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There exist several notions of hyperbolicity for compact complex varieties
and I will try to explain what they are and how they are related.

For a compact Riemann surface C, all these notions coincide. “Hyper-
bolic” means any of the following equivalent properties:

(H1) C has genus ≥ 2;

(H2) C carries a metric with constant negative curvature;

(H3) any holomorphic map C → C is constant;

(H4) if C is defined over a number field K, it has finitely many K-points
(Faltings).

The main reason for the equivalence of the first three of these properties
is that a compact Riemann surface of genus ≥ 2 is covered by the unit disk
B ⊂ C. Any holomorphic map C → C lifts to a holomorphic map C → B,
which is constant by Liouville’s theorem. Of course, if C has genus 0 or 1,
there is a nonconstant holomorphic map C → C.

The fact that smooth projective curves of genus at least 2 defined over a
number field K have finitely many K-points is a difficult theorem of Faltings.
Curves of genus 0 or 1 may have infinitely many K-points.

1 Analytic hyperbolicity

Let us first concentrate on property (H3). We say that a compact complex va-
riety X (not necessarily smooth) is analytically hyperbolic if any holomorphic
map C → X is constant.
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1.1 Examples

Let us start with a few examples.
(a) The product of 2 analytically hyperbolic varieties is analytically hy-

perbolic. In particular, any (finite) product of Riemann surfaces of genus
≥ 2 is analytically hyperbolic.

(b) As we saw above, compact Riemann surfaces of genus ≥ 2 are an-
alytically hyperbolic. Similarly, any compact complex variety covered by a
bounded domain in Cn is analytically hyperbolic.

It is a consequence of the Borel–Hirzebruch proportionality theorem that
a smooth compact complex variety covered by the unit ball Bn ⊂ Cn must
satisfy cn−2

1 (c2
1−2n+1

n
c2) = 0. Conversely, Yau proved, as a consequence of the

Calabi conjecture, that any smooth compact complex variety of dimension n
with ample canonical bundle such that cn−2

1 (c2
1 − 2n+1

n
c2) = 0 is covered by

the unit ball hence is analytically hyperbolic.
Unfortunately, such examples are difficult to construct. Borel constructed

in 1963 compact quotients of B2 by a discontinuous group of analytic auto-
morphisms. Mumford constructed in 1979 a “fake projective plane” (with
c2
1 = 3, c2 = 1, and b1 = 0). Hirzebruch considered in 1983 minimal desin-

gularizations of certain coverings of the projective plane branched along a
union of lines. Computing directly their Chern numbers, he found c2

1 = 3c2

for 3 particular configurations of lines.

1.2 The Lang conjectures

Any map from a complex torus to an analytically hyperbolic variety is con-
stant. It was conjectured by Lang that the converse holds.

Conjecture 1 A compact complex variety X is analytically hyperbolic if and
only if there are no nonconstant holomorphic maps from a complex torus to
X.

There is an even stronger form of this conjecture.

Conjecture 2 A compact algebraic complex variety is analytically hyperbolic
if and only if all its subvarieties are of general type.1

1Recall that a smooth projective variety X of dimension n is of general type if
h0(X, (Ωn

X)⊗m) grows like cmn when m goes to infinity, for some c > 0. If X is sin-
gular, one (hence all) desingularizations should have this property.
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These conjectures are for the moment out of reach, and most of the recent
work has concentrated on constructing examples.

1.3 Analytically hyperbolic subvarieties of complex tori:
the “Bloch theorem”

Analytically hyperbolic varieties are in fact very common. This is reflected
in a celebrated theorem of Bloch (1926): a subvariety of a complex torus
is analytically hyperbolic if and only if it contains no nonzero (translated)
subtorus. This follows from the more precise result:

Theorem 3 (Bloch, Ochiai, Noguchi) Let A be a complex torus. The
Zariski closure of the image of a holomorphic map C → A is a (translated)
subtorus of A.

A very general algebraic complex torus contains no nonzero subtori and
many subvarieties. So analytically hyperbolic varieties are indeed very com-
mon.

1.4 Analytically hyperbolic hypersurfaces of the pro-
jective space: the Kobayashi conjecture

Most of the recent activity around analytical hyperbolicity revolves around
the celebrated Kobayashi conjecture: a very general hypersurface in Pn of
degree ≥ 2n− 1 is analytically hyperbolic.

This obviously holds for n = 2. Hypersurfaces of degree ≤ 2n− 3 always
contain lines, and quartics in P3 always contain elliptic curves, so they are not
analytically hyperbolic. Very general hypersurfaces in Pn of degree ≥ 2n− 1
contain no rational or elliptic curves (Voisin); in fact, all their subvarieties
are of general type (Pacienza). So there is no algebraic obstruction to their
being analytically hyperbolic.

There are roughly two categories of results.

• Constructing examples. Smooth hyperbolic surfaces in P3 of any degree
≥ 8, smooth hyperbolic hypersurfaces in Pn of any degree ≥ 4(n− 1)2,
have been constructed.

• Proving the Kobayashi conjecture. This is much harder. Demailly and
El Goul proved that very general surfaces in P3 of degree ≥ 15 are
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hyperbolic. Siu has announced a proof of the Kobayashi conjecture for
hypersurfaces in Pn of sufficiently large degree.

Here is a brief description of a construction of Duval. Consider the surface
S ⊂ P3 with equation

P (z0, z1, z2)
2 −Q(z2, z3) = 0

where P and Q are general polynomials of respective degrees d ≥ 4 and 2d.
It is smooth outside the finite set Σ = {(z0, z1, 0, 0) ∈ P3 | P (z0, z1, 0) = 0}.
The meromorphic projection map

S 99K P1

(z0, z1, z2, z3) 7−→ (z2, z3)

is undefined at the finite subset Σ. This set can be blown up to yield a
holomorphic map S̃ → P1 which factorizes as S̃

u−→ C
p−→ P1, where C is

the hyperelliptic curve with inhomogeneous equation t2 = Q(1, z3), the map
u is given in inhomogeneous coordinates by

u(z0, z1, 1, z3) = (P (z0, z1, 1), z3)

and p is the double cover (t, z3) 7→ z3. Any holomorphic map f : C →
S lifts to f̃ : C → S̃. Since C has genus d − 1 ≥ 3, the image of f̃ is
contained in a fiber u−1(t, z3) of u, which is isomorphic to the plane curve
with inhomogeneous equation P (z0, z1, 1) = t. This is a plane curve of degree
d with at most one singular point, which is a node; it has therefore genus
≥ 2, hence f̃ is constant. The degree 2d surface S is therefore analytically
hyperbolic. Any small deformation of S is still analytically hyperbolic: this
is because any sequence fn : C → Sn ⊂ P3 of nonconstant holomorphic
maps can be normalized in such a way that there exists a subsequence that
converges to a nonconstant holomorphic map f : C → P3. So we obtain in
this way examples of smooth analytically hyperbolic surfaces in P3.

It is harder to give an idea of the Demailly–El Goul proof.
The original idea goes back to Bloch, Cartan, Ahlfors, Ochiai, Green, and

Griffiths. Any nonconstant holomorphic map f : C → X lifts to the projec-
tified tangent bundle as f1 : C → P(TX), defined by f1(t) = (f(t), f ′(t)). As-
sume that for some ample2 line bundle L on X, the vector bundle SmΩX⊗L−1

2A line bundle is ample if it has a hermitian metric with positive curvature.
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has base locus B ⊂ P(TX). If f1(C) 6⊂ B, a hermitian metric with positive
curvature on L pulls-back to a hermitian metric on C that can be compared
to the Poincaré metric. A version of the Ahlfors–Poincaré lemma implies
that f1 can only exist on a bounded disk in C, which is absurd. This implies
f1(C) ⊂ B; in other words, any holomorphic map f : C → X must auto-
matically satisfy all algebraic differential equations P (f, f ′) = 0 arising from
sections P of SmΩX ⊗ L−1.

We now need to produce sufficiently many sections of SmΩX ⊗ L−1. By
Riemann–Roch, this is possible on a surface (of general type) only if c2

1 > c2,
which unfortunately never happens for a surface S in P3 of degree d ≥ 4,
for which c2

1 = d(d − 4)2 and c2 = d(d2 − 4d + 6). The trick is to continue
the process by lifting the curve f1 again as f2 : C → P(P(TX)), or rather to
a smaller, carefully chosen subbundle E ⊂ P(P(TX)). Riemann-Roch now
implies that there are many nonzero sections as soon as c2

1 > 9
13

c2, which
happens for surfaces in P3 of degree ≥ 15. This yields nontrivial algebraic
differential equations satisfied by f . More work is needed to conclude, of
course.

1.5 Weak analytic hyperbolicity

If a smooth projective surface X of general type satisfies c2
1 > 2c2, then in-

deed, for m � 0, the base locus B of SmΩX ⊗ L−1 projects onto a proper
subset of X (Schneider–Tancredi), which must be an algebraic curve, ratio-
nal or elliptic. McQuillan proved a very deep theorem on parabolic leaves
of algebraic foliations that together with a finiteness result of Bogomolov’s
implies the following stronger result.

Theorem 4 (McQuillan, 1997) A smooth projective surface of general type
such that c2

1 > c2 contains only finitely many rational or elliptic curves and
any nonconstant entire curve maps onto one of them.

This points to another extension of property (H3): we may try to study
complex varieties X for which any holomorphic curve f : C → X is alge-
braically degenerate, i.e., the image f(C) is contained in a proper algebraic
subvariety of X (which may or may not depend on f). The Bloch theorem
gives a very large class of varieties that satisfy this property.

Theorem 5 Let X be a smooth algebraic variety of dimension < h0(X, ΩX).
There exists a proper algebraic subvariety Y ⊂ X such that the image of any
holomorphic curve C → X is contained in Y .
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Proof. For any compact Kähler variety X, there is a complex torus A and
a holomorphic map (the Albanese map) α : X → A such that α(X) generates
A as a group and any map from X to a complex torus factors through α.
The dimension of A is h0(X, ΩX).

Since dim(X) < dim(A), the image α(X) is a proper subvariety of A
which is not a translated subtorus. One can show that there are only finitely
many maximal translated subtori in α(X), so that their union is a proper
algebraic subvariety Y of α(X). The Bloch theorem implies that the image
of any holomorphic curve C → X is contained in α−1(Y ). �

This is of no use for hypersurfaces of Pn, since they have no nonzero
holomorphic forms when n ≥ 3.

There is another conjectural characterization of these varieties.

Conjecture 6 A smooth complex algebraic variety X is of general type if
and only if the union of the images of all nonconstant holomorphic maps
C → X is not Zariski dense in X.

This implies Conjectures 1 and 2. The “first case” to look at is that of
surfaces of general type: do they contain only finitely many rational or elliptic
curves? This holds for surfaces of general type with c2

1 > c2 by Theorem 4.

2 Algebraic hyperbolicity

Here are a few possible extensions of property (H1) for a higher-dimensional
complex algebraic variety X:

• require that all curves contained in X have genus at least 2;

• require that all holomorphic maps from a complex torus to X are con-
stant;

• require that all subvarieties of X are of general type.

The first property turns out to be too weak and not very interesting.
The other two properties, which are thought to be equivalent to analytic

hyperbolicity by Conjectures 1 and 2, are not easy to check, although they
are known to hold for very general hypersurfaces in Pn of degree ≥ 2n − 1
(Pacienza).
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A more subtle definition, which is a bit technical, but involves only curves
hence is easier to check, was suggested by Demailly: a complex algebraic
variety X is algebraically hyperbolic if, given an ample line bundle L on X,
there is a positive number ε such that, for every smooth projective curve C
of genus g and nonconstant map f : C → X, one has

2g − 2 ≥ ε deg(f ∗L) > 0 (1)

(This is independent of the choice of L.) It is known to hold for very general
hypersurfaces in Pn of degree ≥ 2n (Voisin).

It is weaker than analytic hyperbolicity, to which it is conjectured to be
equivalent, but is stronger than the second property above. Indeed, if we
have a nonconstant map f : A → X, consider a curve C ⊂ A on which
f is not constant. If mA : A → A is the multiplication by m, we have
deg((mA ◦ f |C)∗L) = m2 deg(f |∗CL), which eventually violates (1).

For subvarieties of a complex torus, all three properties are equivalent to
X being analytically hyperbolic (see Theorem 3).

What is missing here is a direct connection between these various alge-
braic properties and analytic hyperbolicity.

3 Ampleness of the cotangent bundle

Algebraic geometers know what an ample vector bundle is. For those who
don’t, a smooth projective variety X has ample cotangent bundle if, given an
ample line bundle L on X, there is a positive number ε such that, for every
smooth projective curve C, nonconstant map f : C → X, and quotient line
bundle f ∗ΩX � M ,

deg(M) ≥ ε deg(f ∗L) (2)

(Demailly’s definition requires this inequality only for the quotient f ∗ΩX �
ΩC). For mathematicians with a background in differential geometry, a com-
pact complex variety has ample cotangent bundle if it carries a Kähler metric
with negative bisectional holomorphic curvature (or negative usual sectional
Riemannian curvature). In particular, it can be seen as a generalization of
property (H2).

This is a very strong property, strictly stronger than analytic hyperbol-
icity (the product of two curves of genus ≥ 2 is analytically hyperbolic, but
its cotangent bundle is not ample). It is so strong that there were for a
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long time very few examples, although these varieties are expected to be
reasonably abundant.

• Ball quotients: smooth complex projective varieties that are uniformized
by the ball Bn inherit from the Bergman metric a metric with positive
holomorphic bisectional curvature hence have ample cotangent bundle.3

• Mostow and Siu’s construction: these authors constructed in 1980 a
compact Kähler surface not covered by the ball B2, with negative sec-
tional Riemannian curvature.

• Bogomolov’s construction: in the product of sufficiently many varieties
with big cotangent bundle (for instance, curves of genus at least 2),
the intersection of sufficiently many sufficiently ample general hyper-
surfaces has ample cotangent bundle.

• Subvarieties of abelian varieties: in an abelian variety of dimension n,
the intersection of at least n/2 sufficiently ample general hypersurfaces
has ample cotangent bundle.

The cotangent bundle of a smooth subvariety X of dimension > n/2 in
an abelian variety A of dimension n is never ample. This is because its
restriction to a fiber of the Gauss map P(TX) → P(TA,0) has a trivial (hence
degree 0) quotient, and this fiber has dimension

≥ dim(P(TX))− dim(P(TA,0)) = 2 dim(X)− dim(A)

Therefore, if dim(X) > dim(A)/2, there is a curve C, a nonconstant map
f : C → X, and a trivial quotient line bundle f ∗ΩX � OC that violates (2).

Similarly, I conjecture that in Pn, the intersection of at least n/2 suffi-
ciently ample general hypersurfaces has ample cotangent bundle.

4 Arithmetic hyperbolicity

How to extend property (H4) to higher-dimensional varieties (defined over a
number field K)? In other words, what does it mean to have “few” K-points?
Keeping in mind conjectures 1 and 6, we might require of an algebraic variety
X defined over a number field K,

3By §1.1, this is the case for smooth projective surfaces of general type with c2
1 = 3c2,

or more generally for smooth projective varieties with ample canonical bundle and cn
1 =

2n+1
n cn−2

1 c2.

8



• either that X has only finitely many K-points;

• or that the K-points of X are not Zariski dense, i.e., they are contained
in a proper algebraic subvariety of X.

Accordingly, we get the following conjectures.

Conjecture 7 (Lang) A smooth analytically hyperbolic projective variety
defined over a number field K has finitely many K-points.

This would be a consequence of the following, together with (one direction
of) Conjecture 2.

Conjecture 8 (Bombieri, Lang, Vojta) If a smooth projective variety de-
fined over a number field K has positive dimension and is of general type, its
K-points are not Zariski dense.

A weaker form is the following.

Conjecture 9 A smooth projective variety with ample cotangent bundle, de-
fined over a number field K, has finitely many K-points.

An analogous result for varieties defined over function fields of curves was
proved by Noguchi and Deschamps.

Moriwaki remarked that, if the cotangent bundle is, in addition to being
ample, generated by global sections, Conjecture 9 follows from the following
theorem of Faltings, which remains to this day the most powerful (if not the
only) tool in the subject: all K-points of a subvariety X of an abelian variety
A defined over a number field K lie in the union of finitely many translated
(by K-points) abelian subvarieties of A contained in X. Indeed, if ΩX is
generated by global sections, the Albanese map α : X → A (which exists
over any field) is unramifed. The image of α(X(K)) is a union of translated
abelian subvarieties of A and a theorem of Lang says that X(K) is also a
union of abelian varieties.

Apart from that, there are no results in the direction of the conjectures
above. For example, the known compact ball quotients (see §3) are quotients
by arithmetic groups hence are defined over a number field K, but it is
unknown whether they have finitely many K-points.

Although the analytic and algebraic theories may give ideas and inspira-
tions about what could (should?) be true in the arithmetic case, no direct
connection between these areas has been found yet.
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