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Abstract

We study, after Logachev, the geometry of smooth complex Fano three-
folds X with Picard number 1, index 1, and degree 10, and their period

map to the moduli space of 10-dimensional principally polarized abelian

varieties. We prove that a general such X has no nontrival automor-
phisms. By a simple deformation argument and a parameter count, we

show that X is not birational to a quartic double solid, disproving a

conjecture of Tyurin.
Through a detailed study of the variety of conics contained in X,

a smooth projective irreducible surface of general type with globally

generated cotangent bundle, we construct two smooth projective two-
dimensional components of the fiber of the period map through a general

X: one is isomorphic to the variety of conics in X, modulo an involu-
tion, another is birationally isomorphic to a moduli space of semistable

rank-2 torsion-free sheaves on X, modulo an involution. The threefolds

corresponding to points of these components are obtained from X via
conic and line (birational) transformations. The general fiber of the pe-

riod map is the disjoint union of an even number of smooth projective

surfaces of this type.
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1. Introduction: two problems about Fano threefolds of degree 10

There are 17 families of smooth Fano threefolds with Picard number 1:
the projective space P3, the smooth quadric Q ⊂ P4, the five families Yd,
d ∈ {1, . . . , 5} of Fano threefolds of index 2 and degree d, and the 10 families
X2g−2, g ∈ {2, 3, . . . , 10, 12} of Fano threefolds of index 1 and degree 2g − 2
(see table in [IsP], §12.2). We will denote by Yd a Fano threefold belonging
to the family Yd, and by X2g−2 a member of X2g−2.

Any threefold from the 8 families P3, Q, Y4, Y5, X12, X16, X18, and X22

is rational.
For threefolds X from the remaining 9 families Y1, Y2 (quartic double

solids), Y3 (cubics), and X2g−2, g ∈ {2, . . . , 6, 8}, there has been two ap-
proaches to proving or disproving rationality:

• studying the group Bir(X) of birational automorphisms of X. This
group is known for X2, X4, X6, and Y1 ([Is2], [G]);
• studying the intermediate Jacobian J(X) of X. This principally po-

larized abelian variety has been well-studied for Y2, Y3, and X8. In
particular, the Torelli theorem holds ([CG], [V], [D]).

One important outcome is that any X from the above 7 families is not rational:
in the first case because Bir(X) differs from the Cremona group Bir(P3), and
in the second case because J(X) is not a product of Jacobians of curves.

The two remaining families are X14 and X10.
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It was known to Fano that any X14 is birational to a smooth cubic three-
fold Y3. In particular, no X14 is rational ([B], Theorem 5.6 (i)). Moreover,
this implies that the 5-dimensional intermediate Jacobians J(X14) and J(Y3)
are isomorphic. Together with the Torelli theorem for cubic threefolds, this
implies that the set of all X14 that are birational to a given cubic Y3 is an
irreducible fivefold birational to J(Y3) and that this set is the fiber through
[X14] of the period map X14 → A5 ([IMr]).

Many geometrical properties of X10 were discovered in 1982 by Logachev
(see [L], posted 22 years later), but neither is the group Bir(X10) known, nor
has the intermediate Jacobian J(X10) been studied.

As noticed by Tyurin, the Fano threefold X10 shares certain properties
with the quartic double solid Y2. In particular, their intermediate Jacobians
are both 10-dimensional.1 Thinking that the situation would be analogous to
the correspondences between X14 and Y3 described above, Tyurin stated the
following ([T], p. 739).

Conjecture (Tyurin, 1979). The general Fano threefold X10 is birational
to a quartic double solid.

We give a negative answer to this conjecture (Corollary 5.4).

Very little is known about the group Bir(X10) ([Is3], Problem 4 (b)). As
far as we know, the only approach was initiated in the 80’s by Khashin: in
the short note [K], he describes birational involutions of X10 (associated with
points, twisted cubics, and elliptic quartics contained in X10). Given a line
` ⊂ X10 (resp. a conic c ⊂ X10), he also constructs a birational isomorphism
ψ` : X10 99K X` (resp. ψc : X10 99K Xc), where X` (resp. Xc) is also in X10

(see §7.2 and §7.1).2

Since X` and Xc have the same intermediate Jacobian as X10, the matter
of deciding whether they are isomorphic is of great interest for the Torelli
problem. However, this problem remained unsolved for years ([IsP], Problem
11.4.2 (ii)).

Problem (Khashin, 1986). Are X` and Xc isomorphic to X10?

1Unknown to Tyurin at the time, there are also numerical coincidences between the
invariants of the so-called Fano surface F (Y2) of lines on Y2 (computed by Welters in [W]),
and those of (the minimal model of) the Fano surface F (X10) of conics on X10 (computed
by Logachev in [L]): they both satisfy pg = 101, q = 10, c21 = 720, and c2 = 384. This

coincidences stem from the fact that a general Y2 is isomorphic to a singular X10 (see
Proposition 5.2).

2Khashin also stated without proof that the existence of a birational isomorphism f
between X10 and any other Fano threefold Y of index one, should imply that Y is also of

type X10, and that f is a composition of birational isomorphisms of the five types described
above.
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We also give a negative answer to this problem, by proving that in general,
neither X`, nor Xc, is isomorphic to X10.

Both answers are consequences of our study of the period map ℘ : N10 →
A10, which maps a point [X] in N10 to its 10-dimensional intermediate Jaco-
bian [J(X)] ∈ A10. We show (Theorem 7.4) that the set of all conic transforms
Xc, as c varies in the Fano surface F (X10) of conics contained in X10, forms
a connected component FX of the fiber of ℘ through [X10] which is bira-
tionally isomorphic to the quotient of F (X10) by a geometrically meaningful
involution ι.

On the other hand, consider points of X10 corresponding to general line
transforms X`. Their conic transforms form another 2-dimensional compo-
nent F ?

X of the fiber of ℘ over [J(X10)] which is birationally isomorphic to
the quotient by a geometrically meaningful involution of the moduli space
MX(2; 1, 5) of stable rank-2 torsion-free sheaves on X10 with Chern numbers
c1 = 1, c2 = 5, and c3 = 0, itself a smooth projective irreducible surface
(Proposition 8.1 and Theorem 8.2).

We conjecture that a general fiber of the period map ℘ is just the disjoint
union of these two surfaces FX and F ?

X . Although the study of certain nodal
degenerations of elements of X10 provide strong evidence for this conjecture
([DIM]), our lack of knowledge about the properness of ℘makes it very difficult
to obtain more information about it at the moment. What we obtain here
(with the help of a result from [DIM]) is that the general fiber of ℘ is the
disjoint union of an even number of smooth projective irreducible surfaces
(Remark 7.5).

2. Notation

• As a general rule, Vm denotes an m-dimensional vector space, and Γgd a
degree-d curve with geometric genus g. Fiber bundles are denoted by script
letters; for example, Sr,V is the rank-r tautological subbundle on the Grass-
mannian G(r, V ).
• V5 is a 5-dimensional complex vector space, V10 = ∧2V5, and the Plücker

map embeds G(2, V5) into P9 = P(V10).
• V8 ⊂ ∧2V5 is a codimension-2 linear subspace whose orthogonal L ⊂

∧2V ∨5 consists of skew forms on V5 that are all of maximal rank 4, and P7 =
P(V8).
• W is the smooth 4-fold G(2, V5) ∩P7, of degree 5 in P9 (§3.2).
• U3 ⊂ V5 is the unique 3-dimensional subspace totally isotropic for all

forms in V ⊥8 , with dual line LU ⊂ P(V ∨5 ).
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• Π is the 2-plane G(2, U3) ⊂W .
• Ω is a quadric in P9 such that X = W ∩ Ω = G(2, V5) ∩P7 ∩ Ω ⊂ P9 is

a (smooth) Fano threefold (§4).
• cX = Π ∩ Ω is the unique ρ-conic on X (§3.1).
• Fg(X) is the smooth connected surface that parametrizes conics on X

(the letter g stands for “geometric”) (§6.1).
• Lσ ⊂ Fg(X) is the curve of σ-conics in X (§6.1). It is exceptional, and

if Fg(X)→ Fm(X) is its contraction, Fm(X) is a smooth minimal surface of
general type.
• F (X) = {(c, V4) ∈ Fg(X) × P(V ∨5 ) | c ⊂ G(2, V4)} is a smooth surface

and p1 : F (X) → Fg(X) is the blow-up of the point corresponding to cX
(§6.1, §6.3).
• ι is the fixed-point-free involution on F (X) defined in §6.2. We set

Fι(X) = F (X)/ι and Fm,ι(X) = Fm(X)/ι. There is a diagram

F (X)
quotient by ι

//

blow-up of [cX ] p1

��

Fι(X)

blow-up of π([cX ])

��

Fg(X)

blow-up of ι([cX ])

��

Fm(X)
quotient by ι

π
// Fm,ι(X)

• For any hyperplane V4 ⊂ V5, we let MV4 be the 4-dimensional vector
space ∧2V4 ∩ V8.
• QW,V4 is the quadric surface G(2, V4) ∩P(MV4), contained in W .
• QΩ,V4 is the quadric surface Ω ∩P(MV4).

3. The fourfold W

Except for the cohomology calculations of §3.7, all the material in this
section is either classical, or is due to Logachev ([L]).

3.1. Lines, 2-planes, and conics in G(2, V5). We denote by Vi an ar-
bitrary subspace of V5 of dimension i.

All lines in G(2, V5) are of the type:

{[V2] | V1 ⊂ V2 ⊂ V3}.

Any 2-plane in G(2, V5) is of one of the following types:
• an α-plane: {[V2] | V1 ⊂ V2 ⊂ V4};
• a β-plane: {[V2] | V2 ⊂ V3}.
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Any (possibly nonreduced or reducible) conic c in G(2, V5) is of one of the
following types:

• a τ -conic: the 2-plane 〈c〉 is not contained in G(2, V5), there is a
unique hyperplane V4 ⊂ V5 such that c ⊂ G(2, V4), the conic c is
reduced and, if it is smooth, the union of the corresponding lines in
P(V5) is a smooth quadric surface in P(V4);
• a σ-conic: the 2-plane 〈c〉 is an α-plane, there is a unique hyperplane
V4 ⊂ V5 such that c ⊂ G(2, V4), and the union of the corresponding
lines in P(V5) is a quadric cone in P(V4);
• a ρ-conic: the 2-plane 〈c〉 is a β-plane and the union of the corre-

sponding lines in P(V5) is this 2-plane.

3.2. The fourfold W . Choose a linear space P7 = P(V8) of codimension
2 in P9 = P(∧2V5) whose dual pencil P(V ⊥8 ) ⊂ P(∧2V ∨5 ) consists of skew
forms on V5, all of maximal rank 4. This is equivalent to saying that the
intersection

W = G(2, V5) ∩P7 ⊂ P(∧2V5)

is a smooth fourfold (of degree 5).
The map P(V ⊥8 ) → P(V5) that sends a skew form to its kernel has image

a smooth conic cU that spans a 2-plane P(U3) ([PV], Proposition 6.3), where
U3 ⊂ V5 is the unique common maximal isotropic subspace for all forms in V ⊥8 .
A normal form for matrices in the pencil P(V ⊥8 ) is given in [PV], Proposition
6.4; it shows that all W are isomorphic under the action of PGL(V5).

More precisely, if we choose U2 such that V5 = U2 ⊕ U3, we have U3 '
Sym2 U∨2 . As sl2-modules,

∧2V5 ' U1 ⊕ U2 ⊕ U3 ⊕ U4,

where Uk is an irreducible sl2-module of dimension k. In particular, ∧2V5

contains a unique codimension-two submodule V8 = U1 ⊕U3 ⊕U4, which can
also be defined as the kernel of the natural map

∧2V5 → U2 ⊗ U3 → U∨2 ,

where the rightmost map is the contraction x ⊗ q 7→ q(x, ·), for x in U2 and
q a symmetric bilinear form on U2. One can check that P(V8) meets the
Grassmannian G(2, V5) tranversely, so that the intersection is our smooth
fourfold W .

3.3. 2-planes in W . The 2-plane Π = G(2, U3) is the unique β-plane of
G(2, V5) contained in W .

An α-plane contained in W corresponds to a pair V1 ⊂ V4 ⊂ V5 such that
ω(v, w) = 0 for all v ∈ V1, all w ∈ V4, and all ω in the pencil P(V ⊥8 ). It
follows that [V1] must be in cU and V4 is the common orthogonal of v for all ω
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in P(V ⊥8 ). There is a line LU ⊂ P(V ∨5 ) of such 2-planes ΠV4 , corresponding
to hyperplanes V4 ⊂ V5 that contain U3.

The intersection Π ∩ ΠV4 is a line which is tangent to the conic c∨U ⊂ Π
dual to cU , whereas two distinct ΠV4 and ΠV ′4

meet at a point, which is on Π.
3.4. The vector bundle M . For any hyperplane V4 ⊂ V5, the vector

space MV4 = ∧2V4 ∩ V8 has dimension 4,3 so this defines a rank-4 vector
bundle

M → P(V ∨5 )

with fiber MV4 at [V4]. The 3-plane P(MV4) contains the quadric surface4

(3.1) QW,V4 = G(2, V4) ∩P(MV4) ⊂W

which is reducible if and only if it is of the form Π∪ΠV4 ; this happens if and
only if U3 ⊂ V4, i.e., [V4] ∈ LU .

3.5. Automorphisms of W . Any automorphism of W is induced by an
automorphism of P(V5) that maps the conic cU onto itself ([PV], Theorem
1.2). The automorphism group of W has dimension 8 and fits into an exact
sequence ([PV], Theorem 6.6)

(3.2) 1→ C4 n C∗ → Aut(W )→ Aut(cU ) ' PGL(2,C)→ 1.

For later use, we will describe this sequence more explicitely with the help of
a decomposition V5 = U2 ⊕ U3 as in §3.2. Let Aut+(W ) ⊂ GL(V5) be the
pull-back of Aut(W ) ⊂ PGL(V5). As we saw in §3.2, any ϕ ∈ Aut+(W ) must
preserve U3, so it decomposes as

ϕ =
(
ϕ2 0
ϕ0 ϕ3

)
,

and the projection ϕ 7→ ϕ2 induces the map Aut(W ) → Aut(cU ) in (3.2). It
also needs to preserve V8 ⊂ ∧2V5, and this implies that ϕ3 must be a nonzero
multiple of Sym2 tϕ2, the map induced by ϕ2 on U3 = Sym2 U∨2 ; this nonzero
multiple gives the C∗-factor in the sequence above.

The C4-factor corresponds to the case where ϕ2 and ϕ3 are the identity, in
which case ϕ0 ∈ Hom(U2, U3) = Hom(U2,Sym2 U∨2 ) must be such that

∀u, v ∈ U2 ϕ0(u)(v, ·) = ϕ0(v)(u, ·).

This is equivalent to the condition that ϕ0 be completely symmetric, that is,
belong to the image of the natural map Sym3 U∨2 → Hom(U2,Sym2 U∨2 ). In

3Otherwise, some form in the pencil V ⊥8 would vanish on V4 hence would have rank ≤ 2

([L], Lemma 3.1).
4This is indeed a surface since Pic(W ) is generated by OW (1), hence all threefolds in W

have degree divisible by 5.
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particular, the C4-factor in the sequence above is a copy of Sym3 U∨2 as an
SL(2,C)-module.

Finally, the group Aut(W ) acts on W with four orbits ([PV], Proposition
6.8):

• O1 = c∨U ⊂ Π,
• O2 = Π c∨U ,
• O3 =

⋃
V4∈LU ΠV4 Π,

• O4 = W O3,

where dim(Oj) = j.
3.6. Rationality of W . Once we have chosen, as in §3.2, a decomposition

V5 = U2 ⊕ U3, with U3 = Sym2 U∨2 , we get an induced action of GL(2,C) on
W .

Proposition 3.1. The smooth fourfold W is a compactification of the
affine homogeneous space GL(2,C)/S3.

Proof. If x is a general point in W ⊂ G(2, V5), the corresponding subspace
in V5 maps isomorphically to U2, and is therefore the graph of a map gx :
U2 → U3. The map y 7→ gx(y)(y) is a general cubic form on U2, and the
stabilizer of x in GL(2,C) must preserve the zeroes of this cubic form, hence
be equal to the symmetric group S3. �

As a consequence, W is rational. For the proof of Logachev’s reconstruc-
tion theorem 9.1, we will need a precise description of an explicit birational
isomorphism with P4. Recall that W sits in P(V8) = P(U1 ⊕ U3 ⊕ U4).

Proposition 3.2. The projection from P(U3) defines a birational isomor-
phism κ : W 99K P(U1⊕U4). The inverse κ−1 is defined by the linear system of
quadrics containing a rational normal cubic curve Γ0

3 ⊂ P(U4) ⊂ P(U1⊕U4).
Proof. A point in G(2, V5) corresponds to a tensor of the form

(u+ P ) ∧ (v +Q) = u ∧ v + u⊗Q− v ⊗ P + P ∧Q,

with u and v in U2, and P and Q in U3 ' Sym2 U∨2 . It belongs to W if
and only if Q(u, ·) = P (v, ·) as linear forms on U2. We must prove that the
projection sending this tensor to u∧ v+u⊗Q− v⊗P is generically injective.
This follows from the fact there there is a natural map

Sym2 U4 ↪→ Sym2(U2 ⊗ U3)→ ∧2U2 ⊗ ∧2U3 ' U3,

sending (u⊗Q)(v⊗P ) to (u∧v)(P ∧Q), from which we can get the component
P ∧Q back.

Moreover, this shows that the inverse map is defined by the space of
quadrics orthogonal to the kernel of this morphism in Sym2(U1 ⊕ U4)∨, and
these are precisely the quadrics containing the rational normal cubic curve Γ0

3

image of P(U∨2 ) in P(U4) = P(Sym3 U∨2 ). �
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The rational map κ is not defined along the 2-plane Π, whose total image
is the hyperplane P(U4). More precisely, through any point x in Π, there are
two (possibly equal) lines tangent to c∨U , which meet this conic at (possibly
equal) points x1 and x2, and the total image of x by κ is the line `x bisecant
(or tangent) to Γ0

3 through x1 and x2.
If a hyperplane V4 ⊂ V5 does not contain U3, the quadric surface QW,V4

(see (3.1)) meets Π at the unique point [U3 ∩ V4], so the restriction of κ to
QW,V4 sends it to a 2-plane in P(U1 ⊕ U4). If V4 does contain U3, that is,
if V4 = V ⊥1 for some line V1 ⊂ U2 defining a point in cU , the linear span of
QW,V4 is mapped to the tangent line to the corresponding point of Γ0

3.
3.7. Cohomology calculations. We gather here various results on the

cohomology groups of some sheaves of twisted differentials on W .
Proposition 3.3. We have

H3(W,Ω1
W (−3)) = 0,(3.3)

Hq(W,Ω1
W (−2)) '

{
0 if q 6= 3,

L if q = 3,
(3.4)

Hq(W,Ω2
W (−1)) '

{
0 if q 6= 3,

V5/U3 if q = 3.
(3.5)

Proof. Set G = G(2, V5). By the Bott-Borel-Weil theorem, the sheaves
Ω1
G(−r) for 1 ≤ r ≤ 4, and Ω2

G(−r) for 1 ≤ r ≤ 2, are acyclic, whereas

Hq(G,Ω2
G(−3)) =

{
0 if q 6= 5,

V5 if q = 5.

Using the Koszul resolution

0→ ∧2L⊗ OG(−2)→ L⊗ OG(−1)→ OG → OW → 0,

we obtain that Ω1
G(−2)|W is acyclic, and

(3.6) Hq(W,Ω2
G(−1)|W ) ' Hq+2(G,Ω2

G(−3))⊗ ∧2L '

{
0 if q 6= 3,

∧4V ∨5 if q = 3.

Using the conormal sequence

(3.7) 0→ L⊗ OW (−1)→ Ω1
G|W → Ω1

W → 0,

we obtain

Hq(W,Ω1
W (−2)) ' Hq+1(W,OW (−3))⊗ L

and (3.4) follows.
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The vanishing of H3(W,Ω1
W (−3)) is a little less straightforward. From

(3.7), we deduce an exact sequence

0→ H3(W,Ω1
W (−3))→ L⊗H4(W,OW (−4))→ H4(W,Ω1

G(−3)|W ).

The vector space H4(W,OW (−4)) is Serre-dual to H0(W,OW (1)) = ∧2V ∨5 /L.
The acyclicity of Ω1

G(−r) for r ∈ {3, 4} yields

H4(W,Ω1
G(−3)|W ) ' H6(G,Ω1

G(−5)),

which is Serre-dual to H0(G,TG) ' sl(V5). By duality, we are therefore
reduced to verifying that the natural map

sl(V ∨5 )→ Hom(L,∧2V ∨5 /L)

is surjective. This is checked by an explicit computation, and proves (3.3).
The exact sequence (3.7) also induces exact sequences

0→ K → Ω2
G|W → Ω2

W → 0,(3.8)

0→ ∧2L⊗ OW (−2)→ K → L⊗ Ω1
W (−1)→ 0.(3.9)

From (3.4) and (3.9), it follows that the cohomology groups of K (−1) are 0
in degrees 0, 1, and 2, and there is an exact sequence

0→ H3(W,K (−1))→ L⊗ L→ ∧2L→ H4(W,K (−1))→ 0.

Therefore Hq(W,K (−1)) '

{
0 if q 6= 3

Sym2 L if q = 3
. With (3.8) and (3.6), we

obtain that Ω2
W (−1) has zero cohomology in degree 0, 1, and 4, and that

there is an exact sequence

0→ H2(W,Ω2
W (−1))→ Sym2 L

ψ→ ∧4V ∨5 → H3(W,Ω2
W (−1))→ 0.

The map ψ is the obtained from the inclusion L ↪→ ∧2V ∨5 and the natural map
Sym2(∧2V ∨5 ) → ∧4V ∨5 defined by the wedge product. One checks that the
noninjectivity of ψ would imply the existence of a rank-2 form in L, which is
not the case. Also, if we identify ∧4V ∨5 with V5, the image of ψ is the subspace
we denoted by U3. We have therefore proved (3.5). �

4. The Fano threefold X

4.1. The two types of Fano threefolds of type X10. Let X be a
smooth projective complex threefold with Picard group Z[KX ] and (−KX)3 =
10. The linear system |−KX | is very ample and embeds X in P7 as a smooth
subvariety of degree 10. Gushel and Mukai proved that it is of one of the
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following types described below ([Gu], §4; [IsP], Corollary 4.1.13 and Theorem
5.1.1).

Let V5 be a 5-dimensional vector space. Let G(2, V5) ⊂ P(∧2V5) be the
Grassmannian in its Plücker embedding and denote by Pm a linear subspace
of P(∧2V5) of dimension m. Then:

• either

(4.1) X = G(2, V5) ∩P7 ∩ Ω = W ∩ Ω ⊂ P7,

where Ω is a quadric;
• or X is the intersection in P7 of a cone over G(2, V5) ∩ P6 with a

quadric.
The second case (“Gushel threefolds”) is a degeneration of the first case.5

Gushel threefolds were studied in [I].
We will only consider threefolds of the first type, which we denote by X 0

10.
They depend on 22 parameters (see §4.4), whereas Gushel threefolds depend
on only 19 parameters.

4.2. The moduli space MX(2; 1, 4). Let us recall how the embedding
of X into G(2, V5) was obtained by Gushel and Mukai. There exists on X

a smooth elliptic quartic curve Γ1
4 whose linear span is 3-dimensional ([IsP],

Lemma 5.1.2). Serre’s construction yields a rank-2 vector bundle E on X with
a section vanishing exactly on Γ1

4 fitting into an extension

0→ OX → E → IΓ1
4
(1)→ 0.

We have c1(E ) = [OX(1)] and c2(E ) = [Γ1
4]. Moreover, h0(X,E ) = 5,

Hi(X,E ) = 0 for i > 0, and Hi(X,E ∨) = 0 for i ≥ 0. In particular
H0(X,E ∨) = H0(X,E (−1)) = 0, so E is stable since Pic(X) = Z[OX(1)].
By [IsP], Lemma 5.1.3, E is globally generated and defines a morphism of X
into G(2, H0(X,E )∨) = G(2, V5) such that E is the restriction to X of the
dual tautological rank-2 bundle S ∨2,V5

on G(2, V5).6

Proposition 4.1. Let X be any smooth Fano threefold of type X10. The
vector bundle E is the unique stable rank-2 vector bundle on X with Chern
numbers c1(E ) = 1 and c2(E ) = 4.

Proof. We follow [M]. Let F be a vector bundle on X with the same
properties as E . Let H = H om(E ,F ). A general hyperplane section S of
X is a K3 surface, and again Pic(S) = Z[OS(1)].

5Intersect, in P10, a cone over G(2, V5) with a quadric and a P7; if the P7 does not
pass through the vertex of the cone, we are in the first case; if it does, we are in the second

case. Gushel threefolds are missing in Iskovskikh’s 1977 classification of Fano threefolds

with Picard number 1 (see tables in [Is1], p. 505).
6This morphism is an embedding, except for Gushel threefolds (§4.1), for which it induces

a double cover of a del Pezzo threefold Y5 ⊂ P6 ([IsP], §5.1).
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The restriction H |S has Chern numbers c1(H |S) = 0 and c2(H |S) =
4c2(E |S)− c1(E |S)2 = 6. So by the Riemann-Roch theorem,

χ(S,H |S) = 4χ(OS) +
1
2

(c1(H |S)2 − 2c2(H |S)) = 2.

In particular h0(S,H om(E |S ,F |S)) or h0(S,H om(F |S ,E |S)) must be non-
zero. Since E |S and F |S are stable bundles with the same slope, this implies
that they are isomorphic.

We want to prove that any isomorphism between E |S and F |S extends to
X, by showing H1(X,H (−1)) = 0. We prove by descending induction on k

that H1(X,H (−k)) vanishes for all k > 0. Because of the exact sequence
0→ OX(−1)→ OX → OS → 0, we just need to check that H1(S,H |S(−k))
vanishes for all k > 0.

Now, since E and F are both isomorphic on S to the restriction of S ∨2,V5
, we

have H |S = E nd(S ∨2,V5
)|S . Since S is a codimension-4 subscheme of G(2, V5)

defined by the vanishing of a section of the vector bundle N = OG(2,V5)(1)3⊕
OG(2,V5)(2), we just need to check that Hi+1(G(2, V5),E nd(S ∨2,V5

) ⊗ ∧iN ∨)
vanishes for 0 ≤ i ≤ 4. This is an easy consequence of the Bott-Borel-Weil
theorem. �

Corollary 4.2. Any isomorphism between two Fano threefolds of type X 0
10

is induced by an automorphism of P(V5) preserving W .
4.3. Automorphisms. We prove that a general Fano threefold of type

X10 has no nontrivial automorphisms.
Theorem 4.3. For any smooth Fano threefold X of type X 0

10, we have

Hi(X,TX) = 0 for i 6= 1.

In particular, the group of automorphisms of X is finite.
Proof. For i ≥ 2, this follows from the Kodaira-Akizuki-Nakano (KAN)

vanishing theorem since TX ' Ω2
X(1). The conormal exact sequence

(4.2) 0→ OX(−2)→ Ω1
W |X → Ω1

X → 0

induces a resolution of Ω2
X , hence of TX ' Ω2

X(1):

(4.3) 0→ Ω1
X(−1)→ Ω2

W (1)|X → TX → 0.

By KAN vanishing again, we deduce H0(X,Ω2
W (1)|X) ' H0(X,TX). Since

X is a quadratic section of W , there is an exact sequence

0→ Ω2
W (−1)→ Ω2

W (1)→ Ω2
W (1)|X → 0.

Using KAN vanishing again (on W ), we obtain an isomorphism
H0(W,Ω2

W (1)) ' H0(X,Ω2
W (1)|X). Since Ω2

W (1) is Serre-dual to Ω2
W (−1),

the theorem follows from (3.5). �
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Theorem 4.4. A general Fano threefold of type X10 has no nontrivial
automorphisms.

Proof. Assume ϕ ∈ GL(V5) induces a nontrivial automorphism of W . We
want to prove that the space of polynomials Q ∈ H0(P7,OP7(2)) = Sym2 V ∨8
such that ϕ preserves X = P7 ∩ {Q = 0} has codimension bigger than 8 =
dim(Aut(W )).

This condition is equivalent to the fact that there exists a nonzero scalar
z such that ϕ∗Q = zQ + P for some P ∈ H0(P7,IW (2)). So the dimension
we are interested in is controlled by the dimension of the eigenspaces of ϕ∗.
To estimate the dimensions of these eigenspaces, we may by semicontinuity
assume that the image of ϕ in PGL(2,C) (see (3.2)) is the identity. The
eigenvalues of ϕ on V5 are then 1, with multiplicity 2, and some ζ−1 with
multiplicity 3. The eigenvalues of ϕ∗ on Sym2 V ∨8 are thus 1, ζ, ζ2, ζ3, ζ4, with
respective multiplicities 1, 4, 13, 12, and 6. These eigenvalues can coincide
for certain values of ζ, but it is easy to check that for ζ 6= 1, no eigenspace
can have dimension > 20. So the maximal number of parameters for Q is

20 + h0(P7,IW (2)) = 25 < 36− 8.

Suppose now ζ = 1. As we saw in §3.2, this means that in a decomposition
V5 = U2 ⊕ U3, we have

ϕ =
(
I2 0
ϕ0 I3

)
,

with ϕ0 in Sym3 U∨2 ⊂ Hom(U2,Sym2 U∨2 ) completely symmetric (but non-
zero). By semicontinuity again, we may suppose that ϕ0 is of the form `3 for
some linear form ` on U2, so that

∀u, x, y ∈ U2 ϕ0(u)(x, y) = `(u)`(x)`(y).

Thus ϕ0 has rank 3, and a straightforward computation shows that the en-
domorphism Φ of Sym2 V ∨8 induced by ϕ is such that Id−Φ has rank 18.
Therefore we get at least 18 − 5 > 8 conditions on Q. This concludes the
proof. �

Remark 4.5. The proof shows that Fano threefolds of type X 0
10 with

nontrivial automorphisms form a family of codimension ≥ 3.
4.4. Moduli. The most natural way to define an moduli “space” for Fano

varieties of type X 0
10 would be as the quotient of an open subset of |OW (2))|

by the action of Aut(W ). However, the latter group being nonreductive, the
question of whether this quotient is a scheme is difficult to settle. On the
other hand, it is not difficult to construct this same “space” as the quotient of
a quasi-projective variety by the action of the (reductive) group SL(V5), but
again, it is not clear whether this subset corresponds to (semi)stable points
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for some polarization, or even that the action is proper. We hope to come
back to this interesting question in the future, but for the time being, we will
just consider the algebraic stack N10 of Fano threefolds of type X 0

10. It is an
algebraic, smooth, irreducible stack of dimension

dim |OW (2))| − dim(Aut(W )) = 30− 8 = 22.

This will be sufficient for our purposes. Locally around a point corresponding
to a threefold X, this stack is given by the local Kuranishi space of X, a
smooth 22-dimensional variety, acted on by the finite group Aut(X).

5. The period map

The period map ℘ : N10 → A10 sends a point [X] in N10 to its 10-
dimensional principally polarized intermediate Jacobian [J(X)] ∈ A10.

5.1. The differential of the period map. Let X be a Fano threefold
of type X 0

10. The differential of ℘ at the point defined by X is the map

d℘ : H1(X,TX)→ Hom(H1,2(X), H2,1(X))

defined by the natural pairing H1(X,TX) ⊗ H1(X,Ω2
X) → H2(X,Ω1

X). We
want to describe the kernel of d℘.

Theorem 5.1. The kernel of d℘ is naturally identified with the quotient
V5/U3. In particular ℘ is smooth and its image has dimension 20.

Proof. Following [F], we use the long exact sequences induced by the exact
sequences (4.2) and (4.3) to get a commutative diagram

(5.1)

H1(X,Ω2
W (1)|X) ⊗ H1(X,Ω2

X) → H2(X,Ω1
W |X)

↓ ‖ ↓
H1(X,TX) ⊗ H1(X,Ω2

X) → H2(X,Ω1
X)

↓ ‖ ↓
H2(X,Ω1

X(−1)) ⊗ H1(X,Ω2
X) → H3(X,OX(−2)).

If we set G = G(2, V5), the kernel of the restriction map

∧2V ∨5 = H0(G,OG(1))→ H0(W,OW (1))

is V ⊥8 . From the normal sequences of X in W and W in G, we deduce
isomorphisms

H2(X,Ω1
W |X) ' H3(W,Ω1

W (−2)) ' H4(W,V ⊥8 ⊗ OW (−3)) ' V ⊥8
(because ωW = OW (−3)). On the other hand,

H3(X,OX(−2)) ' H0(X,OX(1))∨ ' H0(W,OW (1))∨ ' V8.
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The rightmost column of the diagram (5.1) is therefore exact since the top
arrow is injective (because H2(X,OX(−2)) = 0 by Kodaira vanishing) and
H2(X,Ω1

X) is 10-dimensional.
We check that the pairing of the bottom row of (5.1) is nondegenerate with

respect to the first factor. By [F], Lemma 2.9, this follows from the fact that
the following diagram commutes up to sign:

H2(X,Ω1
X(−1)) ⊗ H1(X,Ω2

X) → H3(X,OX(−2))
↓ ↑ ‖

H3(X,OX(−3)) ⊗ H0(X,OX(1)) → H3(X,OX(−2)).

Indeed, the last row of this diagram is Serre-dual to the multiplication map
H0(X,OX(1)) ⊗ H0(X,OX(1)) → H0(X,OX(2)); in particular, it is nonde-
generate with respect to the first factor, and the same conclusion follows for
the first row because the map

H2(X,Ω1
X(−1))→ H3(X,OX(−3))

is injective. To prove that, we need to check that H2(X,Ω1
W (−1)|X) vanishes.

But this follows from the normal sequence of X in W , (3.5), and (3.3).
We can now conclude that the kernel of d℘ at [X] is contained in the image

of H1(X,Ω2
W (1)|X) in H1(X,TX). We compute the dimension of this space.

From the normal sequence of X in W , we get an exact sequence

H1(W,Ω2
W (−1))→ H1(W,Ω2

W (1))

→ H1(X,Ω2
W (1)|X)→ H2(W,Ω2

W (−1))

whose extreme terms vanish by (3.5). Moreover, H1(W,Ω2
W (1)) is dual to

H3(W,Ω2
W (−1)), which is 2-dimensional by (3.5) again.

Since we already know that the kernel of d℘ has dimension at least 2, we
can conclude that this kernel is exactly H1(X,Ω2

W (1)|X). We have therefore
proved the theorem. �

The theorem implies that fibers of ℘ are smooth surfaces. We will give a
more precise description of these fibers in Theorem 7.4.

5.2. Fano threefolds of degree 10 and quartic double solids. Quar-
tic double solids are double covers of P3 branched along a smooth quartic
surface. They have Picard number 1, index 2, and form the family Y2 de-
scribed in the introduction. They were extensively studied by Clemens in [C],
who computed, among many other things, that their intermediate Jacobian
has dimension 10.

Proposition 5.2. A general quartic double solid is birational to a 2-
dimensional family of nodal Fano threefolds which are degenerations of smooth
threefolds of type X10.
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Proof. This is a construction that can be found in [BCZ] §4.4.1 and [CSP],
Example 1.11, to which we refer for the proofs. Let π : Y → P3 be a quartic
double solid, with involution ι, and let v : Y → P10 be the morphism defined
by the anticanonical linear system | −KY | = |2π∗H|. Choose any line ` ⊂ Y
(there is a 2-dimensional family of such lines). The projection of v(Y ) ⊂
P10 99K P7 from the 2-plane spanned by the (conic) image of ` is a singular
Fano threefold X̄ ⊂ P7, obtained as the image of the blow-up ε : Ỹ → Y

of `, with exceptional divisor E, by the morphism ϕ associated with the
anticanonical linear system | −KỸ | = |2ε∗π∗H − E| (compare with diagram
(7.1)). This morphism only contracts the curve ι(`) and X̄ is a singular Fano
threefold of degree 10 with one node (from the family (T7) of [CSP], Theorem
1.6).

By [N], X̄ can be deformed into a smooth Fano threefold X of degree 10,
whose Picard number is 1 by [JR]; it is therefore of type X10. �

Keeping the notation of the proof, lines on Y map to conics on X̄. This
gives a birational map F (Y ) 99K F (X̄) which explains the coincidences be-
tween the numerical invariants of the minimal surface F (Y ) and those of the
minimal model of F (X) (see footnote 1).

Corollary 5.3. The endomorphism ring of the intermediate Jacobian of a
very general Fano threefold of type X10 is isomorphic to Z.

Proof. By Proposition 5.2, the intermediate Jacobian of a quartic double
solid is a degeneration of intermediate Jacobians of Fano threefolds of type
X10. By [C], Theorem (5.67), intermediate Jacobians of quartic double solids
degenerate in turn to semi-abelian varieties which are extensions by C∗ of
Jacobians of complete intersection curves C ⊂ P3 of bidegree (2, 4), where
the extension class ε is the difference between the two g1

4 on C ([C], end of
§7). In general, the endomorphism ring of J(C) is trivial ([CvG]) and ε has
infinite order. This proves the corollary. �

Corollary 5.4. A general Fano threefold of type X10 is not birationally
isomorphic to a smooth quartic double solid.

Proof. Let X be a general Fano threefold of type X10. It was observed by
Clemens and Griffiths ([CG]; see also [IsP], §8.1) that the Griffiths component
JG(X) (the product of the principally polarized factors of J(X) that are not
Jacobians of curves) is a birational invariant of X.

It follows from the proof of Corollary 5.3 that J(X) can degenerate to the
intermediate Jacobian of a general quartic double solid, whose theta divisor
has a singular locus of codimension 5 ([D], th. (8.1)). It follows that the
singular locus of the theta divisor of J(X) has codimension ≥ 5, and in
particular, JG(X) = J(X).
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Assume now that X is birationally isomorphic to a smooth quartic double
solid Y . We then have J(Y ) = JG(Y ) ' JG(X) = J(X). But this is impos-
sible, since the J(X) form a 20-dimensional family (Theorem 5.1), whereas
quartic double solids form a 19-dimensional family. �

6. The varieties of conics contained in X

Most of the material in this section is due to Logachev ([L]).
6.1. The surfaces Fg(X) and F (X). Let X be a Fano threefold of type

X 0
10. Let Fg(X) be the variety of (possibly nonreduced or reducible) conics

contained in X. It follows from deformation theory and [IsP], Proposition
4.2.5.(iii), that Fg(X) has dimension 2 everywhere.

As seen in §3.1, any conic c in G(2, V5) is contained in some G(2, V4), where
the hyperplane V4 ⊂ V5 is uniquely determined by c unless 〈c〉 is a β-plane.
It is therefore natural to introduce the incidence variety

F (X) = {(c, [V4]) ∈ Fg(X)×P(V ∨5 ) | c ⊂ G(2, V4)}.

The first projection p1 : F (X) → Fg(X) is an isomorphism except over the
point [cX ] that corresponds to the ρ-conic Π ∩ Ω, where the fiber Lρ is iso-
morphic to the line LU via the second projection p2 : F (X) → P(V ∨5 ). The
conic cX is the only ρ-conic on X.

For any [V4] in LU , the intersection ΠV4 ∩Ω is a σ-conic in X. These conics
describe a curve Lσ ⊂ F (X) isomorphic to LU via p2. These are the only
σ-conics on X.

If c is a conic contained in X, its span 〈c〉 is a 2-plane such that 〈c〉∩X = c.7

If (c, V4) is a σ-conic, the intersection Π ∩ ΠV4 is a line in Π tangent to
the conic c∨U . In general, it meets cX in the two points of cX ∩ c. Through
any of these two points passes one other tangent to c∨U , hence c meets exactly
two other σ-conics, at points of cX . In particular, two general σ-conics are
disjoint. Also, there are two σ-conics through a general point of cX .

Any point of a σ-conic (c, V4) corresponds to a line in P(V4), which must
meet P(U3). Therefore, the union of all σ-conics in X is contained in its
section with the hyperplane {V2 ⊂ V5 | V2 ∩ U3 6= {0}}. This section be-
ing irreducible, they are equal. A general conic contained in X meets this
hyperplane at two points, hence meets exactly two σ-conics.

7This is because X contains no 2-planes (footnote 8) and is an intersection of quadrics.
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6.2. The involution ι on F (X). Let V4 ⊂ V5 be a hyperplane. In the
3-plane P(MV4) = P(∧2V4)∩P7 introduced in §3.4, let us define the quadric

QΩ,V4 = Ω ∩P(MV4)

and set (see (3.1))

(6.1) Γ1
4,V4

= X ∩P(MV4) = QW,V4 ∩QΩ,V4 ,

which is a genus-1 degree-4 1-cycle.8 We have

(c, V4) ∈ F (X)⇐⇒ c ⊂ Γ1
4,V4

.

Assume now that X is general. Easy parameters counts such as the ones used
in the proof of [L], Lemma 3.7 (see [L], (3.6)), then show that the residual
curve is another conic ι(c) ⊂ X that meets c in two points. This defines a
fixed-point-free involution ι on F (X) and the quotient Fι(X) = F (X)/ι maps
injectively to P(V ∨5 ) by the projection p2.

For any [V4] in LU , the quadric QW,V4 is already reducible (see §3.4), hence
LU ⊂ p2(F (X)). Moreover, p−1

2 ([V4]) has exactly two points, which corre-
spond to the conics Π ∩ Ω and ΠV4 ∩ Ω. We have p−1

2 (LU ) = Lρ t Lσ and
ι(Lρ) = Lσ.

Here is a characterization of the involution ι.
Lemma 6.1. Let c and c′ be two conics on a general X of type X10, with

no common component. If dim(〈c, c′〉) = 3 and length(c ∩ c′) = 2, we have
c′ = ι(c).

Proof. If 〈c〉 is contained in W , the line 〈c〉 ∩ 〈c′〉 and the conic c′ are in
W ∩〈c′〉. The line is not contained in c′ (because X∩〈c〉 = c) hence W , which
is an intersection of quadrics, contains 〈c′〉. One of the conics is then cX and
the other is a σ-conic so we are done.

Since W is an intersection of quadrics, if it contains neither planes 〈c〉 and
〈c′〉, it does not contain the line 〈c〉 ∩ 〈c′〉. Any point z on the line 〈c〉 ∩ 〈c′〉
but not on c ∪ c′ is not on G(2, V5). We may write x = v1 ∧ v2, y = v3 ∧ v4,
and z = v1 ∧ v2 + v3 ∧ v4. The vectors v1, . . . , v4 span a hyperplane V4 ⊂ V5

and every bisecant line to G(2, V5) passing through z is contained in P(∧2V4).
It follows that P(MV4) contains c and c′, hence c′ = ι(c). �

Remark 6.2. One checks, by a case-by-case analysis, that the involution
ι can still be defined on F (X) for any smooth X. It can however have fixed
points. More precisely, for a smooth conic c ⊂ X, the following conditions are
equivalent:

(i) ι(c) = c;

8Since Pic(X) is generated by OX(1), all surfaces in X have degree divisible by 10, hence

Γ1
4,V4

is a curve.
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(ii) c is a τ -conic with normal bundle Nc/X ' Oc(2)⊕ Oc(−2);
(iii) there is a P3 ⊂ P7 such that X ∩ P3 = 2c (this generalizes Lemma

6.1).

Here is a quick proof. If (i) holds, we have X ∩ P(MV4) = 2c, hence (iii)
holds. If (iii) holds, the conic c ⊂ P3 is the intersection of a double plane
and a quadric Q. With the notation of §7.1, the normal direction to c in Q

at each point of c corresponds to a curve in the exceptional divisor E which
is contracted by the projection from c, hence Nc/X must be Oc(2)⊕ Oc(−2),
and (ii) holds. Finally, if (c, V4) is a τ -conic, Nc/W ' Oc(2)⊕ Oc(1)⊕ Oc(1).
In particular, the Oc(2)-factor is uniquely determined, and it is the image of
Nc/QW,V4

. If (ii) holds, the Oc(2)-factor of Nc/X must map to Nc/QW,V4
, hence

the induced morphism Nc/QW,V4
→ NX/W must be zero. This means that the

quadric Ω vanishes to order 2 on c, hence (i) holds.
These conics correspond to singular points of the surface F (X).
6.3. Logachev’s tangent bundle theorem. Assume again that X is

general. Logachev shows that F (X) and Fg(X) are smooth connected surfaces
of general type ([L], Theorem 0.13 and Corollary 4.2). The map p1 : F (X)→
Fg(X) is the contraction of the exceptional curve Lρ to [cX ]. The curve Lσ =
ι(Lρ) is therefore also exceptional. Let Fg(X) → Fm(X) be its contraction
and let r : F (X)→ Fm(X) be the composition.

Let β : F (X)→ G(2, V8) be the map that sends a conic c to the projective
line 〈c ∩ ι(c)〉, and let S2,V8 be the tautological bundle on G(2, V8). On the
open set F (X)0 = F (X) (Lρ t Lσ), there is an isomorphism ([L], Theorem
4.14)

TF (X)0
∼−→(β∗S2,V8)|F (X)0 .

This “tangent bundle theorem” has the following geometric interpretation
([L], Theorem 7.2): in the diagram

P(TFm(X))
ψ

//___

π

��

P(H0(Fm(X),ΩFm(X))∨) ' P9

π′

��
�
�
�

Fm(X) P7,

where ψ is the cotangent map and π′ the projection from the line ψ(π−1([cX ])),
the composition π′ ◦ ψ sends a general fiber π−1([c]) = P(TFm(X),[c]) to the
line 〈c ∩ ι(c)〉 in P7.

Since S ∨2,V8
is generated by global sections on G(2, V8), so is ΩFm(X), except

possibly at the points [cX ] and ι([cX ]). We will show later (Corollary 7.3) that
it is in fact globally generated everywhere.
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Remark 6.3. For any X of type X 0
10, the scheme F (X) is still an irre-

ducible surface (Corollary 8.3) which may have singular points (Remark 6.2).
Note that the Fano surface of a Gushel threefold (see §4.1) has two com-

ponents ([I], Proposition (2.1.2)).

7. Elementary transformations

7.1. Elementary transformation along a conic. Let c be a smooth
conic contained in a Fano threefold X of type X 0

10 and let πc : P7 99K P4

be the projection from the 2-plane 〈c〉. If ε : X̃ → X is the blow-up of c,
with exceptional divisor E, the composition πc ◦ ε : X̃ → P4 is the morphism
defined by the linear system | − K eX | = | − ε∗KX − E|. The only curves
contracted by this morphism are ([IsP], Proposition 4.4.1.(ii)):

• the strict transforms of the lines in X that meet c;
• the strict transforms of conics c′ 6= c such that dim(〈c, c′〉) = 3 and

deg(c · c′) = 2;
• when the normal bundle to c in X is O(2) ⊕ O(−2), the exceptional

section of the ruled surface E ' F4.
It is easy to check that only finitely many lines meet c when either c is

general in F (X) ([IsP], Lemma 4.2.6), or X itself is general and c is any
smooth conic.

Assume from now on that X is general and c 6= cX . It follows from Lemma
6.1 that the only conic contracted by πc is ι(c), hence the morphism ϕ|−KfX |
contracts only finitely many curves. Let

ϕ|−KfX | : X̃
ϕ−→ X̄ −→ P4

be its Stein factorization. The variety X̄ has terminal hypersurface singular-
ities, −KX̄ is ample, and ϕ∗KX̄ = K eX . The divisor −E is ϕ-antiample. In
this situation, there exists a (−E)-flop ([IsP], Theorem 1.4.15)

χ : X̃
ϕ−→ X̄

ϕ′←− X̃ ′

which is an isomorphism in codimension 1. The projective threefold X̃ ′ is
smooth and, if H̄ is a hyperplane section of X̄, we have −K eX′ = ϕ′

∗
H̄ and

χ(−E) is ϕ′-ample.
We have ρ(X̃ ′) = 2. Since the extremal ray generated by the class of curves

contracted by ϕ′ has K eX′ -degree 0 and K eX′ is not nef, the other extremal
ray is K eX′ -negative and defines a contraction ε′ : X̃ ′ → X ′. We have ([IsP],
Proposition 4.4.11.(ii)):

• X ′ is again a smooth Fano threefold of degree 10 in P7;
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• ε′ is the blow-up of a smooth conic c′ in X ′, with exceptional divisor
E′ ≡ −2K eX′ − χ(E).

There is a commutative diagram

(7.1) X̃

ε

��

ϕ
��

???????
χ

//_______ X̃ ′

ε′

��

ϕ′~~~~~~~~~

X̄

X
ψc

//_______

πc
??~

~
~

~
X ′

πc′
``A

A
A

A

If H ′ is a hyperplane section of X ′, we have

χ∗ε′
∗
H ′ ≡ χ∗(−K eX′ + E′) ≡ χ∗(−3K eX′ − χ(E)) ≡ −3ε∗KX − 4E

hence ψc is associated with a linear subsystem of |I 4
c (3)|.9

Note that ε′∗H ′ − E′ ≡ −K eX′ ≡ ϕ′
∗
H̄, so the picture is symmetric: the

elementary transformation of X ′ along the conic c′ is ψ−1
c : X ′ 99K X (by

construction, ϕ′ automatically contracts only finitely many curves).
Finally, we remark that the intermediate Jacobians of X and of X ′ are

isomorphic.
Proposition 7.1. Let X be a general Fano threefold of type X10 and let

c be a smooth τ -conic on X. There is a birational isomorphism

ϕc : Fg(X) 99K Fg(X ′)

which commutes with the (rational) involutions ι on Fg(X) and ι′ on Fg(X ′).
Its inverse is ϕc′ .

Proof. Let c̄ be a conic in X disjoint from c. The span 〈c, c̄〉 is a 5-plane that
intersects X ⊂ P7 along a canonically embedded genus-6 curve c + c̄ + Γc,c̄,
where Γc,c̄ is a sextic. Since X ∩ 〈c〉 = c, this implies that Γc,c̄ meets c in four
points, and similarly for c̄.

We now show that on X general, for general conics c and c̄, the sextic Γc,c̄
is smooth and irreducible. Note to that effect that S = G(2, V5) ∩ 〈c, c̄〉 is a
general smooth del Pezzo surface of degree 5, which can therefore be expressed
as the blow-up of the plane in four general points, with exceptional divisors
E1, . . . , E4. If h is the class of a general line in the plane, the embedding

9If ` is the strict transform in eX of a line in X that meets c, we have (3ε∗H−4E)·` = −1

hence ` is in the base locus of |χ∗ε′∗H′|. Similarly, the strict transform in eX of the conic
ι(c) has intersection −2 with 3ε∗H − 4E, hence is also in the base locus of |χ∗ε′∗H′|.
Calculations on the blow-up of ι(c) in eX show that the base ideal is in fact contained

in I 2
ι(c)

. So, for c general, the rational map ψc is associated with a linear subsystem of

|I`1 ⊗ · · · ⊗I`20 ⊗I 2
ι(c)
⊗I 4

c (3)|, where `1, . . . , `20 are the 20 lines in X that meet c.
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S → 〈c, c̄〉 is given by the linear system |3h − E1 − · · · − E4|. The family of
conics in S is the union of the five pencils |h − Ei|, for i ∈ {1, . . . , 4}, and
|2h−E1− · · · −E4|. Since c and c̄ are disjoint, they must belong to the same
pencil, say |h − E1| or |2h − E1 − · · · − E4|. The curve c + c̄ + Γc,c̄ is the
intersection of S with a general quadric containing c and c̄. It follows that
Γc,c̄ is a general member of the linear systems |4h− 2E2 − · · · − 2E4| or |2h|,
which are both base-point-free. In particular, Γc,c̄ is a smooth rational curve
of degree 6.

The rational map ψc is defined on Γc,c̄ by a linear subsystem of |I 4
c (3)|, of

degree ≤ 3 deg(Γc,c̄)− 4c ·Γc,c̄ = 2. For c̄ general, its image on X ′ is therefore
a conic. This defines, for X and c general, a rational map

ϕc : Fg(X) 99K Fg(X ′).

Alternatively, a case-by-case analysis using footnote 9 shows that for any
smooth τ -conic c, the curve ψc(Γc,c̄) is a conic as soon as c̄ and ι(c̄) are τ -
conics that meet none of the lines that meet c or ι(c). This implies that the
map ϕc is still defined in this case.

The composition π〈c〉 = ϕ ◦ ε−1 : X 99K P4 is the projection from the
2-plane 〈c〉, hence π〈c′〉 = ϕ′ ◦ ε′−1 : X ′ 99K P4 is the projection from the
2-plane 〈c′〉. It follows that the curve ψc(c+ c̄+ Γc,c̄) in X ′ lies in the 5-plane
π−1
〈c′〉(π〈c〉(〈c, c̄〉)). It contains the conic ψc(Γc,c̄), the sextic ψc(c′), and the

conic c′. Thus, the rational map ϕc′ : Fg(X ′) 99K Fg(X) is the inverse of ϕc,
which is therefore birational.

The section of the quartic πc(X) ⊂ P4 by the 2-plane πc(〈c, c̄〉) is the
union of the conics πc(c̄) and πc(Γc,c̄). Similarly, its section by the 2-plane
πc(〈c, ι(c̄)〉) is the union of the conics πc(ι(c̄)) and πc(Γc,ι(c̄)). Since c̄ and
ι(c̄) together span a 3-plane, these two 2-planes meet along a line that meets
πc(X) in four points, including the two points of πc(c̄) ∩ πc(ι(c̄)). It follows
that the intersection of the conics πc(Γc,c̄) and πc(Γc,ι(c̄)) with this line must
be the same. In particular, these conics meet in two points, hence so do their
images ϕc([c̄]) and ϕc(ι([c̄])) in X ′. This proves ϕc(ι([c̄])) = ι′(ϕc([c̄])). �

Proposition 7.2. Let X be a general Fano threefold of type X10 and let
c be a smooth τ -conic on X. The map ϕc : Fg(X) 99K Fg(X ′) sends

• the curve of σ-conics on X to the point [c′];
• the point [cX ] to ι′([c′]);
• the point ι([c]) to [cX′ ];

and factors as

Fg(X) −→ Fm(X) ∼−→Fm(X ′)←− Fg(X ′).
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In other words, the surface Fg(X ′) is isomorphic to the surface Fm(X) blown
up at the point [c].

Proof. We can assume that c is general. Let c̄ be a general σ-conic on X.
We have

X ∩ 〈c, c̄〉 = c+ c̄+ Γc,c̄,

where Γc,c̄ is a smooth irreducible sextic. To show ψc(Γc,c̄) = c′, since

χ∗E′ · Γc,c̄ = (−2ε∗KX − 3E) · Γc,c̄ = 0,

it is enough to show that (the strict transform of) Γc,c̄ meets the divisor χ∗E′,
because it will then have to be contained in it.

Recall from §6.1 that c meets exactly two σ-conics, say c1 and c2. Since c1
meets c in one point, ι(c) in one point, is not contained in the indeterminacy
locus of ψc, and has degree −2− 4 + 3× 2 = 0 on the linear system |I 2

ι(c) ⊗
I 4
c (3)| that defines ψc (see footnote 9), it maps to a point of c′ on X ′, hence

to a fiber of the map ε|E′ : E′ → c′ on X̃ ′. It is therefore enough to show that
Γc,c̄ meets c1 outside of c.

Note that c1 and c2 both meet c, and they both meet cX in two points.
They are therefore contained in 〈c, cX〉, and the sextic Γc,cX is the union of
c1, c2, and a conic that meets c1 and c2 each in one point, and c in two points,
hence must be ι(c).

The 1-cycle

Γ = (c+ c̄+ Γc,c̄) + (c+ cX + Γc,cX )

= 2c+ c̄+ Γc,c̄ + cX + c1 + c2 + ι(c)

is the complete intersection in P7 of X with the hyperplane 〈c, c̄, cX〉 and the
reducible quadric 〈c, c̄〉 ∪ 〈c, cX〉, hence ωΓ = OΓ(2). In particular, c1 must
meet the other components in six points. Since it meets cX twice, c and ι(c)
simply, and neither c̄ nor c2, it must meet Γc,c̄.

We have therefore shown that ϕc is defined at general points of the curve
Lσ ⊂ F (X) of σ-conics in X, and that its value at these points is the point
[c′] ∈ F (X ′). Since ϕc commutes with ι, it is also defined at [cX ], where it
takes the value ι′([c′]).

The rest of the statements follows from the symmetry ϕ−1
c = ϕc′ and the

facts that ϕc commutes with the involutions and the surfaces Fm(X) and
Fm(X ′) are of general type (§6.3). �

Corollary 7.3. If X is a general Fano threefold of type X10, the sheaf
ΩFm(X) is generated by its global sections. In particular, the surface Fm(X)
is minimal and the only rational curves in F (X) are Lρ and Lσ.
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Proof. We saw in §6.3 that ΩFm(X) is generated by global sections, except
possibly at [cX ] and ι([cX ]). Because of Proposition 7.2, this holds everywhere.

�
We will now write Xc instead of X ′ to highlight the dependence on c. For X

general, as [c] varies in the open subset of F (X) consisting of smooth τ -conics,
the assignment [c] 7→ [Xc] defines a rational map Fg(X) 99K N10 whose image
is contained in a fiber of the period map.

Theorem 7.4. Let X be a general Fano threefold of type X10. For any
conic c ⊂ X, one can define a smooth birational model Xc of X such that
Fg(Xc) is isomorphic to the surface Fm(X) blown up at the point [c].

The assignment [c] 7→ [Xc] induces an isomorphism between Fm,ι(X) and
the connected component through [X] of the fiber of the period map ℘ : N10 →
A10.

In particular, the general fiber of the period map ℘ : N10 → A10 is the
disjoint union of finitely many smooth projective irreducible surfaces.

Proof. The idea is to prove that for a general conic d ⊂ X, the conic

ϕd(c) = ψd(Γd,c) ⊂ Xd

is a smooth τ -conic. We can then set

Xc = (Xd)ϕd(c).

Note that we define the variety Xc, but not a particular birational map X 99K
Xc. According to Proposition 7.2, the surface F (Xc) is then isomorphic to the
surface Fm(X) blown-up at the point [c]. By the Reconstruction Theorem 9.1,
the isomorphism class of the variety Xc is independent of the choice of d. This
procedure therefore defines, for each general X, a morphism Fg(X) → N10

which, since all σ-conics have the same images in Fm(X), factors through
Fm(X).

If c is a σ-conic (resp. the ρ-conic), we established during the proof of
Proposition 7.2 that ψd(Γd,c) is the smooth τ -conic d′ (resp. ι′(d′)).

So we may assume that c = ` ∪ `′ is a reducible τ -conic. We proceed
by contradiction, assuming that the conic ψd(Γd,c) ⊂ Xd is reducible. The
degree-6 1-cycle Γd,c must then split as the sum of two degree-3 1-cycles Γ
and Γ′, each of which meets d in two points.

We assume that d is a general τ -conic; more precisely, that neither d nor
ι(d) meets c, ι(c), or any of the (finitely many) lines contained in X that meet
c. Furthermore, if we write (see §3.1)

(7.2) ` = {[V2] | 〈e1〉 ⊂ V2 ⊂ V3} and `′ = {[V2] | 〈e′1〉 ⊂ V2 ⊂ V ′3},

we assume that the unique hyperplane V d4 ⊂ V5 such that d ⊂ G(2, V d4 ) (see
§6.1) contains neither e1 nor e′1. Note that since c is a τ -conic, we have
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`∩ `′ = {e1 ∧ e′1} and V c4 = V3 + V ′3 . We assume that the 2-planes P(V3) and
P(V ′3) each meet the smooth quadric surface Qd ⊂ P(V5) swept out by the
lines corresponding to points of d (see §3.1) transversely in two points, and
no two of these four points are on a line contained in Qd.

Step 1. The curve Γ is irreducible and meets each of the lines ` and `′ in one
point.

If Γ is reducible, it contains a line m. If m meets ` (or `′), we have by
assumption m ∩ d = ∅, hence the residual conic must meet m, and d in two
points: it is therefore ι(d), which is absurd since we assumed m ∩ ι(d) = ∅.
If Γ is reducible, it must therefore contain a smooth conic meeting ` and `′,
and this conic is ι(c). The residual line must then meet d in two points, which
again contradicts our assumptions.

It follows that Γ is irreducible. Since a cubic curve contained in X cannot
be bisecant to a line contained in X (because the corresponding line transform
would contract the cubic and this would contradict [IsP], Proposition 4.3.1;
see §7.2), Γ meets each of the lines ` and `′ in one point.

Step 2. There exists a line P(W2) ⊂ P(V5) that meets all lines parametrized
by Γ. It is contained in P(V d4 ) but not in the quadric Qd.

The restriction to Γ of the tautological subbundle S2,V5 is isomorphic to
O(−1) ⊕ O(−2), or to O ⊕ O(−3). In the latter case, all lines parametrized
by Γ pass through a fixed point. But this cannot happen since, d being
a τ -conic, the lines in P(V5) corresponding to the two points of Γ ∩ d are
disjoint. We are therefore in the first case, hence Γ can be parametrized by
γ : t 7→ [w(t) ∧ v(t)], where w is linear in t, and v is quadratic in t. Take for
W2 ⊂ V5 the 2-dimensional vector space spanned by the w(t). More precisely,
we may assume Γ ∩ d = {γ(0), γ(∞)} and

γ(t) = [(w0 + tw∞) ∧ (v0 + tv1 + t2v∞)],

with W2 = 〈w0, w∞〉 and V d4 = 〈w0, w∞, v0, v∞〉. We may further assume
Γ ∩ ` = {γ(1)} and Γ ∩ `′ = {γ(t0)} for some t0 /∈ {0, 1,∞}. Set

(7.3) w = w0 + w∞ and w′ = w0 + t0w∞,

so that W2 = 〈w,w′〉. Since we assumed e1 /∈ V d4 , we have e1 /∈ W2, hence
γ(1) = [e1 ∧w]. Similarly, γ(t0) = [e′1 ∧w′]. If P(W2) is contained in Qd, the
point [w] ∈ P(V5) must be one of the two points of P(V3)∩Qd, and [w′] must
be one of the two points of P(V ′3) ∩ Qd. Since we assumed that none of the
four lines joining these points are contained in Qd, this is absurd.

Finally, we have

(7.4) v0 + v1 + v∞ ∈ 〈e1, w〉 and v0 + t0v1 + t20v∞ ∈ 〈e′1, w′〉,
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hence v0 + t0v∞ is in the hyperplane 〈e1, e
′
1, w, w

′〉.

Conversely, let us start with [w] ∈ P(V3 ∩ V d4 ) and [w′] ∈ P(V ′3 ∩ V d4 ).
Assume w /∈ V ′3 and w′ /∈ V3, and that the line 〈[w], [w′]〉 meets Qd in two
points, [w0] and [w∞]. These points determine uniquely the points [w0 ∧ v0]
and [w∞∧v∞] of d, together with the point [e1∧w] of `, and the point [e′1∧w′]
of `′. Note that w0 and w∞ are defined only up to multiplication by nonzero
scalars. But our choice of parametrization of Γ imposes w0 + w∞ ∈ Cw
(see (7.3)), so these scalars must be the same, and w0 + t0w∞ ∈ Cw′, which
determines t0 uniquely.

Again, v0 and v∞ are defined only up to multiplication by nonzero scalars
and addition of multiples of w0 and w∞ respectively. But since v0 + t0v∞
must be in the hyperplane 〈e1, e

′
1, w, w

′〉, these scalars must again be the
same. These changes can be achieved by noting that the span of w0 + tw∞
and v0 + tv1 + t2v∞ is also the span of w0 + tw∞ and λv0 + µw0 + t(λv1 +
µw∞ + νw0) + t2(λv∞ + νw∞).

Finally, v1 is uniquely determined by (7.4), hence the curve Γ is uniquely
determined by the choice of [w] and [w′]. Since both vary in a projective line,
Γ belongs to a two-dimensional (irreducible) family.

Let us now look at quadrics Ω containing c and d. Containing a given
twisted cubic Γ as above imposes three further conditions. Since Γ varies in
a two-dimensional family, a general quadric containing d and c contains no
such cubic Γ. This implies what we need.

Finally, we will show in Theorem 9.1 that the conic transforms Xc and Xd

are isomorphic if and only if there exists an automorphism σ of Fm(X) such
that σ([c]) = [d]. By Corollary 9.3, σ is either trivial or ι, so this proves that
the assignment [c] 7→ [Xc] defines an injective morphism from the projective
surface Fm,ι(X) to the moduli stack N10.

Since the intermediate Jacobians of X and of Xc are isomorphic, the image
of this morphism is contained in the fiber F of the period map passing through
the point [X]. By Theorem 5.1, the image is a smooth surface and a connected
component of F . Since Fm,ι(X) is a minimal surface, this component is
actually isomorphic to Fm,ι(X). �

7.2. Elementary transformation along a line. Let ` be a line con-
tained in a threefold X of type X 0

10. We can define an elementary transfor-
mation along ` as in §7.1. If ε : X̃ → X is the blow-up of `, with exceptional
divisor E, projection from ` induces a birational morphism ϕ|−KfX | : X̃ → P5,
whose image X̄ has degree 10 and has terminal hypersurface singularities.
The only curves contracted by ϕ|−KfX | are the strict transforms of the lines
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that meet ` and, when the normal bundle to ` in X is O(1)⊕O(−2), the ex-
ceptional section of the ruled surface E ' F3; in any event, there are finitely
many such curves ([IsP], Proposition 4.3.1 and Corollary 4.3.2).

Performing a flop, we end up as in §7.1 with a diagram

(7.5) X̃

ε

��

ϕ
��

???????
χ

//_______ X̃ ′

ε′

��

ϕ′~~~~~~~~~

X̄

X
ψ`

//_______ X`

where ([IsP], Proposition 4.3.3.(iii)):

• X` is again a smooth Fano threefold of degree 10 in P7;
• ε′ is the blow-up of a line `′ in X`, with exceptional divisor E′ ≡
−K eX′ − χ(E).

If H ′ is a hyperplane section of X`, we have

χ∗ε′
∗
H ′ ≡ χ∗(−K eX′ + E′) ≡ χ∗(−2K eX′ − χ(E)) ≡ −2ε∗KX − 3E,

hence ψ` is associated with a linear subsystem of |I 3
` (2)|.

As in §7.1, the elementary transformation of X` along the line `′ is ψ−1
` :

X` 99K X.
As for conic transforms, the intermediate Jacobians of X and of X` are

isomorphic.
Remark 7.5. Let X be general. Using iterated conic and line transforma-

tions, we can construct many threefolds with the same intermediate Jacobian
as X. We will explain where these transforms land in the fiber of the period
map.

We just saw that the connected component FX of the fiber F of the period
map passing through the point corresponding to X is a projective surface
isomorphic to Fm,ι(X). If ` is a line contained in X, we get another component
Fm,ι(X`) of F . By continuity, this component F ?

X is independent of the
choice of ` (in §8, we will prove directly that these surfaces are all abstractly
isomorphic to a quotient of the moduli space MX(2; 1, 5) by an involution).
Now take a conic c ⊂ X; by the same reasoning, conic transforms of Xc also
land in the component FX of F , whereas line transforms of Xc land in the
component F ?

X . In other words, conic transformations leave each of the two
components FX and F ?

X of F invariant, whereas line transformations switch
them.
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In [DIM], §7.3, we prove by a degeneration argument that the components
FX and F ?

X are different. Therefore, a general fiber of the period map is the
disjoint union of an even number of smooth projective irreducible surfaces.

8. The moduli space MX(2; 1, 5)

Let X be any threefold of type X 0
10. We study the moduli space MX(2; 1, 5)

of semistable rank-2 torsion-free sheaves on X, with Chern numbers c1 = 1,
c2 = 5, and c3 = 0, along the lines of [IM]. A noteworthy difference is that a
vector bundle in this moduli space is not necessarily generated by its global
sections. Our treatment of the non globally generated bundles is directly
inspired by [BF]. The main result of this section is Theorem 8.2.

First remarks. Let E be a semistable rank-2 vector bundle on X, with Chern
numbers c1 = 1 and c2 = 5. By the Riemann-Roch theorem, we have

χ(X,E nd(E )) = 4χ(OX) +
1
2
c1(X)(c1(E )2 − 4c2(E )) = −1.

We claim that E has nonzero sections. Indeed χ(X,E ) = 4 and H3(X,E ) =
0 by Serre duality. So we just need to prove that H2(X,E ) vanishes, which
can be proved as in [IM], Lemma 5.1.

Restrict E to a general hyperplane section S of X, a K3 surface of de-
gree 10 with Pic(S) = Z[OS(1)]. We have χ(S,E |S) = 4 and H2(S,E |S) =
H1(S,E |∨S) = 0, hence h0(S,E |S) ≥ 4. Choosing a nonzero section s of E |S ,
we get an extension

0→ OS
·s→ E |S → IZ(1)→ 0,

where Z is a zero-dimensional scheme of length 4. Since E |S is locally free, we
have h1(S,IZ(1)) ≥ 1, and there is in fact equality since otherwise Z would
generate a line contained in S, which is impossible. Looking at the associated
long exact sequence, we get H1(S,E |S) = 0, thus h0(S,E |S) = 4. Back to X,
we obtain H1(X,E ) = 0 and h0(X,E ) = 4. Moreover, E is globally generated
in codimension two.

Non locally free sheaves. Let F be a semistable rank-2 torsion-free sheaf on
X with Chern numbers c1 = 1, c2 = 5, and c3 = 0, which is not locally free.
We claim that there exists a unique line ` in X such that F fits in an exact
sequence

0→ F → T∨X → O` → 0.

This is the same statement as Proposition 5.11 in [IM] and the proof is the
same: the bidual G = F∨∨ is locally free outside a finite set, so its restriction
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to a general K3 section S is locally free, the quotient (G /F )|S has finite
support, and length((G /F )|S) = 5 − c2(G |S). Moreover G |S is semistable
and the moduli space of simple sheaves on S is smooth at G |S , of dimension
4− 4 length((G /F )|S). The same arguments as in [IM] yields that the length
of (G /F )|S is nonzero, hence must in fact be 1. This means that G /F is
supported on a line ` plus possibly a finite set of points.

Moreover G |S , being semistable with Chern numbers c1 = 1 and c2 = 4,
must be the restriction of T∨X to S. Finally, exactly as in [IM], G ' T∨X and
G /F ' O`.

Non globally generated bundles. Now, let E be a semistable rank-2 vector
bundle on X, with Chern numbers c1 = 1 and c2 = 5, which is not generated
by global sections. We follow the arguments of [BF], Lemma 6.12. Denote
by I ⊂ E the image of the evaluation map H0(X,E ) ⊗ OX → E and by
K its kernel. Set also T = E /I , a nonzero sheaf supported in codimension
two. The torsion-free sheaf I is stable of rank two, with c1(I ) = 1 and
c2(I ) ≥ 5. The reflexive sheaf K is also stable of rank two, with c1(K ) =
−1. By restricting to a general K3 section and applying Mukai’s formula
for the dimension of the moduli space, we get c2(K ) ≥ 4, hence c2(I ) =
10− c2(K ) ≤ 6.

Suppose c2(K ) = 5; then c(T ) = 1 + c3(K ) and, by Riemann-Roch,
`(T ) = c3(K )/2 ≤ 0. So T = 0, a contradiction.

So c2(K ) = 4. But the dual sheaf K ∨ must then be the dual T∨X of
the tautological sheaf. Finally, a computation yields χ(T (k)) = k. Since
H0(X,T ) = 0, this implies T = O`(−1) for some line ` in X. We get an
exact sequence

0→ TX → H0(X,E )⊗ OX → E → O`(−1)→ 0.

Note that if we apply the functor H om(.,OX), we get the dual sequence

0→ E ∨ → H0(X,E )∨ ⊗ OX → T∨X → O` → 0.

This means that E ∨ can be identified with the kernel of the evaluation map
H0(X,F )⊗OX → F of the non locally free sheaf [F ] ∈MX(2; 1, 5) defined
by `. In particular, E is uniquely defined by `, and H0(X,E ) ' H0(X,F )∨.

An involution on the moduli space. Let [E ] ∈ MX(2; 1, 5) be a globally gen-
erated vector bundle. Observe that the kernel K of the evaluation map
H0(X,E ) ⊗ OX → E is a rank-2 vector bundle with c1 = −1 and c2 = 5,
with no nonzero global sections. Its dual ιE is therefore stable, with Chern
numbers c1(ιE ) = 1 and c2(ιE ) = 5. Moreover, ιE is globally generated and
we have a natural identification H0(X, ιE ) ' H0(X,E )∨.
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More precisely, taking global sections in the sequence above, we get an
exact sequence of vector spaces

0→ H0(X,E )∨ → H0(X,T∨X) ' V ∨5 → V ∨1 → 0,

where V1 ⊂ V5 is the “vertex” of the line ` ⊂ X (§3.1). We can thus identify
H0(X,E ) with V5/V1, hence P(H0(X,E )) with the set of V2 ⊂ V5 containing
V1. Geometrically, the codimension-2 Schubert cycle σ20(V2) ⊂ G(2, V5) meets
X along a 1-cycle of the form `+ Γ1

5, where Γ1
5 is an elliptic quintic bisecant

to `. This cycle is the zero-locus of the section of E defined (up to scalars) by
V2.

Proposition 8.1. Let X be a Fano threefold of type X 0
10 and let ` ⊂ X be

a line. There is a birational isomorphism

ϕ` : MX(2; 1, 5) 99K F (X`)

which is compatible with the involutions on MX(2; 1, 5) and F (X`).
Proof. Let [E ] ∈ MX(2; 1, 5) be a globally generated vector bundle and

consider the exact sequence

0→ I` ⊗ E → E → E |` ' O` ⊕ O`(1)→ 0.

Since every proper subspace of H0(`,O`(1)) has a base-point, and E is globally
generated, the restriction map H0(X,E ) → H0(`,E |`) is surjective. Hence
H0(X,I` ⊗ E ) is one-dimensional, generated by s. The zero-locus of s is
Γ0

4 ∪ `, where Γ0
4 is a rational quartic curve bisecant to `. The line transform

ψ` maps Γ0
4 to a conic on X`. This defines a rational map ϕ` as required.

Conversely, the inverse image by ψ` of a general conic on X` is a rational
quartic Γ0

4 bisecant to `. Applying the Serre construction to the degenerate
elliptic quintic Γ0

4 ∪ `, we obtain a stable vector bundle of rank 2 on X with
Chern numbers 1 and 5 and a section that vanishes on Γ0

4 ∪ `. The map ϕ` is
therefore birational. We know prove that it is compatible with the involutions.

Recall that ιE is dual to the kernel of the evaluation map H0(X,E )⊗OX →
E . Let s (resp. s′) be a section of E (resp. ιE ) generating H0(X,I` ⊗ E )
(resp. H0(X,I` ⊗ ιE )), and denote its zero-locus by Γ0

4 ∪ ` (resp. Γ′04 ∪ `).
By the definition of ιE , the section s defines on Γ0

4 a section σ of (ιE )∨, and
this section does not vanish (since it defines a nonzero section of E |Γ0

4
). We

get an exact sequence

0→ OΓ0
4
→ (ιE )∨|Γ0

4
→ L ∨ → 0,

where L is a line bundle on Γ0
4 of degree 4. On the other hand, the pairing

(σ, s′|Γ0
4
) ∈ OΓ0

4
is identically zero, since s′ vanishes on `, which meets Γ0

4. This
means that on Γ0

4, the section s′ of ιE is in fact a section of L . Therefore
s′ must vanish at four points of Γ0

4: the two intersection points with `, and
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two other points which must be on Γ′04. Thus Γ0
4 and Γ′04 meet in two points,

hence the corresponding conics c = ψ`(Γ0
4) and c′ = ψ`(Γ′

0
4) also meet in two

points. By Lemma 6.1, these two conics are in involution. �

Theorem 8.2. Let X be any Fano threefold of type X 0
10. The moduli

space MX(2; 1, 5) of semistable rank-2 torsion-free sheaves on X with Chern
numbers c1 = 1, c2 = 5, and c3 = 0, is a smooth projective irreducible surface.

The non locally free sheaves and the non globally generated vector bundles
in MX(2; 1, 5) are respectively parametrized by two copies Γnf and Γng of the
curve Γ(X) of lines in X. These two curves are exchanged by the involution
ι on the moduli space.

When X is general, Γ(X) is a smooth projective irreducible curve of genus
71 ([IsP], Theorem 4.2.7).

Proof. First suppose that [E ] ∈MX(2; 1, 5) is a globally generated vector
bundle. A general section of E vanishes along a smooth elliptic quintic Γ1

5

and yields an exact sequence

0→ OX → E → IΓ1
5
(1)→ 0.

Twisting by E ∨ and taking cohomology, we obtain

h2(X,E nd(E )) = h2(X,IΓ1
5
⊗ E ) = h1(Γ1

5,E |Γ1
5
).

By the Atiyah classification, E |Γ1
5

is the direct sum of two line bundles, both
globally generated.

Suppose that [E ] is not a smooth point of MX(2; 1, 5). The vector space
H1(Γ1

5,E |Γ1
5
) is nonzero, and one of these line bundles is trivial: E |Γ1

5
=

OΓ1
5
⊕ OΓ1

5
(1). But E |Γ1

5
is the normal bundle to Γ1

5 in X. In the normal
sequence

0 → NΓ1
5/X

→ NΓ1
5/G(2,V5) → (NX/G(2,V5))|Γ1

5
→ 0

‖ ‖ ‖
0 → OΓ1

5
⊕ OΓ1

5
(1) → OΓ1

5
(1)5 → OΓ1

5
(1)2 ⊕ OΓ1

5
(2) → 0

the image in NΓ1
5/G(2,V5) of the factor OΓ1

5
(1) of NΓ1

5/X
maps to zero in

(NX/G(2,V5))|Γ1
5
, which means that the corresponding linear form defines a

tangent hyperplane to X. This contradicts the smoothness of Γ1
5.

Suppose now that [F ] ∈ MX(2; 1, 5) is not locally free. We saw that F

fits into an exact sequence

0→ F → T∨X → O` → 0

for a unique line ` in X. We are thus in the same situation as in [IM],
Proposition 5.12, and the same proof yields Ext2(F ,F ) = 0.
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Finally, suppose that E is locally free but not globally generated. We saw
that E fits into an exact sequence

0→ E ∨ → H0(X,F )⊗ OX → F → 0,

where the non locally free sheaf [F ] ∈ MX(2; 1, 5) is as above. From this
sequence we infer

H2(X,E nd(E )) ' H1(X,E ⊗F )

and
H1(X,E ⊗F ) ' Ext2(F ,F )

(apply the functor Hom(·,F ) and use H1(X,F ) = H2(X,F ) = 0). So by
the previous case we obtain the vanishing of H2(X,E nd(E )).

We can now conclude that MX(2; 1, 5) is a smooth surface. Since it is
birational to F (X`) (Proposition 8.1), it is also irreducible for X general (see
§6.3). But the vanishing of Ext2(F ,F ), for any point [F ] of MX(2; 1, 5),
also proves that for any family X → S of Fano threefolds of type X 0

10, the
relative moduli scheme MX (2; 1, 5) → S is smooth over S. In particular,
since its general fibers are connected, any fiber is connected. This proves that
MX(2; 1, 5) is always connected.

The involution ι was defined by mapping a globally generated vector bundle
E to the globally generated vector bundle ιE defined by the exact sequence

0→ (ιE )∨ → H0(X,E )⊗ OX → E → 0

If we replace E by the non locally free sheaf F ∈ MX(2; 1, 5) defined by
the line `, this exact sequence gives for ιF the non globally generated vector
bundle associated to the same line. This shows that ι extends to the curve Γnf

of non locally free sheaves in MX(2; 1, 5), which is mapped bijectively to the
curve Γng of non globally generated vector bundles. Being an involution, ι also
extends to Γng. We can finally conclude that ι defines a regular involution of
the smooth surface MX(2; 1, 5) which permutes the curves Γnf and Γng. �

Corollary 8.3. For any Fano threefold X of type X 0
10, the surface F (X)

is irreducible.
Proof. This follows directly from Theorem 8.2, Proposition 8.1, and the

fact that X is itself a line transform (§7.2). �

9. The reconstruction theorem

Following Logachev ([L]), we show that a general X10 can be recovered
from its Fano surface.
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Theorem 9.1 (Logachev). Let X and X ′ be general Fano threefolds of
type X10 and let f : Fg(X) ∼→Fg(X ′) be an isomorphism. There exists an
isomorphism ϕ : X ∼→X ′ inducing f .

Corollary 9.2. Assume that X is general. For any smooth τ -conic c ⊂ X,
the threefolds Xc and Xι(c) are isomorphic.

Proof. This follows from Theorem 9.1 and Proposition 7.2. �
Corollary 9.3. For a general X, the only nontrivial automorphism of the

minimal surface Fm(X) is the involution ι.
Proof. The cotangent bundle of Fm(X) is generated by global sections

(Corollary 7.3) and defines a morphism

`10 : Fm(X)→ G(2, V10),

where V10 = H0(Fm(X),ΩFm(X))∨. Since global sections of Ω1
Fm(X) are anti-

invariant by the involution ι ([L], Proposition 0.5), `10 factors through the
action of ι. Let V8 be the quotient of V10 by the 2-dimensional vector space
`10([cX ]). By the tangent bundle theorem (§6.3), there is a diagram

(9.1) F (X)

��

%%KKKKKKKKKK
`8 // G(2, V8)

Fι(X)

��

`8,ι

88rrrrrrrrrr

Fm(X)
`10 //

%%KKKKKKKKKK
G(2, V10)

OO�
�
�
�
�
�
�

Fm,ι(X),
`10,ι

88rrrrrrrrrr

where the rational map G(2, V10) 99K G(2, V8) is induced by the projection
V10 → V8. The map `10,ι is generically injective, because `8,ι is: `8 sends
(c, V4) to 〈c ∩ ι(c)〉, the lines in P(V5) corresponding to the points of the line
〈c ∩ ι(c)〉 span the hyperplane P(V4), and we recover c ∪ ι(c) by intersecting
G(2, V4) with X.

Assume now that X is very general, so that the endomorphism ring of
Alb(Fm(X)) ' J(X) is trivial (Corollary 5.3). Any nontrivial automorphism
σ of Fm(X) then acts on the tangent space TJ(X),0 = V10 as ± Id, hence `10

factors through the action of σ. This implies σ = ι. �
Proof of Theorem 9.1. We will reconstruct X from the abstract surface

Fg(X). The successive steps are the following.
1) From the abstract surface Fg(X), we first recover the minimal surface

Fm(X) with its involution ι. By Corollary 7.3, we also recover the map
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Fι(X)→ G(2, V8) which, when we will have constructed X, will map a conic
c to the line 〈c ∩ ι(c)〉.

2) In P(V8), we recover the plane Π and the conics cX and c∨U .
3) We consider the projection to P(V8) 99K P(V8/U

∨) = P4 which, when
we will have constructedX, will induce a birational isomorphism κ : W 99K P4

(Proposition 3.2). The problem at that point is that we do not know where
to locate W in P(V8). Nevertheless, we can reconstruct the rational normal
cubic Γ0

3 in P4 which defines κ−1 (Proposition 3.2).
4) The map κ−1 sends P4 to a copy of W in some P(V ′8). From Fι(X), we

are able to find an identification between P(V8) and P(V ′8).
5) So we get W inside P(V8), and intersecting it with the lines parametrized

by Fι(X), we get a surface S whose “quadratic span” is the Fano threefold X
we are looking for.

Step 1. We know that Lσ and L′σ are the unique rational curves in Fg(X)
and Fg(X ′), so f(Lσ) = L′σ. Moreover these curves are (−1)-curves, and
contracting them, we get the minimal surfaces Fm(X) and Fm(X ′), and an
isomorphism f : Fm(X) ∼→Fm(X ′) which sends ι([cX ]) to ι′([cX′ ]).

We keep the notation and results of the proof of Corollary 9.3. We have a
commutative diagram

Fm(X)

f

��

`10 // G(2, V10)

f

��

Fm(X ′)
`′10 // G(2, V ′10),

where the maps `10 and `′10 have degree 2 onto their images, and factor through
the involutions ι and ι′ respectively. Therefore we recover ι and ι′, and also
the points [cX ] ∈ Fg(X) and [cX′ ] ∈ Fg(X ′).

The map f induces a map from the diagram (9.1) to the corresponding
diagram for X ′.

One must think of the map `8 as sending a conic c to the line 〈c ∩ ι(c)〉 –
except that we do not know yet how to identify a point in the abstract surface
Fg(X) with a conic on X. What we have is the abstract 2-dimensional family
of lines Im(`8) in P(V8). If we knew how to construct W in P(V8), intersecting
it with these lines, we would get a surface S, and the base-locus of the quadrics
containing S would be X.

The problem at this point is that we do not know how to locate W in
our abstract P(V8). Logachev’s idea is to use the birational isomorphism
κ−1 : P4 99K W defined in §3.6 to reconstruct W . Since its inverse κ is just
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the projection from the 2-plane Π = 〈cX〉, we first need to reconstruct this
plane.

Step 2. Let Lι be the image of Lσ in Fι(X). For [c] ∈ Lι, the line `8([c]) is
tangent to the conic c∨U ⊂ Π. So we recover the plane Π, and the isomorphism
Lσ ' c∨U ' cU . Moreover f induces an isomorphism between Π and the
corresponding plane Π′ ⊂ P(V ′8), restricting to an isomorphism between the
conics c∨U and (c′U )∨.

On the other hand, there exists a finite set of points [c] in Fι(X) Lι such
that `8([c]) meets Π. Moreover the intersection points with Π belong to a
unique conic in Π,10 namely cX ⊂ Π. We can therefore recover this conic
from our data, in such a way that f induces an isomorphism between cX ⊂ Π
and c′X ⊂ Π′.

Step 3. Now consider the projection from V8 to V8/U
∨
3 . The next claim is

that we can reconstruct the rational cubic Γ0
3 ⊂ P(V8/U

∨
3 ).

For this we observe that from the two conics cX and c∨U in Π, we can define
the elliptic curve

Γ1
X = {(t, x) ∈ c∨U × cX | x ∈ Tc∨U ,t},

a double cover of both cX and c∨U . Let S2,V8 denote the rank-2 tautological
bundle on G(2, V8). There is an obvious map from P(S2,V8) to P(V8). On
the other hand, we have a chain of inclusions

Γ1
X ↪→ P(`∗8S2,V8)|Lι ↪→ P(`∗8S2,V8).

The rational map defined as the composition

P(`∗8S2,V8)→ P(S2,V8)→ P(V8) 99K P(V8/U
∨
3 )

is not defined on Γ1
X . However, since P(`∗8S2,V8)|Lι is a divisor in P(`∗8S2,V8),

the restriction to this divisor is a well-defined rational map. And since Γ1
X is

itself a divisor in P(`∗8S2,V8)|`, the restriction is again well-defined. We end
up with a well-defined map Γ1

X → P(V8/U
∨
3 ).

Of course we can do the same for X ′, and we get a compatible isomorphism
between Γ1

X and Γ1
X′ .

Now recall (§3.6) that the total transform of a point x of Π by the birational
isomorphism κ : W 99K P(V8/U3) is a line `x that meets Γ0

3 at the points
corresponding to those two points in c∨U whose tangents pass through x. This
implies that a point (t, x) in Γ1

X must be mapped in P(V8/U3) to some point
p(t, x) of the bisecant `t.

10One must check that we get at least five such intersection points; see [L].
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But there is another point (t′, x) on Γ1
X , mapping to a point p(t′, x) on the

same bisecant line `x. Since, in general, p(t, x) 6= p(t′, x),11 we can recover
the line `x as the line joining these two points. Finally, if we consider the
points (t, x) and (t, x′) of Γ1

X , we see that the lines `x and `x′ must meet on
the point of Γ0

3 corresponding to t. So this process allows to reconstruct the
curve Γ0

3, and an isomorphism with c∨U .

Step 4. From Γ0
3 ⊂ P(V8/U3), we can reconstruct a copy of W , say W † ⊂ V †8 ,

as the image of the birational map defined by the linear system of quadrics
through Γ0

3. We get the diagram

P(V8) 99K P(V8/U3)
|IΓ0

3
(2)|
99K W †

∪ ∪ ∩
W Γ0

3 P(V †8 )

We do not know yet where to locate W in P(V8), but we know that the
identification of W with W † induces a unique linear isomorphism between
P(V8) and P(V †8 ). What we need to do is to recover this isomorphism from
our data.

First observe that to a general point [c] of F (X) should correspond a conic
(c, V4), and the point θ([c]) = [U3 ∩ V4] in Π = G(2, U3).

From our present knowledge, this point can be recovered as follows: the
line `5([c]), image of `8([c]) in G(2, V8/U3), meets the linear span of Γ0

3 at
one point. This point belongs to a unique bisecant line to Γ0

3, meeting Γ0
3 at

two points which we can identify with two points of c∨U . The intersection of
the corresponding tangents is θ([c]). Moreover, we know that the projection
P(V8) 99K P(V8/U3), once restricted to P(MV4), can be identified with the
projection through that point θ([c]); in particular this applies to `8([c]), and
we can conclude that `5([c]) is the image of `8([c]) by projection from θ([c]).

Now Logachev considers those pairs (c, c′) such that `5([c]) and `5([c′]) meet
at one point, say m(c, c′); there is a two-dimensional family of such pairs. We
know the image of m(c, c′) in P(V †8 ), and we want to reconstruct its preimage
n(c, c′) in P(V8). But this is easy: `5([c]) and θ([c]) generate a plane Πc, which
meets the corresponding plane Πc′ at a unique point, which is n(c, c′).12

We are thus able to reconstruct the isomorphism P(V8) → P(V †8 ) on the
special points n(c, c′). Since they are not contained in any hyperplane, they
completely determine the isomorphism we were looking for.

11This can be checked by a lengthy direct calculation.
12To see this, observe that Πc is contained in the 3-plane Θc = P(V8)∩P(∧2V4), which

meets Θc′ along P(V8) ∩P(∧2(V4 ∩ V ′4)); but in general this is just a point. So it must be

n(c, c′).
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Step 5. In the preceding steps, we have reconstructed W in P(V8). Moreover,
we have done that from purely projective constructions in terms of the family
of lines `8([c]), when [c] describes the abstract surface Fm(X). This implies
that the isomorphism f : Fg(X) ∼→Fg(X ′) induces an isomorphism ϕ between
P(V8) and P(V ′8), mapping W to an isomorphic copy W ′, and compatible with
`8 and `′8. This means that we can recover a surface S in X by intersecting
the lines `8(c) with W , and that f maps S to the corresponding surface S′ in
X ′.

But S determines X, as the intersection of the quadrics in P(V8) containing
S13 and this implies that ϕ maps X isomorphically onto X ′.

Finally, u = f−1 ◦ ϕ∗ is an automorphism of Fg(X) which descends to an
automorphism um of Fm(X) such that `8 ◦ um = `8. Since `8 is generically
injective, um is the identity, hence so is u. The theorem is proved. �
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