Généralités sur les anneaux (TD1)

FIMFA Algèbre 2 (Tony Ly), Février 2012

Exercice 1

Soient A un anneau commutatif unitaire et I un idéal.

- a) Montrer que les idéaux de A/I sont en bijection avec les idéaux de A contenant I.
- b) Montrer que les idéaux premiers (resp. maximaux) de A/I sont en bijection avec les idéaux premiers (resp. maximaux) de A contenant I.
- c) Soit $J \supseteq I$ un idéal de A. Montrer que A/J est canoniquement isomorphe au quotient de A/I par J/I.

On va considérer les exemples des anneaux suivants :

$$\mathbb{C}[X]$$
, $\mathbb{R}[X]/(X^2 + X + 1)$, $\mathbb{R}[X]/(X^3 - 6X^2 + 11X - 6)$, $\mathbb{R}[X]/(X^4 - 1)$.

- d) Déterminer les idéaux premiers de ces anneaux.
- e) Déterminer les morphismes de \mathbb{R} -algèbres de ces anneaux dans \mathbb{R} (resp. dans \mathbb{C}).

Exercice 2

Soient A et B deux anneaux commutatifs unitaires, et $f: A \to B$ un morphisme d'anneaux.

- a) Montrer que l'image réciproque par f d'un idéal premier de B est un idéal premier de A.
- b) Que se passe-t-il pour les idéaux maximaux?

Soient I et J deux idéaux de A.

c) Montrer que l'on a $IJ \subseteq I \cap J$. A-t-on toujours égalité?

Exercice 3

Soit X un sous-ensemble compact de \mathbb{R}^n . On note $C(X,\mathbb{R})$ l'anneau des fonctions continues sur X à valeurs dans \mathbb{R} .

a) Déterminer les idéaux maximaux de $C(X, \mathbb{R})$.

On munit $C(X,\mathbb{R})$ de la topologie de la convergence uniforme.

- b) Montrer que tout idéal premier est contenu dans un unique idéal maximal et qu'il y est dense. On pourra utiliser des partitions de l'unité.
- *) Donner un exemple d'idéal premier non maximal.

Exercice 4

Soit A un anneau commutatif unitaire.

- a) On suppose A intègre et que A possède un nombre fini d'idéaux. Montrer que A est un corps.
- b) On suppose que A possède un nombre fini d'idéaux. Montrer que tout idéal premier de A est maximal.
- c) On suppose que tout idéal propre de A est premier. Montrer que A est un corps.

Exercice 5

Soit k un corps. On note A le sous-anneau de $M_2(k)$ composé des matrices triangulaires supérieures.

- a) Déterminer les éléments nilpotents et les éléments inversibles de A.
- b) Déterminer les idéaux bilatères de A, ainsi que les quotients correspondants.

Exercice 6

Soit k un corps. On note $k[[X]] = \{ \sum_{i \geq 0} a_i X^i \mid a_i \in k \text{ pour tout } i \geq 0 \}$ l'anneau des séries formelles en X à coefficients dans k.

- a) Montrer que k[[X]] possède un unique idéal maximal, engendré par X.
- b) En déduire que k[[X]] est principal, puis qu'il est euclidien.

Exercice 7

Soit A un anneau commutatif unitaire.

- a) Montrer que si A n'est pas un corps, alors A[X] n'est pas principal.
- b) Montrer que $\mathbb{Z}[X]$ est factoriel, c'est-à-dire qu'il est intègre et que tout élément $t \in \mathbb{Z}[X]$ possède une décomposition finie $t = u \prod_i p_i$ avec $u \in \mathbb{Z}[X]^{\times}$ et les p_i irréductibles, unique à permutations des termes et multiplications par des inversibles près.

Exercice 8 (Théorème des deux carrés)

On considère $\mathbb{Z}[i]$ l'anneau des entiers de Gauss, et on note $\Sigma = \{a^2 + b^2 \mid a, b \in \mathbb{N}\}.$

a) En introduisant l'application norme

$$\begin{array}{cccc} N: & \mathbb{Z}[i] & \to & \mathbb{Z} \\ & a+ib & \mapsto & (a+ib)(a-ib) \end{array},$$

déterminer les éléments inversibles de $\mathbb{Z}[i]$.

- b) Montrer que Σ est stable par multiplication.
- c) Montrer que $\mathbb{Z}[i]$ est euclidien.

Soit p un nombre premier.

- d) Montrer que p est un élément de Σ si et seulement si p n'est pas irréductible dans $\mathbb{Z}[i]$.
- e) En utilisant l'isomorphisme d'anneaux $\mathbb{Z}[i]/p\mathbb{Z}[i] \simeq \mathbb{F}_p[X]/(X^2+1)$, montrer que p est un élément de Σ si et seulement si on a p=2 ou $p\equiv 1\mod 4$.

Soient $n \in \mathbb{N} \setminus \{0,1\}$ et $\prod_{n} p^{v_p(n)}$ sa décomposition en facteurs premiers.

f) Montrer que n est un élément de Σ si et seulement si $v_p(n)$ est pair pout tout premier $p \equiv 3 \mod 4$.

Exercice 9

Soit R un anneau euclidien qui n'est pas un corps.

a) Montrer que l'on peut trouver un élément non inversible x de R tel que la restriction à $R^{\times} \cup \{0\}$ de la projection canonique de R sur R/(x) soit surjective. On pourra choisir x tel que $\phi(x)$ soit minimal parmi les éléments $x \notin R^{\times}$, où ϕ désigne le stathme d'une division euclidienne de R.

Soient $\alpha = \frac{1 + i\sqrt{19}}{2}$ et $A = \mathbb{Z}[\alpha]$.

- b) En s'inspirant de 8.(a), déterminer A^{\times} .
- c) Montrer que A n'est pas euclidien.
- d) Si $a, b \in A \setminus \{0\}$, montrer qu'il existe $q, r \in A$ tels que r = 0 ou |r| < |b| et qui vérifient, soit a = bq + r, soit 2a = bq + r.
- e) Montrer que l'idéal engendré par 2 dans A est maximal.
- f) Montrer que A est un anneau principal.

Exercice 10 (Résultant de Sylvester)

Soient k un corps et $P, Q \in k[X]$ des polynômes de degré respectif p et q. On appelle résultant de P et Q, que l'on note $\mathcal{R}(P,Q)$ le déterminant de l'application $k_{q-1}[X] \times k_{p-1}[X] \longrightarrow k_{p+q-1}[X]$ $(A,B) \mapsto AP + BQ$.

- a) A quelle condition a-t-on $\mathcal{R}(P,Q)=0$?
- b) En déduire que l'ensemble des nombres algébriques sur $\mathbb Q$ est un corps.