0. Additionally, we record that this maximizer satisfies the interior variance estimate

(6.6) sup
x∈ 1

3◻
var [v (x, ⋅,◻n, p∗)] ≤ C ∣p∗∣2 .

The maps p↦ u (⋅, ⋅,◻, p) and p∗ ↦ v (⋅, ⋅,◻, p∗) are linear, and they satisfy the estimates

(6.7) ∥∇u (⋅, ⋅,◻, p)∥L2(◻,µβ) ≤ C ∣p∣ and ∥∇v (⋅, ⋅,◻, p∗)∥L2(◻,µβ) ≤ C ∣p∗∣ .

The goal of this section is to prove that, as the size of the cube ◻ tends to infinity, the two quantities ν and
ν∗ converge and to obtain an algebraic rate of convergence. We obtain a result along a specific sequence of
cubes defined below.

Definition 6.6 (Triadic cube and Zn). We define the sequence ln of non-negative real numbers according to
the induction formula

l0 = 1 and for each n ∈ N, ln+1 = 3ln +
√
ln.

For each n ∈ N, we define the cube ◻n ∶= (− ln
2
, ln

2
)d ∩Zd. We denote by Zm,n ∶= ln3m−nZd ∩ ◻n and by BLm,n

the mesoscopic boundary layer defined by the formula BLm,n ∶= ◻n ∖⋃z∈Zm,n (z + ◻m). The cube ◻n can be
partitioned according to the formula

◻n ∶= ⋃
z∈Zm,n

(z + ◻m) ∪BLm,n.

We also introduce the notation Zn ∶= Zn,m, BLn ∶= BLn+1,n. We refer to Figure 1 for an illustration of these
definitions. The set BLm,n is introduced to treat the infinite range of the operator L.

In the following remarks, we record without proof some properties pertaining the Definition 6.6.

Remark 6.7. There exists a universal constant C such that, for each integer n ∈ N, 3n ≤ ln ≤ C3n.

Remark 6.8. The cardinality of the set Zm,n is equal to 3d(n−m).

Remark 6.9. One has the volume estimate ∣BLm,n∣ ≤ C3−
m
2 ∣ ◻n ∣.
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6.1.2. Statement of the main result. The main result obtained in this section is a quantitative rate of convergence
for the two energy quantities ν and ν∗; it is stated below.

Proposition 6.10. There exists an inverse temperature β0 ∶= β0 (d) < ∞ such that the following statement
holds. There exist constants c ∶= c(d) > 0, C ∶= C(d) < ∞ and an exponent α ∶= α(d) > 0 such that for each

inverse temperature β ≥ β0, there exists a symmetric positive definite matrix a ∈ Rd(
d
2
)×d(d2) such that for each

integer n ∈ N, and each pair of vectors p, p∗ ∈ Rd×(
d
2
), one has the estimates

∣ν (◻−n, p) −
1

2
p ⋅ ap∣ ≤ C3−αn∣p∣2 and ∣ν∗ (◻n, p∗) −

1

2
p∗ ⋅ a−1p∗∣ ≤ C3−αn∣p∗∣2.

Remark 6.11. Using the symmetries of the model, we can prove the following properties. If we let L2,d∗ be

the linear map introduced in Section 2.1.5, then there exists a coefficient λβ ∶= λβ(d, β) which tends to 0 as β
tends to infinity such that

(6.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a = 1

2
Id in the space KerL2,d∗ ,

a =
(1 + λβ)

2
Id in the space (KerL2,d∗)⊥ .

A direct consequence of (6.8) is the identity between the elliptic systems

−∇ ⋅ a∇ = 1

2
(d∗d + (1 + λβ)dd∗) .

These properties are a consequence of Proposition 6.10 and of Property (3) of Proposition 6.12.

6.1.3. Outline of the argument. The proof of Proposition 6.10 relies on ideas which were initially developed
in [10], and follows the presentation given in [8]. The argument relies on the definition of the quantity

(6.9) J (◻, p, p∗) ∶= ν (◻−, p) + ν∗ (◻, p∗) − p ⋅ p∗.

By the estimate (6.20) below, we know that the quadratic form J is almost positive, in the sense that it

satisfies the inequality, for each cube ◻ of size R, and each pair of vectors p, p∗ ∈ Rd×(
d
2
),

J (◻, p, p∗) ≥ −CR− 1
2 (∣p∣2 + ∣p∗∣2) .

To prove Proposition 6.10, we argue that the map J (◻, p, p∗) can be bounded from above in the following
sense: for each vector p ∈ Rd, there exists a vector p∗ ∈ Rd such that

(6.10) J (◻, p, p∗) ≤ C3−αn∣p∣2.

Additionally, we prove that the vector p∗ is close to ap. The quantitative rate of convergence stated in
Proposition 6.10 is then a relatively straightforward consequence of the estimate (6.10). The proof of (6.10)
is the core of the argument, it relies on a hierarchical decomposition of space and requires to introduce the
subadditivity defect at scale ln,

τn ∶= sup
p,p∗∈B1

(ν (◻−n, p) − ν (◻−n+1, p)) + (ν∗ (◻n, p∗) − ν∗ (◻n+1, p
∗))(6.11)

= sup
p,p∗∈B1

J (◻n, p, p∗) − J (◻n+1, p, p
∗) .

We then prove a series of propositions and lemmas (Propositions 6.13 and 6.17, Lemmas 6.19, 6.20, 6.22
and 6.23), where various quantities are estimated in terms if the subadditivity defect τn. From these results

we deduce an inequality of the form: for each integer n ∈ N, and each vector p ∈ Rd×(
d
2
), there exists a vector

p∗ ∈ Rd×(
d
2
) such that

J (◻n+1, p, p
∗) ≤ Cτn,

which can be rewritten

(6.12) J (◻n+1, p, p
∗) ≤ C

C + 1
J (◻n, p, p∗) .

The estimate (6.12) shows that, by passing from one scale to another, the energy quantity J has to contract
by a multiplicative factor strictly less than 1. An iteration of the inequality (6.12) yields the algebraic rate of
convergence stated in the inequality (6.10).
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6.1.4. Basic properties. We first record some basic properties of the energy quantities ν and ν∗; they are
analogous to [8, Lemma 2.2].

Proposition 6.12 (Basic properties of ν and ν∗). Fix a cube ◻ ⊆ Zd, and two vectors p, p∗ ∈ Rd×(
d
2
). The

energy quantity ν(◻, p) (resp. ν∗(◻, p∗)) and the minimizer u(⋅,◻, p) (resp. maximizer v(⋅,◻, p∗)) satisfy the
properties:

(1) First variation. The optimizing functions satisfy the following identities:

B◻[u(⋅,◻, p),w] = 0, ∀w ∈H1
0 (◻, µβ) ,

and

B∗
◻[v(⋅,◻, p∗),w] = 1

∣ ◻ ∣ ∑x∈◻
p∗ ⋅ ⟨∇w(x, ⋅)⟩µβ , ∀w ∈H1 (◻, µβ) .

(2) Second variation. For each function w ∈ lp +H1
0(◻, µβ),

(6.13)
1

2∣ ◻ ∣
E◻ [w] − ν(◻, p) = 1

2∣ ◻ ∣
E◻ [u (⋅,◻, p) −w] .

For each w ∈H1(◻, µβ),

(6.14) ν∗ (◻, p∗) + 1

2
E◻ [w] − 1

∣ ◻ ∣ ∑x∈◻
p∗ ⋅ ⟨∇w(x)⟩µβ =

1

2∣ ◻ ∣
E∗
◻ [v (⋅,◻, p∗) −w] .

(3) Quadratic representation. There exist two symmetric positive definite matrices a(◻),a∗(◻) ∈ Rd(
d
2
)×d(d2)

such that

(6.15) ν(◻, p) = 1

2
p ⋅ a(◻)p and ν∗(◻, p∗) = 1

2
p∗ ⋅ a∗(◻)−1p∗.

Additionally, there exist two real coefficients λβ,◻ and λ∗β,◻, which tend to 0 as β tends to infinity, such
that

(6.16)

⎧⎪⎪⎨⎪⎪⎩

a(◻) = Id in the space KerL2,d∗ ,

a(◻) = (1 + λβ,◻)Id in the space (KerL2,d∗)⊥ .

and

(6.17)

⎧⎪⎪⎨⎪⎪⎩

a∗(◻) = Id in the space KerL2,d∗ ,

a∗(◻) = (1 + λ∗β,◻)Id in the space (KerL2,d∗)⊥ .

We denote by Lt2,d∗ ∶ Rd → Rd×(
d
2
) its adjoint of the map L2,d∗ . By differentiating the identities (6.15)

with respect to the parameters p and p∗, we obtain the equalities

(6.18)
1

∣ ◻ ∣ ∑x∈◻
⎛
⎝

1

2
⟨∇u(x, ⋅,◻, p)⟩µβ − β ∑

supp q∩◻≠∅
⟨aq∇qu(⋅, ⋅,◻, p)⟩µβ L

t
2,d∗ (nq(x))

⎞
⎠
= a(◻)p

and

(6.19)
1

∣ ◻ ∣ ∑x∈◻
⟨∇v(x, ⋅,◻, p∗)⟩µβ = a∗(◻)−1p∗.

(4) One-sided convex duality. For each discrete cube ◻ of sidelength R, we have the estimate

(6.20) J (◻, p, p∗) = 1

2∣ ◻ ∣
E∗
◻ [v (⋅,◻, p∗) − u (⋅,◻−, p)] +O (C ∣p∣2R− 1

2 ) .

Proof. The proof of the properties (1) and (2) are straightforward and we refer to [8, Lemma 2.2]. For the
identity (6.15), the arguments of [8] give the following results: for each cube ◻ ⊆ Zd, there exist two positive

definite matrices a(◻),a∗(◻) ∈ Rd(
d
2
)×d(d2), such that, for each p, p∗ ∈ Rd×(

d
2
),

ν(◻, p) = 1

2
p ⋅ a(◻)p and ν∗(◻, p∗) = 1

2
p∗ ⋅ a∗(◻)−1p∗.

To prove the estimate (6.16), we use that any p ∈ KerL2,d∗ , one has the identity dlp = 0. This implies that the
minimizer in the energy ν (◻, p) is attained by the map lp, from which one obtains that the linear map a is
equal to the identity on the space KerL2,d∗ . The proof of the result on the orthogonal complement of the
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space KerL2,d∗ is a consequence of the rotation and symmetry invariance of the dual Villain model. The proof
of (6.17) is identical.

To prove the identity (6.18), we differentiate the equality (6.13) with respect to the variable p. We obtain,

for each p, p′ ∈ Rd×(
d
2
),

a(◻)p ⋅ p′ = 1

∣ ◻ ∣ ∑x∈◻
1

2
⟨∇u(x, ⋅,◻, p) ⋅ p′⟩µβ − β ∑

supp q∩◻≠∅
⟨aq∇qu(⋅, ⋅,◻, p)⟩µβ (nq,d∗lp′)(6.21)

= 1

∣ ◻ ∣ ∑x∈◻
1

2
⟨∇u(x, ⋅,◻, p) ⋅ p′⟩µβ − β ∑

supp q∩◻≠∅
⟨aq∇qu(⋅, ⋅,◻, p)⟩µβ (nq, L2,d∗ (∇lp′))

= 1

∣ ◻ ∣ ∑x∈◻
1

2
⟨∇u(x, ⋅,◻, p) ⋅ p′⟩µβ − β ∑

supp q∩◻≠∅
⟨aq∇qu(⋅, ⋅,◻, p)⟩µβ (nq, L2,d∗ (p′))

= 1

∣ ◻ ∣ ∑x∈◻
⎛
⎝

1

2
⟨∇u(x, ⋅,◻, p) ⋅ p′⟩µβ − β ∑

supp q∩◻≠∅
⟨aq∇qu(⋅, ⋅,◻, p)⟩µβ L

t
2,d∗ (nq(x)) ⋅ p′

⎞
⎠
.

Using that the identity (6.21) is valid for every vector p′ ∈ Rd×(
d
2
), we obtain the identity (6.18).

There only remains to prove the one-sided convex duality property stated in (6.20). We apply the second
variation formula (6.14), with the function u = u (⋅,◻−, p), and use the identity

1

∣ ◻ ∣ ∑x∈◻
p∗ ⋅ ⟨∇u(x, ⋅,◻−, p)⟩µβ = p ⋅ p

∗,

which is a consequence of the inclusion ◻− ⊆ ◻ and the fact that the map u belongs to the space lp +H1
0 (◻, µβ).

We obtain

ν∗ (◻, p∗) + 1

2 ∣◻∣
E∗
◻ [u] − p∗ ⋅ p = 1

2∣ ◻ ∣
E∗
◻ [v (⋅,◻, p∗) − u (⋅,◻−, p∗)] .

By definition of the function u, we have the equality ν (◻−, p) = 1
2∣◻−∣E◻− [u]. To prove the inequality (6.20), it

is thus sufficient to prove

(6.22) ∣ 1

∣◻−∣
E◻− [u] −

1

∣ ◻ ∣
E∗
◻ [u]∣ ≤ CR− 1

2 .

The proof of the inequality (6.22) relies on the definitions of the two energies E◻− and E∗
◻, and the fact that

the function u is equal to the affine function lp outside the cube ◻−. We omit the details here and refer to the
long version of the article ([36, Chapter 6, Proposition 1.12]). �

6.2. Subadditivity for the energy quantities. In this section, we prove a spatial subadditivity property
for the two energies ν and ν∗. The result is quantified, and we estimate the H1 (◻, µβ)-norm of the difference
of the minimizer u (resp. maximizer v) over two different scales in terms of the difference ν (◻m, p) − ν (◻n, p)
(resp. ν∗ (◻m, p∗) − ν∗ (◻n, p∗)).

6.2.1. Subadditivity for the energy ν. In this section, we prove that the energy quantity ν satisfies a subadditivity
property with respect to the domain of integration and deduce from it the existence of the homogenized
matrix a. The statement of Proposition 6.13 is quantified; we prove that the H1-norm of the difference of the
minimizer u over two different scales in terms of the subadditivity defect for the energy ν.

Proposition 6.13 (Subadditivity for ν). There exists an inverse temperature β0 ∶= β0 (d) < ∞ such that, for
each β ≥ β0, the following statement is valid. There exists a constant C ∶= C(d) < ∞ such that for each pair of

integers (m,n) ∈ N satisfying n >m, and each vector p ∈ Rd×(
d
2
),

(6.23)
1

∣Zm,n∣
∑

z∈Zm,n
Ju(⋅,◻n, p) − u(⋅, z + ◻m, p)K2

H1(◻n+1,µβ) ≤ C (ν (◻m, p) − ν (◻n, p) +C3−
m
2 ∣p∣2) .

Remark 6.14. Since it is useful in the rest of the proof, we note that the demonstration of Proposition 6.13
can be adapted to the case of trimmed cubes so as to obtain the estimate, for each pair of integers m,n ∈ N
such that m ≤ n,

1

∣Zm,n∣
∑

z∈Zm,n
Ju(⋅,◻−n, p) − u(⋅, z + ◻−m, p)K

2
H1(◻n+1,µL) ≤ C (ν (◻−m, p) − ν (◻−n, p) +C3−

m
2 ∣p∣2) .

Since the proof is essentially the same as the proof of Proposition 6.13; we omit the details.
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Before proving Proposition 6.13, we record an immediate corollary of the subadditivity property for the
energy ν.

Corollary 6.15. There exists an inverse temperature β0 ∶= β0 (d) < ∞ such that, for each β ≥ β0, there exists

a symmetric positive definite matrix a such that, for each vector p ∈ Rd×(
d
2
), one has

ν (◻n, p) Ð→
n→∞

p ⋅ ap.

By Property (3) of Proposition 6.12, this statement can be rewritten equivalently as

a (◻n) Ð→
n→∞

a.

Additionally, one deduces from (6.23) the lower bound estimate in the sense of symmetric positive definite
matrices

(6.24) a (◻n) ≥ a −C3−
n
2 Id×(d2)

,

where Id×(d2)
denotes the identity matrix of the space Rd×(

d
2
).

Remark 6.16. By Remark 6.14, the convergence also holds with the trimmed triadic cubes and we have, for

each vector p ∈ Rd×(
d
2
),

ν (◻−n, p) Ð→
n→∞

p ⋅ ap, a (◻−n) Ð→
n→∞

a, and ∀n ∈ N, a (◻−n) ≥ a −C3−
n
2 Id(d2)

.

Proof. Since the left side of (6.23) is non-negative, we have the inequality, for each pair of integers m,n ∈ N
such that n >m,

(6.25) ν (◻n, p) ≤ ν (◻m, p) +C3−
m
2 ∣p∣2.

Combining the inequality (6.25) with the fact that the sequence (ν (◻n, p))n∈N is non-negative implies that it
converges with the estimate (6.24). �

We now focus on the proof of Proposition 6.13.

Proof of Proposition 6.13. For the sake of simplicity, we only write the proof in the case when the difference
between the integers m and n is equal to 1: we consider the specific case of the pair (n,n + 1). We assume
without loss of generality that ∣p∣ = 1.

We let w be the function of lp +H1
0 (◻n+1, µβ) defined by the following construction:

● For each point z ∈ Zn+1, we set w ∶= u(⋅, z + ◻n, p);
● On the mesoscopic boundary layer BLn, we set w ∶= lp.

Applying the second variation formula (6.13) and the coercivity of the energy functional E stated in (6.1)
gives the inequality

(6.26) Ju(⋅,◻n+1, p) −wK2
H1(◻n+1,µβ) ≤ C ( 1

2∣ ◻n+1 ∣
E◻n+1 [w] − ν(◻, p)) .

Using that, for each point z ∈ Zn, the function w is equal to the minimizer u(⋅, z + ◻n, p) in the cube (z + ◻n),
we have the inequality

(6.27) ∑
z∈Zn+1

Ju(⋅,◻n+1, p) − u(⋅, z + ◻n, p)K2
H1(◻n+1,µβ) ≤ Ju(⋅,◻n+1, p) −wK2

H1(◻n+1,µβ) .

By the estimates (6.26) and (6.27), we see that, to prove the inequality (6.23), it is thus sufficient to prove

(6.28)
1

2∣ ◻ ∣
E◻n+1 [w] ≤ ν (◻n, p) +C3−

n
2 .
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We now prove the inequality (6.28). By definition of the energy E, we have

E◻n+1 [w] ∶= β ∑
y∈Zd

∥∂yw∥2
L2(◻n+1,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.29)−(i)

+ 1

2
∥∇w∥2

L2(◻n+1,µβ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(6.29)−(ii)

(6.29)

+ 1

2
∑
k≥1

1

β
k
2

∥∇k+1w∥2

L2(Zd,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.29)−(iii)

−β ∑
supp q∩◻n+1≠∅

⟨∇qw ⋅ aq∇qu⟩µβ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(6.29)−(iv)

.

We estimate the four terms on the right side separately. The term (6.29)-(i) involving the derivative with
respect to the field φ can be estimated by the following argument. Since the map w is equal to the deterministic
affine function lp in the boundary layer BLn, we have the identity ∂yw(x, ⋅) = 0 for any point x ∈ BLn and any

point y ∈ Zd. This implies the equality

(6.30) ∑
y∈Zd

∥∂yw∥2

L2
(◻n+1µβ)

= ∑
z∈Zn

∑
y∈Zd

∥∂yu(⋅, z + ◻n)∥2
L2(z+◻nµβ) .

This completes the estimate of the term (6.29)-(i). For the term (6.29)-(ii), we use the same argument and
note that ∇w(x, ⋅) = p for any point x ∈ BLn. We obtain

1

∣◻n+1∣
∥∇w∥2

L2(◻n+1µβ) =
1

∣ ◻n+1 ∣ ∑z∈Zn
∥∇u(⋅, z + ◻n, p)∥2

L2(z+◻n,µβ) +
∣BLn∣
∣◻n+1∣

(6.31)

≤ 1

∣ ◻n+1 ∣ ∑z∈Zn
∥∇u(⋅, z + ◻n, p)∥2

L2(z+◻n,µβ) +C3−
n
2 .

The term (6.29)-(iii) can be estimated with a similar strategy, but some additional technicalities need to be
treated along the way to deal with the iterations of the Laplacian and the sum over the charges. We omit the
details here and only give the results

(6.32) (6.29) − (iii) ≤ ∑
z∈Zn

∑
k≥1

1

β
k
2

∥∇k+1u (⋅, z + ◻n, p)∥
2

L2(Zd,µβ)
+Ce−c(lnβ)3

n
2
,

and

(6.33) (6.29) − (iv) ≤ ∑
z∈Zn

∑
supp q∩(z+◻n)

⟨∇qu (⋅, z + ◻n, p) ⋅ aq∇qu (⋅, z + ◻n, p)⟩µβ +C3−
n
2 ∣ ◻n+1 ∣.

We finally combine the equality (6.29), the estimates (6.30), (6.31), (6.32), (6.33) to obtain the inequality (6.28).
The proof of Proposition 6.13 is complete. �

6.2.2. Subadditivity for the energy ν∗. In this section, we prove a similar statement for the energy ν∗.

Proposition 6.17 (Subadditivity for ν∗). There exists a constant C ∶= C(d) < ∞ such that for each pair of

integers (n,m) ∈ N such that n >m and each vector p∗ ∈ Rd×(
d
2
),

(6.34)
1

∣Zm,n∣
∑

z∈Zm,n
Jv(⋅, ⋅,◻n, p∗) − v(⋅, ⋅, z + ◻m, p∗)K

2
H1(z+◻m,µβ) ≤ C (ν∗ (◻m, p) − ν∗ (◻n, p) + 3−

n
2 ∣p∗∣2) .

As it was the case for the energy quantity ν, we deduce from Proposition 6.17 that the sequence
(ν∗ (◻n, p∗))n∈N converges as n tends to infinity.

Corollary 6.18. There exists an inverse temperature β0 ∶= β0 (d) < ∞ such that for each β ≥ β0 the following

statement is valid. There exists a symmetric definite positive a∗ such that for each vector p∗ ∈ Rd×(
d
2
),

ν∗ (◻n, p∗) Ð→
n→∞

a−1
∗ ∣p∗∣2 .

By the Property (3) of Proposition 6.12, this statement can be rewritten equivalently

a∗ (◻n)−1 Ð→
n→∞

a−1
∗ .

We also have the lower bound, for each integer n ∈ N,

a∗ (◻n)−1 ≥ a−1
∗ −C3−

n
2 Id(d2)

.
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Proof of Proposition 6.17. For the sake of simplicity, we only write the proof in the specific case of the pair
(m,n) = (n + 1, n). We assume without loss of generality that ∣p∗∣ = 1.

We consider the function v ∶= v (⋅,◻n+1, p
∗) and, for z ∈ Zn, we restrict it to the cubes (z + ◻n). We apply

the second variation formula (6.14) and the coercivity of the energy functional E∗
z+◻n . We obtain, for each

point z ∈ Zn,

Jv(⋅,◻n+1, p
∗) − v(⋅, z + ◻n, p∗)K

2
H1(z+◻n,µβ) ≤ C (ν∗ (z + ◻n, p∗) +

1

2∣ ◻n ∣
E∗
z+◻n [v] + 1

∣ ◻n ∣ ∑x∈z+◻
p∗ ⋅ ⟨∇v(x)⟩µβ) .

Summing over the points z ∈ Zn, and dividing by the cardinality of Zn shows

1

∣Zn∣
∑
z∈Zn

Jv(⋅,◻n+1, p
∗) − v(⋅, z + ◻n, p∗)K

2
H1(z+◻n,µβ)

≤ C
⎛
⎝
ν∗ (◻n, p∗) + ∑

z∈Zn

1

2 ∣Zn∣ ⋅ ∣◻n∣
E∗
z+◻n [v] + 1

∣Zn∣ ⋅ ∣◻n∣
∑
x∈◻n

p∗ ⋅ ⟨∇v(x)⟩µβ
⎞
⎠
.

The factor ∣Zn∣ = 3d on the left side depends only on the dimension d, and can thus be incorporated in the
constant C in the right side. We deduce that, to prove the inequality (6.34), it is sufficient to prove

(6.35) ∑
z∈Zn

1

∣Zn∣ ⋅ ∣◻n∣
(1

2
E∗
z+◻n [v] + ∑

x∈z+◻n
p∗ ⋅ ⟨∇v(x)⟩µβ)

≤ 1

2∣ ◻n+1 ∣
E∗
◻n+1 [v]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.35)−(i)

+ 1

∣ ◻n+1 ∣ ∑
x∈◻n+1

p∗ ⋅ ⟨∇v(x)⟩µβ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(6.35)−(ii)

+C3−
n
2 .

We first estimate the term (6.35)-(ii). We use the estimate (6.7) on the L2-norm of the gradient of the
function v, the Cauchy-Schwarz inequality, and the volume estimate

∣◻n+1∣ − ∣Zn∣ ⋅ ∣◻n∣ = ∣◻n+1 ∖ ⋃
z∈Zn

(z + ◻n)∣ = ∣BLn∣ ≤ C3−
n
2 ∣◻n+1∣ .

We obtain

∑
z∈Zn

1

∣Zn∣ ⋅ ∣◻n∣
∑

x∈z+◻n
p∗ ⋅ ⟨∇v(x, ⋅)⟩µβ ≤

1

∣◻n+1∣
∑
z∈Zn

∑
x∈z+◻n

p∗ ⋅ ⟨∇v(x)⟩µβ + ( ∣BLn∣
∣◻n+1∣

)
1
2

∥∇v∥L2(◻n+1,µβ)

(6.36)

≤ 1

∣◻n+1∣
∑

x∈◻n+1
p∗ ⋅ ⟨∇v(x, ⋅)⟩µβ +

1

∣◻n+1∣
∑

x∈BLn
p∗ ⋅ ⟨∇v(x, ⋅)⟩µβ +C3−

n
4

≤ 1

∣◻n+1∣
∑

x∈◻n+1
p∗ ⋅ ⟨∇v(x, ⋅)⟩µβ + ( ∣BLn∣

∣ ◻n+1 ∣
)

1
2

∥∇v∥L2(◻n+1,µβ) +C3−
n
4

≤ 1

∣◻n+1∣
∑

x∈◻n+1
p∗ ⋅ ⟨∇v(x, ⋅)⟩µβ +C3−

n
4 .

To estimate the term (6.35)-(i), we compare the two energies ∑z∈Zn E∗
z+◻n[v] and E∗

◻n+1[v], and estimate the
terms which differ in the two quantities. These terms are either boundary layer terms or terms coming from
the sum over the charges and the iterations of the Laplacian. In both cases, we can prove that they are small;
we omit the technical details and only write the result

(6.37) ∑
z∈Zn

1

2 ∣Zn∣ ⋅ ∣◻n∣
E∗
z+◻n[v] ≤

1

2 ∣◻n+1∣
E∗
◻n+1[v] +Ce

−c3
n
2
.

Combining the estimates (6.37) and (6.36) shows the inequality (6.35) and completes the proof of Proposi-
tion 6.17. �
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6.3. Quantitative convergence of the subadditive quantities. In this section, we prove an algebraic
rate of convergence for the quantity J defined in (6.9). We recall the definition of the subadditivity defect τn
given in (6.11), and we introduce the following notation: for each integer n ∈ N,

(6.38) an ∶= a∗ (◻n) ,

and call the matrix an the approximate homogenized matrix. We first prove a series of lemmas, estimating
various quantities in terms of the subadditivity defect τn.

Before starting the proofs, let us make the following remark. By Corollaries 6.15 and 6.18, the subadditivity
defect τn converges to 0 as n tends to infinity. In particular all the quantities which are bounded from above
by the subadditivity defect τn tend to 0 as n tends to infinity.

6.3.1. Control over the approximate homogenized coefficient. The first lemma we prove establishes that the
difference between the matrices an over two different scales can be estimated in terms of the subadditivity
defect τn.

Lemma 6.19. There exists a constant C ∶= C(d) < ∞ such that, for any pair of integers (m,n) ∈ N2 with
m ≤ n,

∣a−1
n − a−1

m ∣2 ≤
n

∑
k=m

τk +C3−
m
2 .

Proof. Before starting the proof, we collect a few ingredients and notation used in the argument:

● By the formula (6.19), we have the identity ∑x∈◻n ⟨∇v(x, ⋅,◻n, p∗)⟩µβ = a−1
n p

∗;

● By definition of the subadditivity defect τk, we have the identity, for each p ∈ Rd(
d
2
),

ν∗ (◻m, p) − ν∗ (◻n, p) ≤ ∣p∣2
n

∑
k=m

τk.

We fix a vector p∗ ∈ Rd(
d
2
) such that ∣p∗∣ = 1, and use the formula (6.19) to write

a−1
n p

∗ = 1

∣ ◻n ∣ ∑x∈◻n
⟨∇v(x, ⋅,◻n, p∗)⟩µβ(6.39)

= 1

∣ ◻n ∣ ∑
z∈Zm,n

∑
x∈z+◻m

⟨∇v(x, ⋅,◻n, p∗)⟩µβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.39)−(i)

+ 1

∣ ◻n ∣ ∑
x∈BLm,n

⟨∇v(x, ⋅,◻n, p∗)⟩µβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.39)−(ii)

.

The term (6.39)-(ii) is the simplest one, we estimate it by the Cauchy-Schwarz inequality, the estimate on the
L2-norm of the gradient of v stated in (6.7), and the volume estimate ∣BLm,n∣ ≤ C3−

m
2 ∣◻n∣. We obtain

(6.40)

RRRRRRRRRRRR

1

∣◻n∣
∑

x∈BLm,n
⟨∇v(x, ⋅,◻n, p∗)⟩µβ

RRRRRRRRRRRR
≤ C3−

m
2 .

To estimate the term (6.39)-(i), we use the estimate (6.7), the identity BLm,n = ◻n ∖⋃z∈Zm,n(z +◻n), and the

volume estimate ∣BLm,n∣ ≤ C3−
m
2 ∣◻n∣. We obtain

1

∣ ◻n ∣ ∑z∈Zn
∑

x∈z+◻m
⟨∇v(x, ⋅,◻n, p∗)⟩µβ =

1

∣Zm,n∣
1

∣z + ◻m∣ ∑z∈Zn
∑

x∈z+◻m
⟨∇v(x, ⋅,◻n, p∗)⟩µβ +O (C3−

m
2 ) .
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Applying the subadditivity estimate stated in Proposition 6.13, we find that

1

∣Zm,n∣
1

∣z + ◻m∣ ∑z∈Zn
∑

x∈z+◻m
∣⟨∇v(x, ⋅,◻n, p∗) − ∇v(x, ⋅, z + ◻m, p∗)⟩µβ ∣(6.41)

≤ 1

∣Zm,n∣
∑

z∈Zm,n
∥∇v (⋅,◻n, p∗) − ∇v (⋅, z + ◻m, p∗)∥L2(z+◻m,µβ)

≤
⎛
⎝

1

∣Zm,n∣
∑

z∈Zm,n
∥∇v (⋅,◻n, p∗) − ∇v (⋅, z + ◻m, p∗)∥

2
L2(z+◻m,µβ)

⎞
⎠

1
2

≤
⎛
⎝

1

∣Zm,n∣
∑

z∈Zm,n
J∇v (⋅,◻n, p∗) − ∇v (⋅, z + ◻m, p∗)K

2
H1(z+◻m,µβ)

⎞
⎠

1
2

≤ C (
n

∑
k=m

τk)
1
2

+C3−
m
2 .

We then use the inequality (6.41), the translation invariance of the measure µβ , and the identity

∑x∈◻n ⟨∇v(x, ⋅,◻m, p∗)⟩µβ = a−1
m p

∗. We obtain

1

∣Zm,n∣
1

∣z + ◻m∣ ∑z∈Zn
∑

x∈z+◻m
⟨∇v(x, ⋅,◻n, p∗)⟩µβ(6.42)

= 1

∣Zm,n∣
∑

z∈Zm,n

1

∣z + ◻m∣ ∑
x∈z+◻m

⟨∇v(x, ⋅, z + ◻m, p∗)⟩µβ +O
⎛
⎝
C (

n

∑
k=m

τk)
1
2

+C3−
m
2
⎞
⎠

= 1

∣◻m∣ ∑x∈◻m
⟨∇v(x, ⋅,◻m, p∗)⟩µβ +O

⎛
⎝
C (

n

∑
k=m

τk)
1
2

+C3−
m
2
⎞
⎠

= a−1
m p

∗ +O
⎛
⎝
C (

n

∑
k=m

τk)
1
2

+C3−
m
2
⎞
⎠
.

We then combine the identity (6.39) with the estimates (6.40) and (6.42) to complete the proof of Lemma 6.19.
�

6.3.2. Control over the variance of the spatial average of the maximizer v. The next step in the argument is
to control the variance of the spatial average of the maximiser v. We prove that its variance contracts and
obtain an algebraic rate of convergence. The proof relies on an explicit computation and makes use of the
second-order Helffer-Sjöstrand equation introduced in Section 3.4 to estimate the correlation between the
random variables φ ↦ v(x,φ,◻n+1, p) and φ ↦ v(x′, φ,◻n+1, p) for a pair of points x,x′ ∈ ◻n+1 distant from
one another.

Lemma 6.20 (Variance estimate). There exists a constant C ∶= C(d) < ∞ such that, for each n ∈ N, and each

p∗ ∈ Rd×(
d
2
),

(6.43) varµβ [ 1

∣ ◻n ∣ ∑x∈◻n
∇v(x, ⋅,◻n+1, p

∗)] ≤ C3−(d−
5
2
)n∣p∗∣2.

For later purposes, we also record that the variance of the flux contracts

(6.44) var

⎡⎢⎢⎢⎢⎣

1

∣ ◻n ∣ ∑x∈◻n

⎛
⎝

1

2
∇v (x, ⋅,◻n+1, p

∗) + β ∑
q∈Q

aq∇qv (⋅, ⋅,◻n+1, p
∗)nq(x)

⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C3−(d−

5
2
)n∣p∗∣2.

Remark 6.21. The value of the coefficient d − 5
2

is arbitrary; we can prove the result for any fixed number
strictly smaller than d − 2 by choosing β large enough.

Proof. We fix an inverse temperature β large enough so that all the regularity results of Section 5 hold with
the regularity exponent ε = 1

4
. We decompose the argument into two steps.
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Step 1. To ease the notation, we denote by v ∶= v (⋅, ⋅,◻n+1, p
∗). We assume without loss of generality that

∣p∗∣ = 1. We first decompose the variance

(6.45) varµβ [ 1

∣ ◻n ∣ ∑x∈◻n
∇v(x, ⋅)] = 1

∣◻n∣2
∑

x,x′∈◻n
covµβ [∇v (x, ⋅) ,∇v (x′, ⋅)] .

We then prove the estimate, for each pair of points x,x′ ∈ ◻n,

(6.46) ∣covµβ [∇v (x, ⋅) ,∇v (x′, ⋅)]∣ ≤ C3
n
2

∣x − x′∣d−2
.

The estimate (6.43) can then be deduced from (6.46) and (6.45); indeed we have

varµβ [ 1

∣ ◻n ∣ ∑x∈◻n
∇v(x, ⋅)] ≤ 1

∣◻n∣2
∑

x,x′∈◻n
covµβ [∇v (x, ⋅) ,∇v (x′, ⋅)]

≤ C3
n
2

∣◻n∣2
∑

x,x′∈◻n

1

∣x − x′∣d−2

≤ C3−(d−
5
2
)n.

We now fix two points x,x′ ∈ ◻n, and focus on the proof of (6.46). By applying the Helffer-Sjöstrand formula,
we write

(6.47) covµβ [∇v (x, ⋅) ,∇v (x′, ⋅)] = ∑
y∈Zd

⟨∂y∇v (x, ⋅)Hx′(y, ⋅)⟩µβ ,

where Hz′ is the solution of the Helffer-Sjöstrand equation, for each pair (y, φ) ∈ Zd ×Ω,

LHx′(y, φ) = ∂y∇v (x′, φ) .

We then decompose the function Hx′ according to the collection of Green’s matrices (G∂y∇v(x′,⋅))y∈Zd . We

obtain

Hx′(y, φ) = ∑
y′∈Zd

G∂y′∇v(x′,⋅) (y, φ; y′) .

Using Proposition 3.17, we can estimate the L2(µβ)-norm of the function Hx′ , for each point y ∈ Zd,

(6.48) ∥Hx′ (y, ⋅)∥L2(µβ) ≤ C ∑
y′∈Zd

∥∂y′∇v (x′, ⋅)∥L2(µβ)

∣y − y′∣d−2
.

We then claim that we have the estimates, for each pair of points y, y′ ∈ Zd,

(6.49) ∥∂y∇v (x, ⋅)∥L2(µβ) ≤
C3

n
4

∣y − x∣d+ 3
4

and ∥∂y′∇v (x′, ⋅)∥L2(µβ) ≤
C3

n
4

∣y′ − x′∣d+ 3
4

.

The estimate (6.49) is proved in Step 2 below. Combining the inequalities (6.48), (6.49), and the formula (6.47),
we obtain

(6.50) covµβ [∇v (x, ⋅) ,∇v (x′, ⋅)] ≤ C3
n
2 ∑
y,y′∈Zd

1

∣y′ − x′∣d+ 3
4

× 1

∣y − x∣d+ 3
4

× 1

∣y − y′∣d−2
.

The sum in the right side of the inequality (6.50) can be explicitly computed and we obtain the inequality (6.46).

Step 2. Proof of (6.49). The argument relies on the second-order Helffer-Sjöstrand equation introduced in
Section 5.4 and on the reflection principle to solve the Neumann problem (6.53) below. Given a cube Q ⊆ Zd
of sidelength R, we recall the notation 1

2
Q to denote the cube which has the same center as Q and sidelength

R/2. We consider the specific cube ◻ ∶= (0, ln+1)d and the function v (⋅, ⋅,◻, p∗). Since the cube ◻n+1 can be
obtained from the cube ◻ by a translation, and since the measure µβ is translation invariant, we see that to

prove the estimate (6.49), it is sufficient to prove the inequality, for each point y ∈ 1
3
◻, and each point z ∈ Zd,

(6.51) ∥∂z∇v (y, ⋅,◻, p∗)∥L2(µβ) ≤
C3

n
4

∣y − z∣d+ 3
4

.
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The reason justifying this specific choice for the cube ◻ will become clear later in the proof. Using the definition
of the map v ∶= v (⋅, ⋅,◻, p∗) as a minimizer in the variational formulation of ν∗ (◻, p∗) stated in (6.4), we see
that it is a solution of the Neumann problem

(6.52) {
−∆φv + L◻v = 0 in ◻ ×Ω,

n ⋅ ∇v = n ⋅ p∗ on ∂ ◻ ×Ω,

where the operator L◻ is the uniformly elliptic operator defined by the formula

L◻ ∶= −
1

2β
∆ + 1

2β
∑
k≥1

(−1)k+1

β
k
2

∇k+1 ⋅ (1◻k∇k+1) + 1

β
5
4

∇ ⋅ (1◻∖◻−∇) + ∑
supp q⊆◻

∇q ⋅ aq∇q,

where we recall the notation ◻k ∶= {x ∈ ◻ ∶ dist(x, ∂◻) ≥ k}. The specific, technical formula of the operator L◻
is not relevant in the proof; the important point of the argument is that the operator L◻ is well-defined for
functions which are only defined in the interior of the triadic cube ◻, and that, as it is the case for elliptic
operator Lspat, it is uniformly elliptic and is a perturbation of the Laplacian − 1

2β
∆. As a consequence, all the

results stated in Section 5 for the Helffer-Sjöstrand operator L are also valid for the operator −∆φ + L◻. In
particular, all the arguments stated in Section 5.4 about the second-order Helffer-Sjöstrand equation apply
in this setting. By applying the partial derivative ∂ to the system (6.52), we obtain that, if we denote by
w(y, z, φ) = ∂zv (y, φ), then the function w solves the system

(6.53)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆φw + L◻,yw + Lspat,zw = ∑
supp q⊆◻

z (β, q) (2π) sin (2π (φ, q)) (v, q) qy ⊗ qz in ◻ ×Zd ×Ω,

n ⋅ ∇yw = 0 on ∂ ◻ ×Zd ×Ω,

where the subscripts y (resp. z) in the notation L◻,y (resp. Lspat,z) means that the spatial operator L◻n+1
(resp. Lspat,z) only acts on the spatial variable y (resp. z). We introduce the notation f to denote the function

f ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

◻ ×Zd ×Ω→ Rd×d,
(y, z, φ) ↦ ∑

supp q⊆◻
z (β, q) (2π) sin (2π (φ, q)) (v, q)nq(y) ⊗ nq(z).

Using this notation, the system (6.53) becomes

(6.54)

⎧⎪⎪⎨⎪⎪⎩

−∆φw + L◻,yw + Lspat,zw = dydzf in ◻ ×Zd ×Ω,

n ⋅ ∇yw = 0 on ∂ ◻ ×Zd ×Ω.

To solve the system (6.54), we use the reflection principle. To this end, we need to introduce a few definitions,
notation and remarks. We fix a point z ∈ Zd and extend the elliptic operator L◻, the functions v and f (⋅, z),
initially defined on the cube ◻, to the entire space according to the following procedure. We let ◻̃ be the discrete

cube (−ln+1, ln+1)d. For each point x = (x1, . . . , xd) ∈ ◻̃, we extend f by setting, for any (i, j) ∈ {1, . . . , d}2,

(6.55) fij (x, z, φ) = (−1)sgn(xi)fij (∣x1∣ , . . . , ∣xd∣ , z, φ) .

We also use the reflection to extend the operator L◻ to the cube ◻̃, and denote this extension by L◻̃. We then
extend the operator L◻̃ and the function f periodically from the cube ◻̃ to Zd, and let w̃ be the solution of the
elliptic system

(6.56) −∆φw̃ + L◻̃,yw̃ + Lspat,zw̃ = dydzf in Zd ×Zd ×Ω.

Given a point y1 ∈ ◻, we denote by [y1] ⊆ Zd, the set of vertices ỹ1 ∈ ◻̃ whose coordinate are in absolute value
equal to the coordinates of y1 and the reflections of this set. This definition together with (6.55) ensures that
for any y1 ∈ ◻ and any ỹ1 ∈ [y1] and i, j ∈ {1, . . . , d}

∣fij (ỹ1, z, φ)∣ = ∣fij (y1, z, φ)∣ .

One can verify that, with this construction, the restriction of the function w̃ to the subcube ◻ satisfies the
elliptic system (6.54); it is thus equal to the function w. We now study the function w̃. We denote by G̃sec the
Green’s matrix associated with the operator −∆φ + L◻̃,y + Lspat,z. As was already mentioned, the operator L◻̃
is a perturbation of the Laplacian 1

2β
∆; as a consequence, one can apply the same proofs as the ones written
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in Section 5, and obtain the same results. In particular the statement of Proposition 5.13 holds for the Green’s
matrix G̃sec. Using that the function w̃ solves the system (6.56), we obtain the explicit formula

∇yw̃(y, z, φ) = ∑
y1,z1∈Zd

∇yd∗y1d∗z1 G̃sec,f(y1,z1,⋅) (y, z, φ; y1, z1) .

Using the statement of Proposition 5.13, we obtain the estimate on the L2 (µβ)-norm of the function w̃, for

any y ∈ ◻ and any z ∈ Zd,

∥∇yw̃(y, z, ⋅)∥L2(µβ) ≤ C ∑
y1,z1∈Zd

∥f (y1, z1, ⋅)∥L2(µβ)

∣y1 − y∣2d+
3
4 + ∣z1 − z∣2d+

3
4

(6.57)

≤ C ∑
y1∈◻,z1∈Zd

∥f (y1, z1, ⋅)∥L2(µβ) ∑
ỹ1∈[y1]

1

∣ỹ1 − y∣2d+
3
4 + ∣z1 − z∣2d+

3
4

.

We first estimate the second sum in the right-hand side, and obtain

∑
ỹ1∈[y1]

1

∣ỹ1 − y∣2d+
3
4 + ∣z1 − z∣2d+

3
4

≤ 1

∣y1 − y∣2d+
3
4 + ∣z1 − z∣2d+

3
4

+ 1

3ndmax(3n, ∣z1 − z∣)d+
3
4

.

To compute (6.57), we prove the estimate, for each pair of points y1 ∈ ◻ and z1 ∈ Zd,

(6.58) ∥f (y1, y1 + z1, ⋅)∥L2(µβ) ≤ Ce
−c

√
β∣z1∣ ∑

y0∈◻
e−c

√
β∣y0−y1∣ ∥∇v(y0, ⋅)∥L2(µβ) .

Let us make a comment about the estimate (6.58). Due to the exponential decay ∣z (β, q)∣ ≤ Ce−c
√
β∥q∥1 , the

function f decays exponentially fast outside the diagonal {(y, y) ∶ y ∈ ◻} ⊆ Z2d. This phenomenon can be

observed in the inequality (6.58): the exponential term e−c
√
β∣z1∣ is small when the norm of z1 is large, i.e.,

when the point (y1, y1 + z1) is far from the diagonal {(y, y) ∈ ◻ × ◻}. Furthermore, on the diagonal, the term
∥f (y1, y1, ⋅)∥L2(µβ) is approximately equal to the value ∥∇v(y1, ⋅)∥L2(µβ); but again the sum over all the charges

needs to be taken into consideration and explains the sum over all the radii in the right side of (6.58) with the

exponential decay e−c
√
βr.

We now prove the estimate (6.58). We start from the inequality, for each pair of points y1 ∈ ◻ and z1 ∈ Zd,

(6.59) ∥f (y1, y1 + z1, ⋅)∥L2(µβ) ≤ ∑
q∈Q

∑
y∈suppnq

e−c
√
β∥q∥1 ∥∇v(y, ⋅)∥L2(µβ) ∥nq∥L∞ ∣nq(y1)∣ ∣nq(y1 + z1)∣ .

We then note that if a charge q is such that the two points y1 and y1 + z1 belong to the support of nq, then the
diameter of nq is larger than ∣z1∣, and thus the diameter of q is larger than c∣z1∣, for some constant c(d) > 0.
From this remark, we deduce that

(6.60) ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥L∞ ∣nq(y1)∣ ∣nq(y1 + z1)∣ ≤ Ce−c

√
β∣z1∣.

Similarly, if a charge q is such that the three points y1 and y1 + z1 and y belong to the support of nq, then the

diameter of nq is larger than max (∣z1∣, ∣y − y1∣) ≥ ∣z1∣+∣y−y1∣
2

. This argument implies that the diameter of q has
to be larger than c (∣z1∣ + ∣y − y1∣), and we deduce that

(6.61) ∑
q∈Q

e−c
√
β∥q∥11{y∈suppnq} ∥nq∥L∞ ∣nq(y1)∣ ∣nq(y1 + z1)∣ ≤ Ce−c

√
β(∣z1∣+∣y−y1∣).

Combining the estimates (6.59), (6.60), and (6.61), we obtain

∥f (y1, y1 + z1, ⋅)∥L2(µβ) ≤ ∑
q∈Q

∑
y0∈suppnq

e−c
√
β∥q∥1 ∥∇v(y0, ⋅)∥L2(µβ) ∥nq∥L∞ nq(y1)nq(y1 + z1)

≤ ∑
y0∈◻

∑
q∈Q

e−c
√
β∥q∥1 ∥∇v(y0, ⋅)∥L2(µβ) 1{y0∈suppnq} ∥nq∥L∞ nq(y1)nq(y1 + z1)

≤ Ce−c
√
β∣z1∣ ∑

y0∈◻
e−c

√
β∣y0−y1∣ ∥∇v(y0, ⋅)∥L2(µβ) ,

and we have proved the inequality (6.58).
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We now come back to the estimate (6.57), fix a point y ∈ ◻, and use the estimate (6.58). We obtain

∥∇yw̃(y, z, φ)∥L2(µβ) ≤ C ∑
y0,y1∈◻,z1∈Zd

e−c
√
β(∣z1−y1∣+∣y0−y1∣) ∥∇v (y0, ⋅)∥L2(µβ)

∣y1 − y∣2d+
3
4 + ∣z1 − z∣2d+

3
4

(6.62)

+C ∑
y0,y1∈◻,z1∈Zd

e−c
√
β(∣z1−y1∣+∣y0−y1∣) ∥∇v (y0, ⋅)∥L2(µβ)

3ndmax(3n, ∣z1 − z∣)d+
3
4

.

We first estimate the second term in the right-hand side and write

(6.63) ∑
y0,y1∈◻,z1∈Zd

e−c
√
β(∣z1−y1∣+∣y0−y1∣) ∥∇v (y0, ⋅)∥L2(µβ)

3dnmax(3n, ∣z1 − z∣)d+
3
4

≤
C ∥∇v∥L2(◻,µβ)

max(3n, ∣z∣)d+ 3
4

≤ C

max(3n, ∣z∣)d+ 3
4

≤ C

∣z − y∣d+ 3
4

,

where we have used that y ∈ 1
3
◻ to obtain the last inequality. We then estimate the first term in the right-hand

side of (6.62) and focus on the sum over the variables y1 and z1. The exponential decay of the terms e−c
√
β∣z1−y1∣

and e−c
√
β∣y0−y1∣ forces the sum to contract on the points y1 = y0 and z1 = y0. We have the inequality,

∑
y1,z1∈Zd

e−c
√
β(∣z1−y1∣+∣y0−y1∣)

∣y1 − y∣2d+
3
4 + ∣z1 − z∣2d+

3
4

≤ C

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

.

Using the previous estimate, we can simplify the inequality (6.62), and we obtain

∥∇yw̃(y, z, φ)∥L2(µβ) ≤ C ∑
y0∈◻

∥∇v(y0, ⋅)∥L2(µβ)

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

.

We then truncate the sum, depending on whether the point y0 belongs to the cube 1
2
◻. We write

(6.64) ∥∇yw̃(y, z, φ)∥L2(µβ) ≤ C ∑
y0∈ 1

2◻

∥∇v (y0, ⋅)∥L2(µβ)

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.64)−(i)

+C ∑
y0∈◻∖ 1

2◻

∥∇v (y0, ⋅)∥L2(µβ)

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.64)−(ii)

.

We treat the two terms in the right side of (6.64) separately. For the term (6.64)-(i), we use that the map v is
a solution of the Helffer-Sjöstrand equation (6.52) in the cube ◻, and apply Proposition 5.6 with the regularity
exponent ε = 1

4
. We obtain, for each point y0 ∈ 1

2
◻,

(6.65) ∥∇v (y0, ⋅)∥L2(µβ) ≤ C (ln+1)
1
2 ∥∇v∥L2(◻,µβ) ≤ C3

n
2 ,

where we used Remark 6.7 and the inequality (6.7) in the second inequality. Using the estimate (6.65), we can
compute the term (6.64)-(i)

∑
y0∈ 1

2◻

∥∇v (y0, ⋅)∥L2(µβ)

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

≤ C3
n
2 ∑
y0∈ 1

2◻

1

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

(6.66)

≤ C3
n
2 ∑
y0∈Zd

1

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

≤ C 3
n
2

∣y − z∣d+
3
4

,

where we used the result of Appendix C in the last inequality. We now treat the term (6.64)-(ii). In that
case, we use the estimate ∣y − y0∣ ≥ c∣y0∣, valid for any point y0 ∈ Zd ∖ 1

2
◻ and any point y ∈ 1

3
◻. We obtain the

inequality

∑
y0∈◻∖ 1

2◻

∥∇v (y0, ⋅)∥L2(µβ)

∣y0 − y∣2d+
3
4 + ∣y0 − z∣2d+

3
4

≤ C ∑
y0∈◻∖ 1

2◻

∥∇v (y0, ⋅)∥L2(µβ)

∣y0∣2d+
3
4 + ∣y0 − z∣2d+

3
4

.

We then note that, for any point y0 ∈ ◻ ∖ 1
2
◻, and each point z ∈ Zd, one has the inequalities

(6.67) cmax(3n, ∣z∣)2d+ 3
4 ≤ ∣y0∣2d+

3
4 + ∣y0 − z∣2d+

3
4 ≤ Cmax(3n, ∣z∣)2d+ 3

4 .



MASSLESS PHASES FOR THE VILLAIN MODEL IN d ≥ 3 75

We thus deduce that

(6.68) ∑
y0∈◻∖ 1

2◻

∥∇v (y0, ⋅)∥L2(µβ)

∣y0∣2d+
3
4 + ∣y0 − z∣2d+

3
4

≤ C

max (∣z∣,3n)d+
3
4

≤ C

∣z − y∣d+ 3
4

.

By combining the estimates (6.63), (6.64), (6.66) and (6.68), we deduce that

(6.69) ∥∇yw̃(y, z, ⋅)∥L2(µβ) ≤
C3

n
4

∣z − y∣d+
3
4

.

We complete the argument by recalling that, for each y ∈ ◻, and each z ∈ Zd, the function w̃ is defined so that
we have ∇yw̃ (y, z, ⋅) = ∂z∇v (y, ⋅,◻). The inequality (6.69) can thus be rewritten

∥∂z∇v (y, ⋅,◻, p∗)∥ ≤
C3

n
4

∣y − z∣d+ 3
4

.

The proof of the inequality (6.51), and thus of Step 2 is complete. �

6.3.3. Control over the L2-norms of the functions u − lp and v − a∗ (◻n)−1
lp∗ . The objective of this section

is to prove that the optimizers u(⋅, ⋅,◻−n+1, p) and v(⋅, ⋅,◻n+2, p
∗) are close in the L2 (◻n, µβ)-norm to affine

functions. The result relies on the multiscale Poincaré inequality stated in Appendix B, and is quantified in
terms of the subadditivity defect τn.

Lemma 6.22 (L2 estimate for the optimizers u and v). There exist an inverse temperature β0 ∶= β0(d) < ∞
and a constant C ∶= C(d) < ∞ such that, for each β > β0, each integer n ∈ N, and each pair of vectors

p, p∗ ∈ Rd×(
d
2
),

(6.70) ∥u(⋅, ⋅,◻−n+1, p) − lp∥
2

L2(◻n+1,µβ) ≤ C ∣p∣232n (3−
n
2 +

n

∑
m=0

3−
n−m

2 τm) ,

and

(6.71) ∥v(⋅, ⋅,◻n+2, p
∗) − la−1

n p
∗
− (v(⋅, ⋅,◻n+2, p

∗))◻n+1,µβ∥
2

L2(◻n+1,µβ)
≤ C ∣p∗∣232n (3−

n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

Proof. We assume without loss of generality that ∣p∣ = 1 and ∣p∗∣ = 1. To ease the notation, we denote by
u ∶= u(⋅, ⋅,◻−n+1, p) and by v ∶= v(⋅, ⋅,◻n+2, p

∗). The strategy of the proof relies on two ingredients:

● First, we need to estimate the spatial averages of the gradients of the functions u− lp and v− la∗(◻n)−1p∗
and prove that they are small. To be more precise, we estimate these spatial averages in terms of
the subadditivity defects τn. The proof relies on different arguments depending on which function we
consider:

– For the function u, we use the subadditivity property stated in Proposition 6.13 and the following
fact: for any discrete cube ◻ ⊆ Zd and any function f ∶ ◻ → R which is equal to 0 on the boundary
of the cube ◻, one has the identity

∑
x∈◻

∇f(x) = 0;

– For the function v, we use the subadditivity property stated in Proposition 6.13, and Lemma 6.20
to control the variance of the spatial average of its gradient.

● The multiscale Poincaré inequality, which is stated in Proposition B.1 in Appendix B. This inequality
allows to estimate the L2-norm of a function in terms of the spatial averages of its gradient.

We first focus on the function u ∶= u(⋅, ⋅,◻−n+1, p), and prove the inequality (6.70). We first recall that the
function u is extended by the affine function lp outside the cube ◻−n+1. We thus have

∥u(⋅, ⋅,◻−n+1, p) − lp∥
2

L2(◻n+1,µβ) = ∥u(⋅, ⋅,◻−n+1, p) − lp∥
2

L2(◻−n+1,µβ)
.
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By the multiscale Poincaré inequality stated in Proposition B.1 of Appendix B, we have

(6.72) ∥u(⋅, ⋅,◻−n+1, p) − lp∥
2

L2(◻n+1,µβ)

≤ C ∥∇u(⋅, ⋅,◻−n+1, p) − p∥
2
L2(◻n+1,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.72)−(i)

+C3n
n

∑
m=0

3m

∣Zm,n∣
∑

z∈Zm,n
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇u(⋅, ⋅,◻−n+1, p) − p)
2

⟩
µβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.72)−(ii)

.

We bound the term (6.72)-(i) using the estimate (6.7). We obtain the inequality

(6.73) ∥∇u(⋅, ⋅,◻−n+1, p) − p∥
2
L2(◻n+1,µβ) ≤ 2 ∥∇u(⋅, ⋅,◻n+1, p)∥2

L2(◻−n+1,µβ)
+ 2∣p2∣ ≤ C ∣p2∣.

To estimate the term (6.72)-(ii), we use the two following ingredients:

● The subadditivity of the energy ν which is stated in Proposition 6.13 and Remark 6.14. It reads, for
each integer m ∈ {1, . . . , n},

∣Zm,n∣−1 ∑
z∈Zm,n

Ju(⋅, ⋅,◻−n+1, p) − u(⋅, ⋅, z + ◻−m, p)K
2
H1(z+◻−m,µβ) ≤ C (ν (◻−m, p) − ν (◻−n+1, p) + 3−

m
2 ∣p∣2)

≤ C (
n

∑
k=m

τk + 3−
m
2 ∣p∣2) .

● For each point z ∈ Zm,n, the function u(⋅, z + ◻−m, p) belongs to the space lp +H1
0 (z + ◻−m, µβ). This

implies that, for each realization of the field φ ∈ Ω,

(6.74)
1

∣z + ◻m∣ ∑
x∈z+◻m

∇u(x,φ, z + ◻−m, p) = p.

We deduce the inequality, for each integer m ∈ {1, . . . , n},

(6.75) ∑
z∈Zm,n

1

∣Zm,n∣
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇u(x, ⋅,◻−n+1, p) − p)
2

⟩
µβ

≤ C (
n

∑
k=m

τk + 3−
m
2 ∣p∣2) .

Combining the estimates (6.72), (6.73), and (6.75) completes the proof of the estimate (6.70).

We now prove the inequality (6.71). By the multiscale Poincaré inequality, we have

(6.76) ∥v(⋅, ⋅,◻n+2, p
∗) − la−1

n p
∗
− (v(⋅, ⋅,◻n+2, p

∗) − la−1
n p

∗
)
◻n+1

∥
2

L2(◻n+1,µβ)

≤ C ∥∇v(⋅,◻n+2, p
∗) − a−1

n p
∗∥2

L2(◻n+1,µβ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(6.76)−(i)

+C3n
n

∑
m=0

3m

∣Zm,n∣
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇v(⋅,◻n+2, p
∗) − a−1

n p
∗)

2

⟩
µβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.76)−(ii)

.

We first treat the term on the left side. Since the average value of a linear map on a cube centered at 0 is
equal to 0, we have that

(v(⋅, ⋅,◻n+2, p
∗) − la−1

n p
∗
)
◻n+1

= 1

∣◻n+1∣
∑

x∈◻n+1
v(x, ⋅,◻n+2, p

∗).

We then use the estimate (6.6) and the inclusion ◻n+1 ⊆ 1
3
◻n+2. We obtain

∥(v(⋅, ⋅,◻n+2, p
∗) − la−1

n p
∗
)
◻n+1

− (v(⋅, ⋅,◻n+2, p
∗))◻n+1,µβ∥

2

L2(µβ)
= varµβ [(v(⋅, ⋅,◻n+2, p

∗))◻n+1](6.77)

≤ C

∣◻n∣
∑

x∈◻n+1
varµβ [v(x, ⋅,◻n+2, p

∗)]

≤ C

∣◻n∣
∑

x∈ 1
3◻n+2

var [v(x, ⋅,◻n+2, p
∗)]

≤ C ∣p∗∣.
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We now treat the terms in the right side of (6.76). The term (6.76)-(i) can be estimated with the same
argument as in the inequality (6.73). We obtain

(6.78) ∥∇v(⋅, ⋅,◻n+2, p
∗) − a−1

n p
∗∥2

L2(◻n+1,µβ)
≤ C.

To estimate the term (6.76)-(ii), we prove that, for each integer m ∈ {1, . . . , n},

(6.79)
1

∣Zm,n∣
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇v(⋅, ⋅,◻n+2, p
∗) − a−1

n p
∗)

2

⟩
µβ

≤ C3−
m
2 +C

n

∑
k=m

τk.

To this end, we decompose the left side of (6.79) and write

1

∣Zm,n∣
∑

z∈Zm,n
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇v(⋅, ⋅,◻n+2, p
∗) − a−1

n p
∗)

2

⟩
µβ

(6.80)

≤ 3 ∣Zm,n∣−1 ∑
z∈Zm,n

Jv(⋅, ⋅,◻n+2, p
∗) − v(⋅, ⋅, z + ◻m, p∗)K

2
H1(z+◻m,µβ)

+ 3 ∣a−1
n p

∗ − a−1
m p

∗∣2

+ 3 ∣Zm,n∣−1 ∑
z∈Zm,n

⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇v(⋅, ⋅, z + ◻m, p∗) − a−1
m p

∗)
2

⟩
µβ

.

We estimate the first term on the right side by Proposition 6.17, and the second term by Lemma 6.19. We
obtain

(6.81) ∣Zm,n∣−1 ∑
z∈Zm,n

Jv(⋅, ⋅,◻n+2, p
∗) − v(⋅, ⋅, z + ◻m, p∗)K

2
H1(z+◻m,µβ) + ∣a−1

n p
∗ − a−1

m p
∗∣2 ≤ C3−

m
2 +C

n

∑
k=m

τk.

There remains to estimate the third term in the right side of (6.80). We first recall the identity, for each
integer m ∈ N,

1

∣ ◻m ∣ ∑x∈◻m
⟨∇v(x, ⋅,◻m, p∗)⟩µβ = a−1

m p
∗.

We use the translation invariance of the measure µβ and Lemma 6.20. To ease the notation, we note that in
dimension larger than 3, we have the estimate d − 5

2
≥ 1

2
. We obtain

∣Zm,n∣−1 ∑
z∈Zm,n

⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇v(x, ⋅, z + ◻m, p∗) − a−1
m p

∗)
2

⟩
µβ

= ⟨( 1

∣◻m∣ ∑x∈◻m
∇v(x, ⋅,◻m, p∗) − a−1

m p
∗)

2

⟩
µβ

(6.82)

= varµβ [ 1

∣ ◻m ∣ ∑x∈◻n
∇v(x, ⋅,◻m, p∗)]

≤ varµβ [ 1

∣ ◻m ∣ ∑x∈◻m
∇v(x, ⋅,◻m+1, p

∗)] + τm

≤ C (3−
m
2 + τm) .

Combining the estimates (6.77), (6.78), (6.80), (6.81), and (6.82) completes the proof of (6.71). �

6.3.4. Control over the energy J . In this section, we obtain from the previous results and the Caccioppoli
inequality a quantitative control over the energy quantity J (◻n, p,anp). The argument needs to take into
account the infinite range of the Helffer-Sjöstrand operator and the specific forms of the energies E and E∗

which causes some technicalities in the analysis. The result is stated in the lemma below.

Lemma 6.23. There exist an inverse temperature β0 ∶= β0(d) < ∞ and a constant C ∶= C(d) < ∞ such that

for each β ≥ β0, each integer n ∈ N, and each p ∈ Rd×(
d
2
),

(6.83) J (◻n, p,anp) ≤ C ∣p∣2 (3−
n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .
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Proof. The strategy of the proof relies on three ingredients: the Caccioppoli inequality stated in Proposition 5.1,
the one-sided convex duality formula (6.20) stated in Proposition 6.12, and the L2-norm estimate on the
optimizers u and v stated in Lemma 6.22.

We fix a slope p ∈ Rd and assume without loss of generality that ∣p∣ = 1. By Proposition 6.12, we have the
identity

J (◻n, p,anp) = E∗
◻n [u (⋅, ⋅,◻−n, p) − v (⋅, ⋅,◻n,anp)] +O (C3−

m
2 ) .

To prove the estimate (6.83), it is thus sufficient to prove the estimate

(6.84) E∗
◻n [u (⋅, ⋅,◻−n, p) − v (⋅, ⋅,◻n,anp)] ≤ C (3−

n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

Using the coercivity of the energy E∗
◻n stated in (6.2), we see that to prove the inequality (6.84), it is sufficient

to prove the estimate

(6.85) Ju (⋅, ⋅,◻−n, p) − v (⋅, ⋅,◻n,anp)K
2
H1(◻n,µβ) ≤ C (3−

n
2 +

n+1

∑
m=0

3−
n−m

2 τm) ,

and by Propositions 6.13 and 6.17, we see that to prove (6.85) it is sufficient to prove

(6.86) Ju (⋅, ⋅,◻−n+1, p) − v (⋅, ⋅,◻n+2,anp)K
2
H1(◻n,µβ) ≤ C (3−

n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

We now focus on the proof of (6.86). In the rest of the proof, we make use of the notation u ∶= u (⋅, ⋅,◻−n+1, p)
and v ∶= v (⋅, ⋅,◻n+2,anp) − (v (⋅, ⋅,◻n+2,anp))◻n+1,µβ . By Lemma 6.22, we have the L2 (◻n+1, µβ)-estimate

(6.87) ∥u − v∥2
L2(◻n+1,µβ) ≤ 2 ∥u − lp∥2

L2(◻n+1,µβ) + 2 ∥v − lp∥2
L2(◻n+1,µβ) ≤ C32n (3−

n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

We recall the following notation: for each integer k ∈ N, we denote by ◻kn+2 the interior cube ◻kn+2 ∶=
{x ∈ ◻n+2 ∶ dist (x, ∂◻n+2) ≥ k}. By the first variation formula stated in Proposition 6.12, the maps u and v
are solutions of the equations

Lu = 0 in ◻−n+1 ×Ω and L◻n+2v = 0 in ◻n+2 ×Ω,

where we recall the definition of the Helffer-Sjöstrand operator L◻n+2

L◻n+2 ∶= −∆φ −
1

2β
∆ + 1

2β
∑
k≥1

(−1)k+1

β
k
2

∇k+1 ⋅ (1◻kn+2∇
k+1) − 1

β
5
4

∇ ⋅ (1◻n+2∖◻−n+2∇) + ∑
supp q⊆◻n+2

∇q ⋅ aq∇q.

One can adapt the proof of the Caccioppoli inequality (Proposition 5.1) to the operator L◻n+2 and obtain the

following statement. There exists a constant C ∶= C(d) < ∞ such that for any vector fields F ∶ ◻n+2×Ω→ Rd×(
d
2
)

and G ∶ ◻n+2 ×Ω→ Rd, any ball B(x, r) such that B(x,2r) is included in the cube ◻n+2, and every solution

w ∶ B(x,2r) ×Ω→ R(d
2
) of the equation

L◻n+2w = ∇ ⋅ F + dG in B(x,2r) ×Ω,

one has the estimate

(6.88) JwKH1(Br(x),µβ) ≤
C

R
∥w∥L2(B2r(x),µβ)

+ ∥F ∥L2(B2r(x),µβ) + ∥G∥L2(B2r(x),µβ) + ∑
y∈◻n+2∖B2r(x)

e−c(lnβ)∣y−x∣ ∥w(y, ⋅)∥L2(µβ) .

We then note that, by the definition of the operator L◻n+2 , the function u satisfies the equation

L◻n+2u = ∇ ⋅ F + dG in ◻−n+1 ×Ω,

where the vector fields F and G are defined by the formulae, for each x ∈ ◻−n+1,

F (x) ∶= − 1

2β
∑

k≥dist(x,∂◻n+2)

1

β
k
2

(−∆)k∇u(x) and G(x) ∶= ∑
supp q/⊆◻n+2

aq∇qu × nq(x).

We estimate the L2 (◻n+1, µβ)-norm of the functions F and G. We first note that every point x in the cube
◻n+1 satisfies the inequality dist(x, ∂◻n+2) ≥ c3n. Using the boundedness of the discrete Laplacian operator,
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the upper bound on the L2-norm of the gradient of the function u stated in (6.7), and choosing the inverse
temperature β large enough, we have

(6.89) ∥F ∥L2(◻n+1,µβ) ≤ ∑
k≥c3n

1

β
k
2

∥∆k∇u∥
L2(◻n+1,µβ)

≤ ∑
k≥c3n

Ck

β
k
2

∥∇u∥L2(◻−n+2,µβ)
≤ Ce−c(lnβ)3

n
2
.

Using a similar argument, we note that for each point x in the interior cube ◻n+1, if a charge q ∈ Q is such
that its support is not included in the cube ◻n+2 and such that the point x belongs to the support of nq,
then its diameter must be larger than c3n. We then use the exponential decay on the coefficient aq and the
estimate (6.7) to obtain

(6.90) ∥G∥L2(◻n+1,µβ) =
XXXXXXXXXXX

∑
supp q/⊆◻n+2

aq(∇qu)nq
XXXXXXXXXXXL2(◻n,µβ)

≤ Ce−c
√
β3n ∥∇u∥L2(◻−n+2,µβ)

≤ Ce−c
√
β3n .

We now apply the Caccioppoli inequality (5.5) to the function w ∶= u − v, which is solution of the equation
L◻n+2 (u − v) = ∇ ⋅ F + dG in the set ◻−n+1 ×Ω. We obtain

β ∑
y∈Zd

∥∂y (u − v)∥L2(◻n,µβ) + ∥∇(u − v)∥L2(◻n,µβ)(6.91)

≤ C3−2n ∥u − v∥2
L2(◻−n+1,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.91)−(i)

+∥F ∥2
L2(◻−n+1,µβ)

+ ∥G∥2
L2(◻−n+1,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.91)−(ii)

+
⎛
⎝ ∑
x∈◻n+2∖◻−n+1

e−c(lnβ)∣x∣ ∥u(x, ⋅) − v(x, ⋅)∥L2(µβ)
⎞
⎠

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(6.91)−(iii)

.

We estimate the term (6.91)-(i) thanks to the inequality (6.87). We obtain

(6.92) C3−2n ∥u − v∥2
L2(◻−n+1,µβ)

≤ C (3−
n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

We estimate the term (6.91)-(ii) by the inequalities (6.89) and (6.90). We obtain

(6.93) ∥F ∥2
L2(◻−n+1,µβ)

+ ∥G∥L2(◻−n+1,µβ)
≤ Ce−c(lnβ)3

n
2
.

For the term (6.91)-(iii), we use the estimate (6.87), the observation τn ≤ C, and note that if a point x lies
outside the cube ◻n, then its norm must be larger than c3n. We obtain

∑
x∈◻n+2∖◻−n+1

e−c
√
β∣x∣ ∥(u − v)(x, ⋅)∥L2(µβ) ≤ Ce

−c
√
β3n ∑

x∈◻n+2
∥∇(u − v)(x, ⋅)∥L2(µβ)(6.94)

≤ Ce−c
√
β3n3

dn
2 ∥u − v∥L2(◻n+2,µβ)

≤ Ce−c
√
β3n .

Combining the estimates (6.91), (6.92), (6.93), and (6.94) completes the proof of Lemma 6.23. �

6.3.5. Quantitative rate of convergence for the energy J . In this section, we use Lemma 6.23 together with an
iterative argument to obtain an algebraic rate of convergence for the quantity J (◻n, p,anp). The strategy
implemented in the proof is essentially the one described in the paragraph following Proposition 6.10 up to a
technical difficulty: the term in the right side of the estimate (6.83) of Lemma 6.23 is not the subadditivity
defect τn but a weighted average the subadditivity defects. This additional technicality requires to make use
of a weighted quantity denoted by F̃n in the proof below.

Proposition 6.24. There exist a constant C ∶= C(d) < ∞ and an exponent α ∶= α(d) > 0 such that, for each

integer n ∈ N, and each p ∈ Rd×(
d
2
),

J (◻n, p,anp) ≤ C ∣p∣23−αn.

We record, as a corollary, that the quantitative rate of convergence established in Proposition 6.24 implies a
quantitative estimate on the subadditivity defect τn.
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Corollary 6.25. There exist a constant C ∶= C(d) < ∞ and an exponent α ∶= α(d) > 0 such that, for each
integer n ∈ N,

(6.95) −C3−
n
2 ≤ τn ≤ C3−αn.

Proof of Proposition 6.24 and Corollary 6.25. We let B1 be the unit ball in Rd(
d
2
). We denote by C0 the

constant which appears in the right side of the identity (6.20), and define, for each integer n ∈ N,

Fn ∶= sup
p∈B1

ν (◻−n, p) + ν∗ (◻n,anp) − an∣p∣2 +C0∣p∣23−
n
2 .

We note that by the inequality (6.5), we have the upper bound, for each integer n ∈ N, Fn ≤ C. By
Proposition 6.12 and Lemma 6.23, we have, for each integer n ∈ N,

(6.96) 0 ≤ Fn ≤ C (3−
n
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

Additionally, we obtain from the subadditivity properties stated in Propositions 6.13 and 6.17

(6.97) Fn+1 ≤ Fn +C3−
n
2 .

Combining the estimates (6.96) and (6.97) implies that

0 ≤ Fn+1 ≤ C (3−
n+1
2 +

n+1

∑
m=0

3−
n−m

2 τm) .

By definition of the subadditivity defect τn, and the fact that the maps p→ ν (◻−n, p) − ν (◻−n+1, p) +C ∣p∣23−
n
2

and p∗ → ν∗ (◻n, p∗) − ν∗ (◻n+1, p
∗) +C ∣p∗∣2 3−

n
2 are quadratic and non-negative, we have

τn ≤ C
d

∑
k=1

(ν (◻−n, ek) − ν (◻−n+1, ek) + ν∗ (◻n, ek) − ν∗ (◻n+1, ek)) +C3−
n
2(6.98)

≤ C (Fn − Fn+1 + 3−
n
2 ) .

We then define F̃n ∶= 3−
n
4 ∑nk=0 3

k
4 Fk. From the estimates (6.96), (6.98), and the inequality F0 ≤ C, we deduce

that

F̃n − F̃n+1 = 3−
n
4

n

∑
k=0

3
k
4 (Fk − Fk+1) − 3−

(n+1)
4 F0 ≥ 3−

n
4

n

∑
k=0

3
k
4 ( 1

C
τk − 3−

k
2 ) −C3−

n
4(6.99)

≥ 1

C

n

∑
k=0

3−
(n−k)

4 τk −
n

∑
k=0

3−
(n−k)

4 3−
k
2 −C3−

n
4

≥ 1

C

n

∑
k=0

3−
(n−k)

4 τk −C3−
n
4 .

We then compute, by using the inequalities (6.97) and (6.96),

F̃n+1 = 3−
n+1
4

n+1

∑
k=0

3
k
4 Fk = 3−

n
4

n

∑
k=0

3
k
4 Fk+1 + 3−

n+1
4 F0 ≤ 3−

n
4

n

∑
k=0

3
k
4 (Fk +C3−

n
2 ) +C3−

n
4

≤ F̃n +C3−
n
4 .

We use the estimate (6.96) and write

F̃n+1 ≤ 3−
n
4

n

∑
k=0

3
k
4 Fk +C3−

n
4 ≤ 3−

n
4

n

∑
k=0

3
k
4 (C3−

k
2 +

k

∑
m=0

3−
k−m

2 τm) +C3−
n
4(6.100)

≤ C3−
n
4

n

∑
k=0

3−
k
4 + 3−

n
4

n

∑
k=0

3−
k
4

k

∑
m=0

3−
m
2 τm +C3−

n
4

≤ C
n

∑
k=0

3−
n−k
4 τk +C3−

n
4 .

By combining the estimates (6.99) and (6.100), we have obtained

F̃n+1 ≤ C (F̃n − F̃n+1) +C3−
n
4 .
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The previous inequality can be rewritten

(6.101) F̃n+1 ≤
C

C + 1
F̃n +C3−

n
4 .

We set α0 ∶= 1
ln 3

ln C
C+1

so that we have 3α0 = C
C+1

, and define the exponent α ∶= min (α0,
1
8
). We iterate the

inequality (6.101), and note that the inequality F0 ≤ C implies the inequality F̃0 ≤ C. We obtain

F̃n ≤ 3−α0nF̃0 +C
n

∑
k=0

3−α0k3−
n−k
4 ≤ C3−αn.

Finally, by the definition of the weighted sum F̃n, we have the inequality Fn ≤ F̃n. The proof of Proposition 6.24
is complete.

There only remains to prove Corollary 6.25. The lower bound in (6.95) is a direct consequence subadditivity
properties stated in Propositions 6.13 and 6.17. For the upper bound, we use the inequality (6.98) together
with the estimates Fn ≤ C3−αn and Fn+1 ≥ 0. �

6.3.6. Quantitative rate of convergence for the subadditive quantities ν and ν∗. In this section, we deduce
Proposition 6.10 from Proposition 6.24.

Proof of Proposition 6.10. Before starting the proof, we collect some ingredients which were proved in this
section:

● By Proposition 6.12 and Definition 6.38, we have the identities, for each integer n ∈ N, and each
p, p∗ ∈ Rd,

(6.102) ν (◻−n, p) =
1

2
p ⋅ a (◻−n)p and ν∗ (◻n, p∗) =

1

2
p∗ ⋅ a−1

n p
∗;

● By Property (4) of Proposition 6.12, there exist two strictly positive constants c,C depending only on
the dimension d such that, for every cube ◻ ⊆ Zd,

(6.103) cId×(d2)
≤ a(◻),a∗(◻) ≤ CId×(d2);

● By Corollaries 6.15 and 6.18, we have the convergences

(6.104) a (◻−n) Ð→
n→∞

a and a−1
n Ð→

n→∞
a−1
∗ ;

● By the one-sided convex duality estimate (6.20) and Proposition 6.24, we have the inequalities, for

each p ∈ Rd×(
d
2
),

−C ∣p∣23−
n
2 ≤ ν (◻n, p) + ν∗ (◻n,anp) − an∣p∣2 ≤ C ∣p∣23−αn,

which can be rewritten, by using (6.102),

(6.105) ∣a (◻−n) − an∣ ≤ C3−αn;

● By Lemma 6.19 and Corollary 6.25, we have the inequality, for each pair of integers (m,n) ∈ N such
that m ≤ n,

(6.106) ∣a−1
n − a−1

m ∣2 ≤
n

∑
k=m

τk +C3−
m
2 ≤

n

∑
k=m

C3−αk +C3−
m
2 ≤ C3−αm.

We now combine the four previous results to complete the proof of Proposition 6.10. First by sending n to
infinity in the inequality (6.105), and using the convergence (6.104), we obtain the identity a = a−1

∗ . Then by
sending n to infinity in the inequality (6.106), we obtain the inequality, for each integer m ∈ N,

(6.107) ∣a−1
m − a−1∣ ≤ C3−αm.

We then combine the inequality (6.103) with the inequality (6.107) to obtain

(6.108) ∣am − a∣ ≤ C3−αm.

Combining the estimates (6.105) and (6.108), we deduce that, for each integer n ∈ N,

(6.109) ∣a (◻−n) − a∣ ≤ ∣a (◻−n) − an∣ + ∣an − a∣ ≤ C3−αn.

Proposition 6.12 is then a consequence of the estimates (6.108), (6.109), and the representation formulae (6.102).
�
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6.4. Definition of the first-order corrector and quantitative sublinearity. An important ingredient
to prove the quantitative homogenization of the mixed derivative of the Green’s matrix associated with the
Helffer-Sjöstrand operator (which is the subject of Section 7) is the first-order corrector. The objective of this
section is to introduce this function, and to deduce from the algebraic rate of convergence on the energy ν
established in Proposition 6.10 two properties on this map:

● The quantitative sublinearity of the corrector, this result is stated in the equation (6.110);
● A quantitative estimate on the H−1-norm of the flux of the corrector, this result is stated in the

estimate (6.111).

The corrector which is introduced in this section is a finite-volume version of the corrector (see Definition 6.26),
the reason justifying this choice is that it is simpler to construct from the subadditive energy ν and allows
the arguments developed in Section 7 to work. We do not try to construct the infinite-volume corrector
as it would require to prove a quantitative homogenization theorem and establish a large-scale regularity
theory (following the techniques of [8, Section 3]), and the development of this technology is not necessary to
prove Theorem 1. Nevertheless, the specific structure of the problem (and the strong regularity properties
established in Section 5) allows to define the gradient of the infinite-volume corrector with a simple argument;
the construction is carried out in Proposition 6.29.

6.4.1. Finite-volume corrector. This section is devoted to the definition and the study of the finite-volume
corrector.

Definition 6.26 (Finite-volume corrector). For each integer n ∈ N, and each slope p ∈ Rd×(
d
2
), we define the

finite-volume corrector at scale 3n to be the function χn,p ∶ Zd ×Ω→ R(d
2
) defined by the formula

χn,p ∶= u (⋅, ⋅,◻−n, p) − lp.

We recall that the corrector extended by 0 outside the trimmed cube ◻−n. Given two integers (i, j) ∈
{1, . . . , d}×{1, . . . , (d

2
)}, we denote by eij ∈ Rd×(

d
2
) the vector eij = (0, . . . , ei, . . . ,0) , and denote by χn,ij ∶= χn,eij .

Remark 6.27. The finite volume corrector χn,p is the solution of the equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆φχn,p −
1

2β
∆χn,p +

1

2β
∑
n≥1

1

β
n
2

(−∆)n+1
χn,p + ∑

q∈Q
∇∗
q ⋅ aq∇q (lp + χn,p) = 0 in ◻−n ×Ω,

χn,p = 0 on ∂ ◻−n ×Ω.

By the identity ∇q (lp + χn,p) = (nq,d∗lp + d∗χn,p), we see that the corrector depends only on the value of d∗lp.
In particular, if d∗lp = 0 then χn,p = 0. As the vectors d∗lp belong to the space Rd, the collection of correctors
(χp)

p∈Rd×(
d
2
)

forms a d-dimensional vector space from which we extract a basis: for each integer i ∈ {1, . . . , d},

we select a vector pi ∈ Rd×(
d
2
) such that d∗lpi = ei and denote by ∇χi = ∇χpi .

The following proposition establishes quantitative sublinearity of the corrector and provides a quantitative
estimate for the H−1-norm of its flux.

Proposition 6.28 (Quantitative sublinearity). There exist a constant C ∶= C(d), an exponent α(d) > 0, and

an inverse temperature β0(d) < ∞ such that, for every inverse temperature β > β0, and every vector p ∈ Rd×(
d
2
),

the finite-volume corrector satisfies the following estimates

(6.110) ∥χn,p∥L2(◻−n,µβ)
≤ C ∣p∣3(1−α)n

and

(6.111)
XXXXXXXXXXX

1

2
(p +∇χn,p) + β ∑

q∈Q
aq∇q (lp + χn,p)Lt2,d∗ (nq) − ap

XXXXXXXXXXXH−1(◻−n,µβ)
≤ C ∣p∣3(1−α)n.

Proof. The estimate (6.110) is obtained by combining Lemma 6.22 and Corollary 6.25. The proof of the
estimate (6.111) regarding the flux is more involved and we split it into two steps. The argument requires to
take into account the infinite range of the sum over the charges (by using the boundary layer BLn and the
exponential decay of the coefficient aq), which makes the proof technical. Since similar technicalities have
already been treated in the previous sections, and the analysis does not contain any new arguments, we omit
some of the details and only write a (detailed) sketch of the proof.
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Step 1. In this step, we prove that, to prove (6.111) it is sufficient to prove the estimate, for each p∗ ∈ Rd×(
d
2
),

(6.112)
XXXXXXXXXXX

1

2
∇v (⋅, ⋅,◻n, p∗) + β ∑

supp q⊆◻n
aq∇qv (⋅, ⋅,◻n, p∗)Lt2,d∗ (nq) − p∗

XXXXXXXXXXXH−1(◻−n,µβ)
≤ C ∣p∗∣3(1−α)n.

We fix a vector p∗ ∈ Rd×(
2
d
) and recall that, by definition of the first order corrector, lp +χn,p = u (⋅, ⋅,◻−n, p). To

ease the notation, we denote by u ∶= u (⋅, ⋅,◻−n, p) and by v ∶= v (⋅, ⋅,◻n,ap). First, we note that Proposition 6.12
implies the inequality ∣a (◻−m) − a∣ ≤ C3−αm. Combining this result with the estimate (6.7), we obtain the

inequality, for each vector p ∈ Rd×(
d
2
),

(6.113) ∥∇v (⋅, ⋅,◻n,ap) − ∇v (⋅, ⋅,◻n,anp)∥L2(◻n,µβ) = ∥∇v (⋅, ⋅,◻n,ap − anp)∥L2(◻n,µβ) ≤ C3−αn∣p∣.

We use the inequality (6.113) with the estimate (6.85) stated in the proof of Proposition 6.23 and Corollary 6.25.
We deduce that

∥∇u −∇v∥L2(◻n,µβ) ≤ ∥∇u −∇v (⋅, ⋅,◻n,anp)∥L2(◻n,µβ) + ∥∇v (⋅, ⋅,◻n,anp) − ∇v∥L2(◻n,µβ)(6.114)

≤ C3−αn∣p∣.

Using the estimate (6.114), we can write

XXXXXXXXXXX

1

2
∇u + β ∑

q∈Q
aq (∇qu)Lt2,d∗ (nq) − ap

XXXXXXXXXXXH−1(◻−n,µβ)

≤
XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq (∇qv)Lt2,d∗ (nq) − ap

XXXXXXXXXXXH−1(◻−n,µβ)

+
XXXXXXXXXXX

1

2
∇(u − v) + β ∑

q∈Q
aq (∇q (u − v))Lt2,d∗ (nq)

XXXXXXXXXXXH−1(◻n,µβ)

≤
XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq (∇qv)Lt2,d∗ (nq) − ap

XXXXXXXXXXXH−1(◻n,µβ)

+C3n
XXXXXXXXXXX

1

2
∇(u − v) + β ∑

q∈Q
aq (∇q (u − v))Lt2,d∗ (nq) − ap

XXXXXXXXXXXL2(◻n,µβ)
.

Using the estimate ∣aq ∣ ≤ e−c
√
β∥q∥1 , we see that

XXXXXXXXXXX

1

2
∇(u − v) + β ∑

q∈Q
aq (∇q (u − v))Lt2,d∗ (nq)

XXXXXXXXXXXL2(◻n,µβ)
≤ C ∥∇(u − v)∥L2(◻n,µβ) ≤ C3−αn∣p∣.

A combination of the two previous displays shows
(6.115)
XXXXXXXXXXX

1

2
∇u + β ∑

q∈Q
aq (∇qu)nq − ap

XXXXXXXXXXXH−1(◻n,µβ)
≤
XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq (∇qv)Lt2,d∗ (nq) − ap

XXXXXXXXXXXH−1(◻n,µβ)
+C3(1−α)n∣p∣.

The estimate (6.115) implies that to prove the inequality (6.111), it is sufficient to prove (6.112).

Step 2. Proving the estimate (6.112). The argument is similar to the proof presented in Lemma 6.22. To
ease the notation, we denote by v ∶= v (⋅, ⋅,◻n, p∗) and by vz,m ∶= v (⋅, ⋅, z + ◻m, p∗), and assume without loss of
generality that ∣p∗∣ = 1. We use the H−1-version of the multiscale Poincaré inequality stated in Proposition B.1
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of Appendix B. We obtain

XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq∇qvLt2,d∗ (nq) − p∗

XXXXXXXXXXX

2

H−1(◻−n,µβ)
(6.116)

≤ C
XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq∇qvLt2,d∗ (nq) − p∗

XXXXXXXXXXX

2

L2(◻−n,µβ)

+C3n
n

∑
m=0

∑
z∈Zm,n

3m

∣Zm,n∣
⟨
⎛
⎝

1

∣z + ◻m∣ ∑
x∈z+◻m

1

2
∇v(x, ⋅) + β ∑

q∈Q
aq∇qvLt2,d∗ (nq(x)) − p∗

⎞
⎠

2

⟩
µβ

.

The first term in the right side of (6.116) can be estimated by the estimate (6.7). We obtain

(6.117)
XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq∇qvLt2,d∗ (nq) − p∗

XXXXXXXXXXXL2(◻−n,µβ)
≤ C.

To estimate the second term in the right side of (6.116), we proceed as in Lemma 6.22, and use the subadditivity
estimate stated in Proposition 6.17 and Corollary 6.18. We obtain

∑
z∈Zm,n

1

∣Zm,n∣
⟨
⎛
⎝

1

∣z + ◻m∣ ∑
x∈z+◻m

1

2
∇v(x, ⋅) + β ∑

q∈Q
aq∇qvLt2,d∗ (nq(x)) − p∗

⎞
⎠

2

⟩
µβ

(6.118)

≤ ∑
z∈Zm,n

1

∣Zm,n∣
⟨
⎛
⎝

1

∣z + ◻m∣ ∑
x∈z+◻m

1

2
∇vz,m(x, ⋅) + β ∑

q∈Q
aq∇qvz,mLt2,d∗ (nq(x)) − p∗

⎞
⎠

2

⟩
µβ

+C3−αm.

We then use the two following results:

● The identity, for each point z ∈ Zm,n,

⟨ 1

∣z + ◻m∣ ∑
x∈z+◻m

⎛
⎝

1

2
∇vz,m(x, ⋅) + β ∑

q∈Q
aq∇qvz,mLt2,d∗ (nq(x))

⎞
⎠
⟩
µβ

= p∗;

● The variance estimate

var

⎡⎢⎢⎢⎢⎣

1

∣z + ◻m∣ ∑
x∈z+◻m

⎛
⎝

1

2
∇vz,m(x, ⋅) + β ∑

q∈Q
aq∇qvz,mLt2,d∗ (nq(x))

⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ C3−

m
2 ,

which is a consequence of Lemma 6.20, the inequality d − 5
2
≥ 1

2
valid in dimension larger than 3, and

the translation invariance of the measure µβ .

We obtain the estimate

(6.119) ⟨
⎛
⎝

1

∣z + ◻m∣ ∑
x∈z+◻m

1

2
∇vz,m(x, ⋅) + β ∑

q∈Q
aq∇qvz,mLt2,d∗ (nq(x)) − p∗

⎞
⎠

2

⟩
µβ

≤ C3−
m
2 .

Combining the estimates (6.116), (6.117), (6.118), and (6.119), we have obtained

XXXXXXXXXXX

1

2
∇v + β ∑

q∈Q
aq∇qvLt2,d∗ (nq) − p∗

XXXXXXXXXXXH−1(◻−n,µβ)
≤ C3(1−α)n.

The proof of Proposition 6.28 is complete. �

6.4.2. Gradient of the infinite-volume corrector. The next proposition establishes the existence and stationarity
of the spatial gradient of the infinite-volume corrector.

Proposition 6.29 (Existence of the gradient of the infinite-volume corrector and stationarity). There exists
a stationary random field ∇χ ∶ Zd ×Ω→ R satisfying the following property, for each p ∈ Rd, and each integer
n ∈ N,

∥∇χn,p −∇χp∥L2(◻m,µβ) ≤ C3−nα.
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Remark 6.30. The property stated in Remark 6.27 about the finite volume corrector also applies to the
infinite volume corrector.

Let us first present the main idea of the argument. By assuming that the inverse temperature is large
enough, one has C0,1−ε-regularity estimates for the solutions of the Helffer-Sjöstrand equation, following the
arguments given in Section 5.2. By Proposition 6.10, one also has an algebraic rate of convergence for the
subadditive energy ν with exponent α. The exponent ε depends on the inverse temperature β and tends to
0 as β tends to infinity, while the exponent α depends only on the dimension, and remains bounded away
from zero when the inverse temperature tends to infinity. It is thus possible to choose β sufficiently large so
that the exponent ε is smaller than the exponent α/2, and to leverage on this property, the C0,1−ε-regularity
estimate presented in Proposition 5.4, and the Caccioppoli inequality to prove the existence of the gradient of
the infinite-volume corrector.

Proof. We fix a vector p ∈ Rd×(
d
2
) and assume without loss of generality that ∣p∣ = 1. We decompose the proof

into two steps. In the first step, we prove that, for each point x ∈ Zd, the sequence (∇χn,p(x, ⋅))n∈N is Cauchy

in the space L2 (µβ). This implies that it converges, and we define the gradient of the infinite-volume corrector
to be its limit. In the second step we prove that the function ∇χp is stationary.

Step 1. We prove the inequality, for each point x ∈ Zd integer n ∈ N such that x ∈ ◻−n,

(6.120) ∥∇χn,p(x, ⋅) − ∇χn+1,p(x, ⋅)∥L2(µβ) ≤ C3−
α
2 n.

We now fix a point x ∈ Zd and prove the estimate (6.120). By the definition of the correctors stated in
Definition 6.26, the functions χn and χn+1 are solutions of the Helffer-Sjöstrand equations

L(lp + χn,p) = 0 in ◻−n ×Ω and L(lp + χn+1,p) = 0 in ◻−n+1 ×Ω.

In particular, the difference χn+1,p − χn,p is solution of the equation L(χn+1,p − χn,p) = 0 in the set ◻−n ×Ω.
We can thus apply Proposition 5.6 to obtain, for each integer n ∈ N such that x ∈ ◻n−1,

∥∇χn,p(x, ⋅) − ∇χn+1,p(x, ⋅)∥L(µβ) ≤ sup
y∈◻n−1

∥∇χn,p (y, ⋅) − ∇χn+1,p (y, ⋅)∥L2(µβ)(6.121)

≤ C3(ε−1)n ∥χn,p − χn+1,p − (χn,p − χn+1,p)◻−n∥L2(◻−n,µβ)

≤ C3(ε−1)n ∥χn,p − χn+1,p∥L2(◻−n,µβ)
.

By combining the estimate (6.121) and Proposition 6.28, we obtain the estimate, for each pair of integers
n ∈ N such that x ∈ ◻n−1,

∥∇χn,p (x, ⋅) − ∇χn+1,p (x, ⋅)∥L2(µβ) ≤ C3(ε−α)n.

Using the assumption ε ≤ α
2

, we obtain

(6.122) ∥∇χn,p (x, ⋅) − ∇χn+1,p (x, ⋅)∥L2(µβ) ≤ C3−
α
2 n.

The inequality (6.122) implies that, the sequence (∇χn,p(x, ⋅))n∈N is Cauchy in the space L2 (µβ). This implies

that it converges in the space L2 (µβ). We define the gradient of the corrector ∇χp(x, ⋅) to be the limiting
object.

From the estimate (6.122), we also deduce that, for each pair of integers n ∈ N,

∥∇χn,p (x, ⋅) − ∇χp (x, ⋅)∥L2(µβ) ≤ C3−
α
2 n.

The proof of Step 1 is complete.

Step 2. In this step, we prove the stationarity of the infinite-volume gradient corrector. For z ∈ Zd, we will
make use of the notation τz for the translation of the field introduced in Section 2. We prove the identity, for
each (x,φ) ∈ Zd ×Ω,

(6.123) ∇χp (x,φ) = ∇χp (z + x, τzφ) .
To prove the equality (6.123), we first note that, by the definition of the function u, we have the equality, for
each point z ∈ Zd, each cube ◻ ⊆ Zd, and each pair (x,φ) ∈ (y + ◻) ×Ω,

(6.124) u (x,φ, y + ◻, p) = u (x − y, τ−yφ,◻, p) .
Using the identity (6.124), the result established in Step 1, and the translation invariance of the measure
µβ , we obtain that the sequence (∇u (x, ⋅, y + ◻n, p) − p)n∈N converges in the space L2 (µβ) to the random
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variable φ→ ∇χp (x − y, τ−yφ). Thus to prove the identity (6.123), it is sufficient to prove that the sequence
(∇u (x, ⋅, y + ◻n, p) − p)n∈N also converges in L2 (µβ) to the gradient of the corrector φ → ∇χp(x,φ). This is
what we now prove.

We first note that the proof of Proposition 6.12 can be adapted so as to have the following result. For each
y ∈ Zd, and each integer n such that 3

n
2 ≥ 2∣y∣, one has the estimate

(6.125) ∑
z∈Zn

∥∇u (⋅, ⋅, y + z + ◻n, p) − ∇u (⋅, ⋅,◻n+1, p)∥2
L2(y+z+◻n,µβ) ≤ C (ν (◻n, p) − ν (◻n+1, p) + 3−

n
2 ) .

The proof is identical; indeed under the assumption 3
n
2 ≥ 2∣y∣, one can partition the triadic cube (y + ◻n+1)

into the collection of triadic cubes (y + z + ◻n)z∈Zn and a boundary layer of width of size 3
n
2 . One can then

rewrite the proof of Proposition 6.12 to obtain the estimate (6.125). We then use Proposition 6.12 (or more
precisely Corollary 6.25), and obtain the inequality

∥∇u (⋅, ⋅, y + ◻n, p) − ∇u (⋅, ⋅,◻n+1, p)∥2
L2(y+◻n,µβ) ≤ C3−αn.

Using the C1−ε-regularity estimate stated in Proposition 5.6, the assumption ε ≤ α
2

, and an argument similar

to the one presented in Step 1, we obtain, for each integer n ∈ N such that 3
n
2 ≥ 2∣y∣, and each point x ∈ ◻n−1,

∥∇u (x, ⋅, y + ◻n, p) − ∇u (x, ⋅,◻n+1, p)∥2
L2(µβ) ≤ C3−

α
2 n.

Using the definition of the finite-volume corrector given in Definition 6.26 and the inequality (6.120), we
deduce that

∥∇u (x, ⋅, y + ◻n, p) − p −∇χp (x, ⋅)∥2
L2(µβ) ≤ C3−

α
2 n.

The previous inequality implies that the sequence (∇u (x, ⋅, y + ◻n, p) − p)n∈N converges in the space L2 (µβ)
to the random variable φ→ ∇χp (x,φ). The proof of Proposition 6.29 is complete. �
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7. Quantitative homogenization of the Green’s matrix

7.1. Statement of the main result. The objective of this section is to prove the homogenization of the
mixed gradient of the Green’s matrix stated in Theorem 2. We first introduce the notation aβ ∶= a/β and

the Green’s matrix associated with the homogenized operator ∇ ⋅ aβ∇: we denote by G ∶ Zd → R(d
2
)×(d2) the

fundamental solution of the elliptic system

(7.1) −∇ ⋅ aβ∇G = δ0 in Zd.

The matrix aβ is a small perturbation of the matrix 1
2β
Id and the size of the perturbation is of order β−

3
2 ≪ β−1.

The solvability of the equation is thus ensured by the arguments of Section 5; more specifically, a Nash-Aronson
estimate holds for the heat-kernel associated with the operator −∇ ⋅ aβ∇ which can then be integrated over
time. We rewrite the statement of Theorem 2 below

Theorem 2 (Homogenization of the mixed derivative of the Green’s matrix). Fix a charge q1 ∈ Q such that 0
belongs to the support of nq1 and let Uq1 be the solution of the Helffer-Sjöstrand equation

(7.2) LUq1 = cos (2π (φ, q1)) q1 in Zd ×Ω.

For each integer k ∈ {1, . . . , (d
2
)}, we define the function Gq1,k ∶ Zd → R by the formula

Gq1,k = ∑
1≤i≤d

∑
1≤j≤(d2)

⟨cos (2π (φ, q1)) (nq1 ,d∗leij + d∗χij)⟩µβ ∇iGjk.

Then, there exist an inverse temperature β0 ∶= β0(d) < ∞, an exponent γ ∶= γ(d) > 0, and a constant Cq1 which

satisfies the estimate ∣Cq1 ∣ ≤ C ∥q1∥k1 for some constant C ∶= C(d, β) < ∞ and exponent k ∶= k(d) < ∞, such that
for each β ≥ β0 and each radius R ≥ 1, one has the inequality

(7.3)

XXXXXXXXXXXXX
∇Uq1 − ∑

1≤i≤d
∑

1≤j≤(d2)
(eij +∇χij)∇iGq1,j

XXXXXXXXXXXXXL2(AR,µβ)

≤
Cq1
Rd+γ

.

Remark 7.1. Since the codifferential d∗ is a linear functional of the gradient, the map d∗χij is well-defined even
if we have only defined the gradient of the infinite-volume corrector: we have the identity d∗χij = L2,d∗ (∇∗χij).

Remark 7.2. We recall that in this section, the constants are allowed to depend on the dimension d and on
the inverse temperature β.

Remark 7.3. We recall the definition of the annulus AR ∶= B2R ∖BR; its volume is of order Rd.

Remark 7.4. The double sum ∑1≤i≤d∑1≤j≤(d2)
appears frequently in the proofs of this section; to ease the

notation, we denote it by ∑i,j .

Remark 7.5. Since the form q1 can be written dnq1 , we expect the two gradients ∇Uq1 and ∇Gq1 to

behave like the mixed derivative of the Green’s function, i.e., they should be of order R−d in the annulus
AR. The proposition asserts that the difference between the two terms ∇Uq1 and ∑i,j (eij +∇χij)∇iGq1,j is
quantitatively smaller than the typical size of the two terms considered separately.

7.2. Outline of the argument. The strategy of the proof of Theorem 2 relies on a classical strategy in
homogenization: the two-scale-expansion. The proofs presented in the Section make essentially use of two
ingredients established in Sections 5 and 6:

● The quantitative sublinearity of the finite-volume corrector and the estimate on the H−1-norm of the
flux stated in Proposition 6.28;

● The C0,1−ε-regularity theory established in Section 5.

We now give an outline of the proof of Theorem 2. The argument is split into two sections:

● In Section 7.3, we perform the two-scale expansion and obtain a result of homogenization for the
gradient of the Green’s matrix as stated in Proposition 7.6;

● In Section 7.4, we use the result of Proposition 7.6 and perform the two-scale expansion a second time
to obtain the quantitative homogenization of the mixed derivative of the Green’s matrix stated in
Theorem 2.
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7.2.1. Homogenization of the gradient of the Green’s matrix. In this subsection, we present an outline of the
proof of Section 7.3; the objective is to establish the quantitative homogenization of the gradient of the Green’s
matrix stated in Proposition 7.6 below.

Proposition 7.6 (Homogenization of the Green’s matrix). Let G ∶ Zd ×Ω → R(d
2
)×(d2) be the Green’s matrix

associated with the Helffer-Sjöstrand equation

(7.4) LG = δ0 in Zd ×Ω.

Then, there exist an inverse temperature β0(d) < ∞, an exponent γ ∶= γ(d) > 0, and a constant C ∶= C(d) < ∞
such that, for any β > β0, any radius R ≥ 1, and any integer k ∈ {1, . . . , (d

2
)},

(7.5)
XXXXXXXXXXX
∇G⋅k −∑

i,j

(eij +∇χij)∇iGjk
XXXXXXXXXXXL2(AR,µβ)

≤ C

Rd−1+γ .

To set up the argument, we first select an inverse temperature β large enough, depending only on the
dimension d, such that the quantitative sublinearity of the finite-volume corrector and of its flux stated in
Proposition 6.28 holds with exponent α > 0. Following the argument explained at the beginning of Section 6.4,
we can choose the parameter β large enough so that all the results presented in Section 5 pertaining to the
C0,1−ε-regularity theory for the Helffer-Sjöstrand operator L are valid with a regularity exponent ε which is
small compared to the exponent α (we assume for instance that the ratio between ε and α is smaller than
100d2). We also fix an exponent δ which is both larger than ε and smaller than α and corresponds to the size
of a mollifier exponent which needs to be taken into account in the argument (we assume for instance that the
ratios between the exponents α and δ and between the exponents ε and δ are both smaller than 10d). We
have thus three exponents in the argument; they can be ordered by the following relations

(7.6) 0 < ε
´¸¶

regularity

≪ δ
´¸¶

mollifier exponent

≪ α
´¸¶

homogenization

≪ 1.

We additionally assume that the exponents ε, δ and α are chosen in a way that they depend only on the
dimension d. The exponent γ in the statement of Proposition 7.7 depends only ε, δ and α (and thus only on
the dimension d).

We now give an outline of the proof of the inequality (7.5). The first step of the argument is to approximate

the Green’s matrices G and G; the main issue is that the spatial Dirac function δ0 in the definitions of the
Green’s matrices G in (7.4) and G in (7.1) is too singular and causes some problems in the analysis. To remedy
this, we replace the Dirac function δ0 by a smoother function, and make use of the mollifier exponent δ: we let

ρδ be a discrete function from Zd to R(d
2
)×(d2), we denote its components by (ρδ,ij)1≤i,j≤(d2)

, and assume that

they satisfy the four properties

(7.7) suppρδ ⊆ BR1−δ , 0 ≤ ρδ,ij ≤ CR−(1−δ)d, ∑
x∈Zd

ρδ,ij(x) = 1{i=j}, and ∀k ∈ N, ∣∇kρδ,ij ∣ ≤
C

R(d+k)(1−δ) ,

which implies in particular that ρδ,ij = 0 if i ≠ j. We define the functions Gδ ∶ Zd × Ω → R(d
2
)×(d2) and

Gδ ∶ Zd → R(d
2
)×(d2) to be the solution of the systems, for each integer k ∈ {1, . . . , (d

2
)},

(7.8) LGδ,⋅k = ρδ,⋅k in Ω ×Zd, −∇ ⋅ (aβ∇Gδ,⋅k) = ρδ,⋅k in Zd.

We then prove, by using the regularity theory established in Section 5, that the functions Gδ, Gδ are good
approximations of the functions G, G. This is the subject of Lemma 7.7 where we show that there exists an
exponent γ ∶= γ(d, β, δ, ε) > 0 such that

(7.9) ∥∇Gδ −∇G∥L∞(AR,µβ) ≤ CR
1−d−γ and ∥∇Gδ −∇G∥

L∞(AR,µβ)
≤ CR1−d−γ .

By the estimates (7.9), we see that to prove Proposition 7.7 it is sufficient to prove the inequality, for each

integer k ∈ {1, . . . , (d
2
)},

(7.10)
XXXXXXXXXXX
∇Gδ,⋅k −∑

i,j

(eij +∇χij)∇iGδ,jk
XXXXXXXXXXXL2(AR,µβ)

≤ CR1−d−γ .
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We now sketch the proof of the inequality (7.10). We let m be the integer uniquely defined by the inequalities
3m ≤ R1+δ < 3m+1, and consider the collection of finite-volume correctors (χm,ij)1≤i≤d,1≤j≤(d2)

. We then define

the two-scale expansion Hδ ∶ Zd ×Ω→ R(d
2
)×(d2) according to the formula, for each k ∈ {1, . . . , (d

2
)},

(7.11) Hδ,⋅k ∶= Gδ,⋅k +∑
i,j

(∇iGδ,jk)χm,ij .

We now fix an integer k ∈ {1, . . . , (d
2
)}. The strategy is to compute the value of LHδ,⋅k by using the explicit

formula on the map Hδ,⋅k stated in (7.11), and to prove that it is quantitatively close to the map ρδ,⋅k in the
correct functional space; precisely, we prove the H−1-estimate,

(7.12) ∥LHδ,⋅k − ρδ,⋅k∥H−1(B
R1+δ ,µβ) ≤ CR

1−d−γ .

Obtaining this result relies on the quantitative behavior of the corrector and of the flux established in
Proposition 6.28. Once one has a good control over the H−1-norm of LHδ,⋅k − ρδ,⋅k, the inequality (7.10) can
be deduced from the following two arguments:

● We use that the function Gδ,⋅k satisfies the equation LGδ,⋅k = ρδ,⋅k to obtain that the H−1-norm of the

term L(Hδ,⋅k − Gδ,⋅k) is small. We then introduce a cutoff function η ∶ Zd → R which satisfies:

(7.13) suppη ⊆ AR, 0 ≤ η ≤ 1, η = 1 on {x ∈ Zd ∶ 1.1R ≤ ∣x∣ ≤ 1.9R} , and ∀k ∈ N, ∣∇kη∣ ≤ C

Rk
,

and use the function η (Hδ,⋅k − Gδ,⋅k) as a test function in the definition of the H−1-norm of the
inequality (7.12). We obtain that the L2-norm of the difference (∇Hδ,⋅k −∇Gδ,⋅k) is small (the cutoff
function is used to ensure that the function η (Hδ,⋅k − Gδ,⋅k) is equal to 0 on the boundary of the ball
BR1+δ and can thus be used as a test function). The precise estimate we obtain is the following

(7.14) ∥∇Hδ,⋅k −∇Gδ,⋅k∥L2(Zd,µβ) ≤ CR
d
2+1−d−γ ;

● By using the identity (7.11), we can compute an explicit formula for the gradient of the two-scale
expansion Hδ,⋅k. We then use the quantitative sublinearity of the corrector stated in Proposition 6.28
and the property of the gradient of the infinite volume corrector stated in Proposition 6.29 to deduce
that the L2-norm of the difference ∇Hδ,⋅k −∑i,j(eij +∇χij)∇iGjk is small; the precise result we obtain
is the following

(7.15)
XXXXXXXXXXX
∇Hδ,⋅k −∑

i,j

(eij +∇χij)∇iGjk
XXXXXXXXXXXL2(Zd,µβ)

≤ CR
d
2+1−d−γ .

The inequality (7.10) is then a consequence of the inequalities (7.14) and (7.15).

7.2.2. Homogenization of the mixed derivative of the Green’s matrix. In this subsection, we present the
arguments of Section 7.4. The objective there is to use Proposition 7.6 to prove Theorem 2. The proof is
decomposed into four steps:

● In Step 1, we use Proposition 7.6 and the symmetry of the Helffer-Sjöstrand operator L to prove the
inequality in expectation

(7.16)
⎛
⎝
R−d ∑

z∈AR
∣⟨Uq1(z, ⋅)⟩µβ −Gq1(z)∣

2⎞
⎠

1
2

≤ C

Rd−1+γ ;

● In Step 2, we prove the variance estimate, for each point z ∈ Zd,

(7.17) var [Uq1(z, ⋅)] ≤
Cq1

∣z∣2d−2ε
.

Since we expect the function z ↦ Uq1(z) to decay like ∣z∣1−d; its variance should be of order ∣z∣2−2d.
The estimate (7.17) states that the variance of the random variable φ→ Uq1(z, φ) is (quantitatively)
smaller than its size; this means that the random variable Uq1(z) concentrates around its expectation.
We then use the result established in Step 1 to refine the result: since by (7.16), one knows that the
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expectation of the map Uq1(z) is close to the function Gq1 , one deduces that the function Uq1 is close

to the function Gq1 in the L2(AR, µβ)-norm. The precise estimate we obtain is the following

(7.18) ∥Uq1 −Gq1∥L2(AR,µβ)
≤

Cq1
Rd−1−γ .

The proof of the inequality (7.17) does not rely on tools from stochastic homogenization; we appeal to
the Brascamp-Lieb inequality and use the properties of the second-order Helffer-Sjöstrand equation
introduced in Section 5.4.

● In Step 3, we prove the estimate (7.3), the proof is similar to the argument presented in the proof of
Proposition 7.6 and relies on a two-scale expansion; it is decomposed into two substeps.

In Substep 3.1, We define the two-scale expansion Hq1 by the formula

(7.19) Hq1 ∶= Gq1 +∑
i,j

∇iGq1,jχm,ij .

We then use that the function Gq1 is a solution to the equation ∇ ⋅ aβ∇Gq1 = 0 in the annulus AR to

prove that the H−1 (AR, µβ)-norm of the term LHq1 over the annulus AR is small; we show

(7.20) ∥LHq1∥H−1(AR,µβ) ≤
Cq1
Rd+γ

.

The proof is essentially a notational modification of the proof of the estimate (7.12), and is even
simpler since we do not have to take into account the exponent δ and the function ρδ.

In Substep 3.2, we use that the function Uq1 satisfies the identity LUq1 = 0 in the set AR ×Ω to

deduce that the H−1 (AR, µβ)-norm of the term L(Hq1 − Uq1) = LHq1 is small. We then consider
the map η defined in (7.13) and use the function η (Hq1 − Uq1) as a test function in the definition

of the H−1 (AR, µβ)-norm of the term L(Hq1 − Uq1). We obtain that the L2 (A1
R, µβ)-norm of the

difference ∇Hq1 −∇Uq1 is small, where we used the notation A1
R ∶= {x ∈ Zd ∶ 1.1R ≤ ∣x∣ ≤ 1.9R}. This

is the subject of Substep 3.2 where we prove

(7.21) ∥∇Uq1 −∇Hq1∥L2(A1
R
,µβ) ≤

Cq1
Rd+γ

.

● Step 4 is the conclusion of the argument, we use the explicit formula for the two-scale expansion
Hq1 given in (7.19), the quantitative sublinearity of the corrector stated in Proposition 6.28, and the
quantitative estimate for the difference of the finite and infinite-volume gradient of the corrector stated
in Proposition 6.29 to prove the estimate

(7.22)
XXXXXXXXXXX
∇Hq1 −∑

i,j

(eij +∇χij)∇iGq1,j
XXXXXXXXXXXL2(AR,µβ)

≤
Cq1
Rd+γ

.

The argument is a notational modification of the one used to prove (7.19). We finally combine the
estimates (7.21) and (7.22) to obtain the estimate (7.3), and complete the proof of Theorem 2.

7.3. Two-scale expansion and homogenization of the gradient of the Green’s matrix. This section
is devoted to the proof of Proposition 7.6. We collect some preliminary results in Section 7.3.1 and prove
Theorem 2 in Sections 7.3.2, 7.3.3 and 7.3.4 following the outline given in Section 7.2.

7.3.1. Preliminary estimates. In this section, we collect some preliminary properties which are used in the
proof of Proposition 7.6.

We first introduce some notation for the exponent γ. As was already mentioned, this exponent depends on
the parameters α, δ and ε; in the argument, we need to keep track of its order of magnitude and we proceed as
follows:

● We use the notation γ1 when the exponent is of order 1; a typical example is the exponent γ1 ∶=
1 − c0α − c1δ − c2ε for some constants c0, c1, c2 depending only on the dimension d;

● We use the notation γα when the exponent is of order α; a typical example is the exponent γα ∶=
α − c0δ − c1ε for some constants c0, c1 depending only on the dimension d;

● We use the notation γδ when the exponent is of order δ; a typical example is the exponent γδ ∶= δ − c0ε
for some constant c0 depending only on the dimension d.
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We always have the ordering
0 < γε ≪ γδ ≪ γα ≪ γ1.

We also allow the value of the exponents γε, γδ, γα, γ1 to vary from line to line in the argument as long as the
order of magnitude is preserved. In particular, we may write

γ1 = γ1 − α, γα = γα − δ and γδ = γδ − ε.
We are now able to collect and prove some regularity estimates pertaining to the Green’s matrices G, Gδ, G

and Gδ.

Proposition 7.7. The following properties hold:

● There exists an exponent γδ > 0 such that one has the L∞-estimates

(7.23) ∥∇G(x, ⋅) − ∇Gδ(x, ⋅)∥L∞(AR,µβ) ≤
C

Rd−1+γδ
and ∥∇G −∇Gδ∥L∞(AR) ≤

C

Rd−1+γδ
;

● The Green’s matrix Gδ satisfies the following L∞-estimates

(7.24) ∥Gδ∥L∞(Zd,µβ) ≤
C

R(1−δ)(d−2) and ∥∇Gδ∥L∞(Zd,µβ) ≤
C

R(1−δ)(d−1−ε) ,

as well as the estimates

(7.25) ∥Gδ∥L∞(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−2) and ∥∇Gδ∥L∞(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−1−ε) ;

● The homogenized Green’s matrix Gδ satisfies the regularity estimate, for each integer k ∈ N,

(7.26) ∥∇kGδ∥L∞(Zd,µβ)
≤ C

R(1−δ)(d−2+k) ,

as well as the estimate

(7.27) ∥∇kGδ∥L∞(A
R1+δ ,µβ)

≤ C

R(1+δ)(d−2+k) .

Proof of Proposition 7.7. The proof relies on the regularity estimates established in Section 5. We first note
that, by definitions of the functions G and Gδ, we have the identities

(7.28) G (x,φ) = G1 (x,φ; 0) and Gδ (x,φ) = ∑
y∈B

R1−δ

G1 (x,φ; y)ρδ(y),

where the product in the right side of (7.28) is the standard matrix product between G1 (x,φ; y) and ρδ(y). Using
that the map ρδ has total mass 1 and the regularity estimate on the Green’s matrix stated in Proposition 5.13,
we obtain, for each point x ∈ AR,

∥∇xG(x, ⋅; 0) − ∇xGδ(x, ⋅; y)∥L∞(µβ) ≤ ∑
y∈B

R1−δ

ρδ(y) ∥∇xG1(x, ⋅; 0) − ∇xG1(x, ⋅; y)∥L∞(µβ)

≤ R1−δ sup
y∈B

R1−δ

∥∇x∇yG1(x, ⋅; y)∥L∞(µβ)

≤ R1−δ sup
y∈B

R1−δ

∣x − y∣−d−ε

≤ R1−δR−d−ε.

This computation implies the estimate (7.23) with the exponent γδ = δ − ε which is strictly positive by the
assumption (7.6).

The estimate on the homogenized Green’s matrix is similar and even simpler since we only have to work
with the Green’s matrix associated with the discrete elliptic operator ∇ ⋅ aβ∇ on Zd; we omit the details.

The proof of the inequality (7.24) relies on the estimates on the Green’s matrix and its gradient established
in Proposition 3.17. We use the identity (7.28) and write, for each point x ∈ Zd,

∥Gδ (x, ⋅)∥L∞(µβ) = ∑
y∈B

R1−δ

∣ρδ(y)∣ ∥G1 (x,φ; y)∥L∞(µβ) ≤
1

R(1−δ)d ∑
y∈B

R1−δ

C

∣x − y∣d−2
≤ 1

R(1−δ)d ∑
y∈B

R1−δ

C

∣y∣d−2

≤ 1

R(1−δ)(d−2) .

A similar computation shows the bound for the gradient of the Green’s matrix and the bounds (7.25) in the
annulus AR1+δ .
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To prove the regularity estimate (7.26), we use the definition of the map Gδ given in (7.8) and note that

−∇ ⋅ aβ∇(∇kGδ) = ∇kρδ in Zd.

We then use the properties of the function ρδ stated in (7.7) and standard estimates on the homogenized

Green’s matrix G. We obtain, for each point x ∈ Zd,

∣∇kGδ(x)∣ ≤ ∑
y∈B

R1−δ

∣∇kρδ(y)∣ ∣G (x − y)∣ ≤ C

R(d+k)(1−δ) ∑
y∈B

R1−δ

1

∣x − y∣d−2
≤ C

R(1−δ)(d−2+k) .

There only remains to prove the estimate (7.27). To this end, we select a point x ∈ AR1+δ and write

∣∇kGδ(x)∣ =
RRRRRRRRRRRR
∑

y∈B
R1−δ

∇kG (x − y)ρδ(y)
RRRRRRRRRRRR
≤ ∑
y∈B

R1−δ

∣ρδ(y)∣
∣x − y∣d−2+k ≤ C

R(d−2+k)(1+δ) ∑
y∈B

R1−δ

∣ρδ(y)∣

≤ C

R(1+δ)(d−2+k) .

�

We have now collected all the necessary preliminary ingredients for the proof of Proposition 7.6 and devote
the rest of Section 7.3 to its demonstration.

7.3.2. Estimating the weak norm of LHδ − ρδ. In this section, we fix an integer k ∈ {1, . . . , (d
2
)}, let Hδ,⋅k be

the two-scale expansion introduced in (7.11) and prove that there exists an exponent γα > 0 such that

(7.29) ∥LHδ,⋅k − ρδ,⋅k∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

The strategy is to use the explicit formula for the map Hδ,⋅k to compute the value of the term LHδ,⋅k. We

then prove that its H−1 (BR1+δ , µβ)-norm is small by using the quantitative properties of the corrector stated
in Proposition 6.28. We first write

(7.30) LHδ,⋅k = −∆φHδ,⋅k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Substep 1.1

+ 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1Hδ,⋅k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Substep 1.2

− 1

2β
∆Hδ,⋅k + ∑

q∈Q
∇∗
q ⋅ aq∇qHδ,⋅k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Substep 1.3

.

We treat the three terms in the right side in three distinct substeps.

Substep 1.1 In this substep, we treat the term −∆φHδ,⋅k. Since the homogenized Green’s matrix Gδ,⋅k does
not depend on the field φ, we have the formula

(7.31) −∆φHδ,⋅k = ∑
i,j

∇iGδ,jk (∆φχm,ij) .

Sustep 1.2. In this substep, we study the iteration of the Laplacian of the two-scale expansion. We prove
the identity

(7.32) ∑
n≥1

1

β
n
2

(−∆)n+1Hδ,⋅k = ∑
i,j

∑
n≥1

1

β
n
2

∇iGδ,jk(−∆)n+1χm,ij +R∆n ,

where R∆n is an error term which satisfies the H−1 (BR1+δ , µβ)-estimate

(7.33) ∥R∆n∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

We use the following identity for the iteration of the Laplacian on a product of functions: given two smooth
functions f, g ∈ C∞ (Rd), we have the identity

(7.34) ∆n (fg) =
n

∑
r=0

r

∑
l=0

(n − r
l

)(∇r∆lf) ⋅ (∇r∆n−r−lg) .

We note that this formula is valid for continuous functions (with the continuous Laplacian), it can be adapted
to the discrete setting by taking into considerations translations of the functions f and g. Since this adaptation
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does not affect the overall strategy of the proof, we ignore this technical difficulty in the rest of the argument
and apply the formula (7.34) to the two-scale expansion Hδ,⋅k as such. We obtain

(7.35) ∆nHδ,⋅k = ∆nGδ,⋅k +∑
i,j

n

∑
r=0

r

∑
l=0

(n − r
l

)(∇r∆l∇iGδ,jk) ⋅ (∇r∆n−r−lχm,ij) .

We first focus on the term ∆nGδ,⋅k in the identity (7.35) and prove that it is small in the H−1 (BR1+δ , µβ)-norm.
Using the regularity estimate (7.26), we have, for each integer n ≥ 2,

∥∆nGδ,⋅k∥H−1(B
R1+δ ,µβ)

≤ CR1+δ ∥∆nGδ,⋅k∥L2(B
R1+δ ,µβ)

≤ CR1+δ ∥∆nGδ,⋅k∥L∞(B
R1+δ )

(7.36)

≤ C2nR1+δ

R(1−δ)(d−2+2n)

≤ C2nR1+δ

R(1−δ)(d−2+4)

≤ C2n

Rd−1+γ1
,

where we have set γ1 ∶= 2 + δ(d + 1) > 0.
Using the regularity estimate (7.26) a second time, we can estimate the terms of the right side of the

identity (7.35) with more than 3 derivatives on the homogenized Green’s matrix Gδ. We obtain the following

inequality: for each (i, j) ∈ {1, . . . , d}×{1, . . . , (d
2
)} and each (r, l) ∈ {1, . . . , d}2 such that l ≤ n−k and k+2l ≥ 2,

∥(∇r∆l∇iGδ,jk) ⋅ (∇r∆n−r−lχm,ij)∥H−1(B
R1+δ ,µβ)

(7.37)

≤ CR1+δ ∥(∇r∆l∇iGδ,jk) ⋅ (∇r∆n−r−lχm,ij)∥L2(B
R1+δ ,µβ)

≤ CR1+δ ∥∇r∆l∇iGδ,jk∥L∞(B
R1+δ )

× ∥∇r∆n−r−lχm,ij∥L2(B
R1+δ ,µβ)

≤ Cr+2lR1+δ

R(1−δ)(d−1+2l+r) ∥∇r∆n−r−lχm,ij∥L2(B
R1+δ ,µβ)

.

We use that the discrete operator ∇r∆n−r−l is bounded in the space L2 (BR1+δ) and Proposition 6.28 to
estimate the L2-norm of the corrector. We obtain

(7.38) ∥∇r∆n−r−lχm,ij∥L2(B
R1+δ ,µβ)

≤ C2n−2l ∥χm,ij∥L2(B
R1+δ ,µβ) ≤ C

2n−2lR(1+δ)(1−α).

Putting the estimates (7.37) and (7.38) together and using the inequality 3 ≤ 2l + r ≤ 2n, we deduce that

(7.39) ∥(∇r∆l∇iGδ,jk) ⋅ (∇r∆n−r−lχm,ij)∥H−1(B
R1+δ ,µβ)

≤ C2nR1+δ

R(1−δ)(d+2)R
(1+δ)(1−α) ≤ C2n

Rd−1+γ1
,

where we have set γ1 ∶= 1 + α − αδ + δ (d − 1) + δ > 0.
We then estimate the H−1-norm of the terms corresponding to the parameters r = 1 and l = 0 in the sum

in the right side of the identity (7.35). To estimate it, we select a function h ∈ H1
0 (BR1+δ , µβ) such that

∥h∥H1(B
R1+δ ,µβ) ≤ 1. We use the function h as a test function, perform an integration by parts in the first

line, use the Cauchy-Schwarz inequality in the second line and the continuity of the discrete Laplacian (as an
operator acting on L2(Zd)) in the third line

1

R(1+δ)d ∑
x∈B

R1+δ

⟨(∇∇iGδ,jk (x, ⋅)) ⋅ (∇∆n−1χm,ij(x, ⋅))h(x, ⋅)⟩µβ(7.40)

= 1

R(1+δ)d ∑
x∈B

R1+δ

⟨χm,ij(x, ⋅)∇ ⋅∆n−1 ((∇∇iGδ,jk (x, ⋅))h(x, ⋅))⟩µβ

≤ ∥χm,ij∥L2(B
R1+δ ,µβ) ∥∇ ⋅∆n−1 (∇∇iGδ,jkh)∥L2(B

R1+δ ,µβ)

≤ Cn ∥χm,ij∥L2(B
R1+δ ,µβ) ∥∇ ⋅ (∇∇iGδ,jkh)∥L2(B

R1+δ ,µβ)
.

Using the regularity estimate for the homogenized Green’s matrix stated in (7.26) and the inequality
∥h∥L2(B

R1+δ ,µβ) ≤ CR
1+δ (which is a consequence of the assumption ∥h∥H1(B

R1+δ ,µβ) ≤ 1 and the Poincaré
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inequality), we obtain

∥∇ ⋅ ((∇∇iGδ,jk)h)∥L2(B
R1+δ ,µβ)

≤ ∥∇3Gδ,jkh∥L2(B
R1+δ ,µβ)

+ ∥∇2Gδ,jk∇h∥L2(B
R1+δ ,µβ)

(7.41)

≤ CR1+δ

R(1−δ)(d+1) +
C

R(1−δ)d

≤ C

Rd−δ(d+2) .

We then combine the estimate (7.40) with the inequality (7.41) and the quantitative sublinearity of the
corrector to obtain

(7.42)
1

R(1+δ)d ∑
x∈B

R1+δ

⟨(∇∇iGδ,jk (x)) ⋅ (∇∆n−1χm,ij(x, ⋅))h(x, ⋅)⟩µβ ≤
CnR(1+δ)(1−α)

Rd−δ(d+2) ≤ Cn

Rd−1+γα
,

where we have set γα ∶= α(1 + δ) − δ(d + 3) > 0.

By combining the identity (7.35) with the estimates (7.36), (7.39), (7.42) and choosing the inverse tempera-

ture β large enough so that the series ( C
n

β
n
2
)
n∈N

is summable, we obtain the main result (7.32) and (7.33) of

this substep.

Substep 1.3. In this substep, we study the term pertaining to the charges in the identity (7.30). We prove
the expansion

(7.43)
−1

2β
∆Hδ,⋅k+∑

q∈Q
∇∗
q ⋅aq∇qHδ,⋅k = −∇⋅aβ∇Gδ,⋅k−∑

i,j

1

2β
∇iGδ,jk∆χm,ij+∑

i,j

∑
q∈Q

∇iGδ,jk∇∗
q ⋅aq∇qχm,ij+RQ.

where RQ is an error term which satisfies the H−1 (BR1+δ , µβ)-norm estimate

(7.44) ∥RQ∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

We first compute the gradient and the Laplacian of the two-scale expansion Hδ,⋅k using the notation of (A.6)
to expand the gradient of a product. We obtain the formulae

(7.45) ∇Hδ,⋅k = ∇Gδ,⋅k +∑
i,j

[∇∇iGδ,jk ⊗ χm,ij +∇iGδ,jk∇χm,ij] ,

and

(7.46) ∆Hδ,⋅k = ∆Gδ,⋅k +∑
i,j

∇ ⋅ (∇∇iGδ,jk ⊗ χm,ij) + (∇∇iGδ,jk) ⋅ (∇χm,ij) + (∇iGδ,jk)∆χm,ij .

We first treat the term ∆Hδ,⋅k and use the two following ingredients:

(i) We introduce the notation RQ,1 ∶= ∑i,j ∇ ⋅ (∇∇iGδ,jk ⊗ χm,ij). By using the regularity estimate (7.26)
on the homogenized Green’s matrix and the quantitative sublinearity of the corrector, we prove
that this term is an error term and estimate its H−1 (BR1+δ , µβ)-norm according to the following
computation

∥RQ,1∥H−1(B
R1+δ ,µβ) ≤ C

XXXXXXXXXXX
∑
i,j

∇∇iGδ,jk ⊗ χm,ij
XXXXXXXXXXXL2(B

R1+δ ,µβ)

≤ ∑
i,j

C ∥∇∇iGδ,jk∥L∞(B
R1+δ ,µβ)

∥χm,ij∥L2(B
R1+δ ,µβ)

≤ CR
(1+δ)(1−α)

R(1−δ)d

≤ C

Rd−1+γα
,

where we have set γα ∶= α(1 + δ) − δ(d + 1) > 0.

(ii) Second, we use the identity ∆Gδ,⋅k = ∇ ⋅ ∇Gδ,⋅k = ∑i,j ∇ ⋅ (∇iGδ,jkeij).
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We obtain

(7.47) ∆Hδ,⋅k = ∇ ⋅
⎛
⎝∑i,j

∇iGδ,jk (eij +∇χm,ij)
⎞
⎠
+∑
i,j

(∇iGδ,jk)∆χm,ij +RQ,1.

We then treat the term pertaining to the charges; the objective is to prove the identity
(7.48)

∑
q∈Q

∇∗
q ⋅ aq∇qHδ,⋅k = ∑

i,j

∇∇iGδ,jk ∑
q∈Q

aq∇q (leij + χm,ij)Lt2,d∗ (nq) + ∑
q∈Q

∇iGδ,jk∇∗
q ⋅ aq∇q (leij + χm,ij) +RQ,2,

where RQ,2 is an error term which satisfies the estimate

(7.49) ∥RQ,2∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

To prove this result, we select a test function h ∶ Zd → R(d
2
) which belongs to the space H1

0 (BR1+δ , µβ) and
satisfies the estimate ∥h∥H1(B

R1+δ ,µβ) ≤ 1. For each charge q ∈ Q, we select a point xq which belongs to the

support of the charge q arbitrarily. We then write

(7.50) ∑
q∈Q

aq∇qHδ,⋅k∇qh = ∑
q∈Q

aq (nq,d∗Hδ,⋅k) (nq,d∗h) .

We use the exact formula for Hδ and apply the codifferential. We obtain

d∗Hδ,⋅k = L2,d∗ (∇Hδ,⋅k) = L2,d∗
⎛
⎝
∇Gδ,⋅k +∑

i,j

[∇∇iGδ,jk ⊗ χm,ij +∇iGδ,jk∇χm,ij]
⎞
⎠

(7.51)

= d∗Gδ,⋅k +∑
i,j

∇iGδ,jkd∗χm,ij +∑
i,j

L2,d∗ (∇∇iGδ,jk ⊗ χm,ij) .

We record the following formula

d∗Gδ,⋅k = L2,d∗ (∇Gδ,⋅k) = L2,d∗
⎛
⎝∑i,j

∇iGδ,jkeij
⎞
⎠
= L2,d∗

⎛
⎝∑i,j

∇iGδ,jk∇leij
⎞
⎠

(7.52)

= ∑
i,j

∇iGδ,jkL2,d∗ (∇leij)

= ∑
i,j

∇iGδ,jkd∗leij .

Putting the identities (7.51) and (7.52) back into (7.50), we obtain

∑
q∈Q

aq∇qHδ,⋅k∇qh = ∑
i,j

∑
q∈Q

aq (nq,∇iGδ,jk (d∗leij + d∗χm,ij)) (nq,d∗h)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.53)−(i)

(7.53)

+ ∑
q∈Q

aq (nq, L2,d∗ (∇∇iGδ,jk ⊗ χm,ij)) (nq,d∗h)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.53)−(ii)

.

The second term (7.53)-(ii) is an error term which is small and can be estimated thanks to the regularity
estimate (7.26) and Young’s inequality. We obtain

RRRRRRRRRRRRR
⟨∑
q∈Q

aq (nq, L2,d∗ (∇∇iGδ,jk ⊗ χm,ij)) (nq,d∗h)⟩
µβ

RRRRRRRRRRRRR
≤ ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥2

2 ∥∇2Gδ,jk∥L∞(Zd,µβ)
∥χm,ij∥L2(suppnq,µβ) ∥∇h∥L2(suppnq,µβ)

≤ C

R(1−δ)(d+1) ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥2

2 ∥χm,ij∥L2(suppnq,µβ) ∥∇h∥L2(suppnq,µβ)

≤ C

R(1−δ)(d+1) ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥2

2 (R−1+α ∥χm,ij∥2
L2(suppnq,µβ) +R

1−α ∥∇h∥2
L2(suppnq,µβ)) .
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We then use the inequality, for each point x ∈ Zd,

(7.54) ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥2

2 1{x∈suppnq} ≤ C.

We deduce that

RRRRRRRRRRRRR
⟨∑
q∈Q

aq (nq, L2,d∗ (∇∇iGδ,jk ⊗ χm,ij)) (nq,d∗h)⟩
µβ

RRRRRRRRRRRRR

≤ CR−1+α

R(1−δ)(d+1) ∥χm,ij∥2
L2(B

R1+δ ,µβ) +
CR1−α

R(1−δ)(d+1) ∥∇h∥2
L2(B

R1+δ ,µβ) .

We then use Proposition 6.28 and the assumption ∥∇h∥L2(B
R1+δ ,µβ) ≤ 1. We obtain

(7.55)

RRRRRRRRRRRRR

1

R(1+δ)d ⟨∑
q∈Q

aq (nq, L2,d∗ (∇∇iGδ,jk ⊗ χm,ij)) (nq,d∗h)⟩
µβ

RRRRRRRRRRRRR
≤ CR1−α

R(1−δ)d ≤ C

Rd−1+γα
,

where we have set γα = α − δ (d + 1) > 0.
To treat the term (7.53)-(i), we make use of the point xq and write

∑
q∈Q

aq (nq,∇iGδ,jk (d∗leij + d∗χm,ij)) (nq,d∗h)

= ∑
q∈Q

aq (nq, (d∗leij + d∗χm,ij)) (nq,∇iGδ,jkd∗h)

+ ∑
q∈Q

aq (nq, (∇iGδ,jk −∇iGδ,jk(xq)) (d∗leij + d∗χm,ij)) (nq,d∗h)

+ ∑
q∈Q

aq (nq (d∗leij + d∗χm,ij)) (nq, (∇iGδ,jk −∇iGδ,jk(xq))d∗h) .

The terms on the second and third lines are error terms which are small, they can be estimated by the regularity
estimate (7.26) on the gradient of the homogenized Green’s matrix and Young’s inequality as follows

RRRRRRRRRRRRR
⟨∑
q∈Q

aq (nq, (∇iGδ,jk −∇iGδ,jk(xq)) (d∗leij + d∗χm,ij)) (nq,d∗h)⟩
µβ

RRRRRRRRRRRRR
≤ ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥2 ∥∇Gδ,jk −∇Gδ,jk(xq)∥L∞(suppnq,µβ)

∥∇χm,ij∥L2(suppnq,µβ) ∥∇h∥L2(suppnq,µβ)

≤ C

R(1−δ)d ∑
q∈Q

e−c
√
β∥q∥1 ∥nq∥2 diamnq (∥∇χm,ij∥2

L2(suppnq,µβ) + ∥∇h∥2
L2(suppnq,µβ)) .

We then apply the estimate (7.54), the bound ∥∇χm,ij∥L2(B
R1+δ ,µβ) ≤ C on the gradient of the corrector and

the assumption ∥∇h∥L2(B
R1+δ ,µβ) ≤ 1 to conclude that

(7.56)

RRRRRRRRRRRRR

1

R(1+δ)d ⟨∑
q∈Q

aq (nq, (∇iGδ,jk −∇iGδ,jk(xq)) (d∗leij + d∗χm,ij)) (nq,d∗h)⟩
µβ

RRRRRRRRRRRRR
≤ C

R(1−δ)d ≤ C

R(d−1)+γ1
,

where we have set γ1 = 1 − δ > 0. The same argument proves the inequality

(7.57)

RRRRRRRRRRRRR

1

R(1+δ)d ⟨∑
q∈Q

aq (nq (d∗leij + d∗χm,ij)) (nq, (∇iGδ,jk −∇iGδ,jk(xq))d∗h)⟩
µβ

RRRRRRRRRRRRR
≤ C

R(d−1)+γ1
,

with the same exponent γ1 > 0. Combining the identity (7.53) with the estimates (7.55), (7.56), (7.57), we
have obtained the following result: for each function h ∈H1

0 (BR1+δ , µβ) such that ∥h∥H1(B
R1+δ ,µβ) ≤ 1, one has

the expansion

1

R(1+δ)d ∑
q∈Q

aq∇qHδ,⋅k∇qh =
1

R(1+δ)d ∑
q∈Q

aq (nq, (d∗leij + d∗χm,ij)) (nq,∇iGδ,jkd∗h) +O ( C

Rd−1+γα
) .
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We then use the identity ∇iGδ,jkd∗h = d∗ (∇iGδ,jkh)−L2,d∗ (∇∇iGδ,jk ⊗ h) which is established in (7.52). We
deduce that

(7.58) ∑
q∈Q

aq∇qHδ,⋅k∇qh = ∑
q∈Q

aq (nq, (d∗leij + d∗χm,ij)) (nq,d∗ (∇iGδ,jkh))

+ ∑
q∈Q

aq (nq, (d∗leij + d∗χm,ij)) (nq, L2,d∗ (∇∇iGδ,jk ⊗ h)) +O ( C

Rd−1+γα
) .

This implies the identity (7.48) and the estimate (7.49).
We now complete the proof of (7.43). To prove this identity, it is sufficient, in view of (7.47) and (7.48), to

prove the estimate
(7.59)

1

2β
∑
i,j

(∇∇iGδ,jk) ⋅ (eij +∇χm,ij) +∑
i,j

(∇∇iGδ,jk) ∑
q∈Q

aq∇q (leij + χm,ij)Lt2,d∗ (nq) = −∇ ⋅ (aβ∇Gδ,⋅k) +RQ,3,

where the term RQ,3 satisfies the estimate

(7.60) ∥RQ,3∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

The proof relies on the quantitative estimate for the H−1 (BR1+δ , µβ)-norm of the flux corrector stated in

Proposition 6.28 and the regularity estimate (7.26) on the homogenized matrix Gδ and the identity

∇ ⋅ aβ∇Gδ,⋅k = ∇ ⋅∑
i,j

∇iGδ,jkaβeij = ∑
i,j

∇∇iGδ,jk ⋅ aβeij .

We select a function h ∶ Zd → R(d
2
) which belongs to the space H1

0 (BR1+δ , µβ) and such that ∥h∥H1(B
R1+δ ,µβ) ≤ 1.

We use it as a test function and write

1

R(1+δ)d

RRRRRRRRRRRR
⟨ ∑
x∈B

R1+δ

∑
i,j

1

2β
(∇∇iGδ,jk(x)) ⋅ (eij +∇χm,ij(x, ⋅))h(x, ⋅)

(7.61)

+ ∑
x∈B

R1+δ

∑
i,j

∑
q∈Q

aq∇q (leij + χm,ij) (nq, L2,d∗ (∇∇iGδ,jk ⊗ h)) − ∑
x∈B

R1+δ

∇ ⋅ (aβ∇Gδ,⋅k) (x)h(x, ⋅)⟩
µβ

RRRRRRRRRRRRRR

≤ C∑
i,j

XXXXXXXXXXX

1

2β
(eij +∇χm,ij) + ∑

q∈Q
aq∇q (leij + χm,ij)Lt2,d∗ (nq) − aβeij

XXXXXXXXXXXH−1(B
R1+δ ,µβ)

∥∇∇iGδ,jk ⊗ h∥H1(B
R1+δ ,µβ)

,

where we have used the (tautological) identities, for each point x ∈ BR1+δ , and each field φ ∈ Ω,

(∇∇iGδ,jk(x)) ⋅ (eij +∇χm,ij(x,φ))h(x,φ) = (eij +∇χm,ij(x,φ)) ⋅ (∇∇iGδ,jk(x) ⊗ h(x,φ)) ,

and

∇ ⋅ (aβ∇Gδ,⋅k) (x)h(x,φ) =
⎛
⎝∑i,j

∇∇iGδ,jk(x) ⋅ aβeij
⎞
⎠
h(x,φ) = ∑

i,j

aβeij ⋅ (∇∇iGδ,jk(x) ⊗ h(x,φ)) .

We then use Proposition 6.28 to write

(7.62) ∑
i,j

XXXXXXXXXXX

1

2β
(eij +∇χm,ij) + ∑

q∈Q
aq∇q (leij + χn,ij)Lt2,d∗ (nq) − aβeij

XXXXXXXXXXXH−1(B
R1+δ ,µβ)

≤ CR(1+δ)(1−α),
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and the regularity estimate (7.26) to write

∥∇∇iGδ,jkh∥H1(B
R1+δ ,µβ)

≤ 1

R1+δ ∥∇2Gδ,⋅k∥L∞(B
R1+δ ,µβ)

∥h∥L2(B
R1+δ ,µβ) + ∥∇3Gδ,⋅k∥L∞(B

R1+δ ,µβ)
∥h∥L2(B

R1+δ ,µβ)

(7.63)

+ ∥∇2Gδ,⋅k∥L∞(B
R1+δ ,µβ)

∥∇h∥L2(B
R1+δ ,µβ)

≤ C ( 1

Rd(1−δ)
+ 1

R(d−1)(1−δ) +
R1+δ

R(d+1)(1−δ) )

≤ 1

Rd−δ(d+2) .

Combining the estimates (7.61), (7.62), and (7.63), we have obtained that, for each function h ∈H1
0 (BR1+δ , µβ)

such that ∥h∥H1(B
R1+δ ,µβ) ≤ 1,

1

R(1+δ)d

RRRRRRRRRRRR
⟨ ∑
x∈B

R1+δ

∑
i,j

(∇∇iGδ,jk(x)) ⋅ (eij +∇χm,ij(x, ⋅))(7.64)

+∑
i,j

∑
q∈Q

aq∇q (leij + χm,ij) (nq, L2,d∗ (∇∇iGδ,jk ⊗ h)) − ∑
x∈B

R1+δ

a∆Gδ,⋅k(x) ⋅ h(x, ⋅)⟩
µβ

RRRRRRRRRRRRRR

≤ CR
(1+δ)(1−α)

Rd−δ(d+2)

≤ C

Rd−1+γα
,

where we have set γ ∶= α(1 + δ) − δ(d + 3) > 0. Since the inequality (7.64) is valid for any function h ∈
H1

0 (BR1+δ , µβ) satisfying ∥h∥H1(B
R1+δ ,µβ) ≤ 1, the estimate (7.64) is equivalent to the identity (7.59) and the

H−1 (BR1+δ , µβ)-norm estimate (7.60). The proof of (7.59), and thus of (7.43), is complete.

Substep 1.4 In this substep, we conclude Step 1 and prove the estimate (7.29). We use the identity (7.30)
and the identities (7.31) proved in Substep 1, (7.32) proved in Substep 2 and (7.43) proved in Substep 3. We
obtain

LHδ,⋅k = −∇ ⋅ aβ∇Gδ,⋅k(7.65)

+∑
i,j

∇iGδ,jk
⎛
⎝

∆φχm,ij +
1

2β
∆χm,ij + ∑

q∈Q
∇∗
q ⋅ aq∇q (leij + χm,ij) +

1

2β
∑
n≥1

1

β
n
2

(−∆)n+1χm,ij
⎞
⎠

+RQ +R∆n .

We then treat the three lines of the previous display separately. For the first line, we use the identity

(7.66) −∇ ⋅ aβ∇Gδ,⋅k = ρδ,⋅k in Zd.
For the second line, we use that, by the definition of the finite-volume corrector given in Definition 6.26, this
map is a solution of the Helffer-Sjöstrand equation L(leij + χm,ij) = 0 in the set BR1+δ ×Ω. We obtain

∑
i,j

∇iGδ,jk
⎛
⎝

∆φχm,ij +
1

2β
∆χm,ij + ∑

q∈Q
∇∗
q ⋅ aq∇q (leij + χm,ij) +

1

2β
∑
n≥1

1

β
n
2

(−∆)n+1χm,ij
⎞
⎠

(7.67)

= ∑
i,j

∇iGδ,jkL(leij + χm,ij)

= 0.

For the third line, we use the estimates (7.33) and (7.44) on the error terms RQ and R∆n respectively. We
obtain

(7.68) ∥RQ +R∆n∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

A combination of the identities (7.65), (7.66), (7.67) and the estimate (7.68) proves the inequality

∥LHδ,⋅k − ρδ,⋅k∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.
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The proof of the estimate (7.29) is complete.

7.3.3. Estimating the L2-norm of the term ∇Gδ−∇Hδ. The objective of this section is to prove that the gradient
of the Green’s matrix ∇Gδ and the gradient of the two-scale expansion ∇Hδ are close in the L2 (AR, µβ)-norm.
More specifically, we prove that there exists an exponent γδ > 0 such that one has the estimate

(7.69) ∥∇Gδ −∇Hδ∥L2(AR,µβ) ≤
C

R(d−1)+γδ
.

To prove this inequality, we work on the larger set BR1+δ/2 and prove the estimate

∥∇Gδ −∇Hδ∥L2(B
R1+δ

/2
,µβ)

≤ C

R(1+δ)(d−1−ε/2) .(7.70)

The inequality (7.69) implies (7.70); indeed, by using that the annulus AR is included in the ball BR1+δ , we
can compute

∥∇Gδ −∇Hδ∥L2(AR,µβ) ≤
⎛
⎝
∣BR1+δ/2∣

∣AR∣
⎞
⎠

1
2

∥∇Gδ −∇Hδ∥L2(B
R1+δ

/2
,µβ)

≤ C (R
d(1+δ)

Rd
)

1
2 C

R(1+δ)(d−1−ε/2)

≤ C

Rd−1+γδ
,

where we have set γδ ∶= δ(d2 − 1 − ε/2) > 0. We now focus on the proof of the estimate (7.70) and fix an

integer k ∈ {1, . . . , (d
2
)} to write the proof. The strategy is to use the identity LGδ,⋅k = ρδ,⋅k to rewrite the

estimate (7.29) in the following form

(7.71) ∥L(Hδ,⋅k − Gδ,⋅k)∥H−1(B
R1+δ ,µβ) ≤

C

Rd−1+γα
.

We then use the function Gδ,⋅k−Hδ,⋅k as a test function in the definition of the H−1-norm in the inequality (7.71)
to obtain the H1-estimate stated in (7.70), as described in the outline of the proof at the beginning of this
section. The overall strategy is relatively straightforward; however, one has to deal with the following technical
difficulty. By definition of the H−1-norm, one needs to use a function in H1

0 (BR1+δ , µβ) as a test function; in
particular the function must be equal to 0 outside the ball BR1+δ . This condition is not verified by the function
Gδ,⋅k −Hδ,⋅k which is thus not a suitable test function. To overcome this issue, we introduce a cutoff function

η ∶ Zd → R supported in the ball BR1+δ which satisfies the properties

(7.72) 0 ≤ η ≤ 1B
R1+δ

, η = 1 in BR1+δ

2

, and ∀k ∈ N, ∣∇kη∣ ≤ C

R(1+δ)k ,

and use the function η (Gδ,⋅k −Hδ,⋅k) as a test function. The main difficulty is thus to treat the cutoff function.
This difficulty is similar to the one treated in the proof of the Caccioppoli inequality stated in Proposition 5.1
and we will omit some of the technical details of the argument.

We first write

1

R(1+δ)d ∑
x∈B

R1+δ

⟨η (Gδ,⋅k −Hδ,⋅k)L(Gδ,⋅k −Hδ,⋅k)⟩µβ ≤ ∥L(Gδ,⋅k −Hδ,⋅k)∥H−1(B
R1+δ ,µβ) ∥η (Gδ,⋅k −Hδ,⋅k)∥H1(B

R1+δ ,µβ)

(7.73)

≤ C

Rd−1+γα
∥η (Gδ,⋅k −Hδ,⋅k)∥H1(B

R1+δ ,µβ) .

We then treat the terms in the left and right sides of the inequality (7.73) separately. Regarding the left side,
we prove the estimate

(7.74) ∥η (Gδ,⋅k −Hδ,⋅k)∥H1(B
R1+δ ,µβ) ≤

C

Rd−1−δd .

The proof relies on the properties of the cutoff function η stated in (7.72), the regularity estimate on the

Green’s matrix stated in Proposition 7.7, the L∞-bound on the homogenized Green’s matrix Gδ stated in (7.26)
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and the bounds on the corrector and its gradient recalled below

∥χm,ij∥L2(B
R1+δ ,µβ) ≤ CR

(1+δ)(1−α), ∥∇χm,ij∥L2(B
R1+δ ,µβ) ≤ C and, ∑

x∈Zd
∥∂xχm,ij∥2

L2(B
R1+δ ,µβ) ≤ C.

We first write

(7.75) ∥η (Gδ,⋅k −Hδ,⋅k)∥H1(B
R1+δ ,µβ) ≤

1

R1+δ ∥η (Gδ,⋅k −Hδ,⋅k)∥L2(B
R1+δ ,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.75)−(i)

+∥∇η (Gδ,⋅k −Hδ,⋅k)∥L2(B
R1+δ ,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.75)−(ii)

+ ∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥L2(B
R1+δ ,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.75)−(iii)

+β ∑
x∈Zd

∥η (∂xGδ,⋅k − ∂xHδ,⋅k)∥L2(B
R1+δ ,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.75)−(iv)

,

and treats the four terms in the right side separately. For the term (7.75)-(i), we use that the function η is
non-negative and smaller than 1 to write

1

R1+δ ∥η (Gδ,⋅k −Hδ,⋅k)∥L2(B
R1+δ ,µβ) ≤

1

R1+δ (∥Gδ,⋅k∥L2(B
R1+δ ,µβ) + ∥Hδ,⋅k∥L2(B

R1+δ ,µβ)) .

We then estimate the L2-norm of the Green’s matrix Gδ thanks to the estimate

∥Gδ,⋅k∥L2(B
R1+δ ,µβ) ≤ ∥Gδ,⋅k∥L∞(Zd,µβ) ≤

C

R(1−δ)(d−2) .

The L2-norm of the two-scale expansion Hδ can be estimated according to the following computation

∥Hδ,⋅k∥L2(B
R1+δ ,µβ) ≤ ∥Gδ,⋅k∥L2(B

R1+δ ,µβ)
+∑
i,j

∥∇iGδ,jk∥L∞(B
R1+δ ,µβ)

∥χm,ij∥L2(B
R1+δ ,µβ)

≤ C

R(1−δ)(d−2) +
CR(1+δ)(1−α)

R(1−δ)(d−1)

≤ C

R(1−δ)(d−2) ,

where we have used the inequality α≫ δ in the third inequality. A combination of the three previous displays
shows the estimate

(7.76)
1

R1+δ ∥η (Gδ,⋅k −Hδ,⋅k)∥L2(B
R1+δ ,µβ) ≤

C

R1+δ ×R(1−δ)(d−2) ≤
C

Rd−1−δ(d−3) .

The proof of the term (7.75)-(ii) is identical, we use the estimate ∣∇η∣ ≤ C
R1+δ and apply the estimate obtained

for the term (7.75)-(ii). We obtain

(7.77) ∥∇η (Gδ,⋅k −Hδ,⋅k)∥L2(B
R1+δ ,µβ) ≤

C

Rd−1−δ(d−3) .

For the term (7.75)-(iii), we first write

∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥L2(B
R1+δ ,µβ) ≤ ∥∇Gδ,⋅k∥L∞(Zd,µβ) + ∥∇Hδ,⋅k∥L2(B

R1+δ ,µβ) .

The L∞-norm of the Green’s matrix ∇Gδ,⋅k is estimated by Proposition 7.7. We have

∥∇Gδ,⋅k∥L∞(Zd,µβ) ≤
C

R(1−δ)(d−1−ε) .

For the L2-norm of the two-scale expansion H, we use the formula (7.45) and write

∥∇Hδ,⋅k∥L2(B
R1+δ ,µβ) ≤ ∥∇Gδ,⋅k∥L∞(Zd) +∑

i,j

∥∇∇iGδ,jk∥L∞(Zd) ∥χm,ij∥L2(B
R1+δ ,µβ)

+∑
i,j

∥∇iGδ,jk∥L∞(Zd) ∥∇χm,ij∥L2(B
R1+δ ,µβ)

≤ C

R(1−δ)(d−1−ε) +
CR(1+δ)(1−α)

R(1−δ)(d−ε) + C

R(1−δ)(d−1−ε)

≤ C

Rd−1−ε−δ(d−1−ε) .
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A combination of the three previous displays together with the inequality δ ≫ ε yields the estimate

(7.78) ∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥L2(B
R1+δ ,µβ) ≤

C

Rd−1−δd .

There remains to estimate the term (7.75)-(iv). We first write

(7.79) β ∑
x∈Zd

∥η (∂xGδ,⋅k − ∂xHδ,⋅k)∥L2(B
R1+δ ,µβ) ≤ β ∑

x∈Zd
∥η∂xGδ,⋅k∥L2(B

R1+δ ,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.79)−(i)

+β ∑
x∈Zd

∥η∂xHδ,⋅k∥L2(B
R1+δ ,µβ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.79)−(ii)

and estimate the two terms in the right side separately. For the term (7.79)-(i), we use that the map Gδ,⋅k is a
solution of the equation LGδ,⋅k = ρδ,⋅k and use the map η2Gδ,⋅k as a test function. We obtain

β ∑
x∈Zd

∥η∂xGδ,⋅k∥2
L2(B

R1+δ ,µβ) = −
1

2
∑
x∈Zd

⟨∇Gδ,⋅k(x, ⋅) ⋅ ∇ (η2Gδ,⋅k) (x, ⋅)⟩µβ − β ∑
q∈Q

⟨∇qGδ,⋅k ⋅ aq∇q (η2Gδ,⋅k)⟩µβ

− 1

2
∑
n≥1

∑
x∈Zd

1

β
n
2

⟨∇n+1Gδ,⋅k(x, ⋅) ⋅ ∇n+1 (η2Gδ,⋅k) (x, ⋅)⟩µβ + β ∑
x∈Zd

ρδ,⋅k(x)η2(x) ⋅ ⟨Gδ,⋅k(x, ⋅)⟩µβ .

We then estimate the four terms in the right sides using the pointwise estimates on the function Gδ and
its gradient stated in Proposition 7.7, the properties on the functions ρδ and η stated in (7.7) and (7.72)
respectively. We omit the technical details and obtain the estimate

(7.80) ∑
x∈Zd

∥η∂xGδ,⋅k∥2
L2(B

R1+δ ,µβ) ≤
C

R2(1−δ)(d−1−ε) .

The term (7.79)-(ii) involving the two-scale expansion is the easiest one to estimate; using the explicit

formula for the map Hδ,⋅k and the fact that the function Gδ,⋅k does not depend on the field φ, we have the
identity

∂xHδ,⋅k ∶= ∑
i,j

∇iGδ,jk∂xχm,ij .

We deduce that

∑
x∈Zd

∥η∂xHδ,⋅k∥L2(B
R1+δ ,µβ) ≤ ∑

x∈Zd
∥∂xHδ,⋅k∥L2(B

R1+δ ,µβ)(7.81)

≤ C∑
i,j

∥∇Gδ,⋅k∥L∞(Zd) ∑
x∈Zd

∥∂xχm,ij∥L2(B
R1+δ ,µβ)

≤ C

R(1−δ)(d−1−ε) .

Combining the inequalities (7.79), (7.80) and (7.81) yields

(7.82) ∑
x∈Zd

∥η (∂xGδ,⋅k − ∂xHδ,⋅k)∥L2(B
R1+δ ,µβ) ≤

C

Rd−1−ε−δ(d−1−ε) ≤
C

Rd−1−δd .

The inequality (7.74) is then obtained by combining the estimates (7.76), (7.77), (7.78) and (7.82). We
then put the inequality back into the inequality (7.73) and deduce that

(7.83)
1

R(1+δ)d ∑
x∈B

R1+δ

⟨η (Gδ,⋅k −Hδ,⋅k)L(Gδ,⋅k −Hδ,⋅k)⟩µβ ≤
C

Rd−1+γα ×Rd−1−δd ≤ C

R2d−2+γα
,

where we have used in the second inequality that the exponent γα is of order α and is thus much larger than
the value δd.

In the rest of this step, we treat the left side of (7.83) and prove the inequality

(7.84) ∥∇Gδ,⋅k −∇Hδ,⋅k∥2

L2(B
R1+δ

2

,µβ)
≤ 1

R(1+δ)d ∑
x∈B

R1+δ

⟨η (Gδ,⋅k −Hδ,⋅k)L(Gδ,⋅k −Hδ,⋅k)⟩µβ +
C

R(1+δ)(2d−2−ε) .
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First, by definition of the Helffer-Sjöstrand operator L, we have the identity

∑
x∈Zd

⟨η (Gδ,⋅k −Hδ,⋅k)L(Gδ,⋅k −Hδ,⋅k)⟩µβ(7.85)

= ∑
x,y∈Zd

η(x) ⟨(∂yGδ,⋅k(x, ⋅) − ∂yHδ,⋅k(x, ⋅))2⟩
µβ

+ 1

2β
∑
x∈Zd

⟨(∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅) ⋅ ∇ (η (Gδ,⋅k −Hδ,⋅k)) (x, ⋅)⟩µβ

+ ∑
q∈Q

⟨∇q (Gδ,⋅k −Hδ,⋅k) ⋅ aq∇q (η (Gδ,⋅k −Hδ,⋅k))⟩µβ

+ 1

2β
∑
n≥1

∑
x∈Zd

1

β
n
2

⟨∇n+1 (Gδ,⋅k −Hδ,⋅k) (x, ⋅) ⋅ ∇n+1 (η (Gδ,⋅k −Hδ,⋅k)) (x, ⋅)⟩µβ .

We then estimate the four terms on the right side separately. For the first one, we use that it is non-negative

∑
x,y∈Zd

η(x)2 ⟨(∂yGδ,⋅k(x, ⋅) − ∂yHδ,⋅k(x, ⋅))2⟩
µβ

≥ 0.

For the second one, we expand the gradient of the product η (Gδ,⋅k −H) and write

∑
x∈Zd

⟨(∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅) ⋅ ∇ (η (Gδ,⋅k −Hδ,⋅k)) (x, ⋅)⟩µβ(7.86)

= ∑
x∈Zd

η(x) ⟨(∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅) ⋅ (∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅)⟩µβ

+ ∑
x∈Zd

⟨(∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅) ⋅ ∇η(x) (Gδ,⋅k −Hδ,⋅k) (x, ⋅)⟩µβ .

we divide the identity (7.86) by the volume factor R(1+δ)d and use the properties of the function η stated
in (7.72). In particular, we use that the gradient of η is supported in the annulus AR1+δ ∶= BR1+δ ∖BR1+δ

2

and

obtain

(7.87)
1

R(1+δ)d ∑
x∈Zd

⟨(∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅) ⋅ ∇ (η (Gδ,⋅k −Hδ,⋅k)) (x, ⋅)⟩µβ ≥ c ∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥
2
L2(B

R1+δ ,µβ)

− C

R1+δ ∥∇Gδ,⋅k −∇Hδ,⋅k∥L2(A
R1+δ ,µβ) ∥Gδ,⋅k −Hδ,⋅k∥L2(A

R1+δ ,µβ) .

By a computation similar to the one performed for the term (7.75)-(iii), but using the estimates (7.25)
and (7.27) for the Green’s matrices in the distant annulus AR1+δ , instead of the L∞-estimates (7.24) and (7.26).
We obtain

(7.88) ∥∇Gδ,⋅k −∇Hδ,⋅k∥L2(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−1−ε) and ∥Gδ,⋅k −Hδ,⋅k∥L2(A
R1+δ ,µβ) ≤

C

R(1+δ)(d−2) .

A combination of the inequalities (7.87) and (7.88) proves the estimate

(7.89)
1

R(1+δ)d ∑
x∈Zd

⟨(∇Gδ,⋅k −∇Hδ,⋅k) (x, ⋅) ⋅ ∇ (η (Gδ −Hδ,⋅k)) (x, ⋅)⟩µβ +
C

R(1+δ)(2d−2−ε)

≥ c ∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥2
L2(B

R1+δ ,µβ) .

The other terms in the right side of the identity (7.85) involving the sum over the iteration of the Laplacian
and over the charges q ∈ Q are treated similarly and we omit the details. The results obtained are stated below

(7.90)
1

R(1+δ)d ∑
q∈Q

⟨∇q (Gδ,⋅k −Hδ,⋅k) ⋅ aq∇q (η (Gδ,⋅k −Hδ,⋅k))⟩µβ +
C

R(1+δ)(2d−2−ε)

≥ −Ce−c
√
β ∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥2

L2(Zd,µβ)
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and
1

R(1+δ)d ∑
n≥1

∑
x∈Zd

1

β
n
2

⟨∇n+1 (Gδ,⋅k −Hδ,⋅k) (x, ⋅) ⋅ ∇n+1 (η (Gδ,⋅k −Hδ,⋅k)) (x, ⋅)⟩µβ +
C

R(1+δ)(2d−2−ε)(7.91)

≥ ∑
n≥1

∑
x∈Zd

1

β
n
2

⟨η(x) ∣∇n+1 (Gδ,⋅k −Hδ,⋅k) (x, ⋅)∣
2⟩
µβ

≥ 0.

We then combine the identity (7.85) with the estimates (7.89), (7.90) and (7.91) and assume that the inverse
temperature β is large enough. We obtain

1

R(1+δ)d ∑
x∈Zd

⟨η (Gδ,⋅k −H)L(Gδ,⋅k −Hδ,⋅k)⟩µβ +
C

R(1+δ)(2d−2−ε) ≥ c ∥η (∇Gδ,⋅k −∇Hδ,⋅k)∥
2
L2(Zd,µβ)

≥ c ∥∇Gδ,⋅k −∇Hδ,⋅k∥2

L2(B
R1+δ

/2
,µβ)

.

The proof of the inequality (7.84) is then complete. To complete the proof of Step 2, we combine the
estimates (7.83) and (7.84). We obtain

(7.92) ∥∇Gδ,⋅k −∇Hδ,⋅k∥2

L2(B
R1+δ

2

,µβ)
≤ C

R2d−2+γα
+ C

R(1+δ)(2d−2−ε) ≤
C

R(1+δ)(2d−2−ε) ,

where the last inequality is a consequence of the fact that γα is of order α and of the ordering α ≫ δ ≫ ε.
Since the inequality (7.92) is valid for any integer k ∈ {1, . . . , (d

2
)}, the proof of the estimate (7.70) is complete.

7.3.4. Homogenization of the gradient of the Green’s matrix. In this section, we post-process the conclu-
sion (7.70) of Section 7.3.3 and prove that the gradient of the Green’s matrix ∇G⋅k is close to the map

∑i,j (eij +∇χij)∇iGjk. The objective is to prove that there exists an exponent γδ > 0 such that

(7.93)
XXXXXXXXXXX
∇G⋅k −∑

i,j

(eij +∇χij)∇iGjk
XXXXXXXXXXXL2(AR,µβ)

≤ C

Rd−1+γδ
.

We first use the regularity estimates stated in Proposition 7.7 and the L2-bound on the gradient of the infinite-
volume corrector, for each x ∈ Zd, each pair of integers (i, j) ∈ {1, . . . , d} × {1, . . . , (d

2
)}, ∥∇χij(x, ⋅)∥L2(µβ) ≤ C.

We write
XXXXXXXXXXX
∇(G⋅k − Gδ,⋅k) −∑

i,j

(eij +∇χij)∇i (Gδ,jk −Gjk)
XXXXXXXXXXXL2(AR,µβ)

(7.94)

≤ ∥∇(G⋅k − Gδ,⋅k)∥L2(AR,µβ) +∑
i,j

∥(eij +∇χij)∥L2(AR,µβ) ∥∇i (Gδ,jk −Gjk)∥L∞(AR,µβ)

≤ C

Rd−1+γδ
.

Using the inequality (7.94), we see that, to prove (7.93), it is sufficient to prove the estimate

(7.95)
XXXXXXXXXXX
∇Gδ,⋅k −∑

i,j

(eij +∇χij)∇iGδ,jk
XXXXXXXXXXXL2(AR,µβ)

≤ C

Rd−1+γδ
.

We then use the main estimate (7.70) and deduce that, to prove the inequality (7.95), it is sufficient to prove

(7.96)
XXXXXXXXXXX
∇Hδ,⋅k −∑

i,j

(eij +∇χij)∇iGδ,jk
XXXXXXXXXXXL2(AR,µβ)

≤ C

Rd−1+γδ
.

The rest of the argument of this step is devoted to the proof of (7.96). We first use the explicit formula for the
gradient of the two-scale expansion ∇Hδ,⋅k stated in (7.45) and write

XXXXXXXXXXX
∇Hδ,⋅k −∑

i,j

(eij +∇χm,ij)∇iGδ,jk
XXXXXXXXXXXL2(AR,µβ)

≤ ∑
i,j

∥∇∇iGδ,jkχm,ij∥L2(AR,µβ)
+ ∥(∇iGδ,jk) (∇χm,ij −∇χij)∥L2(AR,µβ)

.
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We then use the regularity estimate (7.26), the quantitative sublinearity of the corrector stated in Proposi-
tion 6.28, and Proposition 6.29 to quantify the L2-norm of the difference between the gradient of finite-volume
corrector and the gradient of the infinite-volume corrector. We obtain

XXXXXXXXXXX
∇Hδ,⋅k −∑

i,j

(eij +∇χm,ij)∇iGδ,jk
XXXXXXXXXXXL2(AR,µβ)

≤ ( ∣AR∣
∣BR1+δ ∣

)
1
2 CR1−α

Rd−ε
+ ( ∣AR∣

∣BR1+δ ∣
)

1
2 CR−α

Rd−1−ε(7.97)

≤ C

Rd−1+γα
,

where we have set γα ∶= α − ε − dδ
2
> 0. Using that the exponent γα is larger than the exponent γδ completes

the proof of the estimate (7.93).

7.4. Homogenization of the mixed derivative of the Green’s matrix. The objective of this section is
to use Proposition 7.6 to prove Theorem 2. We fix a charge q1 ∈ Q and recall the definitions of the maps Uq1
and Gq1 given in the statement of Theorem 2. The proof is decomposed into three sections and follows the
outline of the proof given in Section 7.2.2.

7.4.1. Preliminary estimates. In this section, we record some properties pertaining to the functions Uq1 and

Gq1 which are used in the argument.

Proposition 7.8. There exist an inverse temperature β0 ∶= β0(d) < 0 and a constant Cq1 which satisfies the

estimate Cq1 ≤ C ∥q1∥k1 , for some C(d) < ∞ and k(d) < ∞, such that the following statement holds: For each

point y ∈ Zd and each integer k ∈ N, one has the estimates

∥∇Uq1 (y, ⋅)∥L∞(µβ) ≤
Cq1
∣y∣d−ε

, ∥Uq1 (y, ⋅)∥L∞(µβ) ≤
Cq1

∣y∣d−1−ε and ∣∇kGq1(y)∣ ≤
Cq1

∣y∣d−1+k .

Proof. The proof is a consequence of the regularity estimates stated in Proposition 3.17 and the identity
q = dnq. �

7.4.2. Exploiting the symmetry of the Helffer-Sjöstrand operator. The objective of this section is to use
Proposition 7.6 and the symmetry of the Helffer-Sjöstrand operator L to prove the following estimate

(7.98)
⎛
⎝
R−d ∑

z∈AR
∣⟨Uq1(z, ⋅)⟩µβ −Gq1(z)∣

2⎞
⎠

1
2

≤ C

Rd−1+γδ
.

We start from the formula, for each integer k ∈ {1, . . . , (d
2
)},

(7.99)
XXXXXXXXXXX
d∗G⋅k −∑

i,j

(d∗leij + d∗χij)∇iGjk
XXXXXXXXXXXL2(AR,µβ)

≤ C

Rd−1+γδ
,

which is a direct consequence of Proposition 7.6 since the codifferential is a linear functional of the gradient.
Using the estimate (7.99), we deduce that

R−d ∑
x∈AR

∣⟨cos (2π (φ, q1(x + ⋅))) (nq1 (x + ⋅) ,d∗G⋅k)⟩µβ

−∑
i,j

⟨cos (2π (φ, q1(x + ⋅))) (nq1 (x + ⋅) , (d∗leij + d∗χij))⟩µβ ∇iGjk(x)
RRRRRRRRRRR
≤

Cq1
Rd−1+γδ

.

By the translation invariance of the measure µβ and the stationarity of the gradient of the infinite-volume
corrector, we deduce that

∑
i,j

⟨cos (2π (φ, q1(x + ⋅))) (nq1 (x + ⋅) , (d∗leij + d∗χij))⟩µβ ∇iGjk(x)

= ∑
i,j

⟨cos (2π (φ, q1)) (nq1 , (d∗leij + d∗χij))⟩µβ ∇iGjk(x)

= Gq1 (x) .
We now claim that we have the identity, for each point x ∈ AR,

⟨cos (2π (φ, q1(x + ⋅))) (nq1 (x + ⋅) ,d∗G)⟩µβ = ⟨Uq1(x+⋅)(0, ⋅)⟩µβ .
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The proof of this result is a consequence of the symmetry of the Helffer-Sjöstrand operator L and the stationarity
of the measure µβ . We compute

⟨cos (2π (φ, q1(x + ⋅))) (nq1 (x + ⋅) ,d∗G)⟩µβ = ⟨(cos (2π (φ, q1(x + ⋅))) q1 (x + ⋅) ,G)⟩µβ
= ⟨(cos (2π (φ, q1(x + ⋅))) q1 (x + ⋅) ,L−1δ0)⟩µβ
= ⟨(L−1 cos (2π (φ, q1(x + ⋅))) q1 (x + ⋅) , δ0)⟩µβ
= ⟨Uq1(x+⋅)(0, ⋅)⟩µβ .

A combination of the four previous displays implies

(7.100) R−d ∑
x∈AR

∣⟨Uq1(x+⋅)(0, ⋅)⟩µβ −Gq1(x)∣ ≤
C

Rd−1+γδ
.

We then use the translation invariance of the measure µβ and the definition of the map Uq1 as the solution of
the Helffer-Sjöstrand equation (7.2) to write

(7.101) ⟨Uq1(x+⋅)(0, ⋅)⟩µβ = ⟨Uq1(x, ⋅)⟩µβ .

Combining the inequality (7.100) with the identity (7.101), we obtain

(7.102) R−d ∑
x∈AR

∣⟨Uq1(x, ⋅)⟩µβ −Gq1(x)∣ ≤
C

Rd−1+γδ
.

We finally upgrade the L1-inequality stated in (7.102) into an L2-inequality: by using Proposition 7.8, we write

R−d ∑
x∈AR

∣⟨Uq1(x, ⋅)⟩µβ −Gq1(x)∣
2

≤
⎛
⎝
R−d ∑

x∈AR
∣⟨Uq1(x, ⋅)⟩µβ −Gq1(x)∣

⎞
⎠
(∥Uq1(x, ⋅)∥L∞(AR,µβ) + ∥Gq1∥L∞(AR))

≤
Cq1

Rd−1+γδ ×Rd−1−ε

≤
Cq1

R2d−2+γδ
,

where we have used the convention notation described at the beginning of Section 7.3 to absorb the exponent
ε into the exponent γδ in the third inequality.

7.4.3. Contraction of the variance of Uq1 . In this section, we prove that the random variable Uq1 contracts

around its expectation. To this end, we prove the variance estimate, for each point z ∈ Zd,

(7.103) var [Uq1(z, ⋅)] ≤
Cq1

∣z∣2d−2ε
.

Let us make a comment about the result: since the size of the random variable Uq1(z, ⋅) is of order ∣z∣1−d (since

it behaves like the gradient of a Green’s function), we would expect its variance to be of order ∣z∣2−2d. The
inequality (7.103) asserts that it is in fact of order ∣z∣2ε−2d which is smaller than the typical size of the random
variable Uq1(z, ⋅) by an algebraic factor: the random variable Uq1(z, ⋅) concentrate around its expectation.

Once this estimate is established, we can combine it with the estimate (7.98) established in Section 7.4.2

to prove that the map Uq1 is close to the (deterministic) Green’s function Gq1 in the L2 (AR, µβ)-norm: we
obtain the inequality

(7.104) ∥Uq1 −Gq1∥L2(AR,µβ)
≤ C

Rd−1+γδ
.

We now prove of the variance estimate (7.103). We first apply the Brascamp-Lieb inequality and write

(7.105) var [Uq1(z, ⋅)] ≤ C ∑
y,y1∈Zd

∥∂yUq1(z, ⋅)∥L2(µβ)
C

∣y − y1∣d−2
∥∂y1Uq1(z, ⋅)∥L2(µβ) .

A consequence of the inequality (7.105) is that, to estimate the variance of the random variable Uq1(z, ⋅), it is
sufficient to understand the behavior of the mapping y ↦ ∂yUq1(z, ⋅). To this end, we appeal to the second-order
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Helffer-Sjöstrand equation: following the arguments developed in Section 5.4, the map u ∶ (y, z, φ) ↦ ∂yUq1(z, φ)
is solution of the second-order equation

Lsecu(x, y, φ) = − ∑
q∈Q

2πz (β, q) cos (2π (φ, q)) (Uq1 , q) q(x)⊗q(y)+2π sin (2π (φ, q1)) q1(x)⊗q1(y) in Zd×Zd×Ω.

The function u can be expressed in terms of the Green’s matrix Gsec, and we write, for each triplet (x, y, φ) ∈
Zd ×Zd ×Ω,

u(x, y, φ) = ∑
q∈Q

2πz (β, q) ∑
x1,y1∈Zd

d∗x1
d∗y1Gsec,cos(2π(φ,q))(Uq1 ,q)

(x, y, φ;x1, y1)nq(x1) ⊗ nq(y1)

+ ∑
x1,y1∈Zd

2πd∗x1
d∗y1Gsec,sin(2π(φ,q1)) (x, y, φ;x1, y1)nq1(x1) ⊗ nq1(y1).

We use the regularity estimates on the Green’s matrix stated in Proposition 5.13 to obtain, for each pair of
points (x, y) ∈ Zd ×Zd,

∥u(x, y, ⋅)∥L∞(µβ) ≤ C ∑
q∈Q

e−c
√
β∥q∥1 ∑

x1,y1∈Zd

∣nq(x1)∣ ∣nq(y1)∣ ∥(d∗Uq1 , nq)∥L∞(µβ)

∣x − x1∣2d−ε + ∣y − y1∣2d−ε

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.106)−(i)

(7.106)

+ ∑
x1,y1∈Zd

∣nq1(x1)∣ ∣nq1(y1)∣
∣x − x1∣2d−ε + ∣y − y1∣2d−ε

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.106)−(ii)

.

We then estimate the two terms (7.106)-(i) and (7.106)-(ii) separately. We first focus on the term (7.106)-(i)
and prove the inequality

(7.107) (7.106) − (i) ≤
Cq1

∣x − y∣d−εmax (∣x∣ , ∣y∣)d−1

To prove the estimate (7.107), we first decompose the set of charges Q according to the following procedure.
For each z ∈ Zd, we denote by Qz the set of charges q ∈ Q such that the point z belongs to the support of nq,
i.e., Qz ∶= {q ∈ Q ∶ z ∈ suppnq}. We note that we have the equality Q ∶= ⋃z∈Zd Qz but the collection (Qz)z∈Zd
is not a partition of Q. We first prove that, for each point z ∈ Zd,

(7.108) ∑
q∈Qz

e−c
√
β∥q∥1 ∑

x1,y1∈Zd

∣nq(x1)∣ ∣nq(y1)∣ ∥(d∗Uq1 , nq)∥L∞(µβ)

∣x − x1∣2d−ε + ∣y − y1∣2d−ε
≤

Cq1
(∣x − z∣2d−ε + ∣y − z∣2d−ε) × ∣z∣d−ε

.

To prove the estimate (7.108), we first use Proposition 7.8 to estimate the term ∥(d∗Uq1 , nq)∥L∞(µβ). We write,

for each charge q ∈ Qz,

(7.109) ∥(d∗Uq1 , nq)∥L∞(µβ) ≤ ∥∇Uq1∥L∞(suppnq,µβ) ∥nq∥L1 ≤ Cq,q1 sup
z1∈suppnq

1

∣z1∣d−ε
≤
Cq,q1
∣z∣d−ε

.

Putting the inequality (7.109) into the left side of the estimate (7.108), we obtain

∑
q∈Qz

e−c
√
β∥q∥1 ∑

x1,y1∈Zd

∣nq(x1)∣ ∣nq(y1)∣ ∥(d∗Uq1 , nq)∥L∞(µβ)

∣x − x1∣2d−ε + ∣y − y1∣2d−ε
(7.110)

≤ ∑
q∈Qz

Ce−c
√
β∥q∥1Cq,q1

∣z∣d−ε ∑
x1,y1∈suppnq

1

∣x − x1∣2d−ε + ∣y − y1∣2d−ε
.

The term in the right side of (7.110) can be explicitly computed by using the exponential decay of the term

e−c
√
β∥q∥1 and we obtain

∑
q∈Qz

e−c
√
β∥q∥1 ∑

x1,y1∈Zd

∣nq(x1)∣ ∣nq(y1)∣ ∥(d∗Uq1 , nq)∥L∞(µβ)

∣x − x1∣2d−ε + ∣y − y1∣2d−ε
≤

Cq1
∣z∣d−ε × (∣x − z∣2d−ε + ∣y − z∣2d−ε)

.

Summing over all the points z ∈ Zd, we obtain

(7.111) (7.106) − (i) ≤ ∑
z∈Zd

Cq1
∣z∣d−ε × (∣x − z∣2d−ε + ∣y − z∣2d−ε)

.
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The term on the right side can be explicitly estimated. We omit the details and give the result

(7.112) (7.106) − (i) ≤ C

∣x − y∣dmax (∣x∣ , ∣y∣)d−2ε
.

Combining the estimates (7.111) and (7.112) completes the proof of the estimate (7.107).
The term (7.106)-(ii) can also be estimated by an explicit computation which we skip here. We obtain

(7.113) (7.106) − (ii) ≤
Cq1

∣x∣2d−ε + ∣y∣2d−ε
.

We then combine the estimates (7.106), (7.107), (7.113) to deduce the inequality, for each pair of points
x, y ∈ Zd,

∥u(x, y, ⋅)∥L∞(µβ) ≤
Cq1

∣x − y∣d−εmax (∣x∣ , ∣y∣)d−ε
.

We use this inequality to estimate the variance of the random variable Uq1(x, ⋅) by using the formula (7.105).
We obtain

var [Uq1(z, ⋅)] ≤ C ∑
y,y1∈Zd

Cq1

∣z − y∣d−εmax (∣z∣ , ∣y∣)d−1
⋅ C

∣y − y1∣d−2
⋅

Cq1

∣z − y1∣d−εmax (∣z∣ , ∣y1∣)d−ε
.

We use that the terms max (∣z∣ , ∣y1∣) and max (∣z∣ , ∣y∣) are both larger than the value ∣z∣ to deduce that

var [Uq1(z, ⋅)] ≤
Cq1

∣z∣2d−2ε ∑
y,y1∈Zd

1

∣z − y∣d−ε
⋅ 1

∣y − y1∣d−2
⋅ 1

∣z − y1∣d−ε
≤

Cq1
∣z∣2d−2ε

.

The proof of the estimate (7.103) is complete.

7.4.4. Homogenization of the mixed derivative of the Green’s matrix. The objective of this section is to complete
the proof of Theorem 2. We fix a radius R > 1 and let m be the smallest integer such that the annulus AR
is included in the cube ◻m. The proof relies on a two-scale expansion following the outline described in
Section 7.2.2. We define the function Hq1 by the formula

(7.114) Hq1 ∶= Gq1 +∑
i,j

∇iGq1,jχm,ij .

We decompose the argument into three steps.

Step 1. In this step, we prove that the H−1 (AR, µβ)-norm of the term LHq1 is small; more specifically, we
prove that there exists an exponent γα > 0 such that one has the estimate

(7.115) ∥LHq1∥H−1(AR,µβ) ≤
Cq1
Rd+γα

.

The proof is essentially identical to the argument presented in Section 7.3.2: we use the exact formula for
the two-scale expansion Hq1 given in (7.114) to compute the value of LHq1 and then use the quantitative

properties of the corrector stated in Proposition 6.28 to prove that the H−1 (AR, µβ)-norm of the term LHq1
satisfies the estimate (7.115). Since the proof is rather long due to the technicalities caused by the specific
structure of the operator L (iterations of the Laplacian, sum over all the charges q ∈ Q), we do not rewrite it
but only point out the main differences:

● We work in the annulus AR and not in the ball BR1+δ , this difference makes the proof simpler since we
do not have to take the additional parameter δ into considerations;

● We can always assume that the diameter of the charge q1 is smaller than R/2, otherwise the constant
Cq1 is larger than Rk for some large number k ∶= k(d) (since it is allowed to have an algebraic
growth in the parameter ∥q1∥1) and the estimate (7.115) is trivial in this situation. Under the

assumption diam q1 ≤ R/2, we use the identity −∇ ⋅ aβ∇Gq1 = 0 in the annulus AR instead of the

identity −∇ ⋅ aβ∇Gδ = ρδ in the ball BR1+δ ;

● We use the regularity estimates on the function Gq1 stated in Proposition 7.8 instead of the estimates

on the Green’s function G stated in Proposition 7.7. Since the map Gq1 scales like the gradient of the

Green’s function (in particular it decays like ∣x∣1−d), we obtain an additional factor R in the right side
of (7.115) compared to (7.29), i.e., we obtain

∥LHq1∥H−1(AR,µβ) ≤
Cq1
Rd+γα

instead of ∥LHδ,⋅k − ρδ,⋅k∥H−1(AR,µβ) ≤
C

Rd−1+γα
.
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Step 2. In this step, we use the main result (7.115) of Substep 3.1 to prove that the gradient of the Green’s

function ∇Uq1 is close to the gradient of the two-scale expansion ∇Hq1 in the L2 (AR, µβ)-norm. We prove the
estimate

(7.116) ∥∇Uq1 −∇Hq1∥L2(AR,µβ) ≤
Cq1
Rd+γδ

.

To simplify the rest of the argument, we do not prove the estimate (7.116) directly. We slightly reduce the
size of the annulus AR and define the set A1

R to be the annulus A1
R ∶= {x ∈ Zd ∶ 1.1R ≤ ∣x∣ ≤ 1.9R}. We note

that we have the inclusion, for each radius R ≥ 1, A1
R ⊆ AR. In this substep, we prove the inequality

(7.117) ∥∇Uq1 −∇Hq1∥L2(A1
R
,µβ) ≤

Cq1
Rd+γδ

.

The inequality (7.116) can then be deduced from (7.117) by a covering argument.
The argument is similar to the one presented in Section 7.3.3 except that, instead of making use of the

mollifier exponent δ to prove that the H1-norm is of the difference (∇Hδ −∇Gδ) is small, as it was done in the
estimates (7.87) and (7.88), we use the main result (7.104) of Section 7.4.3. We first let η be a cutoff function
which satisfies the properties:

(7.118) 0 ≤ η ≤ 1, suppη ⊆ AR, η = 1 in A1
R, ∀k ∈ N, ∣∇kη∣ ≤

C

Rk
.

We then use the function η (Uq1 −Hq1) as a test function in the definition of the H−1 (AR, µβ)-norm of the
inequality (7.115) and use the identity LUq1 = 0 in the set AR ×Ω. We obtain

1

Rd
∑
x∈AR

⟨η (Uq1 −Hq1)L(Uq1 −Hq1)⟩µβ ≤ ∥L(Uq1 −Hq1)∥H−1(B
R1+δ ,µβ) ∥η (Uq1 −Hq1)∥H1(AR,µβ)(7.119)

≤ C

Rd+γα
∥η (Uq1 −Hq1)∥H1(AR,µβ) .

We then estimate the H1 (AR, µβ)-norm of the function Uq1 −Hq1 with similar arguments as the one presented
in the proof of the inequality (7.74), the only difference is that we use the regularity estimates stated in
Proposition 7.8 instead of the regularity estimates for the functions Gδ and H. We obtain

(7.120) ∥η (Uq1 −Hq1)∥H1(AR,µβ) ≤ ∥ηUq1∥H1(AR,µβ) + ∥ηHq1∥H1(AR,µβ) ≤
Cq1

Rd−1−ε .

For later use, we also note that the same argument yields to the inequality

(7.121) ∥∇Uq1 −∇Hq1∥L2(AR,µβ) ≤ ∥∇Uq1∥L2(AR,µβ) + ∥∇Hq1∥L2(AR,µβ) ≤
Cq1
Rd−ε

.

We then combine the inequalities (7.117) and (7.119) and use the ordering ε≪ γα to deduce that

(7.122)
1

Rd
∑
x∈AR

⟨η (Uq1 −Hq1)L(Uq1 −Hq1)⟩µβ ≤
Cq1

R2d+γα
.

Thus to prove the inequality (7.117), it is sufficient to prove the estimate

∥∇Uq1 −∇Hq1∥
2
L2(A1

R
,µβ) ≤

1

Rd
∑
x∈AR

⟨η (Uq1 −Hq1)L(Uq1 −Hq1)⟩µβ +
Cq1

R2d+γδ
.

First, by definition of the Helffer-Sjöstrand operator L, we have the identity

∑
x∈Zd

⟨η (Uq1 −Hq1)L(Uq1 −Hq1)⟩µβ = ∑
x,y∈Zd

η(x) ⟨(∂yUq1(x, ⋅) − ∂yHq1(x, ⋅))
2⟩
µβ

(7.123)

+ 1

2β
∑
x∈Zd

⟨(∇Uq1 −∇Hq1) (x, ⋅) ⋅ ∇ (η (Uq1 −Hq1)) (x, ⋅)⟩µβ

+ ∑
q∈Q

⟨∇q (Uq1 −Hq1) ⋅ aq∇q (η (Uq1 −Hq1))⟩µβ

+ 1

2β
∑
n≥1

∑
x∈Zd

1

β
n
2

⟨∇n+1 (Uq1 −Hq1) (x, ⋅) ⋅ ∇n+1 (η (Uq1 −Hq1)) (x, ⋅)⟩µβ .
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We then estimate the four terms on the right side separately. For the first one, we use that it is non-negative

(7.124) ∑
x,y∈Zd

η(x)2 ⟨(∂yUq1(x, ⋅) − ∂yHq1(x, ⋅))
2⟩
µβ

≥ 0.

For the second one, we expand the gradient of the product η2 (Uq1 −Hq1) and use the properties of the function
η stated in (7.118) to obtain

(7.125) R−d ∑
x∈Zd

⟨(∇Uq1(x, ⋅) − ∇Hq1) (x, ⋅) ⋅ ∇ (η (Uq1 −H)) (x, ⋅)⟩µβ ≥ c ∥η (∇Uq1 −∇Hq1)∥
2
L2(AR,µβ)

− C
R

∥∇Uq1 −∇Hq1∥L2(AR,µβ) ∥Uq1 −Hq1∥L2(AR,µβ) .

We then use the inequality (7.104) and the estimate (7.121) and the quantitative sublinearity of the corrector
to deduce that

(7.126)
1

R
∥∇Uq1 −∇Hq1∥L2(AR,µβ) ∥Uq1 −Hq1∥L2(AR,µβ) ≤

1

R
⋅ C

Rd−ε
⋅ C

Rd−1+γδ
≤ C

R2d+γδ
.

We then combine the inequalities (7.125) and (7.126) to deduce that
(7.127)

R−d ∑
x∈Zd

⟨(∇Uq1(x, ⋅) − ∇Hq1) (x, ⋅) ⋅ ∇ (η (Uq1 −Hq1)) (x, ⋅)⟩µβ +
Cq1

R2d+γδ
≥ c ∥η (∇Uq1 −∇Hq1)∥

2
L2(AR,µβ) .

The two remaining terms in the right side of the estimate (7.123) (involving the iteration of the Laplacian and
the sum over the charges) are estimated following the ideas developed in Section 7.3.3 (see (7.90) and (7.91)).
We skip the details and write the result:

(7.128) R−d ∑
q∈Q

⟨∇q (Uq1 −Hq1) ⋅ aq∇q (η (Uq1 −Hq1))⟩µβ +
Cq1

R(2d+γδ)
≥ −Ce−c

√
β ∥η (∇Uq1 −∇Hq1)∥

2
L2(AR,µβ)

and

(7.129) R−d ∑
n≥1

∑
x∈Zd

1

β
n
2

⟨∇n+1 (Uq1 −Hq1) (x, ⋅) ⋅ ∇n+1 (η (Uq1 −Hq1)) (x, ⋅)⟩µβ +
Cq1

R(2d+γδ)
≥ 0.

We then combine the estimates (7.124), (7.127), (7.128) and (7.129) with the identity (7.123), choose the
inverse temperature β large enough so that the right side of (7.128) can be absorbed by the right side of (7.125)
and use that the cutoff function η is equal to 1 in the annulus A1

R. We obtain

(7.130) ∥∇Uq1 −∇Hq1∥L2(A1
R
,µβ) ≤

C

Rd
∑
x∈Zd

⟨η (Uq1 −Hq1)L(Uq1 −Hq1)⟩µβ +
Cq1
Rd+γδ

.

We then combine the inequality (7.130) with the estimate (7.122) to complete the proof of (7.117). Step 2 is
complete.

Step 3. The conclusion. In this step, we prove the L2-estimate

(7.131)
XXXXXXXXXXX
∇Uq1 −∑

i,j

(eij +∇χij)∇Gq1,j
XXXXXXXXXXXL2(AR,µβ)

≤
Cq1
Rd+γδ

.

In view of the estimate (7.117) proved in Step 2, it is sufficient to prove the inequality

(7.132)
XXXXXXXXXXX
∇Hq1 −∑

i,j

(eij +∇χij)∇Gq1,j
XXXXXXXXXXXL2(AR,µβ)

≤
Cq1
Rd+γδ

.

The proof of (7.132) relies on the regularity estimate on the function Gq1 stated in Proposition 7.8, the
quantitative sublinearity of the corrector stated in Proposition 6.28, and the quantitative estimate for the
difference of the finite and infinite-volume gradient of the corrector stated in Proposition 6.29. The argument
is identical (and even simpler since we do not have to take into account the parameter δ) to the argument
given in Section 7.3.4 so we skip the details. The proof of Step 3, and thus of Theorem 2, is complete.
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8. First-order expansion of the two-point function: Technical lemmas

In this section, we present the proofs of the technical lemmas which are used in Section 4 to prove
Theorem 1. All the tools used in this section have been introduced in Section 3 except one: The second-order
Helffer-Sjöstrand equation introduced in Section 5.4.

Most of the heuristic of the arguments are presented in Section 4 and we refer to it for an overview of the
results. As it may be useful to the reader, we record below the tools established in this article which are used
in the proofs below:

● In Sections 8.1, 8.2 and 8.3, we study the correlation of random variables; this is achieved by using
the Helffer-Sjöstrand representation formula. We need to use the properties of the Green’s matrix
associated with the Helffer-Sjöstrand operator stated in Proposition 3.17;

● In Section 8.3, we need to study the correlation between a solution of a Helffer-Sjöstrand equation
and the random variables Xx and Y0. To this end, we appeal Helffer-Sjöstrand representation formula
and the second-order Helffer-Sjöstrand equation as well as to the properties of the Green’s matrix
associated with this operator stated in Proposition 5.13;

● Sections 8.4 and 8.5 are devoted to the proofs of some properties of the discrete Green’s function on
the lattice Zd; they can be read independently of the rest of the article.

8.1. Removing the terms Xsin cos, Xcos cos and Xsin sin. We recall the definitions of the values Zβ(σ) and
Zβ(0) introduced in (3.12), the definitions of the random variables Y0, Xx, Xsin cos, Xcos cos, Xsin sin introduced
in (4.4) and the identity

(8.1)
Zβ(σ)
Zβ(0)

= ⟨Y0XxXsin cosXcos cosXsin sin⟩µβ .

Proof of Lemma 4.1. As is explained in Section 4.2, the proof of the lemma is based on the proof of the
following estimates

(8.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥Xsin cos − 1∥L∞ ≤ C

∣x∣d−1
,

∥Xcos cos − 1∥L∞ ≤ C

∣x∣d−1
,

varµβ Xsin sin ≤ C

∣x∣2d−2
,

E [Xsin sin] = 1 + c

∣x∣d−2
+O ( C

∣x∣d−1
) .

The fact that (8.2) implies (4.6) is straightforward, and we refer to the long version of this article ([36, Chapter
8, Section 1]) for the details. To prove (8.2), we first focus on the first two inequalities involving the random
variables Xsin cos and Xcos cos. They can be obtained thanks to the following ingredients:

● For each point y ∈ Zd and each charge q ∈ Qy, we have the estimate

∣(∇G,nq)∣ ≤ ∥∇G∥L2(suppnq) ∥nq∥2 ≤
Cq

∣y∣d−1
,

A similar computation shows the estimate (∇Gx, nq) ≤ Cq ∣y − x∣1−d;
● The standard estimates, for each real number a ∈ R, ∣ sina∣ ≤ ∣a∣, ∣ cosa− 1∣ ≤ 1

2
∣a∣2 and the estimate, for

each charge q ∈ Q, ∣z (β, q)∣ ≤ e−c
√
β∥q∥1 .

We obtain the inequality

RRRRRRRRRRR
∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇Gx, nq)) (cos (2π(∇G,nq)) − 1)
RRRRRRRRRRR
≤ C ∑

y∈Zd
∑
q∈Qy

e−c
√
β∥q∥1Cq

∣y − x∣d−1

1

∣y∣2d−2
(8.3)

≤ C ∑
y∈Zd

1

∣y − x∣d−1

1

∣y∣2d−2

≤ C

∣x∣d−1
,
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where we used the exponential decay of the term e−c
√
β∥q∥1 to absorb the algebraic growth of the constant Cq.

With a similar strategy, we obtain the two inequalities

(8.4)

RRRRRRRRRRR
∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇G,nq)) (cos (2π(∇Gx, q)) − 1)
RRRRRRRRRRR
≤ C

∣x∣d−1
,

RRRRRRRRRRR
∑
q∈Q

z(β, q) sin (2π(φ, q)) 1

2
(cos(2π(∇Gx, q)) − 1) (cos(2π(∇G, q)) − 1)

RRRRRRRRRRR
≤ C

∣x∣d−1
.

We then combine the estimates (8.3) and (8.4) and use that the exponential function is Lipschitz on any
bounded intervals of R to obtain, for each realization of the field φ ∈ Ω,

∣Xsin cos(φ) − 1∣ ≤ C

∣x∣d−1
and ∣Xcos cos(φ) − 1∣ ≤ C

∣x∣d−1
.

This result implies the L∞ (µβ)-estimates stated in (8.2).
There remains to prove the estimates corresponding to the variance and the expectation of the random

variable Xsin sin in (8.2). We first note that a computation similar to the one performed in (8.3) gives the
following L∞(µβ)-estimate: for each realization of the field φ ∈ Ω,

(8.5)
RRRRRRRRRRR
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
RRRRRRRRRRR
≤ C ∑

y∈Zd

1

∣y − x∣d−1

1

∣y∣d−1
≤ C

∣x∣d−2
.

By the estimate (8.5) and the Taylor expansion of the exponential, we obtain the bound
RRRRRRRRRRR
Xsin sin − 1 − ∑

q∈Q
z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

RRRRRRRRRRR

≤ C
⎛
⎝∑q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎞
⎠

2

≤ C

∣x∣2d−4
.

Since the dimension d is assumed to be larger than 3, we have the inequality 2d − 4 ≥ d − 1. We deduce that to
prove the estimates pertaining to the random variable Xsin sin in (8.2), it is sufficient to prove the inequality

(8.6) var

⎡⎢⎢⎢⎢⎣
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎤⎥⎥⎥⎥⎦
≤ C

∣x∣2d−2

and the expansion

(8.7) E
⎡⎢⎢⎢⎢⎣
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎤⎥⎥⎥⎥⎦
= c

∣x∣d−2
+O ( C

∣x∣d−1
) .

The estimate (8.6) involving the variance can be estimated by the Helffer-Sjöstrand representation formula
and the bounds on the Green’s matrix G stated in Proposition 3.17. We first note that, for each point y ∈ Zd,

(8.8) ∂y
⎛
⎝∑q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎞
⎠

= − ∑
q∈Q

2πz(β, q) sin (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq)) q(y).

From the identity (8.8), we deduce that to compute the variance (8.6), one needs to solve the Helffer-Sjöstrand
equation

(8.9) LW(y, φ) = − ∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇G, q)) sin (2π(∇Gx, q)) q(y).

The equation (8.9) can be solved explicitly by using the Green’s matrix associated with the Helffer-Sjöstrand
operator; we obtain the following formula for the codifferential of W

d∗W(y, φ) = − ∑
q∈Q

z(β, q) sin (2π(∇G,nq)) sin (2π(∇Gx, nq)) ∑
z∈suppnq

d∗yd∗zGsin(2π(φ,q)) (y, φ; z)nq(z).
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Using the estimate on the Helffer-Sjöstrand Green’s matrix proved in Proposition 3.17, and the fact that the
codifferential d∗ is a linear functional of the gradient, we deduce the estimate, for each point y ∈ Zd,

∥d∗W(y, ⋅)∥L∞(µβ) ≤ ∑
z∈Zd

∑
q∈Qz

e−c
√
β∥q∥1Cq

∣z∣d−1∣z − x∣d−1

1

∣y − z∣d−ε
(8.10)

≤ ∑
z∈Zd

C

∣z∣d−1∣z − x∣d−1

1

∣y − z∣d−ε
.

Using the definition of the map W, we apply the Helffer-Sjöstrand representation formula and deduce that

var

⎡⎢⎢⎢⎢⎣
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎤⎥⎥⎥⎥⎦

= 4π2 ∑
y∈Zd

⟨
⎛
⎝∑q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, q)nq(y))
⎞
⎠

d∗W(y, φ)⟩
µβ

.

Using the estimates (8.10) and a computation similar to the one performed in (8.3), we deduce that

var

⎡⎢⎢⎢⎢⎣
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎤⎥⎥⎥⎥⎦

(8.11)

≤ ∑
y∈Zd

∑
q∈Qy

e−c
√
β∥q∥1Cq

∣y∣d−1∣x − y∣d−1
∥d∗W(y, ⋅)∥L∞(µβ)

≤ C ∑
y,z∈Zd

1

∣y∣d−1∣x − y∣d−1
× 1

∣z∣d−1∣z − x∣d−1
× 1

∣y − z∣d−ε

≤ C

∣x∣2d−2
,

where we used the results stated in Appendix C in the last line. There only remains to prove the identity (8.7).
To this end, we use the ideas and notation presented in Section 4.5.2 and decompose the sum

∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))

= ∑
[q]∈Q/Zd

z(β, q) ∑
y∈Zd

cos (2π(φ, q(y + ⋅))) sin (2π(∇G,nq(y + ⋅))) sin (2π(∇Gx, nq(y + ⋅))) .

Taking the expectation, using the translation invariance of the measure µβ , we deduce that

(8.12) E
⎡⎢⎢⎢⎢⎣
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎤⎥⎥⎥⎥⎦

= ∑
[q]∈Q/Zd

z(β, q)E [cos (2π(φ, q))] ∑
y∈Zd

sin (2π(∇G(⋅ − y), nq)) sin (2π(∇Gx(⋅ − y), nq)) .

Fix an equivalence class [q] ∈ Q/Zd. By using a Taylor expansion of the sine and standard properties of the
discrete Green’s function G, we obtain the expansion

∑
y∈Zd

sin (2π(∇G(⋅ − y), nq)) sin (2π(∇Gx(⋅ − y), nq)) = 4π2 ∑
y∈Zd

∇G(y) ⋅ (nq) × ∇Gx(y) ⋅ (nq) +O (
Cq

∣x∣d−1
)

(8.13)

= 4π2
d

∑
i,j=1

(nq)i (nq)j ∑
y∈Zd

∇iG(y)∇jGx(y) +O (
Cq

∣x∣d−1
) .

Putting this estimate back into (8.12), we deduce that
(8.14)

E
⎡⎢⎢⎢⎢⎣
∑
q∈Q

z(β, q) cos (2π(φ, q)) sin (2π(∇G,nq)) sin (2π(∇Gx, nq))
⎤⎥⎥⎥⎥⎦
=

d

∑
i,j=1

cij ∑
y∈Zd

∇iG(y)∇jGx(y) +O ( C

∣x∣d−1
) .
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where the constants cij are defined by the formulae

cij = 4π2 ∑
[q]∈Q/Zd

z(β, q)E [cos (2π(φ, q))] (nq)i (nq)j .

The expansion (8.14) is not exactly (8.7). To complete the argument, we appeal to the symmetry invariance of

the model and claim that it implies the identities cij = 0 if i ≠ j and cii = cjj for each pair (i, j) ∈ {1, . . . , d}2
.

The proof follows from standard symmetry arguments and we omit it here. Once this result is established, the
expansion (8.7) is obtained from (8.14) thanks to an integration by parts and the properties of the discrete
Green’s function. �

8.2. Removing the contributions of the cosines. The goal of this section is to prove Lemma 4.3.

Proof of Lemma 4.3. We start from the Helffer-Sjöstrand representation formula stated in (4.13) and recalled
below

(8.15) cov [Xx, Y0] = ∑
y∈Zd

⟨(∂yXx)Y(y, ⋅)⟩µβ ,

where Y ∶ Zd ×Ω→ R(d
2
) is the solution of the Helffer-Sjöstrand equation, for each pair (y, φ) ∈ Zd ×Ω,

(8.16) LY(y, φ) = ∂yY0(φ).

Using the definition of the random variables Y0 and Xx stated in (4.4), we have the identities, for each y ∈ Zd,

(8.17) ∂yY0(φ) = −
⎛
⎝
Q0(y, φ) +

1

2
2π ∑

q∈Q
z (β, q) sin (2π(φ, q)) (cos (2π(∇G,nq)) − 1) q(y)

⎞
⎠
Y0(φ)

and

(8.18) ∂yXx(φ) = −
⎛
⎝
Qx(y, φ) + ∑

q∈Q

1

2
2πz (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1) q(y)

⎞
⎠
Xx(φ).

The objective of the proof is to remove the terms involving the cosine in the right sides of the identities (8.17)
and (8.18). The proof requires to use the following estimates established in (4.19) and (4.21): for each point
y ∈ Zd,
(8.19)

∥nQx(y, ⋅)∥L∞(µβ) ≤
C

∣y − x∣d−1
and

RRRRRRRRRRR
∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1)nq(y)
RRRRRRRRRRR
≤ C

∣y − x∣2d−2
,

as well as the estimates

(8.20) ∥nQ0(y, ⋅)∥L∞(µβ) ≤
C

∣y∣d−1
, and

RRRRRRRRRRR
∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇G,nq)) − 1)nq(y)
RRRRRRRRRRR
≤ C

∣y∣2d−2
.

We split the argument into three steps:

● In Step 1, we prove that the solution of the Helffer-Sjöstrand equation Y satisfies the upper bound, for
each y ∈ Zd,

(8.21) ∥d∗Y(y, ⋅)∥L2(µβ) ≤
C

∣y∣d−1−ε ;

● In Step 2, we prove that the covariance between the random variables Xx and Y0 satisfies the expansion

(8.22) cov [Xx, Y0] = ∑
y∈Zd

⟨XxQx(y, ⋅)Y(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) ;

● In Step 3, we use the symmetry of the Helffer-Sjöstrand operator L to complete the proof of Lemma 4.3.
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Step 1. We first express the function Y in terms of the Green function associated with the Helffer-Sjöstrand
operator L. From the equation (8.16), we deduce the formula for the codifferential of the map Y , for each pair
(y, φ) ∈ Zd ×Ω,

d∗Y(y, φ) = 2π ∑
y1∈Zd

∑
q∈Q

z(β, q) sin (2π(∇G,nq))d∗yd∗y1Gcos(2π(⋅,q))Y0
(y, φ; y1)nq(y1)

+ 2π ∑
y1∈Zd

∑
q∈Q

1

2
(cos (2π(∇G,nq)) − 1)d∗yd∗y1Gsin(2π(⋅,q))Y0

(y, φ; y1)nq(y1).

Using the estimate on the Helffer-Sjöstrand Green’s matrix proved in Proposition 3.17, that the random
variable Y0 belongs to the space L2 (µβ), and the Taylor expansions of the sine and cosine, we obtain the
inequality

∥d∗Y(y, ⋅)∥L2(µβ) ≤ ∑
y1∈Zd

C

∣y1∣d−1
∥d∗yd∗y1Gcos(2π(⋅,q))Y0

(y, φ; y1)∥L2(µβ)

+ ∑
y1∈Zd

C

∣y1∣2d−2
∥d∗yd∗y1Gsin 2π(⋅,q)Y0

(y, φ; y1)∥L2(µβ)

≤ ∑
y1∈Zd

C

∣y1∣d−1∣y − y1∣d−ε
+ C

∣y1∣2d−2∣y − y1∣d−ε

≤ C

∣y∣d−1−ε .

The proof of Step 1 is complete.

Step 2. By the Helffer-Sjöstrand formula (8.15), we have the identity

cov [Xx, Y0] = ∑
y∈Zd

⟨(∂yXx)Y(y, ⋅)⟩µβ

= ∑
y∈Zd

⟨Qx(y)XxY(y, ⋅)⟩µβ − π ⟨∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1)nq(y)Xxd∗Y(y, ⋅)⟩
µβ

.

(8.23)

The objective of this step is to prove that the term involving the cosine in the right side of (8.23) is of lower
order; specifically, we prove the estimate (8.24) below. The proof relies on the three following ingredients: the
Taylor expansion of the cosine, the L2 (µβ)-estimate ∥Xx∥L2(µβ) ≤ C, and the estimate (8.21) proved in Step 1.

We obtain
RRRRRRRRRRR

1

2
∑
q∈Q

z (β, q) (cos (2π(∇Gx, nq)) − 1)nq(y) ⟨sin (2π(φ, q))Xxd∗Y(y, ⋅)⟩µβ
RRRRRRRRRRR

≤ 1

2
∑
q∈Q

∣z (β, q) (cos (2π(∇Gx, nq)) − 1)nq(y)∣ ∥sin (2π(φ, q))Xx∥L2(µβ) ∥d
∗Y(y, ⋅)∥L2(µβ)

≤ C

∣y − x∣2d−2
⋅ 1

∣y∣d−1−ε .

Summing the inequality over all the points y ∈ Zd and using the results of Appendix C then shows

(8.24)

RRRRRRRRRRRRR
∑
y∈Zd

1

2
⟨∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇Gx, nq)) − 1)nq(y)Xxd∗Y(y, ⋅)⟩
µβ

RRRRRRRRRRRRR
≤ C

∣x∣d−1−ε .

Step 3. The conclusion. We use the main result (8.22) of Step 2 and the symmetry of the Helffer-Sjöstrand
operator to complete the proof of Lemma 4.3. By the expansion (8.22), we see that it is sufficient to prove the
estimate

(8.25) ∑
y∈Zd

⟨Qx(y, ⋅)XxV(y, ⋅)⟩µβ = ∑
y∈Zd

⟨Qx(y, ⋅)XxY(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) .
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By the symmetry of the Helffer-Sjöstrand operator, we can write

(8.26) ∑
y∈Zd

⟨Qx(y, ⋅)XxY(y, ⋅)⟩µβ = ∑
y∈Zd

⟨Xx (y, ⋅)∂yY0⟩µβ ,

where the mapping Xx ∶ Zd ×Ω→ R(d
2
) is the solution of the Helffer-Sjöstrand equation,

LXx = QxXx in Zd ×Ω.(8.27)

The objective of this step is thus to prove the following expansion

(8.28) ∑
y∈Zd

⟨Xx (y, ⋅)∂yY0⟩µβ = ∑
y∈Zd

⟨Xx (y, ⋅)Q0(y, ⋅)Y0⟩µβ +O ( C

∣x∣d−1−ε ) .

The proof is similar to the one written in Steps 1 and 2. With the same arguments as the ones developed in
Step 1, one obtains the following upper bound for the function d∗Xx: for each y ∈ Zd,

(8.29) ∥d∗Xx(y, ⋅)∥L2(µβ) ≤
C

∣y − x∣d−1−ε .

Using the same arguments as the ones developed in Step 2, we obtain the inequality

(8.30)

RRRRRRRRRRRR
∑
y∈Zd

∑
q∈Q

z (β, q) (cos (2π(∇G,nq)) − 1)nq(y, φ) ⟨d∗Xx(y, φ) sin (2π(φ, q))Y0(φ)⟩µβ

RRRRRRRRRRRR
≤ C

∣x∣d−1−ε .

Combining the inequalities (8.29) and (8.30) with the formula (8.17) implies the expansion (8.28). We then
use the symmetry of the Helffer-Sjöstrand operator a second time to obtain the identity

(8.31) ∑
y∈Zd

⟨Xx (y, ⋅)Q0(y, ⋅)Y0⟩µβ = ∑
y∈Zd

⟨Qx(y, ⋅)XxV (y, ⋅)⟩µβ ,

where the function V is defined as the solution of the Helffer-Sjöstrand equation (4.23). Combining the
identities (8.28), (8.26) and (8.31), we obtain the expansion (8.25). This completes the proof of Step 3 and of
Lemma 4.3. �

8.3. Decoupling the exponentials. The objective of this section is to remove the exponential terms Xx

and Y0 from the computation. We prove the decorrelation estimate stated in Lemma 4.4. The argument makes
use of the bounds on the Green’s matrix G obtained in Proposition 3.17 and on the Green’s matrix Gsec,f

associated with the second-order Helffer-Sjöstrand operator proved in Proposition 5.13. Before stating the
lemma, we record two estimates which are used in its proof:

● We recall the definition of the random variable Xx ∶ Zd ×Ω→ R(d
2
) defined in (8.27) as the solution of

the Helffer-Sjöstrand equation, for each (z, φ) ∈ Zd ×Ω, LXx(z, φ) = ∂zXx; by the inequality (8.29), it
satisfies the L2 (µβ)-estimates

(8.32) ∥Xx(z, ⋅)∥L2(µβ) ≤
C

∣z − x∣d−2−ε , and ∥d∗Xx(z, ⋅)∥L2(µβ) ≤
C

∣z − x∣d−1−ε .

● The function V defined in the statement of Lemma 4.3; by the estimate (4.33), it satisfies the estimate

(8.33) ∥d∗V(z, ⋅)∥L2(µβ) ≤
C

∣x∣d−1−ε .

Proof of Lemma 4.4. We recall the notation and results introduced in Remarks 4.5, 4.6 and 4.7 which will be
used in the proof. We start from the result of Lemma 4.3 which reads

cov [Xx, Y0] = ∑
y∈Zd

⟨XxQx(y, ⋅)V(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) ,

where V is the solution of the Helffer-Sjöstrand equation, for each (y, φ) ∈ Zd ×Ω,

(8.34) LV(y, φ) = Q0(y, φ)Y0(φ).

We split the argument into two steps:
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● In Step 1, we prove the decorrelation estimate

(8.35) ∑
y∈Zd

⟨XxQx(y, ⋅)V(y, ⋅)⟩µβ = ⟨Xx⟩µβ ∑
y∈Zd

⟨Qx(y, ⋅)V(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) .

Let us note that since the measure µβ is invariant under translations, the value ⟨Xx⟩µβ does not

depend on the point x.
● In Step 2, we prove the expansion

(8.36) ∑
y∈Zd

⟨Qx(y, ⋅)V(y, ⋅)⟩µβ = ⟨Y0⟩µβ ∑
y∈Zd

⟨Qx(y, ⋅)U(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) .

Lemma 4.4 is a consequence of (8.35) and (8.36).

Step 1. The expansion (8.35) can be rewritten in terms of the covariance between the random variables Xx

and Qx(y)V(y, ⋅); it is equivalent to the expansion

(8.37) ∑
y∈Zd

cov [Xx,Qx(y, ⋅)V(y, ⋅)] = O ( C

∣x∣d−1−ε ) .

To prove the expansion (8.37), we apply the Helffer-Sjöstrand representation formula which reads, for each
point y ∈ Zd,

(8.38) cov [Xx,Qx(y, ⋅)V(y, ⋅)] = ∑
z∈Zd

⟨Xx(z, ⋅)∂z (Qx(y, ⋅)V(y, ⋅))⟩µβ .

Summing over the points y ∈ Zd and performing an integration by parts in the variable y, we deduce that

∑
y∈Zd

cov [Xx,Qx(y, ⋅)V(y, ⋅)] = ∑
y,z∈Zd

⟨Xx(z, ⋅)∂z (Qx(y, ⋅)V(y, ⋅))⟩µβ

= ∑
y,z∈Zd

⟨Xx(z, ⋅)∂z (nQx(y, ⋅)d∗V(y, ⋅))⟩µβ .

We split the proof into two substeps:

● In Substep 1.1, we compute the value of ∂z (nQx(y, ⋅)d∗V(y, ⋅)). We prove the identity (8.50) and the
inequalities (8.51);

● In Substep 1.2, we deduce the expansion (8.35) from Substep 1.1.

Substep 1.1. We first expand the derivative

(8.39) ∂z (nQx(y, ⋅)d∗V(y, ⋅)) = (∂znQx(y, ⋅))d∗V(y, ⋅)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(8.39)−(i)

+nQx(y, ⋅)∂zd∗V(y, ⋅)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(8.39)−(ii)

.

The term (8.39)-(i) can be computed explicitly from the definition of the charge nQx and the identity q = dnq.
We obtain

(∂znQx(y, φ))d∗V(y, φ) =
⎛
⎝∑q∈Q

4π2z(β, q) (sin (2π(φ, q)) sin (2π(∇Gx, nq)))nq(y) ⊗ q(z)
⎞
⎠

d∗V(y, φ)

(8.40)

= dz
⎛
⎝
⎛
⎝∑q∈Q

4π2z(β, q) (sin (2π(φ, q)) sin (2π(∇Gx, nq)))nq(y) ⊗ nq(z)
⎞
⎠

d∗V(y, φ)
⎞
⎠
.

We then estimate the term in the right side of (8.40). To this end, we note that the sum over the charges q ∈ Q
can be restricted to the set of charges Qy,z and use the two inequalities: first, ∑q∈Qy,z e

−c
√
β∥q∥1 ≤ e−c

√
β∣y−z∣

established in (A.20) and, for each charge q ∈ Qy, ∣sin (2π(∇Gx, nq))∣ ≤ Cq
∣x−y∣d−1 . We deduce that

RRRRRRRRRRR
∑
q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇Gx, nq))nq(y) ⊗ nq(z)
RRRRRRRRRRR
≤ ∑
q∈Qx,y

e−c
√
β∥q∥1 Cq

∣y − x∣d−1
(8.41)

≤ Ce
−c

√
β∣y−z∣

∣y − x∣d−1
.
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Combining the estimate (8.41) with the inequality (8.33) on the codifferential of the function V , we obtain, for
each pair of points z, y ∈ Zd,

XXXXXXXXXXX

⎛
⎝∑q∈Q

z(β, q) (sin (2π(⋅, q)) sin (2π(∇Gx, nq)))nq(y) ⊗ nq(z)
⎞
⎠

d∗V(y, ⋅)
XXXXXXXXXXXL2(µβ)

≤ Ce−c
√
β∣y−z∣

∣y − x∣d−1 × ∣y∣d−1−ε .

We now treat the term (8.39)-(ii). To estimate the L2 (µβ)-norm of the map ∂zd
∗V(y, φ), we start from the

definition of the map V as the solution of the Helffer-Sjöstrand equation (8.34) and apply the derivative ∂z
to both sides of the identity (8.34). Following the arguments developed at the beginning of Section 5.4, we
obtain that the map Vsec ∶ (y, z, φ) → ∂zV(y, φ) is the solution of the second-order Helffer-Sjöstrand equation

LsecVsec(y, z, φ) =
⎛
⎝∑q∈Q

4π2z(β, q) (sin (2π(φ, q)) sin (2π(∇G,nq))) q(y) ⊗ q(z)
⎞
⎠
Y0

(8.42)

+ ∑
q∈Q

2πz (β, q) sin (2π (φ, q)) (d∗V, nq) q(y) ⊗ q(z)

−Q0(y, φ) ⊗
⎛
⎝
Q0(z, φ) +

1

2
2π ∑

q∈Q
z (β, q) sin (2π(φ, q)) (cos (2π(∇G,nq)) − 1) q(z)

⎞
⎠
Y0.

We decompose the function Vsec into three functions, Vsec,1, Vsec,2 and Vsec,3 according to the three terms in
the right side of (8.42), i.e.,
(8.43)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LsecVsec,1(y, z, φ) =
⎛
⎝∑q∈Q

z(β, q) sin (2π(φ, q)) sin (2π(∇G,nq)) q(y) ⊗ q(z)
⎞
⎠
Y0,

LsecVsec,2(y, z, φ) = ∑
q∈Q

z (β, q) sin (2π (φ, q)) (d∗V, nq) q(y) ⊗ q(z),

LsecVsec,3(y, z, φ) = −Q0(y, φ) ⊗
⎛
⎝
Q0(z, φ) +

1

2
∑
q∈Q

z (β, q) sin (2π(φ, q)) (cos (2π(∇G,nq)) − 1) q(z)
⎞
⎠
Y0.

We then estimate the three terms Vsec,1, Vsec,2 and Vsec,3 separately. The first two terms can be estimated by
using a strategy similar to the one used in Step 1 of the proof of Lemma 4.3: we use the equations (8.43) to
obtain explicit formulae in terms of the Green’s matrix Gsec associated with the second-order Helffer-Sjöstrand
equation, and use Proposition 5.13 to estimate them. We omit the technical details which can be found in the
long version of this article ([36, Chapter 8, Lemma 3.1]). The results are collected in (8.51) below.

The estimate for the term Vsec,3 is more involved. Using a similar strategy with additional technical

details: we prove that there exists a map Wsec,3 ∶ Zd × Zd ×Ω → Rd×(
d
2
) which satisfies the identity, for each

(y, z, φ) ∈ Zd ×Zd ×Ω,

(8.44) Vsec,3(y, z, φ) = dzWsec,3(y, z, φ),

as well as the upper bounds

(8.45) ∥Wsec,3(y, z, ⋅)∥L2(µβ) ≤
C

∣y∣d− 3
2−ε × ∣z∣d− 3

2−ε
and ∥d∗yWsec,3(y, z, ⋅)∥L2(µβ)

≤ C

∣y∣d−1−ε × ∣z∣d−1−ε .

The strategy to prove the identity (8.44) and the estimate (8.45) is the following. We use the dynamic
formulation to solve the Helffer-Sjöstrand equation (8.43), and obtain the identity

(8.46) Vder,3(y, z, φ) = ∑
y1,z1∈Zd

∫
∞

0
Eφ [−Y0(φt)Pφ⋅der(t, y1, z1; y, z)Q0(y1, φt) ⊗Q0(z1, φt)]

−π ∑
y1,z1∈Zd

∑
q∈Q

z (β, q) (cos (2π(∇G,nq)) − 1)∫
∞

0
Eφ [sin (2π(φt, q))Y0(φt)Pφ⋅der(t, y1, z1; y, z)Q0(y1, φt) ⊗ q(z1)] ,
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where, given a trajectory (φt)t≥0 of the Langevin dynamics, the map Pφ⋅der(⋅, ⋅, ⋅ ; y, z) ∶ (0,∞) ×Zd ×Zd → R(d
2
)4

denotes the solution of the parabolic system of equations,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tP
φ⋅
der (⋅, ⋅, ⋅ ; y, z) + (Lφtspat,x + L

φt
spat,y)P

φ⋅
der (⋅, ⋅, ⋅ ; y, z) = 0 in (0,∞) ×Zd ×Zd,

Pφ⋅der (0, ⋅, ⋅ ; y, z) = δ(y,z) in Zd ×Zd.

Let us observe that, thanks to the specific structures of the second-order Helffer-Sjöstrand equation (see (5.32))
and of the right-hand side of (8.46), one can factorise this term and obtain

Vder,3(y, z, φ) = − ∑
q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1)) sin (2π(∇G,nq2))

(8.47)

× ∫
∞

0
Eφ [cos (2π(φt, q1)) cos (2π(φt, q2))Y0(φt)(q1, P

φ⋅(t, ⋅; y)) ⊗ (q2, P
φ⋅(t, ⋅; z))]dt

+ π ∑
q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1)) (cos (2π(∇G,nq2)) − 1)

× ∫
∞

0
Eφ [cos (2π(φt, q1)) cos (2π(φt, q2))Y0(φt)(q1, P

φ⋅(t, ⋅; y)) ⊗ (q2, P
φ⋅(t, ⋅; z))]dt.

The strategy is then to use the symmetry of the spatial operator Lφtspat, to observe that, for any charge q ∈ Q
and any time T > 0, if we let RT,q ∶ (0, T ) × Zd → R(d

2
) be the solution of the parabolic system of equations

(note that we reverse the time in the dynamic φt and replaced it by φT−t)

⎧⎪⎪⎨⎪⎪⎩

∂tRT,q − LφT−tspat RT,q = 0 in (0, T ) ×Zd,

RT,q (0, ⋅) = q in Zd,

then we have RT,q(T, y) = (q,Pφ⋅(T, ⋅; y)). We may then consider the solution ST,q ∶ (0, T ) × Zd → Rd of the
parabolic system of equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tST,q − ( 1

2β
∆ − 1

2β
∑
n≥1

1

β
n
2

(−∆)n+1)ST,q = − ∑
q∈Q

z (β, q) cos (2π (φT−⋅, q)) (∇qRT,q)nq in (0,∞) ×Zd,

Sφ⋅T,q (0, ⋅) = nq in Zd,

and define Qφ⋅q (T, y) ∶= ST,q(T, y). Using the estimate on the heat-kernel in dynamic environment stated in

Proposition 3.10 and the Duhamel principle, one can prove the following results, for each point y ∈ Zd, and
each time t ≥ 1,

(8.48) Pφ⋅q (t, y) = dQφ⋅q (t, y) and ∣Qφ⋅q (t, y)∣ ≤ CqtεΦC (t, y − y1) ,

where y1 is a point which lies in the support of the charge nq. We then define Wder,3 by the formula

Wder,3(y, z, φ) = − ∑
q1,q2∈Q

z (β, q1) z (β, q2) sin (2π(∇G,nq1)) sin (2π(∇G,nq2))(8.49)

× ∫
∞

0
Eφ [cos (2π(φt, q1)) cos (2π(φt, q2))Y0(φt)(q1, P

φ⋅(t, y)) ⊗Qφ⋅q2(t, z)]dt

+ 1

2
2π ∑

q1,q2∈Q
z (β, q1) z (β, q2) sin (2π(∇G,nq1)) (cos (2π(∇G,nq2)) − 1)

× ∫
∞

0
Eφ [cos (2π(φt, q1)) cos (2π(φt, q2))Y0(φt)(q1, P

φ⋅(t, y)) ⊗Qφ⋅q2(t, z)]dt.

We can verify the equality (8.44) by an explicit (and straightforward) computation making use of the
identities (8.47) and (8.48). The bounds (8.45) can be verified by using the explicit formula (8.49), the bound
on the heat kernel in the dynamic environment (Proposition 3.10), and the bounds on the function Qq stated
in (8.48). We omit the details which can be found in the long version of this article ([36, Chapter 8, Lemma
3.1]).
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Conclusion of Substep 1.1. We have the identity, for each pair of points (y, z) ∈ Zd,
∂z (nQx(y, ⋅)d∗V(y, ⋅)) = (∂znQx(y, ⋅))d∗V(y, ⋅) + nQx(y, ⋅)∂zd∗V(y, ⋅)(8.50)

= (∂znQx(y, ⋅))d∗V(y, ⋅) + nQx(y, ⋅)d∗yVsec,1(y, z, ⋅)
+ nQx(y, ⋅)d∗yVsec,2(y, z, ⋅) + dz (nQx(y, ⋅)d∗yWsec,3(y, z, ⋅)) ,

with the estimates

(8.51)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥(∂znQx(y, ⋅))d∗V(y, ⋅)∥L2(µβ) ≤
Ce−c

√
β∣y−z∣

∣y − x∣d−1 × ∣y∣d−1−ε ,

∥nQx(y, ⋅)d∗yVsec,1(y, z, ⋅)∥L2(µβ)
≤ C

∣x − y∣d−1−ε × ∣z − y∣d+1−ε ×max (∣y∣ , ∣z∣)d−1−ε ,

∥nQx(y, ⋅)d∗yVsec,2(y, z, ⋅)∥L2(µβ)
≤ C

∣x − y∣d−1−ε × ∣z − y∣d+1−ε ×max (∣y∣ , ∣z∣)d−1−ε ,

∥nQx(y, ⋅)d∗yWsec,3(y, z, ⋅)∥L2(µβ)
≤ C

∣y − x∣d−1∣y∣d−1−ε∣z∣d−1−ε .

Substep 1.2. We prove the covariance estimate (8.37). By the Helffer-Sjöstrand representation formula we
have, for each point y ∈ Zd,
(8.52) cov [Xx,Qx(y, ⋅)V(y, ⋅)] = ∑

z∈Zd
⟨Xx(z, ⋅)∂z (Qx(y, ⋅)V(y, ⋅))⟩µβ .

Using the formula (8.52), we write

∑
y∈Zd

cov [Xx,Qx(y, ⋅)V(y, ⋅)] = ∑
y,z∈Zd

⟨Xx(z, ⋅)∂z (Qx(y, ⋅)V(y, ⋅))⟩µβ(8.53)

= ∑
y,z∈Zd

⟨Xx(z, ⋅)∂z (nQx(y, ⋅)d∗V(y, ⋅))⟩µβ .

We combine the identities (8.50) and (8.53), and obtain

∑
y∈Zd

cov [Xx,Qx(y, ⋅)V(y, ⋅)]

= ∑
y,z∈Zd

⟨Xx(z, ⋅) (∂znQx(y))d∗V(y, ⋅)⟩µβ + ∑
y,z∈Zd

⟨Xx(z, ⋅)nQx(y)d∗yVsec,1(y, z, ⋅)⟩µβ

+ ∑
y,z∈Zd

⟨Xx(z, ⋅)nQx(y)d∗yVsec,2(y, z, ⋅)⟩µβ + ∑
y,z∈Zd

⟨d∗Xx(z, ⋅) (nQx(y)d∗yWsec,3(y, z, ⋅))⟩µβ .

We use the estimates (8.32) on the function Xx and the estimates (8.51). We obtain
RRRRRRRRRRRR
∑
y∈Zd

cov [Xx,Qx(y, ⋅)V(y, ⋅)]
RRRRRRRRRRRR
≤ ∑
y,z∈Zd

C

∣z − x∣d−2−ε
e−c

√
β∣y−z∣

∣y − x∣d−1 × ∣y∣d−1−ε(8.54)

+ ∑
y,z∈Zd

C

∣z − x∣d−2−ε
1

∣x − y∣d−1−ε × ∣z − y∣d+1−ε ×max (∣y∣ , ∣z∣)d−1−ε

+ ∑
y,z∈Zd

C

∣z − x∣d−1−ε
1

∣y − x∣d−1∣y∣d−1−ε∣z∣d−1−ε .

The term in the right side can be estimated by an explicit computation. We skip the details here and obtain
the expansion (8.37). Step 1 is complete.

Step 2. To complete the proof of Lemma 4.4, there remains to prove the expansion (8.36). The strategy of
the proof relies on the symmetry of the Helffer-Sjöstrand operator L; if we let Ux the solution of the equation
LUx = Qx in Zd ×Ω, then we have the identities

∑
y∈Zd

⟨Qx(y, ⋅)V(y, ⋅)⟩µβ = ∑
y∈Zd

⟨Ux (y, ⋅)Q0(y, ⋅)Y0⟩µβ

and

∑
y∈Zd

⟨Qx(y, ⋅)U(y, ⋅)⟩µβ = ∑
y∈Zd

⟨Ux(y, ⋅)Q0(y, ⋅)⟩µβ .
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Using these identities, we see that the expansion (8.36) is equivalent to

∑
y∈Zd

⟨Ux (y, ⋅)Q0(y, ⋅)Y0⟩µβ = ⟨Y0⟩µβ ∑
y∈Zd

⟨Ux (y, ⋅)Q0(y, ⋅)⟩µβ +O ( C

∣x∣d−1−ε ) .

The proof of this result is similar to the proof written in Step 1, and is in fact simpler since we do not have to
treat the term Vsec,3 in (8.43); we omit the details. �

8.4. Using the symmetry and rotation invariance of the dual Villain model. This section is devoted
to the proof of some properties of the discrete convolution of the discrete Green’s function on the lattice Zd.
We recall the definition of the group H of the lattice-preserving maps introduced in Section 2.1.

Lemma 8.1. Fix four integers j, j1, k, k1 ∈ {1, . . . , d} and let F ∶ Zd → R be the function

Fj,k,j1,k1(x) ∶= ∑
y,κ∈Zd

∇jG(y)∇kG(x − y − κ)∇j1∇k1G(κ).

Then, if we let Jj,k,j1,k1 ∶ Rd ∖ {0} → R be the (2 − d)-homogeneous map whose Fourier transform is given by

the formula Ĵi,j,k,l(ξ) = ξiξjξkξl ∣ξ∣−6
. Then for any ε > 0, one has the identity

Fj,k,j1,k1(x) = Jj,k,j1,k1(x) +O ( 1

∣x∣d−1−ε ) .

A direct consequence of the previous lemma is the corollary stated below.

Corollary 8.2. Fix two integers j, j1 ∈ {1, . . . , d} and let Fj,j1 ∶ Zd → R be the map

Fj,j1(x) = ∑
y∈Zd

∇jG(y)∇j1G(x − y),

then, for any ε > 0, one has the identity

Fj,j1(x) = Jj,j1(x) +O ( 1

∣x∣d−1−ε ) ,

where the map Jj,j1 is (2−d)-homogeneous and its Fourier transform is given by the formula Ĵi,j(ξ) = ξiξj ∣ξ∣−4
.

The proofs of this lemma and this corollary follow standard arguments; we refer to the long version of this
article ([36, Chapter 8, Section 4]) for the details.

The following proposition is used in the proof of Theorem 1. It asserts that if a linear combination of the
maps Fi,j,k,l and Fi,j , with a specific structure given by the problem considered in this article, is invariant
under the group H lattice preserving maps, then it must satisfy the expansion given by (8.56).

Proposition 8.3. Assume that there exist coefficients (cij)1≤i,j≤d and (Kij)1≤i,j≤d, an exponent α > 0 and a

map U which is invariant under the group H of the lattice-preserving maps such that

(8.55) U(x) =
d

∑
i,j,k,l=1

cijcklFi,j,k,l(x) +
d

∑
i,j=1

KijFi,j(x) +O ( C

∣x∣d−2+α ) ,

then there exists a constant c ∈ R such that

(8.56) U(x) = c

∣x∣d−2
+O ( C

∣x∣d−2+α ) .

Proof. Applying Lemma 8.1 and Corollary 8.2, the expansion (8.55) can be rewritten

U(x) =
d

∑
i,j,k,l=1

cijcklJi,j,k,l(x) +
d

∑
i,j=1

KijJi,j(x) +O ( C

∣x∣d−2+α ) .

Using that the maps Ji,j,k,l and Ji,j are (2 − d)-homogeneous, we see that the assumption that U is invariant

under the lattice-preserving maps implies that the same property holds for the function ∑di,j,k,l=1 cijcklJi,j,k,l +
∑di,j=1KijJi,j : for each h ∈H and each x ∈ Zd ∖ {0}, one has

(8.57)
d

∑
i,j,k,l=1

cijcklJi,j,k,l(h(x)) +
d

∑
i,j=1

KijJi,j(h(x)) =
d

∑
i,j,k,l=1

cijcklJi,j,k,l(x) +
d

∑
i,j=1

KijJi,j(x).
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Using the homogeneity of the maps Ji,j,k,l and Ji,j , the result can be extended to each point of Rd ∖ {0}. Let
us denote by P the homogeneous polynomial of degree 4

(8.58) P (ξ) =
⎛
⎝

d

∑
i,j=1

cijξiξj
⎞
⎠

2

+ ∣ξ∣2
d

∑
i,j=1

Kijξiξj ,

so that the Fourier transform of the map ∑di,j,k,l=1 cijcklJi,j,k,l + ∑
d
i,j=1KijJi,j is equal to the function ξ ↦

P (ξ) ∣ξ∣−6
.

Taking the Fourier transform on both sides of the identity (8.57), we obtain the identity, for any ξ ∈ Rd,
and any h ∈H,

(8.59) P (h (ξ)) = P (ξ) .
Using the definition (8.58), the property (8.59) and an explicit computation which we omit here, we prove
that there exists a coefficient a ∈ R such that

(8.60) P (ξ) = a(
d

∑
i=1

ξ2
i )

2

= a ∣ξ∣4 .

The equality (8.60) implies that the Fourier transform of the map ∑di,j,k,l=1 cijcklJi,j,k,l +∑
d
i,j=1KijJi,j is equal

to a∣ξ∣−2, which implies, by taking the inverse Fourier transform, that there exists a constant c such that, for
any x ∈ Rd ∖ {0},

(8.61)
d

∑
i,j,k,l=1

cijcklJi,j,k,l(x) +
d

∑
i,j=1

KijJi,j(x) =
c

∣x∣d−2
.

Combining the identity (8.61) with the expansion (8.55), we have obtained

U(x) = c

∣x∣d−2
+O ( C

∣x∣d−2+α ) .

The proof of Proposition 8.3 is complete. �

8.5. Treating the error term Eq1,q2 . This section is devoted to the treatment the error term Eq1,q2 used in
the proof of Theorem 1.

Proposition 8.4. Fix two exponents γ, ε ∈ (0,1] such that ε ≤ γ
4(d−2) , and two charges q1, q2 ∈ Q. Let

Eq1,q2 ∶ Zd → R be a function which satisfies the pointwise and L1-estimates, for each point κ ∈ Zd and each
radius R ≥ 1,

(8.62) ∣Eq1,q2(κ)∣ ≤
C

∣κ∣d−ε
and ∑

κ∈B2R∖BR
∣Eq1,q2 (κ)∣ ≤ CR−γ .

Then, the constant Kq1,q2 ∶= 4π2∑κ∈Zd Eq1,q2 (κ) is well-defined in the sense that the sum converges absolutely,
and one has the expansion

(8.63) 4π2 ∑
z2,κ∈Zd

∇G(z2) ⋅ (nq2)∇Gx(z2 + κ) ⋅ (nq1)Eq1,q2(κ)

=Kq1,q2 ∑
z2∈Zd

∇G(z2) ⋅ (nq2)∇G(z2 − x) ⋅ (nq1) +O
⎛
⎝

Cq1,q2

∣x∣d−2+ γ
4(d−2)

⎞
⎠
.

Proof. The proof of this lemma relies on (elementary) considerations about the discrete Green’s function, we
refer to the long version of this article ([36, Chapter 8, Section 5]) for the details. �
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Appendix A. List of notation and preliminary results

A.1. Notation and assumptions.

A.1.1. General notation and assumptions. We work on the Euclidean lattice Zd in dimension d ≥ 3. We denote
by ∣⋅∣ the standard Euclidean norm on the lattice Zd. We say that two points x, y ∈ Zd are neighbors, and
denote it by x ∼ y, if ∣x − y∣ = 1. We denote by e1, . . . , ek the canonical basis of Rd.

Given a subset U ⊆ Zd, we define its interior U○ and its boundary ∂U by the formulae

U○ ∶= {x ∈ U ∶ x ∼ y Ô⇒ y ∈ U} and ∂U ∶= U ∖U○.

If the subset U ⊆ Zd is finite, we denote by ∣U ∣ its cardinality and refer to this quantity as the volume of U .
We denote by diamU the diameter of U defined by the formula diamU ∶= supx,y∈U ∣x− y∣. Given a point x ∈ Zd
and a radius r > 0, we denote by B(x, r) the discrete euclidean ball of center x and radius r. We frequently
use the notation Br to mean B(0, r). We also define the annulus AR ∶= B2R ∖BR.

A discrete cube ◻ of Zd is a subset of the form

(A.1) ◻ ∶= x + [−N,N]d ∩Zd with x ∈ Zd and N ∈ N.
We refer to the point x as the center of the cube ◻, and to the integer 2N + 1 as its length. We denote by

◻L ∶= [−N,N]d ∩Zd. Given a parameter r > 0, we use the nonstandard convention of denoting by r◻ the cube

r◻ ∶= x + [−rN, rN]d ∩Zd.

If ◻ is the cube given by (A.1), then we define the trimmed cube ◻− by the formula

(A.2) ◻− ∶= x + (−N
2
+

√
N

10
,
N

2
−

√
N

10
)
d

∩Zd.

Given three real numbers X,Y ∈ R and κ ∈ [0,∞), we write

X = Y +O(κ) if and only if ∣X − Y ∣ ≤ κ.

For each integer i ∈ {1, . . . , d}, we denote by hi the reflection of the lattice Zd with respect to the hyperplane
{z ∈ Zd ∶ zi = 0}, i.e.,

hi ∶=
⎧⎪⎪⎨⎪⎪⎩

Zd → Zd

(z1, . . . , zd) ↦ (z1, . . . ,−zi, . . . , zd).
For each pair of integers i, j ∈ {1, . . . , d} with i < j, we denote by hij the map

hij ∶=
⎧⎪⎪⎨⎪⎪⎩

Zd → Zd

(z1, . . . , zd) ↦ (z1, . . . , zj , . . . , zi, . . . , zd).

We define H the group of lattice preserving transformation to be the group of linear maps generated by the
collections of functions (hi)1≤i≤d and (hij)1≤i<j≤d with respect to the composition law.

We frequently consider functions defined from Zd and valued in R of the form x → ∣x∣−k. We implicitly
extend these functions at the point x = 0 by the value 1 so that they are defined on the entire lattice Zd.

A.1.2. Notation for vector-valued functions. For each integer k ∈ N, we let F (Zd,Rk) be the set of functions

defined on Zd and taking values in Rk. Given a function g ∈ F (Zd,Rk), we denote by g1, . . . , gk its components

on the canonical basis of Rk and write g = (g1, . . . , gk). We define the support of the function g to be the set

supp g ∶= {x ∈ Zd ∶ g(x) ≠ 0} .

For each integer i ∈ {1, . . . , d}, we define its discrete i-th derivative ∇ig ∶ Zd → Rk by the formula, for each
x ∈ Zd,

∇ig(x) ∶= g(x + ei) − g(x),
and its gradient ∇g ∶ Zd → Rd×k by the formula

∇g(x) = (∇ig(x))1≤i≤d = (∇igj(x))1≤i≤d,1≤j≤k .

We denote by ∇∗
i the adjoint gradient defined by the formula ∇∗

i g(x) = g(x−ei)−g(x) and the adjoint gradient

∇∗g(x) = (∇∗
i g(x))1≤i≤d = (∇∗

i gj(x))1≤i≤d,1≤j≤k .
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We define similarly the divergence, for any function g ∶ Zd → Rd,

∇ ⋅ g(x) = −
d

∑
i=1

∇∗
i g(x).

We extend this definition to a more general class of vector-valued functions as follows: For an integer k ∈ N,
and a function g = (gij)1≤i≤d,1≤j≤k ∶ Zd → Rd×k, we define ∇ ⋅ g ∶ Zd → Rk by the identity

∇ ⋅ g(x) = (
d

∑
i=1

gi,1(x) − gi,1(x − ei), . . . ,
d

∑
i=1

gi,k(x) − gi,k(x − ei)) .

The Laplacian is then defined by the identity ∆ = ∇ ⋅ ∇ and is equivalently given by the explicit formula: for
any g ∶ Zd → Rk,

(A.3) ∆g(x) = ∑
y∼x

(g(y) − g(x)) .

We will consider higher order derivatives as follows: For each integer n ∈ N, we denote by ∇ng ∶ Zd → Rnd×k as
follows

∇ng(x) ∶= (∇i1⋯∇ing(x))1≤i1,...,in≤d .

We will also denote by ∆n = ∆ ○ . . . ○∆ the Laplacian operator iterated n-times. We note that these discrete
operators have range n and 2n respectively, i.e., given a point x ∈ Zd and a function u ∶ Zd → Rk one can
compute the value of ∇nu(x) (resp. ∆nu(x)) by knowing only the values of u inside the ball B(x,n) (resp.
B(x,2n)).

For each function g ∶ Zd ×Zd → Rk, we denote by ∇x the discrete gradient with respect to the first variable
and by and ∇y the discrete gradient with respect to the second variable. Formally, for each point (x, y) ∈ Zd×Zd,
we write

∇xg(x, y) = (gj(x + ei, y) − gj(x, y))1≤i≤d,1≤j≤k and ∇yg(x, y) = (gj(x, y + ei) − gj(x, y))1≤i≤d,1≤j≤k .

We similarly define the i-th derivatives ∇i,x and ∇i,y and the Laplacians ∆x and ∆y, and the higher-order
derivatives ∇ni,x and ∇ni,y with respect to the first and second variables.

Given a vector p ∈ Rd×k, we write p = (p1, . . . , pk) where the components p1, . . . , pk belong to the space Rd.
We denote by lp the affine function defined by the formula

(A.4) lp ∶=
⎧⎪⎪⎨⎪⎪⎩

Zd → Rk,
x↦ (p1 ⋅ x, . . . , pk ⋅ x) .

This notation will be frequently used in the case k = (d
2
). For i, j ∈ {1, . . . , d} × {1, . . . , (d

2
)}, we will use the

notation lij for the affine functions

lij ∶=
⎧⎪⎪⎨⎪⎪⎩

Rd → R(d
2
),

x↦ (0, . . . ,0, x ⋅ ei,0, . . . ,0) ,

where the term x ⋅ ei appears in the j-th position.

A.1.3. Notation for matrix-valued functions. A tool frequently used in this article is the notion of fundamental
solution for system of elliptic equations (and in particular for the Helffer-Sjöstrand equation), which requires to
introduce matrix-valued function. Given an pair of integers k, l ∈ N, we may identify the vector space Rk×l with
the space of (k × l)-matrices with real coefficients. Given a map F ∶ Zd ×Zd → Rk×l, we denote its components
by (Fij)1≤i≤k,1≤j≤l. For each integer i ∈ {1, . . . , k}, we denote by Fi⋅ the map

Fi⋅ ∶
⎧⎪⎪⎨⎪⎪⎩

Zd ×Zd → Rl,
(x, y) ↦ (Fij(x, y))1≤j≤l .

We similarly define the map F⋅j ∶ Zd ×Zd → Rk for each integer j ∈ {1, . . . , l}. As in Section A.1.2, we define the

gradients ∇xF ∶ Zd ×Zd → R(d×k)×l and ∇yF ∶ Zd ×Zd → Rk×(d×l) with respect to the first and second variables.
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A.1.4. Scalar and matrix product. We present in this section an index of the intrinsic scalar products used in
the article.

Given two functions f, g ∶ Zd → Rk and a point x ∈ Zd, we will use the notation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x)g(x) =
k

∑
i=1

fi(x)gi(x)

∇f(x)∇g(x) =
d

∑
i=1

k

∑
j=1

∇ifj(x)∇igj(x)

∇f(x)g(x) =
⎛
⎝

k

∑
j=1

∇ifj(x)gj(x)
⎞
⎠

1≤i≤d

.

Given a matrix-valued function F ∶ Zd → Rk×l, two functions f ∶ Zd → Rk and g ∶ Zd → Rl, and x, y ∈ Zd, we
denote by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x, y)f(x) = (
k

∑
i=1

Fij(x, y)fi(x))
1≤j≤l

F (x, y)g(y) =
⎛
⎝

l

∑
j=1

Fij(x, y)gj(y)
⎞
⎠

1≤i≤k

f(x)F (x, y)g(y) =
k

∑
i=1

l

∑
j=1

Fij(x, y)fi(x)gj(y).

Similarly, for f ∶ Zd → Rd×k and g ∶ Zd → Rd×l, we write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xF (x, y)f(x) =
⎛
⎝

d

∑
i1=1

k

∑
i=1

∇x,i1Fij(x, y)fi1i(x)
⎞
⎠

1≤j≤l

∇yF (x, y)g(y) =
⎛
⎝

d

∑
j1=1

l

∑
j=1

∇y,j1Fij(x, y)gj1j(y)
⎞
⎠

1≤i≤k

f(x)∇x∇yF (x, y)g(y) =
d

∑
i1=1

d

∑
j1=1

k

∑
i=1

l

∑
j=1

∇x,i1∇y,j1Fij(x, y)fi1i(x)gj1j(y).

As it will be useful when dealing with the second-order Helffer-Sjöstrand equation, we extend these definitions
to functions defined on Z2d and Z2d ×Z2d (see also Section A.2.2).

Given f ∶ Zd → Rk and h ∶ Zd → Rl, we denote by f ⊗ g ∶ Zd ×Zd → Rk×l the tensor product between the two
functions f and g; it is defined by the formula, for each x ∈ Zd,

(A.5) f ⊗ g(x) ∶= (fi(x)gj(x))1≤i≤k,1≤j≤l .

This notation allows to expand gradients of products of functions: for each function u ∶ Zd → R, one has

(A.6) ∇(ug)(x) = ∇u⊗ g(x) + u(x)∇g(x).

For x, y ∈ Zd, we will also use the notation

f(x) ⊗ g(y) ∶= (fi(x)gj(y))1≤i≤k,1≤j≤l .

A.1.5. Norms and functional spaces. We define the L2-scalar product (⋅, ⋅) according to the formula

(A.7) (f, g) = ∑
x∈Zd

f(x)g(x),

We restrict this scalar product to a set U ⊆ Zd and define, for any pair of functions f, g ∶ U → Rk,

(A.8) (f, g)U ∶= ∑
x∈U

f(x)g(x).

Given a bounded subset U ⊆ Zd, we define the average of g over the set U by the formula

(g)U ∶= 1

∣U ∣ ∑x∈U
g(x) ∈ Rk.
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For each subset U ⊆ Zd, we define the L∞ (U)-norm

∥g∥L∞(U) ∶= sup
x∈U

∣g(x)∣ .

where the notation ∣ ⋅ ∣ denotes the Euclidean norm on Rk. Given a bounded subset U ⊆ Zd, we denote by
Lp(U) the normalized norms

∥g∥Lp(U) ∶= ( 1

∣U ∣ ∑x∈Zd
∣g(x)∣p)

1
p

.

We introduce the normalized Sobolev norms H1(U) and H−1(U) by the formulae

∥g∥H1(U) ∶=
1

(diamU)
∥g∥L2(U) + ∥∇g∥L2(U) and ∥g∥H−1(U) ∶= {(f, g)U ∶ f ∶ U → Rk, ∥f∥H1(U) ≤ 1} .

We denote by H1
0(U) the set of functions from U to Rk which are equal to 0 outside the set U (by analogy to

the Sobolev space). We implicitly extend the functions of H1
0(U) by the value 0 to the entire lattice Zd.

A.1.6. Notation for the parabolic problem. In Section 5, we study the solutions of parabolic equations. We
introduce in this section a few definitions and notation pertaining to this setting. For s > 0 and t ∈ R, we define
the time intervals Is ∶= (−s,0] and Is(t) ∶= (−s + t, t]. Given a point x ∈ Zd and a radius r > 0, we denote the
parabolic cylinder by Qr(t, x) ∶= Ir2(t) ×B(x, r) (where B(x, r) is the discrete ball). To simplify the notation,
we write Qr to mean Qr(0,0).

A.1.7. Notation for Gibbs measures. We let Ω be the set of vector-valued functions φ ∶ Zd → R(d
2
). Given a

cube ◻ ⊆ Zd, we let Ω0(◻) be the set of vector-valued functions φ ∶ ◻ → R(d
2
) such that φ = 0 on ∂◻. Given

z ∈ Zd, we define τz ∶ Ω→ Ω to be the translation: τzφ(⋅) = φ(z + ⋅).
Given an inverse temperature β > 0, a probability measure µβ on Ω and measurable function X ∶ Ω → R

which is either nonnegative or integrable with respect to the measure µβ , we denote its expectation and
variance by ⟨X⟩µβ and varµβ [X]. We define the L2 (µβ)-norm of the random variable X according to the

formula

∥X∥L2(µβ) ∶= (∫
Ω
∣X(φ)∣2 µβ(dφ))

1
2

.

For each point x ∈ Zd and each integer i ∈ {1, . . . , (d
2
)}, we let ωx,i be the function

ωx,i(y) ∶= {
ei if x = y
0 if x ≠ y,

where (e1, . . . , e(d
2
)) is the canonical basis of R(d

2
). We define the differential operators ∂x,i and ∂x by the

formulae

∂x,iu(φ) ∶= lim
h→0

u(φ + hωx,i) − u(φ)
h

and ∂xu(φ) = (∂x,1u, . . . , ∂x,(d2)u) .

We let C∞
loc(Ω) be the set of smooth, local and compactly supported functions of the set Ω. We define the

space H1 (µβ) to be the closure of the space C∞
loc(Ω) with respect to the norm (rescaled with respect to the

inverse temperature β)

∥u∥H1(µβ) ∶= ∥u∥L2(µβ) + (β ∑
x∈Zd

∥∂xu∥2
L2(µβ))

1
2

.

For any subset U ⊆ Zd, we let L2 (U,µβ) to be the set of measurable functions u ∶ Zd ×Ω→ Rk which satisfy

∥u∥L2(U,µβ) ∶= (∑
x∈U

∥u(x, ⋅)∥2
L2(µβ))

1
2

< ∞.

When the set U is finite, we define the normalized L2 (U,µβ) semi-norm by the formula

(A.9) ∥u∥L2(U,µβ) ∶= ( 1

∣U ∣ ∑x∈U
∥u(x, ⋅)∥2

L2(µβ))
1
2

,
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as well as the space and space-field averages for: u ∶ Zd ×Ω→ R(d
2
) and φ ∈ Ω,

(u)U (φ) = 1

∣U ∣ ∑x∈U
u(x,φ) and (u)U,µβ =

1

∣U ∣ ∑x∈U
⟨u(x, ⋅)⟩µβ .

We define the norm H1(U,µβ) by the formula

∥u∥H1(U,µβ) ∶= (∑
x∈U

∥u(x, ⋅)∥2
H1(µβ) + ∥∇u∥2

L2(U,µβ))
1
2

,

as well as the normalized H1(U,µβ)-norm

∥u∥2
H1(U,µβ) ∶=

1

(diamU)2 ∣U ∣
∑
x∈U

∥u(x, ⋅)∥2
L2(µβ) +

β

∣U ∣ ∑y∈Zd
∑
x∈U

∥∂yu(x, ⋅)∥2
L2(µβ) +

1

∣U ∣
∥∇u∥2

L2(U,µβ) .

We define the subset H1
0 (U,µβ) to be the subset of functions of H1 (U,µβ) which are equal to 0 on the

boundary ∂U ×Ω. We implicitly extend these functions by the value 0 to the space Zd. In particular, we
always think of elements of H1

0 (U,µβ) as functions defined on the entire space. We introduce the seminorm

JuK2
H1(U,µβ) ∶=

β

∣U ∣ ∑
x∈U,y∈Zd

∥∂yu(x, ⋅)∥2
L2(µβ) +

1

∣U ∣
∥∇u∥2

L2(U,µβ) .

We define the H−1(U,µ)-norm by the formula

∥u∥H−1(U,µβ) ∶= sup{ 1

∣U ∣ ∑x∈U
⟨u(x, ⋅)v(x, ⋅)⟩µβ ∶ v ∈H1

0 (U,µβ) , ∥v∥H1(U,µβ) ≤ 1} .

We next state a Poincaré inequality for H1(U,µβ). We give two statements, one for functions which vanish
on the boundary of U and another for zero-mean functions in the case U is a cube.

Lemma A.1 (Poincaré inequality for H1(U,µβ)). Let ◻L be a cube of size L. There exists C(d, β) < ∞ such
that:

(i) For every subset U ⊆ ◻L and w ∈H1
0(U,µβ),

(A.10) ∥w∥L2(U,µβ) ≤ CL JwKH1(U,µβ) .

(ii) For every cube ◻′ ⊆ ◻L and w ∈H1(◻′, µβ),

(A.11) ∥w − (w)◻′∥L2(◻′,µβ)
≤ CL JwKH1(◻′,µβ) .

Proof. The results are obtained by applying the standard Poincaré’s inequalities for each realization of the
field φ ∈ Ω, and then integrating over the fields. �

A.2. Discrete differential forms. For each integer k ∈ {1, . . . , d}, a k-cell of the lattice Zd is a set of the
form, for a subset {i1, . . . , ik} ⊆ {1, . . . , d}, and a point x ∈ Zd,

{x +
k

∑
l=1

λleil ∈ R
d ∶ 0 ≤ λ1, . . . , λk ≤ 1} .

We equip the set of k-cells with an orientation induced by the canonical orientation of the lattice Zd and denote
by Λk(Zd) the set of oriented k-cells of the lattice Zd. Given a k-cell ck, we denote by ∂ck the boundary of
the cell; it can be decomposed into a disjoint union of (k − 1)-cells. The values k = 0, 1, 2 are of specific interest
to us; they correspond to the set of vertices, edges and faces of the lattice Zd. We will denote these spaces by
V (Zd), E(Zd) and F (Zd) respectively.

A.2.1. Definitions and basic properties. Given an integer k ∈ {0, . . . , d}, we denote by Λk(Zd) the set of oriented
k-cells of the hypercubic lattice Zd.

For each k-cell ck, we denote by c−1
k the same k-cell as ck with reverse orientation and by ∂ck the boundary

this cell. A k-form u is a mapping from Λk(◻) to R such that u (c−1
k ) = −u (ck) .

Given a k-form u, we define its exterior derivative du according to the formula, for each oriented (k + 1)-
cell ck+1,

(A.12) du (ck+1) = ∑
ck⊆∂ck+1

u(ck),
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where the orientation of the face ck is given by the orientation of the (k + 1)-cell ck+1; we set the convention
du = 0 for any d-form u. We define the codifferential d∗ according to the formula, for each (k − 1)-cell ck−1 and
each k-form u ∶ Λk (◻) → R,

(A.13) d∗u (ck−1) ∶= ∑
∂ck∋ck−1

u(ck).

Clearly, du is a (k + 1)-form and d∗u is a (k − 1)-form; we set d∗u = 0 for any 0-form u. One also verifies the
properties, for each k-form u ∶ Λk(◻) → R, ddu = 0 and d∗d∗u = 0. For arbitrary k-forms u, v ∶ Λk(Zd) → R
with finite support, we define the scalar product (⋅, ⋅) by the formula

(A.14) (u, v) = ∑
ck∈Λk(Zd)

u(ck)v(ck).

We may restrict the scalar product (⋅, ⋅) to forms which are only defined in a cube ◻; we denote the corresponding
scalar product by (⋅, ⋅)◻. It is defined by the formula, for each pair of k-forms u, v ∶ Λk(◻) → R,

(u, v) = ∑
ck∈Λk(◻)

u(ck)v(ck).

The codifferential d∗ is the formal adjoint of the exterior derivative d with respect to this scalar product:
Given a k-form u ∶ Λk(Zd) → R and a (k + 1)-form v ∶ Λk+1(Zd) → R with finite supports, one has the identity

(A.15) (du, v) = (u,d∗v) .

For an integer k ∈ {0, . . . , d − 1} and a cube ◻ ⊆ Zd, we define the tangential boundary of the cube ∂k,t◻ to

be the set of all the k-cells which are included in the boundary of the cube ◻. Given a k-form u ∶ Λk(◻) → R,
we define its tangential trace tu to be the restriction of the form u to the set ∂k,t◻. One has the formula, for

each k-form u ∶ Λk(◻) → R such that tu = 0 and each (k + 1)-form v ∶ Λk(◻) → R,

(du, v)◻ = (u,d∗v)◻ .

We will need the classical Poincaré lemma in the discrete setting. In the continuous setting, a proof of this
result can be found in [79], in the discrete setting in [27, Lemma 2.2].

Lemma A.2 (Poincaré). Let ◻ ⊆ Zd be a cube of the lattice Zd of sidelength R and k be an integer in the set
{1, . . . , d − 1}. For each k-form f ∶ Λk(◻) → R such that df = 0 and tf = 0 on the tangential boundary ∂k,t◻,

there exists a (k − 1)-form u ∶ Λk−1(◻) → R such that tu = 0 on the tangential boundary ∂k,t◻ and du = f in
the cube ◻. Additionally, one can choose the form u such that

∥u∥L2(◻) ≤ CR ∥f∥L2(◻) .

An important role is played by the set of integer-valued, compactly supported forms q which satisfy dq = 0
and have connected support. We denote by Q the set of these forms, i.e.,

(A.16) Q ∶= {q ∶ Zd → Z ∶ ∣supp q∣ < ∞, supp q is connected and dq = 0} .

We may restrict our considerations to the charges of Q whose support is included in a cube ◻ ⊆ Zd; to this
end, we introduce the notation

Q◻ ∶= {q ∶ Zd → Z ∶ supp q ⊆ ◻, supp q is connected and dq = 0} .

We will need to use the following version of Lemma A.2 for the forms of the set Q, for which we refer to [27,
Lemma 2.2].

Lemma A.3 (Poincaré for integer-valued forms). Let k be an integer of the set {1, . . . , d − 1} and q be a
k-form with values in Z such that dq = 0, then there exists a (k − 1)-form nq with values in Z such that q = dnq.
Moreover, nq can be chosen such that suppnq is contained in the smallest hypercube containing the support of
q and such that

∥nq∥L∞ ≤ C ∥q∥1 .
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As it is useful in the article, we record a series of inequalities satisfied by the charges q ∈ Q,

(A.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥q∥L∞ ≤ ∥q∥1 ,

diam q ≤ ∣supp q∣ ≤ ∥q∥1 ,

diamnq ≤ C ∥q∥1 ,

∣suppnq ∣ ≤ C ∥q∥d1 ,

∥nq∥L1 ≤ ∣suppnq ∣ ∥nq∥L∞ ≤ C ∥q∥d+1
1 ,

∥nq∥L2 ≤ ∥nq∥
1
2

L1 ∥nq∥
1
2

L∞ ≤ C ∥q∥
d
2+1

1 .

The proofs of the first two inequalities is a consequence of

∥q∥L∞ = sup
x∈Zd

∣q(x)∣ ≤ ∑
x∈Zd

∣q(x)∣ = ∥q∥1

and, using that the charge q is integer-valued,

diam q ≤ ∣supp q∣ = ∑
x∈Zd

1{q(x)≠0} ≤ ∑
x∈Zd

∣q(x)∣ ≤ ∥q∥1

For the third inequality, we note that the sidelength of the smallest integer containing the support of q is smaller
than (C diam q) (for some constant C depending only on the dimension). Since the form nq is supported in
this hypercube, we have diamnq ≤ C diam q ≤ C ∥q∥1. Similarly the cardinality of the support of nq is smaller

than the cardinality of the hypercube, and thus diamnq ≤ (C diam q)d ≤ C ∥q∥d1. The last two inequalities are
obtained by combining the previous results with interpolation arguments.

Given x, y ∈ Zd × Zd, we denote by Qx and Qx,y the set of charges q ∈ Q such that the point x and the
points x, y belong to the support of nq respectively, i.e.,

(A.18) Qx ∶= {q ∈ Q ∶ x ∈ suppnq} and Qx,y ∶= {q ∈ Q ∶ x ∈ suppnq and y ∈ suppnq} .

We also define, for any ◻ ⊆ Zd,

(A.19) Q◻,x ∶= {q ∈ Q◻ ∶ x ∈ suppnq} and Q◻,x,y ∶= {q ∈ Q◻ ∶ x ∈ suppnq and y ∈ suppnq} .

We also record two inequalities involving the sum of charges: for each pair of points (x, y) ∈ Zd, each integer
k ∈ N, and each constant c > 0, there exists β0 > 0 such that for any β ≥ β0,

(A.20)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
q∈Qx

∥q∥k1 e
−c

√
β∥q∥1 ≤ Ce−c0

√
β ,

∑
q∈Qx,y

∥q∥k1 e
−c

√
β∥q∥1 ≤ Ce−c0

√
β∣x−y∣,

where the constants C, c0 depend on k, c and the dimension d. To prove the first inequality, we first absorb
the polynomial factor by writing

∥q∥k1 e
−c

√
β∥q∥1 ≤ Ce−c

′
√
β∥q∥1

for some constant c′ ∈ (0, c). We then decompose over the supports of the charges. To this end, let us denote
by Ax the set of the finite connected subsets of Zd containing the vertex x. We then write

∑
q∈Qx

e−c
√
β∥q∥1 = ∑

X∈Ax
∑
q∈Q◻

supp q=X

e−c
′
√
β∥q∥1 = ∑

X∈Ax
∑
q∈Q◻

supp q=X

(∏
x∈X

e−c
′
√
β∣q(x)∣) .

Exchanging the sum and the product, we see that

∑
q∈Q◻

supp q=X

(∏
x∈X

e−c
′
√
β∣q(x)∣) ≤ ∏

x∈X

⎛
⎝

∞
∑

q(x)=1

e−c
′
√
β∣q(x)∣⎞

⎠
=
⎛
⎝

e−c
√
β

1 − e−c
√
β

⎞
⎠

∣X ∣

.

We thus obtain

∑
q∈Qx

e−c
√
β∥q∥1 ≤ ∑

X∈Ax
e−c

√
β∣X ∣ =

∞
∑
n=1

∣{X ∈ Ax ∶ ∣X ∣ = n}∣ e−c
√
βn.
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We next note that the number of connected components of the lattice containing a vertex x ∈ Zd and of size
n ∈ N grows exponentially fast in n, i.e.,

∣{X ∈ Ax ∶ ∣X ∣ = n}∣ ≤ eCn.

Choosing the inverse temperature β large enough (i.e., such that c
√
β ≥ C), we deduce that

∑
q∈Qx

e−c
√
β∥q∥1 ≤ e−c0

√
β .

The proof of the second estimate of (A.20) can be deduced from the first one by noting that, any charge
q ∈ Qx,y has a diameter larger than ∣x − y∣ (and thus ∥q∥1 ≥ ∣x − y∣ since the charge q is assumed to have
connected support) and that Qx,y ⊆ Qx. We thus write (increasing the value of β if necessary)

∑
q∈Qx,y

∥q∥k1 e
−c

√
β∥q∥1 = e−

c
2

√
β∣x−y∣ ∑

q∈Qx,y
∥q∥k1 e

− c2
√
β∥q∥1

≤ e−
c
2

√
β∣x−y∣ ∑

q∈Qx
∥q∥k1 e

− c2
√
β∥q∥1

≤ e−
c
2

√
β∣x−y∣e−c0

√
β

≤ Ce−c0
√
β∣x−y∣.

A.2.2. Differential forms as vector-valued functions. Given a subset I = (i1, . . . , ik) ⊆ {1, . . . , d} of cardinality
k. We denote by ΛkI (Zd) the set of oriented k-cells of the hypercubic lattice Zd which are parallel to the
vectors (ei1 , . . . , eik). This set can be characterized as follows: if we let cI be the k-cell defined by the formula

cI ∶= {
k

∑
l=1

λleil ∈ R
d ∶ 0 ≤ λ1, . . . , λk ≤ 1} ,

then we have

(A.21) ΛkI (Zd) = {x + cI ∶ x ∈ Zd} .

The identity (A.21) allows to identify the vector space of k-forms to the vector space of functions defined on Zd

and valued in R(d
k
) according the procedure described below. Note that there are (d

k
) subsets of {1, . . . , d} of

cardinality k and consider an arbitrary enumeration I1, . . . , I(d
k
) of these sets. To each k-form û ∶ Λk(Zd) → R,

we can associate a vector-valued function u ∶ Zd → R(d
k
) defined by the formula, for each point x ∈ Zd,

(A.22) u(x) = (û (x + cI1) , . . . , û(x + cI
(
d
k
)

)) .

This identification is enforced in most of the article; in fact, except in Section 3.1, we always work with
vector-valued functions instead of differential forms. We use the identification (A.22) to extend the formalism
described in Section A.1 to differential forms; we may for instance refer to the gradient of a form, or the
Laplacian of a form etc. Reciprocally, we extend the formalism described in Section A.2.1 to vector-valued

functions; given a function u ∶ Zd → R(d
k
), we may refer to the exterior derivative, the codifferential and the

tangential trace of the function u, which we still denote by du, d∗u and tu respectively. We note that the two
definitions of the scalar products (A.7) for vector valued functions and (A.14) for differential forms coincide
through the identification (A.22).

From the definition of the exterior derivative d and the codifferential d∗ given in (A.12) and (A.13) and the
identification (A.22), one sees that the differential operators d and d∗ are linear functionals of the gradient ∇:

for each integer k ∈ {1, . . . , d}, there exist linear maps Lk,d ∶ Rd×(
d
k
) → R( d

k+1
) and Lk,d∗ ∶ Rd×(

d
k
) → R( d

k−1
) such

that, for each function u ∶ Zd → R(d
k
), and each point x ∈ Zd,

(A.23) du(x) = Lk,d (∇u(x)) and d∗u(x) = Lk,d∗ (∇∗u(x)) .

Using that linear maps on finite dimensional vector spaces are continuous, we obtain the estimates, for each
point x ∈ Zd,

∣du(x)∣ ≤ C ∣∇u(x)∣ and ∣d∗u(x)∣ ≤ C ∣∇∗u(x)∣ ,
for some constant C depending only on the dimension d.
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This article frequently deals with functions defined on the space Zd ×Ω×Zd (resp. Z2d ×Ω×Z2d) and valued

in R(d
2
)×(d2) (resp. R(d

2
)2×(d2)

2

) since these maps correspond to the fundamental solutions of the Helffer-Sjöstrand
operator (resp. second-order Helffer-Sjöstrand operator) associated with the dual Villain model.

Given a map F ∶ Zd ×Ω ×Zd → R(d
2
)×(d2), we denote by

dxF ∶ Zd ×Ω ×Zd → R(d
2
)×(d3), dyF ∶ Zd ×Ω ×Zd → R(d

3
)×(d2),

the exterior derivative with respect to the first and second variable, and by

d∗xF ∶ Zd ×Ω ×Zd → Rd×(
d
2
) d∗yF ∶ Zd ×Ω ×Zd → R(d

2
)×d,

the codifferential with respect to the first and second variable respectively. They are defined by the formulae,
for each triplet (x, y, φ) ∈ Zd ×Zd ×Ω, and each integer k ∈ {1, . . . , (d

2
)},

(dxF (x,φ, y))⋅k = L2,d (∇xF⋅k(x,φ, y)) , (dyF (x,φ, y))k⋅ = L2,d (∇yFk⋅(x,φ, y))

and

(d∗xF (x, y, φ))⋅k = L2,d∗ (∇∗
xF⋅k(x, y, φ)) , (d∗yF (x, y, φ))

k⋅ = L2,d∗ (∇∗
yFk⋅(x, y, φ)) .

Similarly, given a function F ∶ Z2d×Ω×Z2d → R(d
2
)2×(d2)

2

, we define, for each (x, y, φ, x1, y1) ∈ Zd×Zd×Ω×Zd×Zd,
each field φ ∈ Ω and each triplet of integers i, j, k ∈ {1, . . . , (d

2
)}

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(dxF (x,x1, φ, y, y1))⋅ijk = L2,d (∇xF⋅ijk(x,x1, φ, y, y1)) ,
(dx1F (x,x1, φ, y, y1))i⋅jk = L2,d (∇x1Fi⋅jk(x,x1, φ, y, y1)) ,
(dyF (x,x1, φ, y, y1))ij⋅k = L2,d (∇yFij⋅k(x,x1, φ, y, y1)) ,
(dy1F (x,x1, φ, y, y1))ijk⋅ = L2,d (∇y1Fijk⋅(x,x1, φ, y, y1)) ,

and similarly
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d∗xF (x,x1, φ, y, y1))⋅ijk = L2,d∗ (∇∗
xF⋅ijk(x,x1, φ, y, y1)) ,

(d∗x1
F (x,x1, φ, y, y1))i⋅jk = L2,d∗ (∇∗

x1
Fi⋅jk(x,x1, φ, y, y1)) ,

(d∗yF (x,x1, φ, y, y1))ij⋅k = L2,d∗ (∇∗
yFij⋅k(x,x1, φ, y, y1)) ,

(d∗y1F (x,x1, φ, y, y1))ijk⋅ = L2,d∗ (∇∗
y1Fijk⋅(x,x1, φ, y, y1)) .

We extend these definitions so that we can consider mixed derivatives; for instance, we may use the notation
d∗yd

∗
xF (or any other combination of exterior derivatives and codifferentials). It is clear that as long as the

derivatives involve different variables, they commute: we have for instance d∗yd∗xF = d∗xd∗yF .

We complete this section by recording the Gaffney-Friedrichs inequality which provides an upper bound on
the L2-norm of the gradient of a form in terms of the L2-norm of its exterior derivative and the codifferential
assuming that the tangential trace of the form vanishes.

Proposition A.4 (Gaffney-Friedrichs inequality for cubes). Let ◻ be a cube of Zd. Then there exists a
constant C ∶= C(d) < ∞ such that for each k-form u ∶ Λk(◻) → R with vanishing tangential trace, we have

∥∇u∥L2(◻) ≤ C (∥du∥L2(◻) + ∥d∗u∥L2(◻)) .

The proof of the continuous version of this inequality can be found in [53, 46] or in the monograph [86,
Proposition 2.2.3]. We complete this section by proving the solvability of a boundary value problem involving
discrete differential forms used in Section 3.1.

Proposition A.5. For any integer k ∈ {1, . . . , d − 1}, any cube ◻ ∈ Zd, and any k-form q ∶= (q1, . . . , q(d
k
)) ∶

◻ → R(d
k
) such that dq = 0 in the cube ◻ and tq = 0 on the boundary ∂◻, there exists a unique solution to the

boundary value problem

(A.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dd∗w = q in ◻,
dw = 0 in ◻,
tw = 0 on ∂◻,

td∗w = 0 on ∂ ◻ .
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If we denote by w1, . . . ,w(d
k
) the coordinates of the map w, then they solve the following boundary value problem:

for each i ∈ {1, . . . , (d
k
)}, if we denote by ∂Ii◻ the subset of faces of the boundary ∂◻ which are parallel to the

cell cIi , then we have

(A.25)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆wi = qi in ◻,
wi = 0 in ∂Ii◻,

∇wi ⋅ n = 0 on ∂ ◻ ∖∂Ii ◻ .

Remark A.6. The boundary condition (A.25) is a combination of the Dirichlet and Neumann boundary

conditions: given an integer i ∈ {1, . . . , (d
k
)}, we assign Dirichlet boundary condition to the faces which are

parallel to the cell cIi , and Neumann boundary condition to the faces which are orthogonal to the cell cIi .

Proof. The boundary value problem (A.24) admits a variational formulation which can be used to prove
existence and uniqueness of the solutions. We first define the set of k-forms

Ck0 (◻) ∶= {u ∶ ◻ → R(d
k
) ∶ du = 0 in ◻ and tu = 0 on∂◻} .

We then define the energy functional Jq ∶ Ck0 (◻) → R according to the formula

Jq(u) ∶=
1

2
∥d∗u∥L2(◻) − (q, u)◻ .

To prove the solvability of the problem (A.24), we prove that there exists unique minimizer to the variational
problem

inf
u∈Ck0 (◻)

J(u).

We first use that, by Lemma A.2, there exists a (k − 1)-form nq ∶ ◻ → R( d
k−1

) such that tnq = 0 on ∂◻ and
dnq = q in the cube ◻. We then perform an integration by parts to write

Jq(u) =
1

2
∥d∗u∥L2(◻) − (nq,d∗u)◻ .

The technique then follows the standard strategy of the calculus of variations. The energy functional Jq is
bounded from below and we consider a minimizing sequence (wn)n∈N. It is clear that the norms ∥d∗wn∥L2(◻) are

uniformly bounded in n ∈ N. Using that dwn = 0 and the Gaffney-Friedrich inequality stated in Proposition A.4,
we obtain that the norms ∥∇wn∥L2(◻) and ∥wn∥L2(◻) are uniformly bounded in n. We can thus extract

a subsequence which converges in the discrete space L2 (◻) and verify that the limit is solution to the
problem (A.24). The uniqueness is a consequence of the uniform convexity of the functional Jq.

To prove (A.25), note that the condition dw = 0 and the identity dδ + δd = −∆ imply that −∆w = q in the
cube ◻. Using the definition of the Laplacian for vector-valued function (stated in (A.3)), we have that for

each integer i ∈ {1, . . . , (d
k
)}, −∆wi = qi in the cube ◻. The boundary condition tw = 0 implies that wi is equal

to 0 on each face which is parallel to the cell cIi ; the condition td∗w = 0 implies that the function wi satisfies a
Neumann boundary condition on the faces of the boundary ∂◻ which are orthogonal to the cell cIi . �
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Appendix B. Multiscale Poincaré inequality

Proposition B.1 (Multiscale Poincaré inequality). There exists a constant C ∶= C(d) such that for each cube
integer n ∈ N, the following statements hold:

(1) For each function f ∈ L2 (◻n, µβ),

∥f − (f)◻n∥
2

H−1(◻n,µβ)
≤ C ∥f∥2

L2(◻n,µβ) +C3n
n

∑
m=0

3m

∣Zm,n∣
∑

z∈Zm,n
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

f(x, ⋅))
2

⟩
µβ

;

(2) For any function f ∈ L2 (◻n, µβ), one has the estimate

∥f − (f)◻∥
2

L2(◻n,µβ)
≤ C ∥∇f∥2

L2(◻n,µβ) +C3n
n

∑
m=0

3m

∣Zm,n∣
∑

z∈Zm,n
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇f(x, ⋅))
2

⟩
µβ

;

(3) for each function f ∈ L2 (◻n, µβ) such that f = 0 on the boundary of the cube ◻n

∥f∥2
L2(◻n,µβ) ≤ C ∥∇f∥2

L2(◻n,µβ) +C3n
n

∑
m=0

3m

∣Zm,n∣
∑

z∈Zm,n
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

∇f(x, ⋅))
2

⟩
µβ

.

Proof. The proof is an almost immediate application of the multiscale Poincaré inequality proved in [8,
Proposition 1.7 and Lemma 1.8]. We only treat the inequality (1); the other two estimates are similar. We
consider a field φ ∈ Ω and apply [8, Proposition 1.7 and Lemma 1.8] and a Cauchy-Schwarz inequality to the
map x→ f(x,φ) (with a fixed field φ). We obtain

∥f(⋅, φ) − (f(⋅, φ))◻n∥
2

H−1(◻n)
≤ C ∥f(⋅, φ)∥2

L2(◻n) +C3n
n

∑
m=0

3m

∣Zm,n∣
∑

z∈Zm,n
( 1

∣z + ◻m∣ ∑
x∈z+◻m

f(x,φ))
2

.

Taking the expectation with respect to the field φ gives

⟨∥f − (f)◻n∥
2

H−1(◻n)
⟩
µβ

≤ C ∥f∥2
L2(◻n) +C3n

n

∑
m=0

3m

∣Zm,n∣
∑

z∈Zm,n
⟨( 1

∣z + ◻m∣ ∑
x∈z+◻m

f(x, ⋅))
2

⟩
µβ

.

We complete the proof by using the estimate

∥f − (f)◻n∥
2

H−1(◻n,µβ)
≤ ⟨∥f − (f)◻n∥

2

H−1(◻n)
⟩
µβ
,

which is a direct consequence of the definitions of the H−1(◻) and H−1(◻, µβ)-norms stated in Appendix A. �
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Appendix C. Basic estimates on discrete convolutions

The objective of this appendix is to collect estimates on some discrete convolutions of functions decaying
algebraically fast at infinity. These estimates are used in various places in the article and are elementary; their
proof can be found in the long version of this article [36, Appendix C].

Proposition C.1. Given a pair of exponents α,β > 0 such that α + β > d, a small exponent ε > 0, and a point
x ∈ Zd, then:

(i) If α ∈ (0, d) and β ∈ (0, d),

∑
y∈Zd

1

∣y∣α
1

∣x − y∣β
≤ C

∣x∣α+β−d
;

(ii) If α = d and β ∈ (0, d],

∑
y∈Zd

1

∣y∣α
1

∣x − y∣β
≤ C ln ∣x∣

∣x∣β
;

(iii) If α > d and β ∈ (0,∞),

∑
y∈Zd

1

∣y∣α
1

∣x − y∣β
≤ C

∣x∣min(α,β) ;

(iv) One has the estimate

∑
z1,z2∈Zd

1

∣x − z1∣d
1

∣z1 − z2∣d−ε
1

∣z2∣d−1
≤ C ln ∣x∣

∣x∣d−1−ε ;

(v) One has the estimate

∑
z1,z2∈Zd

1

∣x − z1∣d−1

1

∣z1 − z2∣d−ε
1

∣z2∣d
≤ C ln ∣x∣

∣x∣d−1−ε ;

and equivalently

∑
y,z∈Zd

1

∣y∣d−1∣x − y∣d−1

1

∣z∣d−1∣z − x∣d−1

1

∣y − z∣d−ε
≤ C

∣x∣2d−2
;

(vii) For each exponent α > d,

∑
y∈Zd

1

∣y∣α + ∣y − x∣α
≤ C

∣x∣α−d
,

where the constant C depends on the parameters α and d. A variation of the proof gives the following
generalization of (C.1): for every cube ◻ ⊆ Zd of center 0 and sidelength R ≥ 1, and every point y ∈ Zd,

∑
y0∈Zd∖◻

1

∣y0∣α + ∣y0 − y∣α
≤ C

max (R, ∣y∣)α−d
.
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