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Abstract

A cubic hypersurface X is defined by one polynomial equation of degree 3 in n
variables with coefficients in a field K, such as

1 + x31 + · · ·+ x3n = 0.

One is interested in the set X(K) of solutions (x1, . . . , xn) of this equation in Kn.
Depending on the field K (which may be for example C, R, Q, or a finite field)
one may ask various questions: is X(K) nonempty? How large is it? What is the
topology of X(K)? What is its geometry? Can one parametrize X(K) by means of
rational functions? This is a very classical subject: elliptic curves (which are cubics in
the plane) and cubic surfaces have fascinated mathematicians from the 19th century
to the present day. Plaster models of the Clebsch cubic surface still decorate many
mathematics libraries (or cafeterias, as in Düsseldorf) around the world. However,
simple questions about cubics still remain unanswered, although actively researched.
I will explain some classical facts about cubic hypersurfaces and give some answers to
the questions asked above.
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1 Introduction

Let K be a field. A hypersurface X (of dimension n− 1) is a nonzero polynomial equation

F (x1, . . . , xn) = 0

in n variables with coefficients in K (we allow multiplication of F by a nonzero scalar). We
may consider the set of solutions of this equation in any field L with contains the coefficients
of F , we will then write X(L) for this set and we will say that X is defined over L.

If d is the degree of F , one says that X is a hypersurface of degree d. Hypersurfaces
of degree 1 are just linear affine hyperplanes. Hypersurfaces of degree 2 are called quadrics
(conics if n = 2), hypersurfaces of degree 3 are called cubics, then we have quartics, quintics,
and so on.

Here are a few questions one can ask:

• describe the geometry of X(K), for example, the lines that it contains;

• describe the points of X(K): are there any ? If yes, count them (K finite) or
parametrize them;

• describe the topology of X(K) (K = R or C).
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2 Quadrics

2.1 Parametrization of nonempty conics

Let us begin with conics X. They may be empty, such as the conics

(x2 + y2 + 1 = 0) ⊂ R2 or (x2 + y2 − 7 = 0) ⊂ Q2.

But if X(K) contains one point O, one may parametrize X(K) by rational functions by

K −→ X(K)

t 7−→ intersection point with X, other than O,
of the line through O with slope t.

The point here if that the restriction of the equation F of X to any such line is a quadratic
equation with coefficients in K and one root in K (corresponding to O), so the other root
in also in K.

This parametrization is injective except when X is the union of two lines passing
through O.

Example 1 The point O = (1, 0) is on the conic X with equation x2 − y2 − 1 = 0. When
the characteristic is not 2 (when the characteristic is 2, X is the line y = x + 1,“counted
twice”), the process above gives the parametrization

K 99K X(K)

t 7−→
(

1 + t2

1− t2
,

2t

1− t2

)
which is not defined at t = ±1 and reaches all points of X(K) except O (it corresponds to
“t =∞”).

2.2 Projective conics

The parametrization above can be extended if one adds “points at infinity”, i.e., if we work
in the projective plane P2. A point in P2(K) has projective coordinates (x : y : z), not all
zero and defined up to multiplication by a nonzero scalar. A point (x, y) ∈ K2 has projective
coordinates (x : y : 1) and points with z = 0 are then called points at infinity.

In our previous example (where we assume char(K) 6= 2), the equation of the “closure”
X of X in P2 is obtained by homogenizing the equation of X as

x2 − y2 − z2 = 0.

Note that the vanishing of this quantity does not depend on the choice of homogeneous
coordinates. The projective conic X has two points at infinity, (0 : 1 : 1) = (0 : −1 : −1)

3



and (0 : 1 : −1) = (0 : −1 : 1); they correspond to the directions of the two asymptotes of
X. One can extend the parametrization as a well defined injective map

K −→ X(K)

t 7−→ (1 + t2 : 2t : 1− t2)

and even better, to an isomorphism

P1(K) −→ X(K)

(t : u) 7−→ (u2 + t2 : 2tu : u2 − t2).

The advantage of projectivizing is that, by the theory of quadratic forms, the equation
of any projective conic can now be reduced, after a change of projective coordinates, to a
sum of squares

ax2 + by2 + cz2 = 0.

We assume abc 6= 0; this is equivalent to saying that the curve X has no singular point (i.e.,
is smooth) in the sense of differential geometry.

2.3 Topology

Case K = R. In the projective setting, and with the notation above, we may assume
a, b, c = ±1. If a, b, c all have the same signs, the conic if empty; otherwise, we may assume
that its equation is

x2 − y2 − z2 = 0.

So, topologically, all smooth nonempty projective real conics are the same. This conic does
not meet the “ line at infinity” x = 0. It is therefore contained in its complement, which we
identify with R2 by taking x = 1. There, it is the circle

y2 + z2 = 1.

Topologically, all smooth nonempty projective real conics are S1 (which agrees with the fact
that they are parametrized by P1(R) = R ∪ {∞} ' S1).

Now it is well known that apart from degenerate cases, a real conic is either an ellipse, a
parabola, or a hyperbola. Their projective closures are all “ the same”: one add respectively
no points for an ellipse, the point at infinity corresponding to the direction of the axis for a
parabola, the points at infinity corresponding to the directions of the two asymptotes for a
hyperbola.

Case K = C. A smooth projective complex conic has equation

x2 + y2 + z2 = 0

in suitable projective coordinates. It is topologically P1(C) = C ∪ {∞} ' S2.

4



2.4 Counting points over finite fields

We assume K = Fq, a finite field of characteristic 6= 2.

From the (elementary) theory of quadratic forms over finite fields, we know that a
smooth projective conic over Fq has, in suitable projective coordinates, equation

x2 + y2 + z2 = 0 or x2 + y2 + cz2 = 0,

where c ∈ Fq F2
q. It always has a point in Fq: the set F2

q of squares in Fq has cardinality
(q + 1)/2, hence so has the set Sa = {−1 − az2 | z ∈ Fq}, for any a ∈ Fq {0}. Hence Sa

must meet F2
q and the statement follows.

It follows from the above parametrization that a smooth projective conic over Fq has
the same number of points as P1(Fq) = Fq ∪ {∞} that is, q + 1 points.

2.5 Quadrics

Similar remarks can be made about quadric hypersurfaces, although there are some differ-
ences. One may compactify them as projective quadrics X in Pn, whose equation can be
written, in suitable projective coordinates, as

a0x
2
0 + · · ·+ anx

2
n = 0,

with a0 · · · an 6= 0 if and only if X is smooth. When this quadric is nonempty, one gets in
the same way a parametrization

Kn−1 99K X(K)

which is not defined everywhere (hence the dotted arrow) and which is moreover not injective.

For smooth quadric surfaces, when the equation can be put in the form

x0x1 − x2x3 = 0

(this is always the case when K is algebraically closed, or when K = R and the signature is
(2, 2), or when K is finite and the quadric is the standard quadric x20 + x21 + x22 + x23 = 0),
we have an injective parametrization

K2 −→ X(K)

(t, t′) 7−→ (tt′ : 1 : t : t′).

which extends to an isomorphism

P1(K)×P1(K) −→ X(K)(
(t : u), (t′ : u′)

)
7−→ (tt′ : uu′ : tu′ : t′u).

We say that this quadric is ruled (by lines) in two different ways.

When K = R, a quadric of signature (2, 2) is therefore topologically S1 × S1. When
the signature is (1, 3) or (3, 1), it is a sphere S2.
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3 Cubic curves

The situation for cubics is more complicated because there is no standard form for their
equation similar to the one obtained for quadrics from the theory of quadratic forms. In
some sense (over an algebraically closed field), all smooth quadrics are the same, but smooth
cubics are not.

Smooth cubic curves were studied intensively in the 19th century. Some are empty,
such as the cubic

3x3 + 4y3 + 5 = 0

in Q2 (this is not easy to show; in general, there is no known method to determine in a finite
number of steps whether a cubic equation with rational coefficients in two variables has a
rational solution).

If X ⊂ P2 is a smooth projective cubic curve defined over a finite field Fq, Hasse’s
estimate

|Card(X(Fq))− q − 1| ≤ 2
√
q

implies that X is nonempty! If X is not smooth, it might have no points: the projective
cubic

x31 + x32 + x33 + x21x2 + x22x3 + x23x1 + x1x2x3 = 0

has no points over F2 (over the field F8, it is the union of 3 lines permuted by the action of
the Galois group Z/3Z).

3.1 Elliptic curves

If a smooth cubic curve contains a point O, one can perform a change of coordinates to put
its equation in a Weierstraß form (we assume for simplicity that the characteristic of the
field K is neither 2 nor 3)

y2 = x3 + ax+ b.

Smoothness then corresponds to the condition 4a3 + 27b2 6= 0 (so that the polynomial
x3+ax+b has three distinct roots in an algebraic closure of K). Note that if K is algebraically
closed, we may also write the equation as (Legendre form)

y2 = x(x− 1)(x− λ)

and smoothness is then equivalent to λ ∈ K {0, 1}.
A smooth (projective) cubic curve with a point is called an elliptic curve.

One can, as we did for conics, homogenize the Weierstraß equation into

y2z = x3 + axz2 + bz3

and the point O = (0 : 1 : 0) is the (only) “point at infinity” of the elliptic curve.
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3.2 Parametrization

The first difference with conics is that elliptic curves cannot be parametrized by rational
functions.

Proposition 2 An elliptic cubic cannot be parameterized by rational functions.

Proof. We may assume that K is algebraically closed. Given a Legendre equation
as above, we need to show that we cannot find non constant polynomials P,Q,R, S ∈ K[T ]
with P ∧Q = R ∧ S = 1 such that

(R/S)2 = (P/Q)((P/Q)− 1)((P/Q)− λ).

Clearing denominators, we obtain

R2Q3 = S2P (P −Q)(P − λQ)

so that S2 | Q3 and Q3 | S2, hence S2 = Q3 (after adjusting the scalars) and

R2 = P (P −Q)(P − λQ).

Since the factors in the right-hand side are mutually coprime, we obtain, by unique factor-
ization in K[T ], that P , P −Q, and P − λQ are all squares, and so is Q since Q3 is.

Now we prove that if P,Q ∈ K[T ] are coprime and such that four different nonzero
linear combinations aiP + biQ are squares, P and Q are constant.

By changing P and Q into aP + bQ and cP + dQ, with ad − bc 6= 0, we may assume
that the four different linear combinations are P , Q, P −Q, and P − λQ. Write λ = µ2 and
P = U2 and Q = V 2, so that P −Q = (U + V )(U − V ) and P − λQ = (U + µV )(U − µV ).
Then U and V are coprime and, by unique factorization in K[T ], U +V , U −V , U +µV and
U − µV are all squares. By, if P and Q are not both constant, we have deg(U) + deg(V ) =
1
2
(deg(P )+deg(Q)) < deg(P )+deg(Q). So we can repeat the process and get a contradiction

(this is Fermat’s method of “descente infinie”). �

3.3 The group law

The most beautiful fact about elliptic curves is that they can be made into abelian groups.
If a cubic X is defined by a Weierstraß or Legendre equation, the group law on the set X(K)
is defined by

P +Q+R = 0 ⇐⇒ P,Q,R are on a line.

The neutral element is O, the point at infinity (this means that −P is the reflection of
P about the x axis).

Points of order 2 correspond to points where the tangent is vertical, i.e., to the roots
of the polynomial x3 + ax+ b (there are either none, or 1, or 3). In Legendre form, they are
(0, 0), (1, 0), and (λ, 0).
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Points of order 3 correspond to inflection points. They form a finite set E[3]′ with the
property that the given any two points in E[3]′, there is a third point in E[3]′ collinear with
the first two points.

It is a tricky exercise to show that such a set in R2 consists of collinear points. In
particular, there are at most 2 real points of order 3.

Case K = R. If E is a real (projective) elliptic curve, it is known that the group E(R) is
(as a topological group) R/Z when the polynomial x3 + ax + b has a single real root, and
Z/2Z×R/Z when it has 3 distinct real roots (there are then two connected components).

Case K = C. If E is a complex elliptic curve, E(C) is (as a topological group) R/Z×R/Z
(a torus S1 × S1).

Case K = Fq. We already mentioned Hasse’s estimate: if E is an elliptic curve over Fq,
one has

|Card(E(Fq))− q − 1| ≤ 2
√
q.

Example 3 Consider the elliptic curve E with Weierstraß equation y2 = x3 + x + 1. It is
smooth over F5 (4 · 13 + 27 · 12 = 1 6= 0) and one can list all its points:

(0,±1), (2,±1), (3,±1), (4,±2),

to which one should add the point at infinity O = (0 : 1 : 0). So there is a total of 9 points
in E(F5). Call them ±P , ±Q, ±R, ±S, and O.

Let us compute P + P . The tangent to E at P = (0, 1) has slope given by 2dy = dx,
i.e., 1/2 = 3, hence its equation is y − 1 = 3x. Substituting in the equation of the cubic, we
obtain

4x2 + x+ 1 = x3 + x+ 1.

This polynomial has a double root x = 0, as expected, and another root x = 4. We
have then y = 3 · 4 + 1 = 3 and P + P + (4, 3) = 0, so that 2P = S. Similarly, we
obtain P + S + (2,−1) = 0, hence 3P = Q. In particular, P does not have order 3, hence
(E(F5),+) ' Z/9Z.

Case K = Q. If E is an elliptic curve over Q, the group E(Q) of its rational points is
an abelian group of finite type (Mordell’s theorem): it has a (finite) rank and a torsion
part. The possible torsion parts are known, but not the possible ranks: the highest exactly
known rank is 19 (Elkies constructed in 2006 an elliptic curve over Q with rank ≥ 28). For
some time, people expected the ranks to be unbounded, but this would contradict other
conjectures in algebraic geometry, so this belief may not be widely shared anymore.

The group structure is a way to produce many rational points using the addition law.

Example 4 The elliptic curve E with Weierstraß equation y2 = x3 + 1 is smooth over Q.
It has exactly 5 points

(−1, 0), (0,±1), (2,±3),

to which one should add the point at infinity O = (0 : 1 : 0). So there is a total of 9 points
in E(Q). Call them P , ±Q, ±R, and O. One checks (it is easy to see that from the graph
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once you know there are so few points!) 2R = Q, 3R = Q+R = P , and 2P = 0 (or directly
3Q = 0 because Q is an inflection point). Hence (E(Q),+) ' Z/6Z is generated by R.

Figure 1: The elliptic curve y2 = x3 + 1

Example 5 The elliptic curve E with Weierstraß equation y2 = x3− x = x(x− 1)(x+ 1) is
smooth over Q. It has exactly 3 points

(−1, 0), (0, 0), (1, 0),

to which one should add the point at infinity O = (0 : 1 : 0). They are all of order 2 and
(E(Q),+) ' (Z/2Z)2.

Figure 2: The elliptic curve y2 = x3 − x

Example 6 The elliptic curve E with Weierstraß equation y2 = x3 − x + 1 is smooth over
Q. The point P = (1, 1) generates (E(Q),+) ' Z, and 2P = (−1, 1), 3P = (0,−1),
4P = (3,−5), 5P = (5, 11), 6P = (1

4
, 7
8
), . . .

9



Figure 3: The elliptic curve y2 = x3 − x+ 1

3.4 Elliptic curves and cryptography

The Diffie–Hellman key exchange1 is based on the mathematical fact that, given a known
cyclic group G and generator g ∈ G, it may be difficult to recover an integer r from the
knowledge of gr ∈ G (this is called the discrete logarithm problem).

It works as follows. Alice and Bob agree on the pair (G, g). Alice chooses a secret
random integer a and sends ga to Bob. Similarly, Bob chooses a secret random integer b and
sends gb to Alice. Alice then computes (gb)a and Bob computes (ga)b. This common element
gab of G will be used as an encryption key. Note that its inverse can be computed by Alice
as (gb)|G|−a and by Bob as (ga)|G|−b.

The data G, g, ga, and gb are all publicly known (or can be eavesdropped). The number
a is only known to Alice, the number b is only known to Bob, and gab is only known to Alice
and Bob.

Given a message, Alice transforms it into an element m of G. She then encrypts it as
e = mgab and sends it to Bob, who will decrypt it by computing e(gab)−1. The numbers a
and b are discarded at the end of the session.

The group G can be chosen to be the cyclic multiplicative group (Z/pZ)×, for some
large prime p. If one chooses a generator g of (Z/pZ)×, it is computationally difficult
(impossible for modern supercomputers to do in a reasonable amount of time) to recover the
integer r from the number gr (mod p).

In elliptic curve cryptography,2 one chooses an elliptic curve E in Weierstraß form
defined over a finite field Fq such that the group G = E(Fq) is cyclic of finite order, usually
a large prime, and a generator P ∈ E(Fq), given by its coordinates. These data are difficult

1Named after Whitfield Diffie and Martin Hellman, who first described that system in an article in 1976,
after the concept was developed by Ralph Merkle in 1975. By 1975, James H. Ellis, Clifford Cocks, and
Malcolm J. Williamson had also shown how public-key cryptography could be achieved, but their work was
kept secret until 1997.

2Suggested by Neal Koblitz and Victor S. Miller in 1985.
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to produce, so they are made publicly available by standard trusted bodies.3 The scheme is
based on the fact that although it is rather easy to compute the multiples P , it is impossible
in general to find r given rP . It is also more efficient than using (Z/pZ)×, in the sense that
it provides the same level of security with much smaller key size.

4 Cubic surfaces

We saw that some smooth cubic curves have no points over a finite field. This does not
happen for cubic projective surfaces because of the following result.

Theorem 7 (Chevalley–Warning) Let K be a finite field of characteristic p and let F be
a polynomial of degree d in m variables. If d < m, the number of solutions in Km of the
equation

F (x1, . . . , xm) = 0

is divisible by p.

A refinement of this theorem (Ax–Katz) says that the number of solutions is in fact
divisible by q.

Apply this result to the homogenization of the equation of a cubic surface: it is a
polynomial of degree 3 in 4 variables with the obvious root (0, . . . , 0). By the Chevalley–
Warning theorem, there must be some other point, which gives a point in the associated
projective surface.

This result is optimal. For example, the projective cubic surface in P3(F2) defined by
the homogeneous equation

x31 + x32 + x33 + x21x2 + x22x3 + x23x1 + x1x2x3 + x1x
2
4 + x21x4 = 0

is smooth and has a unique F2-point, (0 : 0 : 0 : 1) (but this is the only example of a smooth
projective cubic surface defined over a finite field with a single point; in particular, this does
not happen on a smooth cubic surface over a finite field with more than 2 elements).

4.1 Lines on cubic surfaces

Cayley wrote in a 1869 memoir that any smooth complex cubic surface contains exactly 27
projective lines. I cannot resist quoting here Ron Donagi and Roy Smith (1981):

Wake an algebraic geometer in the dead of night, whispering: “27”.
Chances are, he will respond: “lines on a cubic surface.”

to show the importance of this result, which is by no means easy to prove. The miracle here
is that all smooth cubic surfaces, over any algebraically closed field, contain exactly 27 lines

3One of these bodies is the NSA, which perhaps should not be trusted.
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(singular cubics contain less than 27 lines, unless they are cones). The configuration of these
lines (how they intersect) is also the same. On explicit examples, these lines are sometimes
easy to find, but not always.

Diagonal cubics. Consider a diagonal cubic surface X in P3 with homogeneous equation

a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4 = 0,

where a1, . . . , a4 ∈ K are all nonzero. It is smooth whenever K is not of characteristic 3,
which we assume. Let bij be such that b3ij = ai/aj. Then, if {1, 2, 3, 4} = {i, j, k, l}, the
projective line joining ei− bijej and ek − bklel is contained in X. Since we have 3 choices for
{i, j} and 3 choices for each bij, the 27 lines of the cubic X are all obtained in this fashion
hence are defined over K[ 3

√
ai/aj, 1 ≤ i < j ≤ 4].

In particular, the 27 lines of the Fermat cubic

x31 + x32 + x33 + x34 = 0

are defined over Q[exp(2iπ/3)] (9 of them are defined over Q; the other 18 come in complex
conjugate pairs).

In characteristic 2, the 27 lines on the Fermat cubic are all defined over F4 (but only
3 of them are defined over F2), whereas, if a ∈ F4 {0, 1}, the cubic surface defined by

x31 + x32 + x33 + ax34 = 0 (1)

contains no lines defined over F4 (they are defined over F64).

Real lines. The 27 complex lines contained in a smooth real (projective) cubic surface X
are either real or come in complex conjugate pairs. Since 27 is odd, X always contains a real
line. In fact, one can prove that X contains exactly 3, 7, 15, or 27 real lines (actually, lines
on real cubic surfaces should be counted with signs, in which case one gets that the total
number is always 3).

In many mathematics departments around the world, there are plaster models of (real!)
cubic surfaces with 27 (real) lines on them; it is usually the Clebsch cubic (1871), with
equations in P4:

x0 + · · ·+ x4 = x30 + · · ·+ x34 = 0.

These 27 lines can be determined explicitly: 15 are defined over Q, and the other 12 over
the field Q(

√
5).
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Figure 4: The Clebsch cubic with its 27 real lines

Rational lines. It is only recently that a rational cubic surface with all its 27 lines rational
was found (Tetsuji Shioda, 1995). Its equation is

x22x4 + 2x2x
2
3 = x31 − x1(59475x24 + 78x23) + 2848750x34 + 18226x23x4.

All 27 lines have explicit rational equations.

4.2 Parametrization

Let X ⊂ P3 be a smooth cubic surface and assume that it contains two disjoint lines L1

and L2 (this is always the case when the field is algebraically closed). One has an injective
parametrization

Φ : L1 × L2 99K X

(x1, x2) 7−→
3rd point of intersection of

the line 〈x1, x2〉 with X.

It is not defined everywhere (for example not when the line 〈x1, x2〉 is contained in X), hence
the dotted arrow. But one checks that it is given by rational functions, so it proves that X
has many points defined over K. For example, the set of rational solutions of the Shioda
cubic equation is dense in the real surface that it defines.

There is a geometric inverse to the parametrization Φ. It is defined by

X L1 L2 99K L1 × L2

x 7−→ (〈x, L2〉 ∩ L1, 〈x, L1〉 ∩ L2)

and it can be extended to a well defined map

Ψ : X −→ L1 × L2

(when x ∈ Li, juste replace the plane 〈x, Li〉 by the plane tangent to X at x).

This shows that the parametrization Φ is “almost one-to-one.” We say that the surface
X is rational (over K): the set X(K) is almost isomorphic to K2.
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A smooth cubic surface containing two disjoint lines is rational.

4.3 The plane blown up at six points

We still assume that X ⊂ P3 is a smooth projective cubic surface containing disjoint lines
L1 and L2.

Exactly 5 lines contained in X meet both L1 and L2. Each such line L is “blown
down” by the map Φ defined above to the point (L ∩ L1, L ∩ L2) and Ψ is the blow-up of 5
distinct points on L1×L2 ' P1×P1. On the other hand, the blow-up of a point on P1×P1

is isomorphic to P2 blown up at two distinct points. We have therefore the more precise
statement (Clebsch, 1871)

A smooth cubic surface containing two disjoint lines
is isomorphic to the projective plane blown up at 6 points.

One checks further that since X is smooth, these points are in general position: no 3 on a
line, no 6 on a conic.

Conversely, given a set of 6 distinct points P1, . . . , P6 ∈ P2 in general position, one can
show that cubic plane curves passing through P1, . . . , P6 define an injective map

P2 {P1, . . . , P6} −→ P3,

(the closure of) whose image X is a smooth cubic surface.

The 27 lines on this surface are then

• the images of the 6 “exceptional divisors;”

• the images of the 15 lines passing through 2 of the points;

• the images of the 5 conics passing through 5 of the points.

There is a subtlety here: for X to be defined over K, we do not need each point Pi to
be defined over K, but only the whole set {P1, . . . , P6}. For example, we may take 3 pairs of
complex conjugate points; we will still get a real smooth surface, with only three real lines
(which correspond to the (real!) lines connecting the 3 pairs of complex conjugate points).

4.4 Counting points over finite fields

The description above implies for example that for a smooth cubic surface X defined over a
finite field Fq and containing 27 lines defined over Fq, one has

Card(X(Fq)) = Card(P2(Fq))− 6 + 6 Card(P1(Fq)) = q2 + 7q + 1.

Weil proved that for any smooth cubic surface X defined over Fq, one has

Card(X(Fq)) = q2 + tXq + 1,
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where tX ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 7} (this formula agrees with the Chevalley–Warning and
Ax–Katz theorems). One has tX = 7 if and only if X contains 27 lines defined over Fq,
which agrees with the formula above.4

All listed values for tX are possible, except 7 when q ∈ {2, 3, 5} (no surfaces over these
fields can contain 27 lines) and 6 when q ∈ {2, 3}.

Example 8 (The Fermat cubic over F4) This is the smooth cubic surface X with equa-
tion x31 + x32 + x33 + x34 = 0 in P3.

We saw earlier that X contains 27 lines defined over F4. It is therefore isomorphic to
the plane P2 blown up in 6 points in general position. But, up to the action of PGL3(F4),
there is only one set of six points in P2(F4) which are in general position : if a ∈ F4 {0, 1},
they are (1 : 0, 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1), (1 : a : a2), and (1 : a2 : a). It follows that
all smooth cubic surfaces over F4 containing 27 lines defined over F4 are isomorphic to the
Fermat cubic X.

The 42 + 7 · 4 + 1 = 45 points of X(F4) can be determined explicitely: since the cubes
in F4 are 0 and 1, either all coordinates are nonzero (27 points), or exactly two are nonzero
(6× 3 points).

The diagonal cubic X with equation x31 + x32 + x33 + ax34 = 0 where a ∈ F4 {0, 1}),
which we discussed earlier, contains only nine F4-points (since the cubes in F4 are 0 and
1, we have x4 = 0 and one exactly of x1, x2, x3 is also 0); so we obtain tX = −2. It is not
rational because of the following difficult result.

Theorem 9 (B. Segre, 1943) Let K be a field of characteristic 6= 3 and let a1, . . . , a4 ∈
K {0}. If, for all permutations σ ∈ S4, the element

aσ(1)aσ(2)
aσ(3)aσ(4)

of K is not a cube in K, the

smooth cubic surface over K defined by the equation

a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4 = 0

is not rational.

4.5 Topology

Case K = C. If X is a smooth complex projective cubic surface, the description of X as
the blow-up of the projective plane in 6 points implies that X(C) is diffeomorphic to the
connected sum

P2(C)#6P2(C) := P2(C)#P2(C)#P2(C)#P2(C)#P2(C)#P2(C)#P2(C),

where P2(C) is P2(C) with the reversed orientation.

Case K = R. The situation is more complicated: there are 5 topological types.

4The integer tX is the trace of the Frobenius endomorphism Fr acting on the Picard group Pic(XFq
) ' Z7.

The eigenvalues of Fr are roots of unity. It follows that its trace is 7 if and only if it acts as the identity,
which happens exactly when the 27 lines of X are defined over Fq, since they generate Pic(XFq

).
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Let X be a smooth real projective cubic surface. If it contains two disjoint real lines,
it is then isomorphic to the blow up of the real projective plane along a real set of 6 points.
Topologically, X(R) is then a nonorientable compact connected surface diffeomorphic to

#7P2(R),#5P2(R),#3P2(R), or P2(R),

depending on the number of pairs of complex conjugate points (0, 1, 2, or 3). But there is
one another case, where X(R) is the disjoint sum P2(R) t S2.

The following pictures are taken from the website http://cubics.algebraicsurface.net,
designed by Oliver Labs.

Figure 5: A cubic with 27 real lines, the nonorientable compact connected surface #7P2(R)
with Euler characteristic −5.
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Figure 6: A cubic with 15 real lines, the nonorientable compact connected surface #5P2(R)
with Euler characteristic −3.

Figure 7: A cubic with 7 real lines, the nonorientable compact connected surface #3P2(R)
with Euler characteristic −1.
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Figure 8: A cubic with 3 real lines, the nonorientable compact connected surface P2(R) with
Euler characteristic 1.

Figure 9: A nonconnected cubic with 3 real lines, homeomorphic to P2(R) t S2.

5 Cubics in higher dimensions

5.1 Parametrization

Let X ⊂ Pn be a smooth hypersurface defined by the homogeneous cubic equation

F (x0 : x1 : . . . : xn) = 0

18



with coefficients in K.

Assume that X contains a line L defined over K.

This is alway the case when K is algebraically closed and n ≥ 3, but also, by a
refinement of the Chevalley–Warning theorem, when K is finite and n ≥ 7.5

We construct a parametrization of X(K) as follows.

Let x be any point of L and let L′ be a line tangent to X at x. If L′ is not contained in
X, its intersection with X consists of the point x counted twice, and another point Φ(x, L′)
(this is because the restriction of the cubic polynomial F to the line L′ is a cubic polynomial
with a double root at x). If we set

L := {(x, L′) | x ∈ L and L′ is a line tangent to X at x},

this construction induces a “parametrization”

Φ : L 99K X

which is not defined everywhere (hence the dotted arrow), but can be checked to be given
by rational functions with coefficients in K.

This “parametrization” is however not one-to-one, but rather two-to-one: given a point
y ∈ X L, the intersection of X with the plane spanned by L and y is a plane cubic curve
which contains L; it is therefore the union of L and a conic C, and the two preimages of y
by Φ are the two points of C ∩ L.

On the other hand,we have the following.

Proposition 10 The set L (K) can be parametrized in an (almost) one-to-one fashion by
Kn−1.

Proof. We choose coordinates so that L is the line through the origin and directed
by the first basis vector. Write a point of Kn as (x1, y), with y ∈ Kn−1, and the cubic
equation of X as

F (x1, y) = x21F1(y) + x1F2(y) + F3(y),

where Fi is a polynomial of degree ≤ i with no constant term (because L ⊂ X). Since X is
smooth at the origin, F3 must have a nonzero linear part; we assume ∂F3

∂x2
(0) 6= 0.

The line L′ passing through x = (x1, 0) and directed by (1, a2, . . . , an) is tangent to X
at x if and only if

n∑
i=2

∂F

∂xi
(x1, 0) ai =

n∑
i=2

(
x21
∂F1

∂xi
(0) + x1

∂F2

∂xi
(0) +

∂F3

∂xi
(0)

)
ai = 0. (2)

5Assume K finite. When n = 3, X does not always contain a line defined over K, since we saw earlier
an example of a smooth cubic surface over F2 with a single point defined over F2. When n = 4, there are
also examples of smooth cubic hypersurfaces defined over K = F2, F3, or F4 with no lines defined over K;
by the Deligne–Weil estimates (see Section 5.2), there is always such a line for q ≥ 11. When n = 5, there
are no known examples of smooth cubic hypersurfaces over K with no lines defined over K; it seems to be
unknown whether X always contains a line defined over K. When n = 6, one can prove, using a difficult
theorem of H. Esnault, that there is always a line defined over K.
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Therefore, one can parametrize L (K) by sending (x1, a3, . . . , an) to the pair (x, L′), where
x = (x1, 0) and L′ is the line through x directed by the vector (1, a2, . . . , an), where a2 is
given by the relation (2): since ∂F3

∂x2
(0) 6= 0, the factor x21

∂F1

∂x2
(0) + x1

∂F2

∂x2
(0) + ∂F3

∂x2
(0) will be

nonzero for almost all x1 ∈ K. �

We say that X is unirational. The question of the rationality of smooth higher-
dimensional cubics remained opened for decades (it was asked in the 19th century!), until
it was finally solved (negatively), when n = 4 and K = C, by Clemens and Griffiths in
1972, using techniques which it would be too long to explain here (Fano claimed in 1942
that he had a proof, but it was incomplete; the Clemens-Griffiths result was later extended
to positive characteristics by Murre).

No smooth complex cubic threefold is rational.

To put this result in constrast, it had been known for a long time that over the com-
plex numbers, unirational curves or surfaces are rational (this is no longer true for sur-
faces in positive characteristic). So this was the first example of a nonrational unirational
smooth complex variety (actually, other examples of nonrational unirational varieties were
produced at roughly the same time by Iskovskikh–Manin (smooth quartic threefolds) and
Artin–Mumford), solving the so-called Lüroth problem.

What about higher dimensions? Well, this is still an open problem.

Are there smooth complex cubic hypersurfaces of dimensions ≥ 4 which are not rational?

Specific rational examples are known, but people seem to believe that most smooth
complex cubic hypersurfaces of dimensions ≥ 4 should be irrational, although no single
example is known.

Example 11 (Smooth rational cubic hypersurfaces) We generalize the construction
given in §4.2 for cubic surfaces. Let X ⊂ P2m+1 be a smooth projective cubic hypersur-
face over K containing two disjoint linear spaces M1 and M2, both of dimension m and
defined over K. An example is given by diagonal cubics, with homogeneous equation

a0x
3
0 + · · ·+ a2m+1x

3
2m+1 = 0,

where a0, . . . , an ∈ K are nonzero and char(K) 6= 3. Let bi,j and ci,j be two distinct cubic
roots of ai/aj (which we may assume to be all in K, possibly upon passing to a finite
extension of K). Then the cubic contains the disjoint spaces

M1, with equations x0 + b0,1x1 = x2 + b2,3x3 = · · · = x2m + b2m,2m+1x2m+1 = 0,

M2, with equations x0 + c0,1x1 = x2 + c2,3x3 = · · · = x2m + c2m,2m+1x2m+1 = 0.

One then has an injective parametrization

Φ : M1 ×M2 99K X

(x1, x2) 7−→
3rd point of intersection of

the line 〈x1, x2〉 with X
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which is given by rational functions and is (almost) injective (same proof as in §4.2). So X
is rational over K.

But, for m ≥ 2, these cubics are very special: in general, a cubic of dimension 2m
contains no linear spaces of dimension m at all!

There are no known examples of smooth rational cubic hypersurfaces in odd dimen-
sions.

5.2 Counting points over finite fields

Let Fq be a finite field of characteristic 6= 2 and let X ⊂ Pn be a cubic hypersurface defined
over Fq. The Chevalley–Warning theorem mentioned earlier implies that X(Fq) is nonempty
as soon as n ≥ 3. One can do better.

Proposition 12 Let X ⊂ Pn be a cubic hypersurface defined over Fq. We have

Card(X(Fq)) ≥
qn−2 − 1

q − 1
.

Proof. We proceed by induction on n, the case n = 3 being a direct consequence of
the Chevalley–Warning theorem. Consider the set

I := {(x,H) ∈ X(Fq)×H | x ∈ H},

where H is the set of hyperplanes in Pn defined over Fq. This set is in one-to-one corre-

spondence with a set Pn(Fq) (the “dual” projective space), so it has qn+1−1
q−1 elements.

Any fiber of the first projection I → X(Fq) is the subset of elements of H passing
through a fixed Fq-point x, and this is easily seen to be in one-to-one correspondence with
a set Pn−1(Fq), so it has qn−1

q−1 elements. This implies

Card(I) = Card(X(Fq))
qn − 1

q − 1
.

On the other hand, the fiber of H ∈ H for the second projection I → H is (X ∩
H)(Fq). By induction, these fibers all have cardinality ≥ qn−3−1

q−1 . This implies

Card(I) ≥ Card(H )
qn−3 − 1

q − 1
=

(qn+1 − 1)(qn−3 − 1)

(q − 1)2
.

Putting everything together, we obtain

Card(X(Fq)) ≥
(qn+1 − 1)(qn−3 − 1)

(qn − 1)(q − 1)
>

(qn+1 − q)(qn−3 − 1)

(qn − 1)(q − 1)

=
q(qn−3 − 1)

q − 1
=
qn−2 − 1

q − 1
− 1,
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which implies what we want since we are dealing with integers. �

When X ⊂ Pn is moreover smooth, we have the Deligne–Weil estimate (which gener-
alizes Hasse’s estimate (case n = 2))∣∣∣∣Card(X(Fq))−

qn − 1

q − 1

∣∣∣∣ ≤ (1

3
(2n+1 + (−1)n) + (−1)n+1

)
q(n−1)/2,

which often gives a better result.

5.3 Topology

Case K = C. All smooth cubic hypersurfaces of the same dimension d = n − 1 ≥ 2
are diffeomorphic and simply connected. Mikhalkin showed that they can be decomposed
in the union of 3d generalized pairs of pants (the complement in (C∗)d of the hyperplane∑d

i=1 xi = 1).

Case K = R. Although the different topological types of smooth real cubic surfaces were
determined by Klein in the second half of the 19th century, it is only recently (2006) that
Krasnov proved that there are 9 topological (actually, diffeomorphism) types for X(R),
where X ⊂ P4 is a smooth real cubic hypersurface. He determined 8 of them:

P3(R)#kS3 for k ∈ {0, . . . , 6}

and the disjoint sum P3(R)tS3. The last case was worked out by Finashin and Kharlamov
(see below), who proved that X(R) is a Seifert manifold.

In 2009, Finashin and Kharlamov studied the next case and proved that there are 65
diffeomorphism types for X(R), where X ⊂ P5 is a smooth real cubic hypersurface. They
are

P4(R)#k(S2 × S2)#`(S1 × S3)

where the pair of integers (k, `) varies in a set with 64 elements and satisfy 0 ≤ k, ` ≤ 10
and k + ` ≤ 11, and the disjoint sum P4(R) t S4.

They also investigate, more generally, smooth real cubic hypersurfaces X ⊂ Pn of any
dimensions. They prove that if X(R) is disconnected, it is then diffeomorphic to Pn−1(R)t
Sn−1. They also construct, among others, for any n ≥ 3, and any a, b ∈ {1, . . . , n − 2},
smooth real cubic hypersurfaces X ⊂ Pn such that X(R) is diffeomorphic to Pn−1(R), or
to Pn−1(R)#(Sa × Sn−1−a)#(Sb × Sn−1−b).
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