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Abstract

In the past few decades, it has become more and more obvious that rational curves are
the primary player in the study of the birational geometry of projective varieties. Studying
rational curves on algebraic varieties is actually a very old subject which started in the
nineteenth century with the study of lines on hypersurfaces in the projective space. In
these notes, we review results on rational curves on hypersurfaces, some classical, some more
recent, briefly introducing along the way tools such as Schubert calculus and Chern classes.
We end with a discussion of ongoing research on the moduli space of rational curves of fixed
degree on a general hypersurface.
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Introduction

The set of zeroes in the projective space of a homogeneous polynomial of degree d with
coefficients in a field is called a projective hypersurface of degree d and the study of their
geometry is a very classical subject.

For example, Cayley wrote in the 1869 memoir [C] that a smooth complex cubic (d = 3)
surface contains exactly 27 projective lines. In 1904, Fano published the article [F] on the
variety of lines contained in a general complex cubic hypersurface of dimension 3.1

After recalling in Chapter 1 basic facts on projective spaces and Grassmannians, we
concentrate in Chapter 2 on the variety of lines contained in a hypersurface. We take this
opportunity to review quickly Chern classes and to introduce a little bit of Schubert calculus.
We define free lines (those whose normal bundle is generated by global sections) and discuss
the particular cases of quadric and cubic hypersurfaces. In particular, we prove that the
variety of lines contained in a cubic hypersurface of dimension 4 is a holomorphic symplectic
manifold ([BD]). In the examples, we discuss several base fields: C, R, Q, and we finish
the chapter with the case of finite fields, where, surprisingly, some basic questions, like the
existence of lines on cubic hypersurfaces of dimension 3 or 4, remain open.

In Chapter 3, we discuss analogous questions about conics instead of lines. We con-
struct a parameter space for conics in the projective space and prove that a general hy-
persurface of dimension n and degree > (3n + 1)/2 contains no conics. We also discuss
S. Katz’s result that a general quintic threefold contains 609,205 conics. Again, we examine
more closely the case of quadric and cubic hypersurfaces. We close the chapter with the
construction of the space of rational curves in a given projective scheme, state a theorem
about its local structure, and discuss a conjecture and several recent results on its global
structure.

In Chapter 4, we review standard fact about varieties covered by rational curves: we
define uniruledness and separable uniruledness and characterize the latter by the existence
of a free rational curve.

Instead of proving every result that we state, we have tried instead to give a taste of the
many tools that are used in modern classical algebraic geometry. The bibliography provides
a few references where the reader can find more detailed expositions. Throughout this text,

1This is why these varieties of lines are often called “Fano varieties,” although this is confusing since this
terminology is nowadays used more often for varieties whose anticanonical bundle is ample.
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I offer exercises and I discuss several conjectures concerning very concrete and elementary
questions which are however still open.
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Chapter 1

Projective spaces and Grassmannians

Let k be a field. A k-variety X is an integral and separated scheme of finite type over k.
We denote by X(k) the set of points of X defined over k, also called k-rational points.

The Picard group Pic(X) is the group of isomorphism classes of invertible (or locally
free of rank 1) sheaves L on X, under the operation given by tensor product; the inverse
L −1 of L is then its dual L ∨ := H omOX

(L ,OX). It is also the group of Cartier divisors on
X modulo linear equivalence ≡

lin
(two Cartier divisors are linear equivalent if their difference

is the divisor of a regular function).

When X is smooth of dimension n, the sheaf ωX := Ωn
X of regular n-forms on X is

invertible. Its class in Pic(X) is called the canonical class, often written as KX . The tangent
sheaf of X is denoted by TX ; it is the dual of the sheaf ΩX of regular 1-forms on X.

We fix a k-vector space V of dimension N .

1.1 Projective spaces

The projective space

P(V ) := {1-dimensional vector subspaces in V }

is a smooth projective k-variety of dimension N − 1. It is endowed with a very ample
invertible sheaf OP(V )(1); seen as a line bundle, its fiber at a point [V1] is the dual vector
space V ∨1 . It corresponds to the (Cartier) divisors defined by hyperplanes in P(V ).

We define OP(V )(−1) as the dual of OP(V )(1) and, for any m ∈ N, we set OP(V )(m) :=
OP(V )(1)⊗m and OP(V )(−m) := OP(V )(−1)⊗m. Whis this notation, the map

Z −→ Pic(P(V ))

m 7−→ [OP(V )(m)]

is a group isomorphism.
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The space of global sections of OP(V )(1) is isomorphic to V ∨ by the map

V ∨ ∼−→ H0
(
P(V ),OP(V )(1)

)
v∨ 7−→ ([V1] 7→ v∨|V1).

More generally, for any m ∈ Z, the space of global sections of OP(V )(m) is isomorphic to
SmV ∨ for m ≥ 0, and to 0 for m < 0.

1.2 The Euler sequence

The variety P(V ) is smooth and its tangent bundle fits into an exact sequence

0→ OP(V ) → OP(V )(1)⊗k V → TP(V ) → 0. (1.1)

At a point [V1], this exact sequence induces the following exact sequence of k-vector spaces:

0 // k // V ∨1 ⊗k V // TP(V ),[V1]
// 0

0 // Homk(V1, V1) // Homk(V1, V ) // Homk(V1, V/V1) // 0.

By taking determinants in the exact sequence (1.1), we obtain

ωP(V ) ' det(TP(V ))
∨ = det(OP(V )(1)⊗k V )∨ = OP(V )(−N).

1.3 Grassmannians

For any integer r such that 0 ≤ r ≤ N = dimk(V ), the Grassmannian

G := Gr(r, V ) := {r-dimensional vector subspaces in V }

is a smooth projective k-variety of dimension r(N − r) (when r = 1, this is just P(V ); when
r = N − 1, this is the dual projective space P(V ∨)).

There is on G a tautological rank-r subbundle S whose fiber at a point [Vr] of G is Vr
(when G = P(V ), this is OP(V )(−1)). It fits into an exact sequence

0→ S → OG ⊗k V → Q → 0, (1.2)

where Q is the tautological rank-(N − r) quotient bundle.

As in the case of the projective space, for any m ∈ N, the space of global sections of
SmS ∨ is isomorphic to SmV ∨.

Let [Vr] be a point of G and choose a decomposition V = Vr ⊕ VN−r. The subset of
G consisting of subspaces complementary to VN−r is an open neighborhood GVN−r

of [Vr]
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in G whose elements can be written as {x + u(x) | x ∈ Vr} for some uniquely defined u ∈
Homk(Vr, VN−r). This implies that there is an isomorphism ϕVr,VN−r

: GVN−r

∼→Homk(Vr, VN−r).
One checks that the composed isomorphism

TG,[Vr]
TϕVr,VN−r

,[Vr ]

−−−−−−−−→ Homk(Vr, VN−r)
∼−→Homk(Vr, V/Vr) (1.3)

is independent of the choice of the complementary subspace VN−r. Therefore,

TG 'HomOS
(S ,Q) ' S ∨ ⊗OS

Q.

The generalization of the Euler sequence (1.1) for the Grassmannian is therefore

0→ S ∨ ⊗OS
S → S ∨ ⊗k V → TG → 0. (1.4)

The invertible sheaf
OG(1) :=

∧
rS ∨ = det(S ∨) (1.5)

is again very ample, with space of global sections isomorphic to
∧
rV ∨. It induces the Plücker

embedding

Gr(r, V ) −→ P(
∧
rV )

[Vr] 7−→ [
∧
rVr].

We define the invertible sheaves OG(m) for all m ∈ Z as in the case of P(V ) and again, the
map m 7→ [OG(m)] induces a group isomorphism

Z ∼−→Pic(G).

By taking determinants in the exact sequence (1.4), we obtain

ωG ' det(TG)∨ = det(S ∨ ⊗OS
S )⊗ det(S ∨ ⊗k V )∨ = det(S ⊗k V

∨) = OG(−N). (1.6)

Example 1.1 When N = 4, the image of the Plücker embedding Gr(2, V ) ↪→ P(
∧

2V ) = P5
k

is the smooth quadric with equation η 7→ η ∧ η.

More generally, the image of the Plücker embedding Gr(2, V ) ↪→ P(
∧

2V ) is defined by
the intersection of all Plücker quadrics η 7→ η ∧ η ∧ ω, as ω describes

∧
N−4V (it consists of

the decomposable tensors in
∧

2V ).

1.4 Linear spaces contained in a subscheme of P(V )

We can also interpret the isomorphism (1.3) as follows. We write two Euler exact sequences:

0 // OP(Vr)
// OP(Vr)(1)⊗k Vr //

_�

��

TP(Vr)
//

_�

��

0

0 // OP(Vr)
// OP(Vr)(1)⊗k V // TP(V )|Vr // 0,
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from which we obtain a formula for the normal bundle of P(Vr) in P(V ) (the cokernel of the
rightmost vertical map)

NP(Vr)/P(V ) ' OP(Vr)(1)⊗k (V/Vr). (1.7)

We can therefore rewrite (1.3) as

TGr(r,V ),[Vr] ' H0(P(Vr), NP(Vr)/P(V )). (1.8)

This is a particular case of a more general result.

Let f ∈ SdV ∨ (a homogeneous polynomial in degree d) and let X ⊂ P(V ) be the
hypersurface Z(f) defined by f . Set

Fr(X) := {[Vr] ∈ Gr(r, V ) | Vr ⊂ X}.

We define a scheme structure on this closed subset as follows. By definition, [Vr] ∈ F (X)
if and only if f |Vr is identically 0. On the other hand, f defines a section sf of SdS ∨ by
[Vr] 7→ f |Vr . We set

Fr(X) := Z(sf ) ⊂ Gr(r, V ), (1.9)

the zero-scheme of the section sf . Since the rank of SdS ∨ is
(
d+r−1
r−1

)
, this has the important

consequence that either Fr(X) is empty, or it has everywhere codimension at most
(
d+r−1
r−1

)
in at each point.

If X ⊂ P(V ) is now a general subscheme defined by the equations f1 = · · · = fm = 0,
we set

Fr(X) := Fr(Z(f1)) ∩ · · · ∩ Fr(Z(fm)) ⊂ Gr(r, V )

as a (projective) scheme.

We can now generalize (1.8).

Theorem 1.2 Let X ⊂ P(V ) be a subscheme containing P(Vr). If X is smooth along
P(Vr), one has

TFr(X),[Vr] ' H0(P(Vr), NP(Vr)/X).

Proof. We will only do the case where X ⊂ P(V ) is a hypersurface of degree d. The
general case is an easy consequence of that particular case.

Choose a decomposition V = Vr⊕VN−r and adapted coordinates x1, . . . , xr, xr+1, . . . , xN
on V . Since X contains Vr, we may write its equation as

f = xr+1fr+1 + · · ·+ xNfN ,

where fr+1, . . . , fN are homogeneous polynomials of degree d− 1.

We may represent a first-order deformation of Vr in the direction of the tangent vector
u ∈ Homk(Vr, VN−r) as the graph of x 7→ x+ εu(x), with ε2 = 0. We then have

∀x ∈ Vr f(x+ εu(x)) = εur+1(x)fr+1(x, 0) + · · ·+ εuN(x)fN(x, 0)
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so this first-order deformation is contained in X if and only if

∀x ∈ Vr ur+1(x)fr+1(x, 0) + · · ·+ uN(x)fN(x, 0) = 0. (1.10)

The global section of NP(Vr)/P(V ) corresponding to the tangent vector u via (1.8) is x 7→
(ur+1(x), . . . , uN(x)). Since

∂f

∂xi
(x, 0) =

{
0 if 1 ≤ i ≤ r,

fi(x, 0) if r + 1 ≤ i ≤ N,

(1.10) is exactly the condition for this section to have values in NP(Vr)/X . This proves the
theorem in the case where X is a hypersurface. �
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Chapter 2

Projective lines contained in a
hypersurface

If X is a subscheme of the projective space P(V ), we defined in Section 1.4 the scheme
F2(X) ⊂ Gr(2, V ) of projective lines contained in X. From now on, we will use instead the
notation F (X), or M(X, 1) (for “moduli space of curves of degree 1 contained in X”). It is
a projective scheme.

2.1 Local study of F (X)

Let L be a projective line contained in X. We proved in Theorem 1.2 that if X is smooth
along L, the tangent space to F (X) at the point [L] is isomorphic to H0(L,NL/X).

We have a more precise result, which we will not prove.

Theorem 2.1 Let X ⊂ P(V ) be a subscheme containing a projective line L. If X is smooth
along L, the scheme F (X) can be defined, in a neighborhood of its point [L], by h1(L,NL/X)
equations in a smooth scheme of dimension h0(L,NL/X). In particular, any (geometric)
component of F (X) through the point [L] has dimension at least

χ(L,NL/X) := h0(L,NL/X)− h1(L,NL/X) = deg(NL/X) + dim(X)− 1.

The last equality follows from the Riemann-Roch theorem applied to the vector bundle
NL/X on the genus-0 curve L.

The number deg(NL/X) + dim(X)− 1 is called the expected dimension of F (X). When
H1(L,NL/X) = 0, the scheme F (X) is smooth of the expected dimension at [L].

Assume that X ⊂ P(V ) is a hypersurface of degree d containing L. We explained in
Section 1.4 that F (X) has dimension at least

dim(Gr(2, V ))− rank(SdS ∨) = 2(N − 2)− (d+ 1) = 2N − 5− d. (2.1)

9



When X is moreover smooth along L, we have the normal exact sequence

0→ NL/X → NL/P(V ) → NX/P(V )|L → 0. (2.2)

By (1.7), the normal bundle NL/P(V ) is isomorphic to OL(1)⊕(N−2), hence has degree N − 2,
whereas NX/P(V ) is isomorphic to OX(d). It follows that NL/X has rank N − 3 and degree
N − 2 − d. The number in (2.1) is therefore the expected dimension of F (X) as defined
above.

2.2 Schubert calculus

To prove results about the existence of a projective line in a hypersurface, we will use
cohomological calculations with Chern classes, using Schubert calculus.

Let X be a smooth projective variety. The Chow ring CH(X) =
⊕

i∈NCH
i(X) is the

ring of cycles on X modulo rational equivalence, graded by codimension, where the product
is given by intersection. I do not want to explain here what this means because we will only
use it as a formal tool. The group CH1(X) is the group Pic(X) of divisors modulo linear
equivalence defined at the beginning of Chapter 1; for higher i, the theory is more subtle.
For our purposes, the Chow ring can be replaced by any good cohomology theory that you
like, such as the singular cohomology ring H(X,Z) when k = C.

To any coherent sheaf F on X, one can associate a (total) Chern class c(F ) ∈ CH(X)
which behave nicely by pullbacks and such that, for any exact sequence

0→ F ′ → F → F ′′ → 0,

one has
c(F ) = c(F ′)c(F ′′). (2.3)

We write c(F ) =
∑

i≥0 ci(F ), with ci(F ) ∈ CH i(X). When F is locally free, we have
ci(F ) = 0 for i > rank(F ) and c1(F ) is the class in CH1(X) = Pic(X) of det(F ).

We will need the following result.

Theorem 2.2 Let X be a smooth irreducible projective scheme and let E be a locally free
sheaf on X of rank r. Assume that the zero-scheme Z(s) of some global section s of E is
empty or has codimension exactly r in X. Then its class [Z(s)] ∈ CHr(X) is equal to cr(E ).
In particular, if cr(E ) is nonzero, Z(s) is nonempty.

If X is a hypersurface of degree d of P(V ), the subscheme F (X) ⊂ G := Gr(2, V ) of
lines contained in X is defined as the zero locus of a section of SdS ∨, a locally free sheaf on
G of rank d+ 1.

To compute cd+1(S
dS ∨), we need to know the ring CH(G). To describe it, we define

the Schubert cycles.
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Let a and b be integers such that N − 2 ≥ a ≥ b ≥ 0. Choose vector subspaces

VN−1−a ⊂ VN−b ⊂ V

such that dim(VN−1−a) = N − 1− a and dim(VN−b) = N − b. We define a subvariety of G,
called a Schubert variety, by

Σa,b := {[V2] ∈ G | V2 ∩ VN−1−a 6= 0, V2 ⊂ VN−b}. (2.4)

It is irreducible of codimension a + b in G and its class σa,b := [Σa,b] ∈ CHa+b(G) only
depends on a and b. It is usual to write σa (resp. Σa) for σa,0 (resp. Σa,0) and to set σa,b = 0
whenever (a, b) does not satisfy N − 2 ≥ a ≥ b ≥ 0.

Exercise 2.3 Set as above G := Gr(2, V ).

a) Prove that via the identification CH1(G) ' Pic(G), the class σ1 corresponds to
the (isomorphism class of the) invertible sheaf OG(1) defined in (1.5) (Hint: use
the Plücker embedding).

b) Prove that in the linear sytem P(H0(G,OG(1))) = P(
∧

2V ∨), the Schubert divisor
Σ1 associated via (2.4) with VN−2 ⊂ V corresponds to the point [VN−2] of Gr(N−
2, V ) ' Gr(2, V ∨)

Plücker

⊂ P(
∧

2V ∨).

Theorem 2.4 The group CH(Gr(2, V )) is a free abelian group with basis
(σa,b)N−2≥a≥b≥0.

For example, the group CH1(G) ' Pic(G) has rank 1, generated by σ1. This class is
the first Chern class of the invertible sheaf OG(1) (Exercise 2.3). We also have

c(Q) = 1 + σ1 + · · ·+ σN−2,

hence also, using (1.2) and (2.3),

c(S ) = (1 + σ1 + · · ·+ σN−2)
−1 = 1− σ1 + σ2

1 − σ2.

(The rank of S is 2 so there are no higher Chern classes.) The compute this class, we
need to know the multiplicative structure of CH(G): whenever N − 2 ≥ a ≥ b ≥ 0 and
N − 2 ≥ c ≥ d ≥ 0, there must exist formulas

σa,b · σc,d =
∑

x+y=a+b+c+d

N−2≥x≥y≥0

na,b,c,d,x,yσx,y,

where the na,b,c,d,x,y are integers. This is the content of Schubert calculus, which we will only
illustrate in some particular cases (the combinatorics are quite involved in general).
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Poincaré duality. If a+ b+ c+ d = 2N − 4, one has

σa,b · σc,d =

{
1 if a+ d = b+ c = N − 2

0 otherwise.

(The class σN−2,N−2 is the class of a point and generates CH2N−4(G); we usually drop it.)
In other words, the Poincaré dual of σa,b is σN−2−b,N−2−a.

Pieri’s formula. This is the relation

σm · σa,b =
∑

x+y=a+b+m
x≥a, y≥b

σx,y.

For example, we have
σ1 · σa,b = σa+1,b + σa,b+1 (2.5)

(where the last term is 0 when a = b), which implies

c(S ∨) = 1 + σ1 + σ1,1.

The following formula can be deduced from Pieri’s formula (using σ1,1 = σ2
1 − σ2):

σ1,1 · σa,b = σa+1,b+1. (2.6)

Example 2.5 How many lines meet 4 general lines L1, L2, L3, and L4 in P3
C? One can

answer this question geometrically as follows: through any point of L3, there is a unique line
meeting L1 and L2 and one checks by explicit calculations that the union of these lines is a
smooth quadric surface, which meets L4 in 2 points. Through each of these 2 points, there
is a unique line meeting all 4 lines.

But we can also use Schubert calculus: the set of lines meeting Li has class σ1, hence
the answer is (use (2.5))

σ4
1 = σ2

1(σ2 + σ1,1) = σ1(σ2,1 + σ2,1) = 2σ2,2.

(To be honest, this calculation only shows that either there are either 2 such lines “counted
with multiplicities” or infinitely many of them.)

2.3 Projective lines contained in a hypersurface

2.3.1 Existence of lines in a hypersurface

We use Schubert calculus to show the existence of lines in hypersurfaces of small enough
degrees.
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Theorem 2.6 When k is algebraically closed and d ≤ 2N − 5, any hypersurface of degree
d in P(V ) contains a projective line.

Proof. By Theorem 2.2, it is enough to prove that the top Chern class cd+1(S
dS ∨) does

not vanish.

The method for computing the Chern classes of the symmetric powers of S ∨ is the
following: pretend that S ∨ is the direct sum of two invertible sheaves L1 and L2, with first
Chern classes `1 and `2 (the Chern roots of S ∨), so that

c(S ∨) = (1 + `1)(1 + `2).

Then

SdS ∨ '
d⊕
i=0

(L ⊗i
1 ⊗L ⊗(d−i)

2 )

and, using (2.3), we obtain

c(SdS ∨) =
d∏
i=0

(
1 + i`1 + (d− i)`2

)
.

This symmetric polynomial in `1 and `2 can be expressed as a polynomial in

`1 + `2 = c1(S
∨) = σ1

`1`2 = c2(S
∨) = σ1,1.

One obtains in particular

cd+1(S
dS ∨) =

d∏
i=0

(
i`1 + (d− i)`2

)
=

∏
0≤i≤d/2

(i(d− i)
(
`1 + `2)

2 + (d− 2i)2`1`2
)

=
∏

0≤i≤d/2

(
i(d− i)σ2

1 + (d− 2i)2σ1,1
)

=
∏

0≤i≤d/2

(
i(d− i)σ2 +

(
(d− 2i)2 + i(d− i)

)
σ1,1
)
.

Formulas (2.5) and (2.6) imply that this is a sum of Schubert classes with nonnegative
coefficients which, since (d− 2i)2 + i(d− i) ≥ 1 for all i, is “greater than or equal to”∏

0≤i≤d/2

σ1,1 = σbd/2c+1,bd/2c+1,

which is nonzero for bd/2c+ 1 ≤ N − 2. This inequality is equivalent to d ≤ 2N − 5. �
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Exercise 2.7 Prove the relations

a) c4(S
3S ∨) = 9(2σ3,1 + 3σ2,2) , c5(S

4S ∨) = 32(3σ4,1 + 10σ3,2) , c6(S
5S ∨) =

25(24σ5,1 + 130σ4,2 + 115σ3,3).

b) det(SdS ∨) ' OG

(d(d+1)
2

)
and c1(S

dS ∨) = d(d+1)
2 σ1.

Assume 2N − 5 − d ≥ 0. Under the hypotheses of the theorem, it follows from (2.1)
that F (X) has everywhere dimension ≥ 2N − 5− d.

One can show that when X ⊂ P(V ) is a general hypersurface of degree d, the scheme
F (X) is smooth projective of (the expected) dimension 2N − 5 − d (empty whenever this
number is < 0).

Exercise 2.8 Deduce from Exercise 2.7 that a general quintic hypersurface in P4
k

con-
tains 2,875 lines.

Whenever F (X) is smooth of the expected dimension, its canonical class is given by
an adjunction formula: if a section of a vector bundle E on a smooth projective variety G
has smooth zero locus Z, we have KZ =

(
KG + c1(E )

)
|Z . In our case, we obtain, using (1.6)

and Exercise 2.7.b),

KF (X) =
(
−Nσ1 +

d(d+ 1)

2
σ1

)
|F (X). (2.7)

In particular, when N > d(d + 1)/2, the smooth variety F (X) is a Fano variety: its anti-
canonical class −KF (X) is ample.

When d ≥ 4, even if X is smooth, the scheme F (X) may be singular, and even reducible
or nonreduced (this does not happen when d = 2 or 3; see Sections 2.4 and 2.5). However,
we have the following conjecture.

Conjecture 2.9 (de Jong–Debarre) Assume N > d ≥ 3 and that char(k) is either 0 or
≥ d. For any smooth hypersurface X ⊂ P(V ) of degree d, the scheme F (X) has the expected
dimension 2N − 5− d.

We will see in Section 2.5 that the conjecture holds for d = 3. When char(k) = 0, the
conjecture is known for d ≤ 6 or for d � N (Collino (d = 4), Debarre (d ≤ 5), Beheshti
(d ≤ 6), Harris et al. (d� N)).

Example 2.11 shows that the hypothesis char(k) ≥ d is necessary. The assumption
N > d is also necessary: one can show that when char(k) is either 0 or ≥ d, the dimension
of the scheme of projective lines contained in a Fermat hypersurface of degree d ≥ N − 1
(see equation (2.8) below) is N − 4 (which is the expected dimension only if d = N −
1). In particular, Fermat quintic threefolds contain infinitely many lines (compare with
Exercise 2.8).

Example 2.10 (Real lines) When d is even, the Fermat hypersurface

xd1 + · · ·+ xdN = 0 (2.8)
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contains no real points, hence no real lines, whereas the diagonal hypersurface

xd1 + · · ·+ xdN−1 − xdN = 0

contains infinitely many real points, but no real lines.

Example 2.11 (Positive characteristic) Over Fp, we consider the smooth Fermat hy-
persurface X ⊂ P(V ) with equation

xp
r+1

1 + · · ·+ xp
r+1
N = 0,

with r ≥ 1. The line L joining two points x and y of X is contained in X if and only if

0 =
N∑
j=1

(xj + tyj)
pr+1

=
N∑
j=1

(xp
r

j + tp
r

yp
r

j )(xj + tyj)

=
N∑
j=1

(xp
r+1
j + txp

r

j yj + tp
r

xjy
pr

j + tp
r+1yp

r+1
j )

= t
N∑
j=1

xp
r

j yj + tp
r

N∑
j=1

xjy
pr

j (2.9)

for all t. This is equivalent to the two equations

N∑
j=1

xp
r

j yj =
N∑
j=1

xjy
pr

j = 0, (2.10)

hence F (X) has dimension at least 2 dim(X)− 2− 2 = 2N − 8 at every point [L].

It is known that any locally free sheaf on P1 split as a direct sum of invertible sheaves,
so we can write

NL/X '
N−3⊕
i=1

OL(ai), (2.11)

where a1 ≥ · · · ≥ aN−3 and a1 + · · · + aN−3 = N − pr − 3. By (2.2), NL/X is a subsheaf of
NL/P(V ) ' OL(1)⊕(N−2), hence a1 ≤ 1. We have

2N − 8 ≤ dim(F (X))

≤ h0(L,NL/X) by Theorem 1.2

= 2 Card{i | ai = 1}+ Card{i | ai = 0}
≤ Card{i | ai = 1}+N − 3.

The only possibility is
NL/X ' OL(1)⊕(N−4) ⊕ OL(1− pr), (2.12)

which implies h0(L,NL/X) = 2N − 8. Since this is ≤ dim(F (X)), Theorem 1.2 implies that
F (X) is smooth of (nonexpected if pr 6= 2) dimension 2N − 8.
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Exercise 2.12 (Pfaffian hypersurfaces) Let k be an algebraically closed field of charac-
teristic 6= 2 and let W := k2d. In P(

∧
2W∨), the Pfaffian hypersurface Xd of degenerate

skew-symmetric bilinear forms (defined by the vanishing of the Pfaffian polynomial) has degree
d.

a) Let m be a positive integer. Given a 2-dimensional vector space of skew-symmetric forms
on km, prove that there exists a subspace of dimension b(m+ 1)/2c which is isotropic for
all forms in that space (Hint: proceed by induction on m).

b) Given a 2-dimensional vector space of degenerate skew-symmetric forms on k2d, prove
that there exists a subspace of dimension d + 1 which is isotropic for all forms in that
space (Hint: proceed by induction on d and use a)).

c) Show that the scheme F (Xd) of projective lines contained in Xd is irreducible of the
expected dimension (see (2.1))1 (Hint: prove that the locus {([L], [Vd+1]) ∈ Gr(2,

∧
2W∨)×

Gr(d+1,W ) | Vd+1 is isotropic for all forms in L} is irreducible of dimension 4d2−3d−5
and apply b)).

The hypersurface Xd is singular (when d ≥ 3): its singular locus is the locus of nonzero
skew-symmetric bilinear forms of rank ≤ 2d− 4, which has codimension 6 in P(

∧
2W∨). If k is

infinite, a linear section X := Xd ∩P(V6), where V6 ⊂
∧

2W∨ is a general 6-dimensional vector
subspace, is a smooth hypersurface by Bertini’s theorem.

d) Prove that F (X) is of the expected dimension 7− d.

2.3.2 Lines through a point

Given a subscheme X ⊂ P(V ) and a point x ∈ X(k), it is sometimes useful to look at the
k-scheme F (X, x) of projective lines passing through x and contained in X. This is actually
a simpler problem, because, if x corresponds to a one-dimensional k-vector subspace V1 ⊂ V ,
projective lines in P(V ) passing through x are parametrized by P(V/V1), a projective space
of dimension one less. This projective space can also be viewed, inside the Grassmannian
Gr(2, V ), as a Schubert cycle ΣN−2 defined in (2.4). We may then define F (X, x) as the
scheme-theoretic intersection

F (X, x) := F (X) ∩P(V/V1).

In practice, it is easy to write down explicit equations for F (X, x). Assume first that X
is a degree-d hypersurface with equation f . Let x ∈ X(k); choose coordinates so that
x = (0, . . . , 0, 1). One can write f as

f(x1, . . . , xN) = xd−1N f (1)(x1, . . . , xN−1) + · · ·+ xNf
(d−1)(x1, . . . , xN−1) + f (d)(x1, . . . , xN−1),

where f (i) is homogeneous of degree i. The line joining x to y := (x1, . . . , xN−1, 0) is contained
in X if and only

f (1)(x1, . . . , xN−1) = · · · = f (d−1)(x1, . . . , xN−1) = f (d)(x1, . . . , xN−1) = 0. (2.13)

1Note that Xd is singular for d ≥ 3: its singular locus is the set of skew-symmetric forms of rank ≤ 2d−4.
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These are the equations that define the scheme F (X, x) in P(V/V1). If X ⊂ P(V ) is a
general subscheme defined by the equations f1 = · · · = fm = 0, we set

F (X, x) := F (Z(f1), x) ∩ · · · ∩ F (Z(fm), x) ⊂ P(V/V1).

Proposition 2.13 Assume that k is algebraically closed and let X ⊂ P(V ) be a hypersurface
of degree d. If d ≤ N − 2, any point of X is on a line contained in X.

We say that X is covered by lines.

Proof. This is because for any x ∈ X, the scheme F (X, x) is defined by the d equations
(2.13) in an (N − 2)-dimensional projective space. �

Remark 2.14 Assume d = N − 2. When X is general, F (X) has dimension 2N − d− 5 =
N − 4 hence the union of these lines has dimension ≤ N − 3: they cannot cover X. If the
characteristic is either 0 or ≥ N − 2, this should remain true whenever X is smooth if we
believe Conjecture 2.9.

Exercise 2.15 Let k be an algebraically closed field and let X ⊂ P(V ) be a subscheme defined

by the equations f1 = · · · = fm = 0. If deg(f1) + · · ·+ deg(fm) ≤ N − 2, prove that any point

of X is on a line contained in X.

Exercise 2.16 Let X ⊂ P(V ) be the smooth Fermat hypersurface discussed in Example 2.11.

When N ≥ 5, prove that for any x ∈ X, the scheme F (X,x) is not reduced (Hint: use (2.10)).

2.3.3 Free lines

Assume that an n-dimensional variety X ⊂ P(V ) contains a projective line L and is smooth
along L. Consider the decomposition (2.11)

NL/X '
n−1⊕
i=1

OL(ai),

where a1 ≥ · · · ≥ an−1. We say that the line L is free (on X) if an−1 ≥ 0. This is equivalent
to saying that NL/X is generated by its global sections. It is a condition which is strictly
stronger than the vanishing of H1(L,NL/X) (which, by Theorem 2.1, ensures the smoothness
of F (X) at [L]).

Theorem 2.17 Let X ⊂ P(V ) be a subvariety.

a) If L is a free line contained in the smooth locus of X, the deformations of L in X cover
X. In particular, ⋃

[L]∈F (X)

L = X.
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b) Conversely, if k is algebraically closed of characteristic 0 and X is covered by lines, a
general line contained in X is free.

A couple of comments are in order about b). First, the characteristic-0 hypothesis is
necessary: when N ≥ 5, the smooth Fermat hypersurface of Example 2.11 is covered by lines
but none of them are free (see (2.12)). Second, b) does not say that all lines in X are free:
when N ≥ 5, a smooth cubic hypersurface is covered by lines, but some of them (“lines of
the second type”; see footnote 2) are not free.

A corollary of Proposition 2.13 and the theorem is that in characteristic 0, a general
line contained in the smooth locus of a hypersurface X ⊂ P(V ) of degree ≤ N − 2 is free.

We will only sketch the proof of the theorem, because it is a particular case of a more
general result (Theorem 4.7).

Sketch of proof. Let us introduce the incidence variety

I := {(x, L) ∈ X × F (X) | x ∈ L}

with its projections pr1 : I → X and pr2 : I → F (X) (a P1-bundle).

If L is free, it corresponds, by Theorem 2.1, to a smooth point of F (X). Moreover, for
any x ∈ L, the point (x, L) of I is smooth on I (because pr2 : I → F (X) is smooth). One
then computes the tangent map Tpr1,(x,L) : TI,(x,L) → TX,x and prove that it is surjective if and
only if L is free. The map pr1 is therefore dominant, hence surjective since I is projective.

Conversely, if X is covered by lines, pr1 is surjective. If the characteristic is 0, the
projection Ired → X is generically smooth; this means that for L general in F (X) and
x general in L, the tangent map TIred,(x,L) → TX,x is surjective. Since it factors through
Tpr1,(x,L) : TI,(x,L) → TX,x, this last map is also surjective, hence L is free. �

Exercise 2.18 Assume that k is algebraically closed of characteristic 0, let X be a smooth
hypersurface of degree d ≤ N − 2, and let L be a general line contained in X. Prove

NL/X ' OL(1)⊕(N−2−d) ⊕ O
⊕(d−1)
L (2.14)

(Hint: use (2.2), (2.11), Proposition 2.13, and Theorem 2.17).

Note that the conclusion does not hold in characteristic p > 0 for the Fermat hypersur-

faces of degree pr + 1 by (2.12).

2.4 Projective lines contained in a quadric hypersur-

face

Assume that k is algebraically closed of characteristic different from 2. All smooth quadric
hypersurfaces X ⊂ P(V ) are isomorphic to the hypersurface defined by the quadratic form

f(x1, . . . , xN) = x21 + · · ·+ x2N .
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When N = 4, the quadric X is isomorphic to P1
k × P1

k and the scheme F (X) which
parametrizes lines contained in X is the disjoint union of two smooth conics in Gr(2, V )
(itself a smooth quadric in P(

∧
2V ) ' P5

k; see Example 1.1).

For N ≥ 4, there are several ways to study F (X). The first one is elementary: let
L ⊂ X be a line. If x ∈ L, the line L lies in TX,x ∩ X, which is a cone over an (N − 4)-
dimensional smooth quadric. It follows that the family of pairs (x, L), with x ∈ L ⊂ X, is
smooth, has dimension N − 2 + N − 4, and is irreducible when N > 4. This implies that
F (X) is smooth, has dimension 2N − 7, and is irreducible when N > 4.

But we can also use the machinery of Section 2.1: if L ⊂ X, we have from (2.2) an
exact sequence

0→ NL/X → OL(1)⊕(N−2) → OL(2)→ 0.

We write as in (2.11)

NL/X '
N−3⊕
i=1

OL(ai),

where 1 ≥ a1 ≥ · · · ≥ aN−3 and a1 + · · ·+ aN−3 = N − 4. We have

aN−3 = (N − 4)− a1 − · · · − aN−4 ≥ 0.

This implies H1(L,NL/X) = 0, hence, by Theorem 2.1, F (X) is smooth of the expected
dimension 2N − 7 (we have actually shown NL/X ' OL(1)⊕(N−4) ⊕ OL: the line L is free).

In the next exercise, we determine F (X) when N = 5 or 6.

Exercise 2.19 Let W be a 4-dimensional vector space. The image of the Plücker embedding
G := Gr(2,W ) ⊂ P(

∧
2W ) is a smooth 5-dimensional quadric. Let ω ∈

∧
2W∨ be a nondegen-

erate symplectic form; it defines a hyperplane ω⊥ ⊂ P(
∧

2W ).

a) Prove that X := G ∩ ω⊥ is a smooth 5-dimensional quadric.

b) Prove that any line contained in G is of the form {[W2] ∈ G | W1 ⊂ W2 ⊂ W3} for some
partial flag W1 ⊂ W3 ⊂ W and that this line is contained in X if and only if W3 is the
ω-orthogonal of W1.

c) Deduce that F (X) is isomorphic to P(W ) and that F (G) is isomorphic to the incidence
variety

{(x, x∨) ∈ P(W )×P(W∨) | x∨(x) = 0}.

2.5 Projective lines contained in a cubic hypersurface

Assume that k is algebraically closed and let X ⊂ P(V ) be a smooth cubic hypersurface.
When N = dim(V ) ≥ 4, it follows from Theorem 2.6 that X contains a line L. We write as
in (2.11)

NL/X '
N−3⊕
i=1

OL(ai),
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where 1 ≥ a1 ≥ · · · ≥ aN−3 and a1 + · · · + aN−3 = N − 5, and we deduce as in Section 2.4
aN−3 = (N − 5) − a1 − · · · − aN−4 ≥ −1. This implies H1(L,NL/X) = 0, hence F (X) is
smooth of the expected dimension 2N − 8 (Theorem 2.1).2

We have proved the following.

Theorem 2.20 Let X ⊂ P(V ) be a smooth cubic hypersurface. If N ≥ 4, the scheme F (X)
of lines contained in X is smooth of dimension 2N − 8.

Remark 2.21 When N ≥ 5, the scheme F (X) is (geometrically) connected. Indeed, F (X)
is the zero locus of a section sf of the locally free sheaf E ∨ := S3S ∨ on G := Gr(2, N) and
it has the expected codimension rank(E ) = 4 (see (1.9)). In this situation, we have a Koszul
resolution of its structure sheaf:

0 −→
∧

4E −→
∧

3E −→
∧

2E −→ E
s∨f−−→ OG −→ OF (X) −→ 0. (2.15)

(This complex is exact because locally, E is free and the components of sf in a basis of E form
a regular sequence.) Using this sequence and, in characteristic zero, the Borel–Weil theorem,
which computes the cohomology of homogeneous vector bundles such as

∧
rE on G, one can

compute some of the cohomology of OF (X) and obtain for example h0(F (X),OF (X)) = 1
for N ≥ 5 ([DM, th. 3.4]), hence the connectedness of F (X). This is obtained in all
characteristics in [AK, Theorem (5.1)] by direct computations.

Under the hypotheses of the theorem, by Exercice 2.7.a), the subscheme F (X) ⊂
Gr(2, V ) has class 9(2σ3,1 + 3σ2,2). Moreover, its canonical class, given by formula (2.7), is

KF (X) = (6−N)σ1|F (X).

When N = 5, the smooth variety F (X) is a surface of general type; when N = 6, its canonical
class is trivial (see Section 2.5.2 for more details); when N ≥ 7, it is a Fano variety.

2.5.1 Lines on a smooth cubic surface

When N = 4, the class σ3,1 vanishes in CH(Gr(2, V )), hence [F (X)] = 27σ2,2, where σ2,2 is
the class of a point. Since F (X) is smooth (Theorem 2.20), this proves the famous classical
result:

Every smooth cubic surface over an algebraically closed field contains 27 lines.

2A little more work shows there are two possible types for normal bundles:

NL/X ' OL(1)⊕(N−5) ⊕ O⊕2L (lines of the first type, free);
NL/X ' OL(1)⊕(N−4) ⊕ OL(−1) (lines of the second type, not free).

When N ≥ 4, there are always lines of the second type. When N ≥ 5, a general line in X is of the first type
if char(k) 6= 2 (in characteristic 0, this is because X is covered by lines (Proposition 2.13 and Theorem 2.17;
see also Exercise 2.18); this is not true for the Fermat cubic in characteristic 2 by (2.12)).
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Remark 2.22 Let X be an irreducible normal cubic surface in P3 which is not a cone. It
can be shown that X contains only finitely many lines. The scheme F (X) then has class
27σ2,2, but might not be reduced, so that X contains at most 27 lines. In fact, over an
algebraically closed field, X is smooth if and only if it contains exactly 27 lines; it follows
that when X is singular, F (X) is not reduced.

Example 2.23 (Real lines) The 27 complex lines contained in a smooth real cubic surface
X are either real or complex conjugate. Since 27 is odd, X always contains a real line. One
can prove that the set of real lines contained in X has either 3, 7, 15, or 27 elements.3 In
many mathematics departments around the world, there are plaster models of (real!) cubic
surfaces with 27 (real) lines on them; it is usually the Clebsch cubic (1871), with equations
in P4:

x0 + · · ·+ x4 = x30 + · · ·+ x34 = 0.

Among its 27 lines, 15 are defined over Q, and the other 12 over the field Q(
√

5).4

Figure 2.1: The Clebsch cubic with its 27 real lines

Example 2.24 (Q-lines) An explicit5 surface defined over Q with all its 27 lines defined
over Q was found by Tetsuji Shioda in 1995. Its equation is

x22x4 + 2x2x
2
3 = x31 − x1(59475x24 + 78x23) + 2848750x34 + 18226x23x4.

All 27 lines have explicit rational equations.

3Actually, lines on real cubic surfaces should be counted with signs, in which case one gets that the total
number is always 3.

4The permutation group S5 acts on X. The lines defined over Q are 〈(1,−1, 0, 0, 0), (0, 0, 1,−1, 0)〉 and its

images by S5, and the 12 other lines are the real line 〈(1, ζ, ζ2, ζ3, ζ4), (1, ζ, ζ
2
, ζ

3
, ζ

4
)〉, where ζ := exp(2iπ/5),

and its images by S5.
5For any field k, there exists a smooth cubic surface defined over k with 27 k-lines as soon as one can find

6 points in P2
k in general position (no 3 collinear, no 6 on a conic); this is possible whenever Card(k) ≥ 4

(there are not enough points in P2
F2

or P2
F3

). So the issue here is to give an explicit equation for this cubic.
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2.5.2 Lines on a smooth cubic fourfold

When N = 5, the smooth projective fourfold F (X) has trivial canonical class. When k = C,
these varieties were classified by Beauville ([B]) and Bogomolov ([Bo]).

Theorem 2.25 (Beauville–Bogomolov Decomposition Theorem) Let F be a smooth
projective complex variety such that c1(TF ) vanishes in H2(F,R). There exists a finite étale
cover of F which is isomorphic to the product of

• nonzero abelian varieties;

• simply connected Calabi-Yau varieties;

• simply connected holomorphic symplectic varieties.

Here, a Calabi-Yau variety Y is a variety of dimension n ≥ 3 such that H i(Y,OY ) = 0
for all 0 < i < n. In particular, χ(Y,OY ) = 1 + (−1)n.

A holomorphic symplectic variety Y is a variety carrying a holomorphic 2-form η which
is everywhere nondegenerate. The dimension of Y is even and Y is simply connected if and
only if H0(Y,Ω2

Y ) = C[η], in which case

H0(Y,Ωr
Y ) =

{
C[η∧(r/2)] if r is even and 0 ≤ r ≤ dim(Y ),

0 otherwise,

so that χ(Y,OY ) = 1 + 1
2

dim(Y ). When Y is a surface, it is called a K3 surface.

In our case, one finds6

χ(F (X),OF (X)) = 3.

Since the holomorphic Euler characteristic of a nonzero abelian variety vanishes, there can
be no such factor in the decomposition of the theorem applied to F = F (X); moreover, there

are only 3 possibilities for its universal cover π : F̃ (X)→ F (X):

• either F̃ (X) is a Calabi-Yau fourfold, in which case

2 = χ(F̃ (X),O
F̃ (X)

) = deg(π)χ(F (X),OF (X)) = 3 deg(π),

which is impossible;

• or F̃ (X) is a product of two K3 surfaces, in which case χ(F̃ (X),O
F̃ (X)

) = 4 = 3 deg(π),

which is also impossible;

6The Koszul resolution (2.15) gives χ(F (X),OF (X)) =
∑4

i=0(−1)iχ(Gr(2,C6),
∧

i(S3S )) and this sum
can be computed unsing a computer software such as Macaulay2.
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• or F̃ (X) is a simply connected holomorphic symplectic fourfold, in which case

3 = χ(F̃ (X),O
F̃ (X)

) = deg(π)χ(F (X),OF (X)) = 3 deg(π).

It follows that we are in the third case and that

when k = C, the variety F (X) is a simply connected holomorphic symplectic fourfold.

We will determine its structure in the particular case when X is a Pfaffian cubic. We
go back to a general field k, which we assume is infinite and of characteristic 6= 2.

The construction is the following. Let W6 be a 6-dimensional k-vector space. We
defined and studied in Exercise 2.12 the cubic hypersurface X3 ⊂ P(

∧
2W∨

6 ) of degenerate
skew-symmetric bilinear forms on W6. Its singular locus corresponds to skew forms of corank
4, which, since W6 has dimension 6, is just the Grassmannian Gr(2,W∨

6 ). It has codimension
6 in P(

∧
2W∨

6 ). For a general 6-dimensional k-vector subspace V6 ⊂
∧

2W∨
6 , the intersection

X := P(V6) ∩X3 ⊂ P(
∧

2W∨
6 )

is a cubic fourfold, which is smooth by the Bertini theorem, called a Pfaffian cubic fourfold.

Consider now in the dual space the intersection

S := Gr(2,W6) ∩P(V ⊥6 ) ⊂ P
(∧

2W6

)
.

Since V6 is general and codim(V ⊥6 ) = dim(V6) = 6, we obtain a surface and since KGr(2,W6) =
−6σ1, its canonical sheaf is trivial (by adjunction). It is in fact a K3 surface.

Consider the blow up S̃ × S → S×S of the diagonal {(y1, y2) ∈ S×S | y1 = y2}. The

involution of S × S which exchanges the two factors lifts to an involution ι of S̃ × S. We

define the symmetric square S[2] as the smooth quotient S̃ × S/ι.
Fujiki proved that S[2] is a holomorphic symplectic fourfold defned over k, in the sense

that the k-vector space H0(S[2],Ω2
S[2]) is generated by a form η which is nondegenerate

at every point and H0(S[2],Ω4
S[2]) is generated by the nowhere vanishing form η ∧ η (this

generalizes the definition given earlier when k = C). It parametrizes subschemes of S of
length 2.

Proposition 2.26 (Beauville–Donagi, [BD]) Assume that the field k is infinite of char-
acteristic 6= 2. Let X ⊂ P(V6) be a general7 Pfaffian cubic fourfold. Then F (X) is isomor-
phic to S[2].

Proof. We construct a morphism F (X)→ S[2].

7More precisely, we assume that X is smooth and contains no projective planes and S contains no
projective lines.
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A projective line contained in X corresponds to a 2-dimensional vector subspace V2 ⊂
V6 of skew-symmetric forms on W6, all degenerate of rank 4 (except for the zero form). There
exists a 4-dimensional subspace W4 ⊂ W6 which is isotropic for all these forms (Exercise
2.12.b)) and one can show that it is unique.8 The vector space V2 is then contained in
(
∧

2W4)
⊥ ∩ V6. Conversely, this intersection defines a projective space of dimension ≥ 1

contained in X, since any form in (
∧

2W4)
⊥ must be degenerate.

A “count of parameters” shows that for a general choice of V6, the fourfold X contains
no projective planes. If we make this assumption, we obtain

dim
(
(
∧

2W4)
⊥ ∩ V6

)
= 2.

By duality, this means dim(
∧

2W4 + V ⊥6 ) = 13, hence

dim
(
(
∧

2W4) ∩ V ⊥6
)

= 2.

In other words, P(
∧

2W4) ∩ P(V ⊥6 ) is a projective line. Its intersection with the quadric
Gr(2,W4) ⊂ Gr(2,W6) (see Exercice 1.1) is then contained in S. Again, a “count of param-
eters” shows that for a general choice of V6, the surface S contains no projective lines. If
we make this further assumption, the intersection is a subscheme of S of length 2, hence a
point of S[2].

Let us show that ϕ is birational by constructing an inverse. Consider two distinct
points in S. We can see them as distinct 2-dimensional vector subspaces P1 and P2 of W6.
They also define a projective line in P(V ⊥6 ). Since S contains no lines, this line cannot be
contained in Gr(2, P1 + P2). This implies in particular that P1 + P2 has dimension 4. Any
skew-symmetric form in V6 vanishes on P1 and P2, hence those forms which vanish on P1+P2

form a vector space of dimension ≥ 2 which corresponds, because of the assumption on X,
to a projective line contained in X, hence to a point of F (X). This defines an inverse to ϕ
on the complement of the exceptional divisor in S[2].

To finish the proof, one can either see that this construction of the inverse extends to
the whole of S[2], so that ϕ is an isomorphism, or argue that the pull-back by ϕ of a nowhere
zero 4-form on S[2] (which exists because S[2] is a symplectic variety) is a non identically
zero 4-form on F (X). But then, this form vanishes nowhere, since F (X) is also a symplectic
variety. This implies that the tangent map to ϕ is everywhere an isomorphism, hence the
birational morphism ϕ is an isomorphism. �

8One way to check that is to use a result of Jordan–Kronecker, which gives normal forms for any pair of
skew-symmetric forms on a finite-dimensional vector space over an algebraically closed field of characteristic
6= 2. In our case, one sees that there is a basis of W6 in which a given pair of generators of the pencil is

given by the matrices

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

 and either

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0

, or

 0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

. In the first case, the

kernels K1 and K2 of the forms form a direct sum and W4 = K1 +K2 is defined over k. In the second case,
W4 is spanned by all the kernels of the forms in the pencil and it is again defined over k.

24



2.6 Cubic hypersurfaces over finite fields

As usual, V is a k-vector space of dimension N . If X ⊂ P(V ), we let X(k) be the set of
points of X defined over k, also called k-rational points. Our basic tool here will be the
following famous result.

Theorem 2.27 (Chevalley–Warning) If f1, . . . , fr are polynomials in N variables with
coefficients in a finite field k, of respective degrees d1, . . . , dr, and if d1 + · · · + dr < N , the
number of solutions in kN of the system of equations f1(x) = · · · = fr(x) = 0 is divisible by
the characteristic of k.

The proof is clever but elementary. A refinement by Ax says that the number of
solutions is in fact divisible by Card(k).

When f1, . . . , fr are homogeneous, (0, . . . , 0) is always a solution, hence the theorem
implies that the scheme X defined by the equations f1, . . . , fr in P(V ) always has a k-point.
The Ax refinement even implies

Card(X(k)) ≡ 1 (mod Card(k)).

The bound in the theorem is sharp: the plane cubic X defined in characteristic 2 by
the cubic equation

A(x1, x2, x3) := x31 + x32 + x33 + x21x2 + x22x3 + x23x1 + x1x2x3 (2.16)

has no F2-point: it is the union of 3 lines defined over F8 and permuted by the action of the
cyclic Galois group Gal(F8/F2).

However, for any smooth plane cubic curve C defined over a finite field Fq, the Hasse
bound ∣∣Card

(
C(Fq))− q − 1

∣∣ ≤ 2
√
q (2.17)

implies that C always has an Fq-point.

Exercise 2.28 Let X ⊂ P(V ) be a hypersurface of degree d < N defined over Fq. Show

Card(X(Fq)) ≥ qN−1−d + · · ·+ q + 1.

Exercise 2.29 (The Swinnerton–Dyer cubic surface over F2) The bound in Exercise 2.28
is sharp: show that the cubic surface X ⊂ P3

F2
defined by the equation

A(x1, x2, x3) + x1x
2
4 + x21x4

(see (2.16)) is smooth and that X(F2) = {(0, 0, 0, 1)}.

Corollary 2.30 Let X ⊂ P(V ) be a hypersurface of degree d defined over a finite field k.
If N − 1 > d(d+ 1)/2, every k-rational point of X is contained in a line defined over k and
contained in X.
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Proof. Let x ∈ X(k). By (2.13), the scheme F (X, x) of lines contained in X passing
through x is defined, in an (N − 2)-dimensional projective space, by equations of degrees
1, . . . , d − 1, d. Under the hypothesis N − 1 > d(d + 1)/2, the set F (X, x)(k) is nonempty
by the Chevalley–Warning theorem. �

Exercise 2.31 Let X ⊂ P(V ) be a subscheme defined over a finite field k by equations

f1, . . . , fm. If
∑m

i=1 deg(fi)(deg(fi) + 1) < 2(N − 1), prove that every k-rational point of

X is contained in a line defined over k and contained in X.

In particular, any cubic hypersurface X ⊂ P(V ) contains a k-line when N−1 > 6. One
can actually do better: when N > 6 and X is smooth, the smooth projective variety F (X) is
a Fano variety by (2.7), and a difficult theorem of Esnault ([E]) then implies F (X)(k) 6= ∅,
hence X contains a k-line. This still holds for any cubic when N > 6 by [FR, Corollary 1.4].

Using a vast generalization of the Hasse bound (2.17) (the Weil conjectures, proved by
Deligne), I can show that any smooth cubic threefold defined over a finite field k with ≥ 11
elements contains a k-line.

In the examples below, we show that when N ∈ {4, 5, 6}, some cubic hypersurfaces
defined over small fields contain no (or few) lines.

Example 2.32 (Diagonal cubic surfaces) Consider the cubic surface X ⊂ P3
k defined

by
a1x

3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4,

where a1, . . . , a4 ∈ k are all nonzero. It is smooth whenever the characteristic of k is not 3,
which we assume. Let bij be such that b3ij = −ai/aj. If {1, 2, 3, 4} = {i, j, k, l}, the projective
line joining ei + bijej and ek + bklel is contained in X. Since we have 3 choices for {i, j} and
3 choices for each bij, the 27 lines of the cubic Xk := X ×k k are all obtained in this fashion
hence are defined over k[ 3

√
ai/aj, 1 ≤ i < j ≤ 4].

In particular, the 27 lines of the smooth Fermat cubic defined by

x31 + x32 + x33 + x34

in characteristic 2 are defined over F4 (but only 3 of them over F2), whereas, if a ∈ F4 {0, 1},
the smooth cubic surface defined by

x31 + x32 + x33 + ax34 (2.18)

contains no lines defined over F4. (Its 27 lines are all defined over F64 and the orbits of the
cyclic Galois group Gal(F64/F4) all consist of 3 points.)

Example 2.33 (A smooth cubic threefold over F2 with no lines) With a computer,
one checks that the cubic threefold X ⊂ P4

F2
defined by

A(x1, x2, x3) + x1x
2
4 + x21x4 + x2x

2
5 + x22x5 + x24x5

is smooth and contains no F2-lines (but 9 F2-points and 8 F4-lines).
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Example 2.34 (A smooth cubic threefold over F3 with no lines (Laface)) With a com-
puter, one checks that the cubic threefold X ⊂ P4

F3
defined by

x31 + x32 − x1x23 − x22x4 + x23x4 − x21x5 − x2x3x5 + x1x4x5 + x2x4x5 + x24x5 + x4x
2
5 − x35

is smooth and contains no F3-lines (and 25 F3-points9).

Example 2.35 (A smooth cubic fourfold over F2 with one line) With a computer, one
checks that the cubic fourfold X ⊂ P5

F2
defined by

A(x1, x2, x3)+x1x
2
4+x

2
1x4+x2x

2
5+x

2
2x5+x4x

2
5+x

2
4x5+x3x

2
6+x

2
3x6+x4x

2
6+x

2
4x6+x5x

2
6+x

2
5x6+x4x5x6

is smooth and contains a single F2-line (and 13 F2-points).

Questions 2.36 Does there exist smooth fourfolds defined over F2 which contain no F2-
lines? Does there exist smooth threefolds defined over F4 which contain no F4-lines?

9These points are (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 0,−1, 1), (0, 1,−1,−1, 1),
(0,−1, 0,−1, 1), (0,−1, 1, 1, 1), (0,−1, 1,−1, 1), (0,−1,−1, 0, 1), (1, 0, 1, 0, 0), (1, 1, 0, 0, 1), (1, 1, 0, 1, 1),
(1, 1,−1, 0, 1), (1,−1, 1, 1, 1), (−1, 0, 0, 0, 1), (−1, 0, 1, 0, 0), (−1, 0, 1, 1, 1), (−1, 0,−1, 1, 1), (−1, 1, 0, 0, 0),
(−1, 1, 1, 1, 1), (−1, 1,−1, 0, 1), (−1, 1,−1,−1, 1), (−1,−1, 0, 1, 0), (−1,−1, 1,−1, 1).
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Chapter 3

Conics and curves of higher degrees

After lines, the next simplest curves in a projective space are (plane) conics. We analyze
conics on subschemes of the projective space P(V ). The main difference with lines is that
smooth conics can degenerate to singular conics, which are pair of lines meeting at a point,
or double lines.

3.1 Conics in the projective space

A conic C in P(V ) is defined by a nonzero homogeneous polynomial of degree 2 in a pro-
jective plane P(V3) contained in P(V ). The plane P(V3) is the linear span of C: it is the
smallest linear space containing C (as a scheme). It follows that the conics in P(V ) can be
parametrized by the total space M(P(V ), 2) of the projective bundle

π : M(P(V ), 2) := P(S2S ∨) −→ Gr(3, V ). (3.1)

This space is therefore a smooth projective scheme of dimension 5 + 3(N − 3) = 3N − 4.
It carries a “tautological” line bundle OM(P(V ),2)(1) and when N ≥ 4, its Picard group has
rank 2, generated by the classes of OM(P(V ),2)(1) and π∗ det(S ∨).

The subset of singular conics is an irreducible divisor Ms(P(V ), 2) in M(P(V ), 2); we
denote its complement by M0(P(V ), 2).

Exercise 3.1 Let C be a smooth conic in P(V ), with span P . Prove that the normal exact
sequence

0→ NC/P → NC/P(V ) → NP/P(V )|C → 0

splits and that NC/P(V ) ' OC(2)⊕(N−3) ⊕ OC(4) (Hint: note that the restriction of OP(V )(1)

to C is OC(2)).

Exercise 3.2 a) Find the class of the divisor Ms(P(V ), 2) in M(P(V ), 2).

b) Is the divisor Ms(P(V ), 2) ample?

c) Find complete positive-dimensional families of smooth conics in P(V ) when N ≥ 4 (see
Example 3.3 below).
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Example 3.3 (O. Benoist) Assume N ≥ 3. We construct a complete family of dimension
N − 3 of pairwise distinct smooth conics in P(V ). The space of linear embeddings of P2

into P(V ) can be identified, inside the projective space associated with the vector space
P3N−1

k of 3×N matrices, with the open set U consisting of matrices of maximal rank 3. The
complement of this open set has codimension N−2. By the Bertini theorem, the intersection
M of U with a general linear space of dimension N−3 is projective. In this way, we obtain of
projective family of dimension N − 3 of morphisms P2

k → P(V ), whose images are pairwise
distinct. It is then enough to consider the images of a fixed smooth conic in P2

k.

Question 3.4 Is N − 3 the maximal dimension of a complete family of generically pairwise
distinct smooth conics in P(V )?

3.2 Conics contained in a hypersurface

If X ⊂ P(V ) is a hypersurface defined by an equation f , we define the subscheme M(X, 2) ⊂
M(P(V ), 2) as the space of conics C contained in X. More precisely, we require that the
equation f of X, when restricted to the plane 〈C〉, vanishes on C.

The formal definition is as follows. There is a canonical inclusion OM(P(V ),2)(−1) ↪→
π∗ S2S ∨ which induces an exact sequence

0→ OM(P(V ),2)(−1)⊗ π∗ Sd−2S ∨ → π∗ SdS ∨ → E → 0

of vector bundles on M(P(V ), 2). The vector bundle E has rank 2d + 1 and its fiber at a
point corresponding to a conic C is H0(C,OC(2d)) (note that the restriction of OP(V )(1)

to C is OC(2)). On the other hand, f defines by restriction a section of π∗ SdS ∨, hence a
section tf of E . We define the scheme M(X, 2) to be the zero-scheme Z(tf ). It is either
empty or of codimension ≤ rank(E ) = 2d+ 1 in M(P(V ), 2). We say as usual that

dim(M(P(V ), 2))− 2d− 1 = 3N − 2d− 5

is the expected dimension of M(X, 2). We set M0(X, 2) := M(X, 2) ∩ M0(P(V ), 2), the
scheme of smooth conics contained in X.

Proposition 3.5 A general hypersurface X ⊂ P(V ) of degree d > 3
2
N − 5

2
contains no

conics.

Proof. This is a standard dimension count. We let P := P(SdV ∨) be the parameter space
for degree-d hypersurfaces in P(V ) and we introduce the incidence variety

I := {(C,X) ∈M(P(V ), 2)×P | C ⊂ X} (3.2)

with its two projections pr1 : I → M(P(V ), 2) and pr2 : I → P. Given [C] ∈ M(P(V ), 2),
the fiber pr−11 ([C]) is the projectivization of the kernel of the map

SdV ∨ = H0(P(V ),OP(V )(d))→ H0(C,OC(2d)).
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Since this map is always surjective, I is a projective bundle over M(P(V ), 2) hence is smooth
projective irreducible of codimension 2d+ 1 in M(P(V ), 2)×P.

Since 2d+ 1 > 3N − 4 = dim(M(P(V ), 2)), the map pr2 : I → P is not surjective. �

It is likely that in the range d ≤ 3
2
N − 5

2
, any hypersurface X ⊂ P(V ) of degree d

contains a conic, but I was unable to find a satisfactory reference. One method would be
to prove c2d+1(E ) 6= 0, but it is probably difficult. Another method would be to prove that,
with the notation of the proof above, the projection pr2 : I → P is surjective. For that, it is
enough to find one hypersurface X of degree d such that M(X, 2) has the expected dimension
at one point. At least in characteristic 0, since I is smooth, this would imply additionally, by
generic smoothness, that when X is general, M(X, 2) is smooth of the expected dimension.1

I will present now a sketch of proof of an older result of S. Katz ([K]), which is a
particular case of these statements.

Theorem 3.6 (S. Katz) A general quintic hypersurface X ⊂ P4
k

contains 609,205 conics
and they are all smooth.

Sketch of proof. We introduce as in (3.2) the incidence variety I ⊂ M(P(V ), 2) × P.
We know that it is smooth projective irreducible of dimension dim(P). We analyze the
projection pr2 : I → P; any fiber pr−12 ([X]) is isomorphic as a scheme to M(X, 2). Katz
constructs one quintic X smooth along a smooth conic C ⊂ X and such that

NC/X ' OC(−1)⊕ OC(−1).

In particular, H1(C,NC/X) = 0 and Theorem 2.1, which is still valid for conics (see Theorem
3.15), implies that M(X, 2) is smooth of dimension H0(C,NC/X) = 0 at [C]. This says that
the fiber pr−12 ([X]) is smooth at the point (C,X) of I. In other words, pr2 is étale at (C,X).

In particular, pr2 is surjective and generically smooth: for X general, M(X, 2) is smooth
and consists of smooth conics on X. Their number is given by the top Chern class c11(E ),
which a software such as Macaulay2 computes as being 609,205! �

Exercise 3.7 Given a line L contained in a smooth subvariety X ⊂ P(V ), prove that the space

of nonreduced conics in X with reduced structure L is isomorphic to P
(
H0(L,NL/X(−1))

)
.

Deduce that in characteristic p > 0, the (smooth) Fermat hypersurface of degree pr + 1 studied

in Exercise 2.11 contains a family of nonreduced conics of dimension 3N − 13.

Given a point x ∈ X(k), we may consider the subscheme M(X, 2, x) ⊂ M(X, 2) of
conics contained in X and passing through x. It is not too difficult to construct M(X, 2, x)
as the zero-scheme of a vector bundle F of rank 2d over a projective bundle of relative

1Assume char(k) = 0 and X general. Theorem 1.1 of [S] claims that for X general of degree d ≤ 3
2N −

5
2 ,

the scheme M0(X, 2) is smooth of the expected dimension, but the proof does not actually show that it is
nonempty. If d < N − 2, [De, Proposition 2.3.4] says that M(X, 2) is smooth, irreducible, of the expected
dimension.
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dimension 4 over Gr(2, V/V1) (where V1 ⊂ V is the one-dimensional subspace corresponding
to x).

It follows that the expected dimension of M(X, 2, x) is 2(N − 1 − 2) + 4 − 2d =
2(N − 1 − d). In particular, we expect that for d ≤ N − 1, it is always nonempty, i.e.,
that X is covered by conics (recall from Proposition 2.13 that X is covered by lines when
d ≤ N − 2). However, I could not find a reference in the literature for this fact. Of course, it
would follow from the nonvanishing of the top Chern class of F , but again, this is not easy
to prove! We present an alternate proof of this fact in the exercise below.

Exercise 3.8 (Starr) The aim of this exercise is to prove that a hypersurface X ⊂ P(V ) of
degree N − 1 is covered by conics and that for X general, M(X, 2) is smooth of the expected
dimension. It was communicated to us by J. Starr.

Consider the homogeneous polynomial

f = (y1y3 − y22)yN−31 + y4y
N−4
1 y23 + y5y

N−5
1 y33 + · · ·+ yNy

0
1y

N−2
3

of degree N − 1 and the hypersurface X ⊂ P(V ) that it defines. It vanishes on the smooth
conic C = Z(y1y3 − y22 , y4, . . . , yN ), whose span is the plane P = Z(y4, . . . , yN ).

We want to determine the normal bundle of C in X. Recall from Exercise 3.1 that there
are isomorphisms NC/P(V ) ' NP/P(V )|C⊕NC/P ' OC(2)⊕(N−3)⊕OC(4) and an exact sequence
0 → NC/X → NC/P(V ) → NX/P(V )|C → 0, with NX/P(V )|C ' OC(2N − 2). We consider its
twist

0→ NC/X(−1)→ OC(1)⊕(N−3) ⊕ OC(3)
df−−→ OC(2N − 3)→ 0. (3.3)

We parametrize C by the map P1
k → P(V ), (t, u) 7→ (t2, tu, u2, 0, . . . , 0), so that

H0(C,OC(2N − 3)) ' 〈t2N−3, t2N−4u, . . . , u2N−3〉.

a) Prove that the image of H0(C,OC(1)⊕(N−3)) by the map df in (3.3) is the subspace
〈t2N−7u4, t2N−8u5, . . . , u2N−3〉.

b) Prove that the image of H0(C,OC(3)) by the map df in (3.3) is the remaining subspace
〈t2N−3, t2N−4u, t2N−5u2, t2N−6u3〉.

c) Deduce that H1(C,NC/X(−1)) = 0 and that C is a free conic on X, i.e., that NC/X is
generated by its global sections (see Section 2.3.3).

If we accept the generalization of Theorem 2.17 from lines to conics (this is implied
by Theorem 4.7), it follows that X is covered by conics. Moreover, if we also accept the
generalization of Theorem 2.1 to conics (this is implied by Theorem 3.15), it also follows that
M(X, 2) is smooth of the expected dimension at [C].

d) Deduce that any hypersurface of degree N − 1 in P(V ) is covered by conics and that for
X general, M(X, 2) is smooth of the expected dimension (Hint: use the incidence variety
(3.2) as in the proof of Theorem 3.6).

3.2.1 Conics contained in a quadric hypersurface

Assume that k is algebraically closed of characteristic different from 2.

We now consider a smooth quadric hypersurface X ⊂ P(V ) and study the closed
subscheme M(X, 2) ⊂M(P(V ), 2) of conics contained in X.
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Proposition 3.9 Let M(X, 2) be the scheme of conics contained in a smooth quadric hyper-
surface X ⊂ P(V ). The map π of (3.1) induces a birational map πX : M(X, 2)→ Gr(3, V ).
In particular, M(X, 2) is irreducible of the expected dimension 3(N − 3); it is moreover
smooth and

• when N ≤ 5, the map πX is an isomorphism;

• when N = 6, the map πX is the blow up of two disjoint smooth subvarieties of dimension
3;

• when N > 6, the map πX is the blow up of a smooth subvariety of dimension 3.

Sketch of proof. If C is a conic contained in X, either the projective plane 〈C〉 spanned
by C is contained in X, or C = 〈C〉 ∩X.

When N ≤ 5, the quadric X contains no projective planes, hence πX is an isomorphism.

When N = 6, the quadric X contains two disjoint families of projective planes,
parametrized by two disjoint smooth subvarieties F1, F2 ⊂ Gr(3, V ), each of dimension
3. Over a point of Fi corresponding to a projective plane P ⊂ X, the fiber is the space, iso-
morphic to P5, of all conics contained in P . Hence π−1X (Fi) has dimension 8. Since M(X, 2)
has everywhere dimension ≥ 3N − 2d − 5 = 9, it follows that M(X, 2) is irreducible and
that πX is birational. One can check that πX is in fact the blow up of F1 t F2 in Gr(3, V );
it follows that M(X, 2) is smooth irreducible and that its Picard group is isomorphic to Z3.

For N > 6, the space F3(X) of projective planes contained in X is smooth irreducible
of dimension 3(N − 3) − 6. Again, M(X, 2) is the blow-up of Gr(3, V ) along F3(X); it is
therefore smooth irreducible of (the expected) dimension 3N − 9 and its Picard group is
isomorphic to Z2. �

Exercise 3.10 Prove that the varieties F1 and F2 in the proof above are both isomorphic to

P3 (Hint: consider a smooth hyperplane section of X and use Exercise 2.19).

3.2.2 Conics contained in a cubic hypersurface

Assume that k is algebraically closed.

The main remark is that if a conic C is contained in a cubic hypersurface X ⊂ P(V ),
either the plane 〈C〉 spanned by C is contained in X, or the “residual curve” of the intersec-
tion of 〈C〉 ∩X is a line. We denote by M1(X, 2) ⊂ M(X, 2) the open subscheme of conics
C ⊂ X such that 〈C〉 6⊂ X. There is therefore a morphism

ρX : M1(X, 2)→M(X, 1)

which expresses M1(X, 2) as an open subset of a PN−3-bundle over the smooth scheme
M(X, 1) (Theorem 2.20). It is therefore smooth of the expected dimension N−3+2N−8 =
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3N − 11, irreducible when N ≥ 5.2

Proposition 3.11 Let M(X, 2) be the scheme of conics contained in a smooth cubic hyper-
surface X ⊂ P(V ).

• When N = 4, the scheme M(X, 2) is the disjoint union of 27 copies of P1.

• When N = 5, the scheme M(X, 2) is smooth irreducible of the expected dimension 4.

• When N ≥ 6 and X is general, M(X, 2) is irreducible of the expected dimension
3N − 11.

When N ≥ 6, the scheme M(X, 2) is actually irreducible for all smooth cubics X ([CS,
Theorem 1.1]).

Proof. Assume first N ≤ 5. Since X is smooth, it contains no planes,3 hence M1(X, 2) =
M(X, 2) and the proposition follows from the discussion above.

If N ≥ 6 and X is general, the scheme F3(X) of projective planes contained in X has
the expected dimension 3(N − 3)−

(
5
2

)
= 3N − 19 (see Section 1.4; note that this does not

hold for all smooth cubics X: when N = 6, some smooth cubic fourfolds do contain planes—
but they may only contain finitely many of them). This implies that M(X, 2) rM1(X, 2)
has dimension at most 3N − 19 + 5, which is less than the dimension 3N − 11 of M(X, 2)
at every point. It follows that M1(X, 2) is dense in M1(X, 2), hence the latter is irreducible
by the discussion above. �

Exercise 3.12 Let C be a smooth conic contained in a smooth cubic hypersurface X ⊂ P(V )
and let P = 〈C〉.

a) Prove NC/X '
⊕N−3

i=1 OC(ai), with 4 ≥ a1 ≥ · · · ≥ aN−3 and a1 + · · · + aN−3 =
2N − 8 and that H1(C,NC/X) = 0 except if (a1, . . . , aN−3) = (4, 2, . . . , 2,−2) (Hint: use
Exercise 3.1).

b) Prove that a1 = 4 if and only if P ⊂ X. Deduce that M1(X, 2) ∩M0(X, 2) is smooth of
the expected dimension.

2We are actually cheating here, because this argument does not prove that the scheme structure on
M1(X, 2) coincides with the scheme structure induced by the PN−3-bundle map ρX . For the argument to
be complete, we need Exercise 3.12, and even a bit more, since that exercise does not deal with singular
conics...

3When N = 5, this follows either from a direct computation that if X ⊃ P , the partial derivatives of an
equation of X would have a common zero on P , or from the Lefschetz Hyperplane Theorem, which says that
the restriction Pic(P(V ))→ Pic(X) is an isomorphism for N ≥ 5.
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3.3 Rational curves of higher degrees

After studying lines and conics on subschemes X ⊂ P(V ), we can move on to rational curves
of higher degrees. For that, we will shift our point of view: instead of looking at rational
curves on X as subschemes of X, we will parametrize them and consider them as morphisms

ϕ : P1
k → X.

This new point of view allows us to include singular curves (we just consider their normaliza-
tions) and even “multiple” curves (ϕ is not required to be birational onto its image), but not
reducible curves. These can be taken care of by considering more complicated morphisms,
like Kontsevich stable maps, which we will not describe here.

It is quite elementary to construct parameter spaces for all rational maps to X. We
define the degree of a k-morphism ϕ : P1

k → P(V ) as e := deg(ϕ∗OP(V )(1)). For example,
the degree of an injective parametrization of a line is 1, and it is 2 for a conic (but higher
degree parametrizations are also allowed).

Theorem 3.13 Let X be a closed subscheme of P(V ). Morphisms P1
k → X of degree e can

be parametrized by a quasi-projective scheme which we denote by More(P
1
k, X).

The word “parametrized” in the statement above has a very precise meaning: there
exists a “universal morphism” (also called “evaluation map”)

ev : P1
k ×More(P

1
k, X) −→ X(

(t, u), ϕ
)

7−→ ϕ(t, u)

which satisfies a universal property that the reader is invited to make precise.

Proof. 4 We first do the case X = P(V ). Any k-morphism ϕ : P1
k → P(V ) of degree e

can be written as
ϕ(t, u) = (ϕ1(t, u), . . . , ϕN(t, u))

where ϕ1, . . . , ϕN ∈ k[T, U ]e, the space of homogeneous polynomials degree e, have no non-
constant common factor in k[T, U ]. The “bad” locus is the set of ϕ = (ϕ1, . . . , ϕN) ∈
P
(
k[T, U ]Ne

)
which are in the image of the regular map⋃
1≤m≤e

(
P
(
k[T, U ]m

)
×P

(
k[T, U ]Ne−m

))
−→ P

(
k[T, U ]Ne

)
(
ψ, (ψ1, . . . , ψN)

)
7−→ (ψψ1, . . . , ψψN).

This morphism is defined over Z and projective, hence its image is defined over Z and closed.

Therefore, morphisms of degree e from P1
k to P(V ) are parametrized by a Zariski open

set (defined over Z) of the projective space P
(
k[T, U ]Ne

)
; we denote this quasi-projective

4We thank S. Druel for suggesting this proof.
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scheme by More(P
1
k,P(V )). Note that these morphisms fit together into the universal mor-

phism
P1

k ×More(P
1
k,P(V )) −→ P(V )(

(t, u), ϕ
)

7−→
(
ϕ1(t, u), . . . , ϕN(t, u)

)
.

Let nowX be a (closed) subscheme of PN
k defined by homogeneous equations f1, . . . , fm.

Degree-e morphisms P1
k → X are then parametrized by the subscheme More(P

1
k, X) of

More(P
1
k,P(V )) defined by the equations fj(ϕ1, . . . , ϕN) = 0 for all j ∈ {1, . . . ,m}. �

Remark 3.14 It follows from the fact that the scheme More(P
1
k,P(V )) can be defined over

Z that if X ⊂ PN−1
k can be defined by equations f1, . . . , fm with coefficients in a subring

R of k, the scheme More(P
1
k, X) has the same property. If m is a maximal ideal of R, one

may consider the reduction Xm of X modulo m: this is the subscheme of PN
R/m defined by

the reductions of f1, . . . , fm modulo m. Because the equations defining the complement of
More(P

1
k,P

N−1
k ) in P(Sek2⊗kN) are defined over Z and the same for all fields, More(P

1
k, Xm)

is the reduction of the R-scheme More(P
1, X) modulo m. In fancy terms, one may express

this as follows: if X is a projective scheme over Spec(R), the R-morphisms P1
R → X are

parametrized by (the R-points of) a locally Noetherian scheme

Mor(P1
R,X )→ SpecR

and the fiber of a closed point m is the space Mor(P1
R/m,Xm).

The local structure of the scheme

Mor(P1
k, X) =

⊔
e≥0

More(P
1
k, X)

can be explained as in Theorem 2.1, except that the normal bundle is replaced with the
pull-back of the tangent bundle of X. Note that if C is a smooth curve and ϕ : C → X a
closed embedding such that X is smooth along ϕ(C), there is an exact sequence

0→ TC → ϕ∗TX → NC/X → 0.

If C is rational, TC = OC(2) and there is an isomorphism H1(C,ϕ∗TX) ∼→H1(C,NC/X) and
an exact sequence

0→ H0(C, TC)→ H0(C,ϕ∗TX)→ H0(C,NC/X)→ 0.

The extra deformations of ϕ coming from the 3-dimensional vector space H0(C, TC) cor-
respond to the reparametrizations of C coming from the automorphism group Aut(P1

k) =
PGL(2,k).

Theorem 3.15 Let C = P1
k, let X be a irreducible projective scheme, and let ϕ : C → X be

a morphism such that X is smooth along ϕ(C). Locally around [ϕ], the scheme Mor(C,X)
can be defined by h1(C,ϕ∗TX) equations in a smooth scheme of dimension h0(C,ϕ∗TX). In
particular, any (geometric) irreducible component of Mor(C,X) through [ϕ] has dimension
at least

h0(C,ϕ∗TX)− h1(C,ϕ∗TX) = deg(ϕ∗TX) + dim(X)(1− g(C)).
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In fact, everything that we have said here remains valid for any smooth projective
k-curve C instead of P1

k: quasi-projective k-schemes More(C,X) can be constructed and
Theorem 3.15 still holds.

Let us restrict ourselves to the case where X ⊂ P(V ) is a smooth hypersurface of
degree d. In this case, the expected dimension of More(P

1
k, X) is, by Theorem 3.15 (this can

also be seen directly from the explicit construction of More(P
1
k, X) given in Theorem 3.13),

deg(ϕ∗TX) + dim(X)(1− g(P1
k)) = deg(ϕ∗OP(V )(N − d)) +N − 2 = e(N − d) +N − 2.

If we want to look instead at rational curves in X, i.e., if we want to forget the parametriza-
tions of the curves, we need to take the quotient by the group Aut(P1

k) ' PGL(2,k). How-
ever, we need to exclude first morphisms like degree-e covers of a line. So we first restrict to
the open subset of More(P

1
k, X) which consists of morphisms P1

k → X which are birational
onto their image and then take the quotient. We obtain a scheme M irr(X, e) whose expected
dimension is

exp.dim(M irr(X, e)) = exp.dim(More(P
1
k, X))− dim(PGL(2,k)) = e(N − d) +N − 5

and which parametrizes (irreducible) rational curves of degree e in X. Note that these
numbers coincide with the numbers obtained in Sections 2.3.1 and 3.2 for lines (e = 1) and
conics (e = 2).

When N ≥ 4, it is reasonable to expect that as usual, M irr(X, e) should have this
expected dimension when X is general of degree d (including the fact that it should be
empty when this expected dimension is negative) and that it should be irreducible whenever
this expected dimension is positive (with the exception of the case of conics on a cubic surface
(N = 4, d = 3, and e = 2; see Proposition 3.11)).

Although there has been a lot of activity on that subject in the recent past, this
far-reaching question is still very much open.5 It includes the following problems:

• The Clemens conjecture (N = d = 5): the expected dimensions vanish for all e, hence a
very general complex quintic 3-fold should contain a finite (nonzero) number of rational
curves of each degree. This is known to hold up to degrees ≤ 11 (see Exercise 2.8 for
lines and Theorem 3.6 for conics). These finite numbers are predicted by the physicists.

• When d ≥ 2N − 4, a very general hypersurface of degree d in P(V ) should contain no
rational curves at all. This was proved over C by Voisin in [V].

• When 2N − 4 > d ≥ 3
2
N − 5

2
and d > N , the only rational curves on a very general

hypersurface of degree d in P(V ) should be lines. Over C, this was proved by Pacienza
in [P] when d = 2N − 5. More generally, if d ≥

(
1 + 1

e

)
N − 5

e
and d > N , the only

rational curves on a very general hypersurface of degree d in P(V ) should have degree
≤ e.

5Note however that for e ≤ d+2, it follows from [GLP] that M irr(X, e) is nonempty whenever its expected
dimension is nonnegative.
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• The situation changes radically when d ≤ N . The conjecture then says that there
should be rational curves of all degrees e whenever N ≥ 5. It has been proved that
in characteristic 0, M(X, e) is irreducible of the expected dimension for X general of
degree d ≤ N − 3 ([HRS] for d < N/2; [BK] for d ≤ 2(N − 1)/3; [RY] for d ≤ N − 3).

Some of these results require working on a compactification of M irr(X, e). For lines
(e = 1), the situation was made easy by the fact that M irr(X, 1) is already projective. For
conics (e = 2), we considered the “Hilbert” compactification M(X, 2) of M irr(X, 2). In
general, one considers other compactifications such as the (already mentioned) Kontsevich
compactification by stable maps.
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Chapter 4

Varieties covered by rational curves

In the first chapters, we encountered varieties covered by either lines or conics. We make a
general study of varieties covered by rational curves.

4.1 Uniruled and separably uniruled varieties

We want to make a formal definition for varieties that are “covered by rational curves”.
The most reasonable approach is to make it a “geometric” property by defining it over an
algebraic closure of the base field. Special attention has to be paid to the case of positive
characteristic, hence the two variants of the definition.

Definition 4.1 Let k be a field and let k be an algebraically closed extension of k. A variety
X of dimension n defined over k is

• uniruled if there exist a k-variety M of dimension n− 1 and a dominant rational map
P1

k
×M 99K Xk;

• separably uniruled if there exist a k-variety M of dimension n− 1 and a dominant and
separable rational map P1

k
×M 99K Xk.

These definitions do not depend on the choice of k, and in characteristic zero, both
definitions are equivalent. As we will see in Example 4.11, in positive characteristic, some
smooth projective varieties are uniruled, but not separably uniruled.

A point is not uniruled. Any variety birationally isomorphic to a (separably) uniruled
variety is (separably) uniruled. The product of a (separably) uniruled variety with any
variety is (separably) uniruled.

Here are various other characterizations and properties of (separably) uniruled varieties
(for the proofs, see [D, Remarks 4.2]).
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Remark 4.2 Here is a useful alternate definition. A k-variety X is (separably) uniruled if
and only if there exist a k-varietyM and a dominant (separable) rational map P1

k
×M 99K Xk

such that for some m ∈M(k), the map e induces a nonconstant rational map P1
k
×{m} 99K

Xk.

Remark 4.3 Let X be a proper (separably) uniruled variety, with a rational map e : P1
k
×

M 99K Xk as in the definition. We may compactify M then normalize it. The map e is then
defined outside of a subvariety of P1

k
×M of codimension at least 2, which therefore projects

onto a proper closed subset of M . By shrinking M , we may therefore assume that the map
e of the definition is a morphism.

Remark 4.4 Assume k is algebraically closed. It follows from Remark 4.3 that there is a
rational curve through a general point of a proper uniruled variety (actually, by a degener-
ation argument, there is even a rational curve through every point). The converse holds if
k is uncountable.1 Therefore, in the definition, it is often useful to choose an uncountable
algebraically closed extension k.

We end this section with a difficult theorem, first proved by Mori for Fano varieties
(i.e., smooth projective varieties X such that −KX is ample).

Theorem 4.5 Any smooth projective variety X with −KX nef but not numerically trivial
is uniruled.2

For a proof, see [Ko, Corollary IV.1.14] or [D, Theorem 3.10]. One can even prove that
X is uniruled by curves of (−KX)-degree ≤ dim(X) + 1 ([Ko, Corollary IV.1.15]).

Varieties with KX trivial are usually not uniruled (think of abelian varieties); in fact,
they are never separably uniruled by Corollary 4.10, so never uniruled in characteristic 0.

The theorem implies that all Fano varieties are uniruled, but it is expected that some
are not separably uniruled. On the other hand, it is conjectured that all smooth hypersurfaces
in P(V ) which are Fano varieties (i.e., of degree ≤ N − 1) are separably uniruled.

This is a problem in positive characteristic. Conduché proved in [Co] that the Fermat
hypersurface of degree d = pr + 1 in PN−1

Fp
considered in Example 2.11 (and which often

seems to exhibit the strangest behavior) is indeed separably uniruled when d ≤ N/2. This
also holds for the Fermat quintic hypersurface in P5

F2
([BDENY]).

1Here is the proof. We may, after shrinking and compactifying X, assume that it is projective. There
is still a rational curve through a general point, and this is exactly saying that the evaluation map ev :
P1

k × Mor>0(P1
k, X) → X is dominant. Since Mor>0(P1

k, X) has at most countably many irreducible
components and X is not the union of countably many proper subvarieties, the restriction of ev to at least
one of these components must be surjective, hence X is uniruled by Remark 4.2.

2A divisor D on a smooth projective variety X is nef if D · C ≥ 0 for all curves C ⊂ X, and it is
numerically trivial if D · C = 0 for all curves C ⊂ X.
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4.2 Free rational curves and separably uniruled vari-

eties

We want to generalize to general rational curves the definition of free lines given in Section
2.3.3, prove the analog of Theorem 2.17, and connect the existence of a free rational curve
with separable uniruledness. The first item is easy: we just copy the definition.

Definition 4.6 Let X be a k-variety. A k-rational curve ϕ : P1
k → X is free if its image is

a curve contained in the smooth locus of X and ϕ∗TX is generated by its global sections.

If we write as usual the decomposition

ϕ∗TX '
n⊕
i=1

OL(ai),

where a1 ≥ · · · ≥ an, the morphism ϕ is free if it is nonconstant and an ≥ 0. It is a condition
which is strictly stronger than the vanishing of H1(P1

k, ϕ
∗TX) (which, by Theorem 3.15,

ensures the smoothness of Mor(P1
k, X) at [ϕ]).

One can express the fact that ϕ is nonconstant as follows. If ϕ is separable, ϕ∗TX then

contains TP1
k
' OP1

k
(2) and a1 ≥ 2. In general, decompose ϕ as P1

k

ϕ′′−→ P1
k

ϕ′−→ X where ϕ′

is separable and ϕ′′ is a composition of r Frobenius morphisms. Then a1(ϕ) = pra1(ϕ
′) ≥ 2.

For any morphism ϕ : P1
k → X whose image is contained in the smooth locus of X,

we have deg(ϕ∗TX) = −(KX · ϕ∗P1
k): there are no free rational curves on a smooth variety

whose canonical divisor is nef (because one would then have deg(ϕ∗TX) ≥ a1 ≥ 2), such as
a smooth hypersurface in P(V ) of degree ≥ N .

Theorem 4.7 Let X be a smooth quasi-projective variety defined over a field k and let
ϕ : P1

k → X be a k-rational curve.

a) If ϕ is free, the evaluation map

ev : P1
k ×Mor(P1

k, X)→ X

is smooth at all points of P1
k × {[ϕ]}.

b) If there is a k-scheme M with a k-point m and a morphism e : P1
k ×M → X such

that e|P1
k×{m} = ϕ and the tangent map to e is surjective at some point of P1

k × {m},
the curve ϕ is free.

Geometrically speaking, item a) implies that the deformations of a free rational curve
cover X. In b), the hypothesis that the tangent map to e is surjective is weaker than the
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smoothness of e, and does not assume smoothness, or even reducedness, of M ; in character-
istic 0, by generic smoothness, this hypothesis is satisfied if and only if e is dominant.

The theorem implies that the set of free rational curves on a quasi-projective k-variety
X is a smooth open subset of Mor(P1

k, X), possibly empty.

Finally, when char(k) = 0 and there is an irreducible k-scheme M and a dominant
morphism e : P1

k × M → X which does not contract one P1
k × m, the rational curves

corresponding to points in some nonempty open subset of M are free (by generic smoothness,
the tangent map to e is surjective on some nonempty open subset of P1

k ×M).

Proof of the Theorem. The tangent map to ev at (t, [ϕ]) is the map

TP1
k,t
⊕H0(P1

k, ϕ
∗TX) −→ TX,ϕ(t) ' (ϕ∗TX)t (4.1)

(u, σ) 7−→ Tϕ,t(u) + σ(t).

If ϕ is free, it is surjective because the evaluation map

H0(P1
k, ϕ

∗TX) −→ (ϕ∗TX)t

is. Moreover, since H1(P1
k, ϕ

∗TX) vanishes, Mor(P1
k, X) is smooth at [ϕ] (Theorem 3.15).

This implies that ev is smooth at (t, [ϕ]) and proves a).

Conversely, by the universal property of ev, the morphism e factors through ev, whose
tangent map at (t, [ϕ]) is therefore surjective. This implies that the map

H0(P1
k, ϕ

∗TX)→ (ϕ∗TX)t/ Im(Tϕ,t) (4.2)

is surjective. There is a commutative diagram

H0(P1
k, ϕ

∗TX)
a−−−→ (ϕ∗TX)tx xTϕ,t

H0(P1
k, TP1

k
)

a′−−−→ TP1
k,t
.

Since a′ is surjective, the image of a contains Im(Tϕ,t). Since the map (4.2) is surjective, a is
surjective. Hence ϕ∗TX is generated by global sections at one point. It is therefore generated
by global sections and ϕ is free. �

Corollary 4.8 Let X be a smooth projective variety defined over an algebraically closed
field. The variety X is separably uniruled if and only if X contains a free rational curve. If
this is the case, there exists a free rational curve through a general point of X.

Proof. Consider the scheme Mor(P1
k, X) constructed in Theorem 3.13. If ϕ : P1

k → X
is free, the evaluation map ev is smooth at (0, [ϕ]) by Theorem 4.7.a). It follows that the
restriction of ev to the unique component of Mor>0(P

1
k, X) that contains [ϕ] is separable and

dominant and X is separably uniruled by Remark 4.2.
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Assume conversely that X is separably uniruled. By Remark 4.3, there exists a k-
variety M and a dominant and separable, hence generically smooth, morphism P1

k×M → X.
The rational curve corresponding to a general point of M passes through a general point of
X and is free by Theorem 4.7.b). �

Corollary 4.9 Let X be a smooth projective variety defined over an algebraically closed field
of characteristic zero. There exists a set X free ⊂ X which is the intersection of countably
many dense open subsets of X, such that any rational curve in X meeting X free is free.

Proof. The space Mor(P1
k, X) has at most countably many irreducible components, which

we will denote by (Mi)i∈N. Let evi : P1
k ×Mi → X be the evaluation maps.

Denote by Ui a dense open subset of X such that the tangent map to evi is surjective at
each point of (evi)

−1(Ui) (the existence of Ui follows from [H], III, Proposition 4.6 and uses
the hypothesis that the characteristic is zero; if evi is not dominant, one may simply take
for Ui the complement of the closure of the image of evi). We let X free be the intersection⋂
i∈N Ui.

Let ϕ : P1
k → X be a rational curve whose image meets X free, and let Mi be an

irreducible component of Mor(P1
k, X) that contains [ϕ]. By construction, the tangent map

to evi is surjective at some point of P1
k×{[ϕ]}, hence so is the tangent map to ev; it follows

from Theorem 4.7 that ϕ is free. �

The corollary is interesting only when X is uniruled (otherwise, the set X free is more
or less the complement of the union of all rational curves on X); it is also useless when the
ground field is countable, because X free may be empty.

Corollary 4.10 If X is a smooth projective separably uniruled variety, H0(X,ω⊗mX ) = 0 for
all m > 0.

Proof. Let s be a global section of ω⊗mX and let x be a general point of X. By Corollary
4.8, there exists a free rational curve ϕ : P1

k → X through x. The pull-back of ωX = det(T∨X)
to P1

k has negative degree, hence ϕ∗ω⊗mX has no nonzero global sections. It follows that s
vanishes on ϕ(P1

k), hence at x. We conclude that s vanishes at a general point of X, hence
s = 0. �

The converse is conjectured to hold: for curves, it is obvious since h0(X,ωX) is the
genus of X; for surfaces, we have the more precise Castelnuovo criterion: H0(X,ω⊗12X ) = 0
if and only if X is birationally isomorphic to a ruled surface; in dimension three, it is known
in characteristic zero.

Example 4.11 It follows from the last corollary that a smooth hypersurface of degree ≥ N
in P(V ) is not separably uniruled. In characteristic p > 0, we saw in Example 2.11 that
the Fermat hypersurface of degree pr + 1 is uniruled. When pr + 1 ≥ N , it is however not
separably uniruled.
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4.3 Minimal free rational curves

In this section, we assume that the base field k is algebraically closed of characteristic 0.

Let X ⊂ P(V ) be a uniruled subvariety. By Corollary 4.8, there exists a free rational
curve on X (whose deformations then cover a dense open subset of X by Theorem 4.7). We
are interested in those free curves of minimal possible degree.

For example, if X ⊂ P(V ) is a hypersurface of degree d ≤ N − 2, we proved that X
is covered by lines (Proposition 2.13) and the minimal degree is 1. The normal bundle of a
general line L contained in X is given by (2.14); it easily implies

TX |L ' OL(2)⊕ OL(1)⊕(N−2−d) ⊕ O⊕(d−1)L .

When d = N−1, the variety X is not covered by lines anymore (Remark 2.14) but by conics
(Exercise 3.8): the minimal degree is 2. A general conic C contained in X is free by Theorem
4.7 (since we are in characteristic 0) and since deg(TX |C) = deg(OP(V )(1)|C) = 2, we have

TX |C ' OC(2)⊕ O⊕(N−3)C .

We want to show that a similar type of decomposition always holds for free rational
curves of minimal degrees.

Theorem 4.12 Let X be a smooth projective uniruled variety of dimension n defined over
an algebraically closed field of characteristic zero and let ϕ : P1

k → X be a general free
rational curve of minimal degree with respect to a fixed ample class on X.3 Then

ϕ∗TX ' OP1
k
(2)⊕ OP1

k
(1)⊕(s−1) ⊕ O⊕(n−s)

P1
k

. (4.3)

Moreover, s is the dimension of the subscheme of X swept out by the deformations of ϕ
which pass through a general point of X.

Sketch of proof. Since the condition (4.3) on ϕ is open, it is enough to find one rational
curve with this property. So we may assume that k is uncountable and that the point
x = ϕ(0) is in the subset X free defined in Corollary 4.9.

Recall from Theorem 3.15 that since ϕ is free, the scheme Mor(P1
k, X) is smooth at

[ϕ]. Let M be the unique component of Mor(P1
k, X) through [ϕ]. By Theorem 4.7.a), the

evaluation map
ev : P1

k ×M −→ X

is dominant. Since M is a component of Mor(P1
k, X), any reparametrization of any element

of M is still in M . This implies that for each t in P1
k, the morphism “evaluation at t”

evt : M −→ X

g 7−→ g(t)

3We mean here that ϕ has minimal degree among all free rational curves on X.
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is dominant.

Let Mx be an irreducible component of ev−10 (x) through [ϕ]. The image of

ev∞ : Mx → X

is the subset of X swept out by the deformations of ϕ in M passing through x. This is the
subset referred to in the statement of the theorem. We denote by s its dimension.

Assume dim(ev−1∞ (y)) ≥ 2 for some y ∈ X. By Mori’s bend-and-break ([D, Proposition
3.2]), the rational curves in ev−1∞ (y) ⊂ Mx, which all pass through x and y, will deform to
a nonintegral effective 1-cycle of rational curves on X. One of these curves passes through
x, hence is free because x ∈ X free, but it has degree less than the degree of ϕ. Since ϕ
is a free curve of minimal degree, this is a contradiction. Therefore, all fibers of ev∞ have
dimension ≤ 1, and in fact exactly 1, since they contain all the reparametrizations of any of
their elements by multiplication by a nonzero element of k.

It follows that we have
s = dim(Mx)− 1. (4.4)

We now invoke an analog of Theorem 3.15 (which follows from (4.1)) which says that at any
point [ψ] of Mx, one has

TMx,[ψ] = {σ ∈ H0(P1
k, ψ

∗TX) | σ(0) = 0} ' H0(P1
k, (ψ

∗TX)(−1)).

If we write as usual
ψ∗TX ' OP1

k
(a1)⊕ · · · ⊕ OP1

k
(an)

with a1 ≥ · · · ≥ an ≥ 0, this space is therefore
⊕n

i=1H
0(P1

k,OP1
k
(ai − 1)), so that

dim(Mx) =
n∑
i=1

ai. (4.5)

Moreover, the tangent map to ev∞ is

Tev∞,[ψ] : TMx,[ψ] −→ TX,ψ(∞)

σ 7−→ σ(∞).

Since we are in characteristic zero, the map ev∞ is smooth onto its image at [ψ] when [ψ] is
general in Mx, so that

s = rank(Tev∞,[ψ]) = Card{i ∈ {1, . . . , n} | ai > 0}. (4.6)

Comparing (4.4), (4.5), and (4.6), we obtain the desired result. �

The integer s in the theorem may vary between 1 and n.

When s = n, the deformations of a general free curve ϕ of minimal degree which pass
through a general point of X cover X and the pull-back ϕ∗TX is ample (one says that the
curve ϕ is very free). In that case, it follows from the proof of the main result of [Ke] that
X is isomorphic to the projective space Pn.
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