
HOW TO CLASSIFY FANO VARIETIES?

OLIVIER DEBARRE

Abstract. We review some of the methods used in the classi-
fication of Fano varieties and the description of their birational
geometry. Mori theory brought important simplifications to this
classical theory which we will illustrate with a few examples.

1. Introduction

For us, a Fano variety will be a smooth complex projective algebraic
variety whose anticanonical bundle (i.e., the determinant of the tangent
bundle) is ample. In other words, the first Chern class can be repre-
sented by a positive definite differential form. Here are some examples:
all projective spaces are Fano varieties (more generally, all smooth com-
plete intersections in Pn of hypersurfaces of degrees d1, . . . , dc are Fano
varieties, provided d1 + · · · + dc ≤ n) and, more generally, so are all
homogeneous projective varieties under a connected linear algebraic
group (and their linear sections of small enough degrees).

From the differential geometry viewpoint, Fano varieties are (by the
Calabi-Yau theory) compact Kähler manifolds with positive definite
Ricci curvature.

In this talk, I will present some aspects of the classification of Fano
varieties of low dimensions.

We begin with some notation and a couple of remarks. If X is a Fano
variety, the classical approach to classification is via the anticanonical
linear system |−KX |. If it is very ample, it defines a closed embedding

X ↪→ Ph0(X,−KX)−1 whose image has degree d.
It is customary to call the greatest integer r such that one can write

KX ≡
num
−rH (with H ample, called a fundamental divisor) the index of

X. For all i > 0

H i(X, sH) = H i(X,KX + (r + s)H) = 0

These notes were written for talks given for the school “Rational curves on
algebraic varieties” on September 26, 2013, at the Université de Poitiers, and for
the RéGA seminar on April 9, 2014, at IHP, Paris.
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by Kodaira vanishing for s > −r. In particular, h0(X,H) = χ(X,H)
can (sometimes) be computed by Riemann-Roch or other tricks (see
§4).

As usual, we denote by ρ(X) the Picard number ofX (since h2X,OX) =
0 by Kodaira vanishing, this is also b2(X)). Fano varieties with ρ = 1
are called prime.

2. Curves and surfaces

If X is a smooth projective curve of genus g, the degree of −KX is
2−2g. For −KX to be ample, we need this number to be positive, hence
g = 0. Conversely, smooth projective curves of genus 0 are isomorphic
to P1, which is a Fano curve. Hence the only Fano curve is P1.

The situation becomes more complicated for surfaces (Fano surface
are actually called del Pezzo surfaces). We study the linear system
| −KX |. As explained above, one has by Riemann-Roch

h0(X,−KX) = χ(X,−KX) = K2
X + 1.

Here are two classical results (see §III.3 in [K]).

Theorem 1. Let X be a del Pezzo surface of degree d := (−KX)2.
Then,

• we have 1 ≤ d ≤ 9;
• if d ≥ 3, the linear system | −KX | is very ample hence induces

an embedding X ⊂ Pd whose image is a smooth surface of degree
d.

This theorem implies in particular that del Pezzo surfaces of degree 3
are (smooth) cubic surfaces in P3 (easy). Del Pezzo surfaces of degree
4 are (smooth) complete intersections of two quadrics in P4 (why?).

Let us also mention the following result, which shows that prime del
Pezzo surfaces are not very interesting.

Theorem 2. Any del Pezzo surface with ρ = 1 is isomorphic to P2.

3. Fano threefolds: the classical method

Let X be a Fano threefold of degree d := (−KX)3. One has (see §4)

h0(X,−KX) = χ(X,−KX) =
1

2
d+ 3.

It is customary to call the integer g := 1
2
d+ 1 the genus of X (it is the

genus of any smooth curve obtained as the complete intersection of two
elements of | −KX |). The analog of Theorem 1 above is the following
(see [IP], Proposition 4.1.11 and Corollary 4.1.13).
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Theorem 3 (Iskovskikh). Let X be a prime Fano threefold of degree
d. If g ≥ 4, the linear system | − KX | is very ample hence induces
an embedding X ⊂ Pg+1 whose image is a smooth threefold of degree
d = 2g−2. If moreover g ≥ 5, the image is an intersection of quadrics.

There is also a bound d ≤ 64 which is obtained from the classifica-
tion.1

From now on, we will consider prime Fano threefolds X ⊂ Pg+1,
anticanonically embedded of degree d = 2g − 2 (these are actually the
only threefolds that Fano himself considered).

3.1. Lines. Assume then that X ⊂ Pg+1 is an anticanonically embed-
ded Fano threefold (so that g ≥ 3) such that Pic(X) = Z[H]. Note that
the degree of any surface contained in X is a multiple of H3 = d ≥ 4.
In particular, X contains no planes.

Assume that X contains a line `. The exact sequence

0→ T` → TX |` → N`/X → 0

implies

deg(N`/X) = deg(TX |`)− deg(T`) = −KX · `− 2 = −1.

In particular, by Riemann-Roch, χ(`,N`/X) = 1, hence the scheme
L(X) of lines contained in X has everywhere positive dimension.

Lemma 4. There are only two possibilities:

N`/X ' O`(−1)⊕ O` (lines of the first type);
N`/X ' O`(−2)⊕ O`(1) (lines of the second type).

In the first case, L(X) is smooth of dimension 1 at [`]; in the second
case, either L(X) is smooth of dimension 2 at [`], or it is singular of
dimension 1.

Proof. By Bertini, a general hyperplane section of X containing ` is
a smooth K3 surface S. We have KS · ` = 0, hence, by adjunction,
`2 = −2, so that N`/S ' O`(−2). The normal exact sequence

0 → N`/S → N`/X → NS/X |` → 0
‖ ‖

O`(−2) O`(1)

gives what we need. �

Lemma 5. The scheme L(X) has pure dimension 1.

1It should be said here that all Fano threefolds have been classified! There are
17 families of prime Fano threefolds (all but one known to Fano himself; see §4.2)
and 88 families of nonprime Fano threefolds.
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Proof. If not, it has a smooth component of dimension 2 whose points
correspond to lines of the second type. These lines are not free hence
cannot cover X, but only a surface in X. But only one surface contains
a 2-dimensional family of lines: P2. This is absurd since X contains
no planes. �

Elementary considerations ([IP], Proposition 4.3.1) show that for
g ≥ 4, given any line ` ⊂ X,

only finitely many lines contained in X meet `.

3.2. Elementary transformations. Let again X ⊂ Pg+1 be an anti-
canonically embedded prime Fano threefold that contains a line `. The
projection

π` : X 99K Pg−1

can be resolved by the blow-up ε : X̃ → X of `. The composition

X̃
ε−→ X

π`
99K Pg−1

is the morphism associated with the base-point-free linear system | −
KX̃ | = |ε∗H − E|. We let X̄ be the normalization of its image and

denote by ϕ : X̃ → X̄ the induced morphism.
What are the fibers? Outside of E, they are the intersections with

X of planes containing ` (minus `). Since X contains no planes, they
are the curves residual to ` in these intersections. Assume g ≥ 5, so
that X is an intersection of quadrics. Fibers can then only be (outside
of E)

• one point;
• or a line meeting `.

This (almost) proves that

the morphism ϕ : X̃ → X̄ is a small contraction.

Assume that ϕ is not an isomorphism (since −KX̃ = ε∗(−KX)− E =

ϕ∗H̄, this is exactly saying that X̃ is not a Fano threefold). Since

ρ(X̃) = 2, we have the two extremal rays of the Mori cone of curves of

X̃, with contractions ε and ϕ (with relative Picard number 1).
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In that situation, we can perform a flop:2

X̃

ε

��

ϕ
��

χ
// X̃+

ϕ+
~~

X̄

X

π`

>>

where

• χ is an isomorphism in codimension 1;

• the projective threefold X̃+ is smooth;
• we have −KX̃+ ≡

lin
ϕ+∗H̄.

We have ρ(X̃+) = ρ(X̃) = 2. Since the extremal ray defined by ϕ+

has KX̃+-degree 0 and KX̃+ is not nef, the other extremal ray is KX̃+-

negative and defines a Mori contraction ε+ : X̃+ → X+ (where X+

has dimension 1, 2 or 3). So we may complete the diagram above as
follows:

X̃

ε

��

ϕ
��

χ
// X̃+

ε+

��

ϕ+
}}

X̄

X

π`

??

ψ`
// X+.

The rational map ψ` is called the elementary transformation with center
`.

3.3. Classification. Extremal contractions in dimension 3 have been
classified by Mori. Their types are rather restricted ([IP], Theorem

1.4.3) and, together with computations of intersection numbers on X̃

and X̃+, this leads to a complete description of all possible cases (as-
suming X contains a line!). In particular, we have the following bound-
edness result.

2If `′ is a line contracted by ϕ, we have ϕ∗H̄ · `′ = 0 and E · `′ = 1. Since

ϕ(E) ( ϕ(X̃), we have |mϕ∗H̄ − E| 6= ∅ for m � 0, and for D in that linear
system, D · `′ < 0. Since the relative Picard number of ϕ is 1, this means that
D is ϕ-antiample. In that situation, we can perform a D-flop χ, which is nothing

else than a flip for the klt pair (X̃, tD) for t > 0 small. The divisor χ∗D is now
ϕ+-ample.
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Theorem 6. Let X ⊂ Pg+1 be an anticanonically embedded prime
Fano threefold that contains a line. Then, g ≤ 12 and g 6= 11.

But how to prove that X always contains a line? This is unfortu-
nately not easy.

The general classification of anticanonically embedded prime Fano
threefolds is actually obtained with a slightly different method (Take-
guchi) that bypasses completely this problem: given a general point
x ∈ X, starting from the projection X 99K Pg−3 from the projective
tangent space toX at x (this is classically called a “double projection”),
one constructs as above an elementary transformation ψx : X 99K Xx

with center x whose analysis is similar, but more difficult than for ψ`
(there are more possibilities for curves contracted by ϕ). One then gets
directly Theorem 6 and a complete classification ([IP], Theorem 4.5.8;
one then needs to prove that they actually occur). A case-by-case check
shows that any X from the list does contain a line!

4. The vector bundle method

Gushel realized around 1982 that some Fano threefolds (from the
list above) are contained in a Grassmannian of the type G(2,m). This
gave him the idea to classify them (differently) by producing directly
the corresponding vector bundle of rank 2 using the Serre construction
and a suitable elliptic curve.

Mukai vastly generalized this idea around 1988 (see [M]) and com-
pletely classified prime Fano varieties X of dimension n ≥ 3 and index
n− 2.3

Before explaining Mukai’s method, let us make some remarks on the
index r of a Fano variety X of dimension n. There is a very neat trick
of Shokurov’s that is very easy to explain.

We write as before −KX ≡
lin
rH, with H ample. By Riemman-Roch,

P (m) := χ(X,mH) is a polynomial of degree n and leading coefficient
α := Hn/n!. As explained in the introduction, it is equal to h0(X,mH)
for −r < m, hence it vanishes for −r < m < 0. This implies already
r ≤ n+ 14 and gives strong restrictions on P when r is large.

Let me also mention the following facts:

• when r = n+ 1, the variety X is isomorphic to Pn;

3Actually, Mukai needed the extra assumption that the intersection of n − 2
general members of |H| be a smooth surface; this was proved in all dimensions by
Mella in 1996.

4This can also be obtained, in all characteristics, using Mori theory.
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• when r = n, the variety X is isomorphic to a smooth quadric
in Pn+1;
• when r = n− 1, one says that X is a del Pezzo varieties; they

have been classified.

Going back to our case (r = n− 2) and to Shokurov’s trick, we can
write

P (m) = (m+ 1) · · · (m+ n− 3)(αm3 + βm2 + γm+ δ).

Then P (0) = 1 and P (m) = (−1)nP (−m − n + 2) by Serre duality,
and all this implies

h0(X,H) = P (1) = g + n− 1,

where g := 1
2
Hn + 1 is an integer.

It is known that |H| is base-point-free, hence defines a morphism
X → Pg+n−2 which is an embedding for g ≥ 4. Note that any smooth
linear section of X (if of dimension ≥ 3) is still a Fano variety of the
same type.

Theorem 7. Let X ⊂ Pg+n−2 be a prime Fano n-fold of index n− 2.
Then, g ≤ 12 and g 6= 11.

Moreover, there is a complete description of all possible X. When
g ≥ 6, they are all linear sections of various Grassmannians (some quite
exotic) and n ≤ 10.

Proof. A general surface section of X is a (smooth) K3 surface S of
degree d and Mukai’s idea is to construct a vector bundle on S and
then extend it to X.

For the bound on g, we may assume n = 3. Consider the (19-
dimensional) moduli space Fg of polarized K3 surfaces of genus g, the
(g + 19)-dimensional moduli space Pg of pairs (S,C) where S ⊂ Pg

is a K3 surface of genus g and C ⊂ S a hyperplane section, and the
(3g− 3)-dimensional moduli space Mg of curves of genus g. There are
maps

Pg

��

ϕg
// Mg

Fg

Consider a general pencil P = {St | t ∈ P1} of hyperplane sections of
X. All the K3 surfaces St contain the (smooth) base curve C hence
P lifts to a curve in Pg which is contained in the fiber of ϕg over [C]
(the curve P 99K Fg is not constant, because P contains both singular
and smooth members). One checks that [C] is a general member of the
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image of ϕg, hence ϕg is not generically finite onto its image. But Mukai
computed the differential of the map ϕg at a general point and proved
that it is injective for g = 11 or g ≥ 13. This proves the theorem. �

Let us now turn to the description ofX, assuming g ∈ {6, 7, 8, 9, 10, 12}.
We want to construct a vector bundle E on X. Then (for g 6= 7), for
each decomposition g = rs, Mukai constructs a stable rank-r vector
bundle ES on S with h0(S,ES) = r + s and c1(ES) = H|S, which is
unique with these properties. It is generated by its global sections.

Assume r, s > 1. A theorem of Fujita then says that one can extend
ES to a stable rank-r vector bundle E on X with h0(X,E ) = r + s
and c1(E ) = H, which is again unique with these properties. The
vector bundle E is still generated by its global sections hence defines a
morphism

ϕE : X → G(r, r + s)

such that ϕ∗E S ∨
r ' E (in particular, ϕ∗E OG(1) ' OX(H), hence ϕE is

finite and n ≤ rs = g).

4.1. Case g = 6. We have X ⊂ Pn+4) and we take r = 2 and s = 3.
We obtain n ≤ 6 and a morphism ϕ : X → G(2, V5), where V5 :=
H0(X,E )∨.

We have a linear map

η : ∧2H0(X,E )→ H0(X,∧2E ) ' H0(X,H)

and a commutative diagram

X
ϕE

//

_�

ϕH

��

G(2, V5)
_�

Plücker
��

P(H0(X,H)∨)
η∨

// P(∧2V5).

There are two cases:

• either η is surjective; the map η∨ is injective with image a
Pn+4 ⊂ P(∧2V5). The intersection W := G(2, V5) ∩ Pn+4 is
smooth of dimension n + 1 and degree 5, and ϕH(X) ⊂ W is
a divisor of degree 10, hence is the intersection of W with a
quadric.
• or the corank of η is 1; consider the cone CG ⊂ P(C⊕ ∧2V5),

with vertex v = P(C), over G(2, V5). In the above diagram,
we may view H0(X,H)∨ as embedded in C⊕∧2V5 by mapping
(Im(η))⊥ to C, and η∨ as the projection from v, with image a
Pn+3 ⊂ P(∧2V5). Again, W := G(2, V5) ∩ Pn+3 is smooth and
ϕH(X) is the intersection of the cone CW with a quadric. The
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map ϕ : X → W is a double cover branched along the (smooth)
intersection of W with a quadric.

For example, when n = 6 (the maximal possible dimension when g =
6), we are in the second case and ϕE : X → G(2, V5) is a double cover
branched along the (smooth) intersection of G(2, V5) with a quadric (a
“quadratic line complex,” a Fano fivefold of index 3).

4.2. Case g = 12. This case was overlooked by Fano and discovered
by Iskovskikh. We take r = 3 and s = 4. Mukai shows n = 3 and
he proves that X ⊂ G(3, 7) is the zero locus of a section of the rank-9
vector bundle (∧2S ∨

3 )⊕3. Together with Umemura, he also proved that
there is a unique such threefold with automorphism group PGL(2,C);
it is a compactification of C3.

5. What’s next?

5.1. Prime Fano n-folds of index n− 2. Now that we have a good
description of these Fano n-folds, one can ask about

• their birational properties (and in particular, whether they are
rational);
• their moduli spaces;
• their period maps.

These are very difficult questions that are only partially answered. The
elementary transformations introduced earlier are very useful because
they often give nontrivial rational maps between Fano threefolds with
sometimes different numerical invariants. They can also be generalized
in higher dimensions (but more care is needed, because images of flops
are no longer smooth in general).

5.2. Positive characteristics. Shepherd-Barron completed the clas-
sification of prime Fano threefolds in positive characteristic. There are
no new families.

5.3. Singular Fano varieties. For Mori’s minimal model program,
one need to consider singular Fano varieties. For example, one may
only require that some multiple of the Weil divisor −KX be a Cartier
divisor. Even for surfaces, the classification in this case is (to my
knowledge) not complete.

5.4. Nonalgebraically closed fields. There is a nice discussion of
del Pezzo surfaces over any field in [K], §III.3.
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5.5. Higher dimensions. Corti and his collaborators have embarked
on a program to classify Fano fourfolds using mirror symmetry. The
first step would be to recover the known classification of Fano three-
folds in a more systematic way. Very heavy computer calculations are
involved.
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