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CHAPITRE I

ANNEAUX

1. Définitions

Définition 1.1. — Un anneau (unitaire) est un triplet (A,+, ·), où
— (A,+) est un groupe abélien, dont l’élément neutre est noté 0A (ou simplement 0) ;
— la multiplication · est associative et possède un élément neutre est noté 1A (ou simplement 1) ;
— la multiplication est distributive par rapport à l’addition :

∀a, b, c ∈ A a · (b+ c) = a · b+ a · c (b+ c) · a = b · a+ c · a.

On note souvent ab au lieu de a · b. On note aussi −a l’opposé de A, c’est-à-dire que a + (−a) = 0A.
On a, pour tout a dans A,

0Aa = (0A + 0A)a = 0Aa+ 0Aa,

d’où, en ajoutant des deux côtés −0Aa,
0Aa = 0A.

De même,
a0A = 0A.

Pour tous éléments a et b de A, on a alors

ab+ (−a)b = (a+ (−a))b = 0Ab = 0A,

donc
(−a)b = −ab,

ainsi que
a(−b) = −ab (−a)(−b) = −(−a)b = −(−ab) = ab.

L’anneau (A,+, ·) est commutatif si la multiplication est commutative. Si a ∈ A et m ∈ Z, on définit
ma (comme dans tout groupe abélien) par récurrence sur m en posant

0a := 0A , ∀m ∈ Z (m+ 1)a = ma+ a.

On a ainsi, pour tout m,n ∈ Z,
(m+ n)a = ma+ na.

Si a ∈ A et m ∈ N, on définit am par récurrence sur m en posant

a0 := 1A , ∀m ∈ N am+1 = am · a.

On a ainsi, pour tout m,n ∈ N,
am+n = aman.

Un sous-anneau d’un anneau (A,+, ·) est un sous-ensemble B de A contenant 0A et 1A tel que B
muni de la restriction des opérations + et · est un anneau (c’est-à-dire qu’il est stable par addition et
multiplication).
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Exemple 1.2. — L’anneau nul A = {0A} est un anneau commutatif. Un anneau A est nul si et seulement
si 0A = 1A.

Exemple 1.3. — Les triplets (Z,+, ·) et (Z/nZ,+, ·) sont des anneaux commutatifs.

Exemple 1.4. — Le produit direct
∏
i∈I Ai d’une famille d’anneaux (Ai,+, ·)i∈I est un anneau (pour les

lois d’addition et de multiplication terme à terme).

Exemple 1.5. — Soit A un anneau commutatif. On définit l’anneau des polynômes à coefficients dans A
de la façon suivante. Considérons l’ensemble A[X] (aussi noté A(N)) des suites (ai)i∈N d’éléments de A
dont tous les termes, sauf un nombre fini, sont nuls. On définit l’addition en additionnant terme à terme.
Pour la multiplication, c’est plus compliqué : le produit des polynômes (ai)i∈N et (bj)j∈N est le polynôme
(ck)k∈N défini par ck =

∑k
i=0 aibk−i. On vérifie que ces deux opérations vérifient les axiomes requis et

font de A[X] un anneau commutatif, avec 0A[X] = (0A, 0A, . . . ) et 1A[X] = (1A, 0A, 0A, . . . ).

On considère A comme un sous-anneau de A[X] en identifiant a ∈ A à la suite (a, 0A, 0A, . . . ). On
note X la suite (0A, 1A, 0A, . . . ). Tout polynôme s’écrit alors de façon unique comme

P (X) = adX
d + · · ·+ a1X + a0,

avec d ∈ N et ad, . . . , a1, a0 ∈ A.

Exemple 1.6. — Soit A un anneau commutatif et soit n un entier strictement positif. On définit plus géné-
ralement l’anneau commutatif A[X1, . . . , Xn] des polynômes à n indéterminées à coefficients dans A de
façon analogue : c’est l’ensemble des suites (aI)I∈Nn d’éléments deA dont tous les termes, sauf un nombre
fini, sont 0A. On définit l’addition en additionnant terme à terme et le produit de polynômes (aI)I∈Nn et
(bJ)J∈Nn comme le polynôme (cK)K∈N défini par cK =

∑
I,J∈Nn,I+J=K aIbJ . On identifie encore A

à un sous-anneau de A[X1, . . . , Xn].

Pour i ∈ {1, . . . , n}, on note Xi la suite dont tous les éléments sont 0A sauf celui correspondant à
l’élément I de Nn dont toutes les coordonnées sont nulles sauf la i-ième qui vaut 1. Tout élément de
A[X1, . . . , Xn] s’écrit alors comme une somme finie

P (X1, . . . , Xn) =
∑

06ij6dj

ai1,...,inX
i1
1 · · ·Xin

n ,

avec ai1,...,in ∈ A.

Exemple 1.7. — SoitA un anneau commutatif. On définit l’anneau des séries formelles à coefficients dans
A de la façon suivante. Considérons l’ensemble A[[X]] (aussi noté AN) des suites (ai)i∈N d’éléments de
A. On définit X , l’addition et la multiplication comme pour les polynômes. Il est clair que l’anneau des
polynômes A[X] est un sous-anneau de A[[X]]. On notera

∞∑
i=0

aiX
i

l’élément (ai)i∈N de A[[X]] (attention, c’est une notation : il n’est pas question de convergence ici).

Exemple 1.8. — Soit A un anneau commutatif et soit n un entier strictement positif. On définit l’an-
neau des matrices carrées d’ordre n à coefficients dans A comme l’ensemble Mn(A) des tableaux
(aij)16i,j6n d’éléments de A muni de l’addition terme à terme, la multiplication de matrices (aij)16i,j6n

et (bij)16i,j6n étant définie comme la matrice (cij)16i,j6n, où

cij =

n∑
k=1

aikbkj .

L’anneau Mn(A) n’est commutatif que si A est l’anneau nul ou si n = 1.
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Définition 1.9. — Soient A et B des anneaux.

(1) Un morphisme (d’anneaux) entre A et B est une application f : A→ B qui vérifie f(1A) = 1B et

∀x, y ∈ A f(x+ y) = f(x) + f(y) f(xy) = f(x)f(y).

Un isomorphisme entre A et B est un morphisme qui est bijectif (son inverse est alors automatiquement
aussi un morphisme).

(2) Un élément de A est inversible (on dit aussi que c’est une unité de A) s’il admet un inverse pour
la multiplication. L’ensemble des éléments inversibles, muni de la multiplication, est un groupe noté habi-
tuellement A∗.

(3) L’anneauA est intègre s’il est commutatif, non nul et si le produit de deux éléments non nuls deA est
encore non nul. C’est un corps s’il est commutatif, non nul et que tout élément non nul de A est inversible.

Exemple 1.10. — Soit A un anneau. Il existe un unique morphisme Z → A : il envoie tout entier n sur
n1A.

Exemple 1.11. — L’anneau Z/nZ est intègre si et seulement si n = 0 ou n est un nombre premier.

Exemple 1.12. — Les unités de l’anneau Z sont {−1, 1}. Si n est un entier strictement positif, les unités de
l’anneau Z/nZ sont les classes des entiers premiers à n ; en particulier, Z/nZ est un corps si et seulement
si n est un nombre premier.

Soit A un anneau commutatif. Les unités de l’anneau de séries formelles A[[X]] sont les séries∑∞
i=0 aiX

i avec a0 ∈ A∗.

Si un anneau A est intègre, on définit son corps des quotients (ou corps des fractions) KA comme
l’ensemble des classes d’équivalence (appelées « fractions ») des paires (a, b), avec a ∈ A et b ∈ Ar {0},
pour la relation d’équivalence

(a, b) ∼ (a′, b′)⇐⇒ ab′ = a′b.

La classe d’équivalence de (a, b) est notée a
b . Muni des opérations (addition et multiplication) habituelles

sur les fractions, on vérifie que KA est bien un corps.

Si K est un corps, on note K(X) le corps des fractions de l’anneau (intègre) de polynômes K[X]. Ses
éléments sont les fractions rationnelles à coefficients dansK. On définit de même le corpsK(X1, . . . , Xn)

(et on a K(X1, . . . , Xn) = K(X1, . . . , Xn−1)(Xn)).

2. Idéaux

Soit A un anneau. Un idéal (bilatère) de A est une partie I de A qui est un sous-groupe additif tel que,
pour tout a ∈ A et tout x ∈ I , on a ax ∈ I et xa ∈ I . C’est exactement la propriété qu’il faut pour pouvoir
mettre sur le groupe additif A/I une structure d’anneau qui fait de la projection canonique A → A/I un
morphisme d’anneaux.

On notera le fait évident mais utile qu’un idéal I de A est égal à A si et seulement si 1A ∈ I .

L’intersection d’une famille quelconque d’idéaux de A est encore un idéal de A. Si S est une partie
de A, l’intersection de tous les idéaux de A contenant S est donc un idéal de A que l’on notera (S), ou AS.
C’est l’ensemble des sommes finies

∑n
i=1 aisi, pour n ∈ N, ai ∈ A et si ∈ S.
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Si I et J sont des idéaux d’un anneau A, on note I + J l’idéal de A engendré par I ∪ J et IJ l’idéal
de A engendré par {xy | x ∈ I, y ∈ J}. On a

I + J = {x+ y | x ∈ I, y ∈ J}

IJ = {
n∑
i=1

xiyi | n ∈ N, x1, . . . , xn ∈ I, y1, . . . , yn ∈ J}.

Proposition 2.1. — Soit f : A→ B un morphisme d’anneaux.

(1) Le noyau de f est un idéal de A. Plus généralement, l’image réciproque par f d’un idéal de B est un
idéal de A.

(2) Si I est un idéal de A, le morphisme f se factorise par la projection A → A/I si et seulement si
I ⊆ Ker(f).

L’image de f n’est en général pas un idéal de B.

Exemple 2.2. — Un anneau commutatif A est un corps si et seulement s’il n’est pas nul et que ses seuls
idéaux sont {0A} et A. Un corps a donc toujours au moins deux éléments

Exemple 2.3. — Les idéaux de l’anneau Z sont les nZ, avec n ∈ N (pourquoi ?) ; les quotients sont les
anneaux Z/nZ.

Soit I un idéal de l’anneau commutatif A. L’anneau A/I est intègre si et seulement si I est un idéal
premier, c’est-à-dire qu’il est distinct de A et qu’il vérifie la propriété :

∀a, b ∈ A ab ∈ I ⇒ (a ∈ I ou b ∈ I).

L’anneau A/I est un corps si et seulement si I est un idéal maximal, c’est-à-dire qu’il est distinct de A
et que l’unique idéal de A contenant strictement I est A (en particulier, tout idéal maximal est premier). Il
résulte du théorème de Zorn que tout idéal de A distinct de A est contenu dans un idéal maximal (1). En
particulier, tout anneau non nul possède un idéal maximal.

Exemple 2.4. — Les idéaux premiers de l’anneau Z sont les pZ, où p est un nombre premier ; ce sont
aussi les idéaux maximaux.

Exemple 2.5. — L’anneau A est un corps si et seulement si {0} est un idéal maximal de A.

Exemple 2.6. — Si K est un corps, l’idéal (X1) de l’anneau K[X1, X2] est premier mais pas maximal.
L’idéal (X1, X2) est maximal.

Soit I un idéal d’un anneau commutatif A. On pose
√
I = {a ∈ A | ∃n ∈ N an ∈ I}.

C’est un idéal de A qui contient I et qu’on appelle le radical de I (c’est en effet l’image inverse par le
morphisme canonique A→ A/I de l’idéal des éléments nilpotents de A/I).

Théorème 2.7. — Soit A un anneau commutatif et soit I un idéal de A. Le radical de I est l’intersec-
tion des idéaux premiers de A contenant I . En particulier, l’ensemble des éléments nilpotents de A est
l’intersection des idéaux premiers de A.

1. Soit I un idéal de A distinct de A. L’ensemble des idéaux de A contenant I et distincts de A est inductif car si (Ij)j∈J est une
famille totalement ordonnée d’idéaux de A distincts de A, la réunion

⋃
j∈J Ij est encore un idéal (parce que la famille est totalement

ordonnée) distinct de A (parce qu’elle ne contient pas 1A). On applique alors le lemme de Zorn.
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Démonstration. — Montrons le deuxième énoncé. Soit p un idéal premier de A. Il est clair que tout élé-
ment nilpotent a de A est dans p : si an = 0A, on a aussi ān = 0A/p dans A/p, donc ā = 0A/p (puisque
A/p est un anneau intègre), soit a ∈ p.

La réciproque est plus difficile. Si f ∈ A n’est pas nilpotent, nous allons construire un idéal premier
p de A tel que f /∈ p. Considérons l’anneau Af défini dans l’exerc. 11.9(9). Il n’est pas nul car 0A n’est
pas dans la partie multiplicative engendrée par f (exerc. 11.9(5)). Il admet donc un idéal maximal (donc
premier) et celui-ci ne contient pas f/1A (parce que ce dernier est inversible dans l’anneauAf ). Son image
inverse par le morphisme A→ Af est un idéal premier de A qui ne contient pas f .

L’énoncé général se déduit de ce cas particulier : l’image inverse par le morphisme canoniqueA→ A/I

de l’intersection des idéaux premiers de A/I est l’intersection des idéaux premiers de A contenant I , mais
c’est aussi, par le cas déjà traité, l’image inverse de l’idéal des éléments nilpotents de A/I , c’est-à-dire le
radical de I .

3. Divisibilité, éléments irréductibles

Soit A un anneau intègre et soient a et b des éléments de A. On dit que a divise b, et on écrit a | b, s’il
existe q ∈ A tel que b = aq. En termes d’idéaux, c’est équivalent à (a) ⊇ (b). En particulier, tout élément
divise 0, 0 ne divise que lui-même, et un élément de A est une unité si et seulement s’il divise tous les
éléments de A.

On a (a | b et b | a) si et seulement s’il existe u ∈ A∗ tel que a = ub. On dit alors que a et b sont
associés.

Un élément de A est irréductible si a n’est pas inversible et que si a = xy, alors soit x, soit y est
inversible (il n’y a donc pas d’éléments irréductibles dans un corps). La seconde condition signifie que les
seuls diviseurs de a sont ses associés et les unités de A.

Exemple 3.1. — Les éléments irréductibles de Z sont les±p, avec p nombre premier. Ceux de R[X] sont
les polynômes de degré 1 et les polynômes de degré 2 sans racine réelle.

On dit que des éléments de A sont premiers entre eux si leurs seuls diviseurs communs sont les unités
de A.

Lemme 3.2. — Soit A un anneau intègre et soit a un élément irréductible de A. Tout élément b de A est
ou bien premier avec a, ou bien divisible par a.

Démonstration. — Supposons que b n’est pas divisible par a. Soit x un diviseur commun de a et de b ;
on écrit a = xy. Remarquons que y n’est pas une unité : sinon, a diviserait x, donc b. Comme a est
irréductible, on en déduit que x est une unité : tout diviseur commun à a et b est donc une unité.

Soit a un élément non nul de A. Si l’idéal (a) est premier, a est irréductible, mais la réciproque est
fausse en général, comme le montre l’ex. 3.4 ci-dessous.

Exemple 3.3. — Si n > 1, l’anneau Z/nZ est intègre si et seulement si l’entier n est premier. C’est alors
un corps. On a

n est un nombre premier ⇔ l’idéal (n) est premier ⇔ n est irréductible.

Exemple 3.4. — Dans le sous-anneau Z[i
√

5] de C, le nombre 3 est irréductible (pourquoi ?) mais
l’idéal (3) n’est pas premier, car 3 divise le produit (1 + i

√
5)(1− i

√
5) mais aucun des facteurs.
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Noter que la « bonne façon » de voir l’anneau Z[i
√

5] est de le considérer comme l’anneau quotient
Z[X]/(X2 + 5) : inutile de construire C pour cela !

4. Anneaux principaux

Un anneauA est principal siA est intègre et que tout idéal deA est principal, c’est-à-dire qu’il peut être
engendré par un élément. L’anneau Z est donc principal (ex. 2.3), mais pas l’anneau Z[X] des polynômes à
coefficients entiers, ni l’anneau K[X,Y ] des polynômes à deux indéterminées à coefficients dans un corps
K (pourquoi ?).

Si a et b sont des éléments d’un anneau principal A, l’idéal (a, b) est engendré par un élément de A,
uniquement déterminé à multiplication par un élément inversible de A près. On l’appelle un pgcd (« plus
grand commun diviseur ») de a et b, parfois noté a ∧ b. De même, l’idéal (a) ∩ (b) est engendré par un
élément de A, uniquement déterminé à multiplication par un élément inversible de A près, le ppcm (« plus
grand commun multiple ») de a et b, parfois noté a ∨ b. Les pgcd (ou les ppcm) ne sont en général pas
uniques, mais ils sont tous associés.

On peut définir la notion de pgcd et de ppcm dans les anneaux intègres généraux (mais ils n’existent pas
toujours) : on dit que d est un pgcd de a et de b si d divise a et b et si tout diviseur commun de a et de b
divise d ; on dit que m est un ppcm de a et de b si m est un multiple de a et de b et si tout multiple commun
de a et de b est un multiple de m. Il faut vérifier que cette définition est compatible avec celle donnée ci
dessus.

Dans ce contexte, le « théorème de Bézout », qui dit que a et b sont premiers entre eux si et seulement
s’il existe x et y dans A tels que

(1) xa+ yb = 1

est une tautologie. Mentionnons comme conséquence un résultat classique.

Lemme 4.1 (Gauss). — Soit A un anneau principal. Si a, b et c sont des éléments de A tels que a divise
bc mais est premier avec b, alors a divise c.

De façon équivalente, si a et b sont premiers entre eux et qu’un élément de A est divisible par a et par
b, il est divisible par ab.

Démonstration. — Écrivons bc = ad (puisque a divise bc) et xa + yb = 1 (puisque a et b sont premiers
entre eux). On a alors c = (xa+ yb)c = xac+ yad, qui est bien divisible par a.

Pour la deuxième formulation, on écrit x = bc (si b divise x). Si a divise aussi x, il divise c par la
première formulation, donc ab divise x.

Proposition 4.2. — Soit A un anneau principal et soient a, b1, . . . , br des éléments de A.

(1) Si a est premier avec chacun des bi, alors a est premier avec b1 · · · br.

(2) Si les bi sont premiers entre eux deux à deux et que a est divisible par chacun des bi, il est divisible par
b1 · · · br.

Démonstration. — Pour (1), on écrit le théorème de Bézout pour chacune des paires (a, bi) : on a xia +

yib1 = 1. En prenant le produit de toutes ces identités, on obtient

(x1a+ y1b1) · · · (xra+ yrbr) = 1.

Le membre de gauche s’écrit xa + y1 · · · yrb1 · · · br = 1, pour un certain x ∈ A, ce qui montre que a est
premier avec b1 · · · br.
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Pour (2), on procède par récurrence sur r, le cas r = 1 étant trivial. Supposons r > 2. Le point (1) nous
dit que br est premier avec b1 · · · br−1 et l’hypothèse de récurrence que a est divisible par b1 · · · br−1 (et
par br). La deuxième version du lemme de Gauss entraîne que a est divisible par b1 · · · br.

Dans un anneau principal A, les équivalences de l’ex. 3.3 restent vraies.

Proposition 4.3. — SoitA un anneau principal et soit a un élément non nul deA. Les propriétés suivantes
sont équivalentes :

(i) l’idéal (a) est premier, c’est-à-dire que l’anneau quotient A/(a) est intègre ;

(ii) a est irréductible ;

(iii) l’idéal (a) est maximal, c’est-à-dire que l’anneau quotient A/(a) est un corps.

En particulier, l’anneau Z[i
√

5] de l’ex. 3.4 n’est pas principal. Nous verrons dans le § 6 que les pro-
priétés (i) et (ii) (mais pas (iii) en général) restent équivalentes pour une classe bien plus vaste d’anneaux,
les anneaux factoriels.

Démonstration. — On sait qu’en général (iii) ⇒ (i) ⇒ (ii). Supposons a irréductible et soit I un idéal
de A contenant (a). Comme A est principal, on peut écrire I = (x), de sorte qu’il existe y ∈ A tel que
a = xy. Comme a est irréductible, soit x est inversible et I = A, soit y est inversible et I = (a). Comme
a n’est pas inversible, on a (a) 6= A, donc l’idéal (a) est maximal.

Théorème 4.4 (des restes chinois). — Soit A un anneau principal et soient a1, . . . ar des éléments de A
premiers entre eux deux à deux. L’application

A −→ A/(a1)× · · · ×A/(ar)
x 7−→ (x̄, . . . , x̄)

est un morphisme d’anneaux surjectif et son noyau est l’idéal (a1 · · · ar). Il induit donc un isomorphisme
d’anneaux

A/(a1 · · · ar) ∼−→A/(a1)× · · · ×A/(ar).

Démonstration. — Il est clair que l’application en question est un morphisme d’anneaux. Posons a =

a1 · · · ar et montrons que son noyau est l’idéal (a). Il est clair que cet idéal est contenu dans le noyau.
Inversement, si x est dans le noyau, il est divisible par a1, . . . , ar donc par a (cor. 4.2(2)). Le théorème de
factorisation donne donc un morphisme injectif

A/(a1 · · · ar) ↪→ A/(a1)× · · · ×A/(ar).

Notons que lorsqu’on a A = Z, on peut abréger le reste de la démonstration en remarquant que ces deux
ensembles sont finis (on peut supposer qu’aucun des ai n’est nul) et de même cardinal. L’application est
donc bijective.

Revenons au cas général pour montrer que l’application est surjective. Procédons par récurrence sur r.
Si r = 2, on écrit 1 = x1a1 + x2a2. Si b1, b2 ∈ A, l’image de x1a1b2 + x2a2b1 dans A/(a1)×A/(a2) est
alors (b̄1, b̄2). L’application est donc surjective.

Pour passer de r − 1 à r, on remarque que a1 est premier avec a2 · · · ar (prop. 4.2(1)). On a donc (cas
r = 2) une surjection

A� A/(a1)×A/(a2 · · · ar)

et on conclut avec l’hypothèse de récurrence, qui donne un isomorphisme A/(a2 · · · ar) ∼→A/(a2)×· · ·×
A/(ar) : par composition, on obtient que le morphismeA→ A/(a1)×· · ·×A/(ar) est bien surjectif.
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Le théorème des restes chinois nous permet d’analyser la structure du groupe multiplicatif (Z/nZ)∗ des
unités de l’anneau Z/nZ.

Lemme 4.5. — Soit n un entier strictement positif. Le groupe (Z/nZ)∗ des unités de l’anneau Z/nZ est
formé des classes d’entiers premiers avec n. On note ϕ(n) son cardinal.

Démonstration. — Les éléments inversibles de l’anneau Z/nZ sont les classes x̄ telles qu’il existe une
classe ȳ vérifiant x̄ȳ = 1̄ dans Z/nZ, c’est-à-dire xy ≡ 1 (mod n). Par le théorème de Bézout (1), c’est
équivalent à dire que y et n sont premiers entre eux.

On appelle ϕ la fonction indicatrice d’Euler. Une première conséquence du théorème des restes chinois
est que si m et n sont des entiers premiers entre eux, on a

ϕ(mn) = ϕ(m)ϕ(n).

Théorème 4.6. — Soit n un entier strictement positif et soit n = pv11 · · · pvrr sa décomposition en produit
de facteurs premiers.

(1) On a un isomorphisme d’anneaux

Z/nZ ' Z/pv11 Z× · · · × Z/Zpvrr .

(2) On a un isomorphisme de groupes

(Z/nZ)∗ ' (Z/pv11 Z)∗ × · · · × (Z/pvrr Z)∗.

(3) On a

ϕ(n) = n(1− 1/p1) · · · (1− 1/pr).

Démonstration. — Les points (1) et (2) résultent du théorème des restes chinois, puisque les pvii sont
premiers entre eux deux à deux. Pour le point (3), il suffit de remarquer que le cardinal de (Z/pvii Z)∗, qui
est le nombre d’entiers m premiers à pvii et tels que 1 6 m 6 pvii , est pvii − p

vi−1
i (il suffit de retirer les

multiples de pi).

On peut aller plus loin dans cette analyse et étudier la structure du groupe multiplicatif (Z/pvZ)∗ pour
p premier et v > 1. Le cas p > 3 est assez simple : les groupes (Z/pvZ)∗ sont tous cycliques ; mais ce
n’est plus le cas pour les groupes (Z/pvZ)∗ lorsque v > 3. Nous laissons ça en exercice (voir prop. II.2.17
pour le cas de (Z/pZ)∗).

5. Anneaux euclidiens

Dans la pratique, on montre souvent qu’un anneau intègre A est principal en exhibant une division
euclidienne sur A, c’est-à-dire une fonction ϕ : Ar {0A} → N telle que pour tous éléments a et b de A,
avec b 6= 0, on puisse écrire a = bq+r avec r = 0, ou r 6= 0 et ϕ(r) < ϕ(b) (on ne demande pas l’unicité).
Un anneau est euclidien s’il est intègre et qu’il existe une telle fonction ϕ (appelée « stathme euclidien »).

Les deux exemples fondamentaux sont :

• l’anneau Z est euclidien pour la fonction ϕ(n) = |n| ;

• si K est un corps, l’anneau K[X] est euclidien pour la fonction ϕ(P ) = deg(P ).

Théorème 5.1. — Tout anneau euclidien est principal.
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Démonstration. — Soit A un anneau intègre muni d’un stathme euclidien ϕ : Ar {0A} → N. Soit I un
idéal de A. Si I est nul, il est engendré par 0A. Sinon, soit x un élément non nul de I tel que ϕ(x) soit
minimal. Nous allons montrer que I est engendré par x.

Soit a un élément quelconque non nul de I . On écrit a = xq + r avec r = 0, ou r 6= 0 et ϕ(r) < ϕ(x).
Comme a et x sont dans I , il en est de même pour r = a − xq. Si r 6= 0, on a ϕ(r) < ϕ(x), ce qui est
impossible puisque ϕ(x) est minimal. On a donc r = 0 et a ∈ (x).

Il existe des anneaux principaux non euclidiens, mais ils sont difficiles à construire (c’est le cas de
l’anneau Z[(1 +

√
−19)/2]).

Dans un anneau euclidien A, la division permet d’écrire un algorithme (dit « d’Euclide ») qui, étant
donnés des éléments a et b non nuls de A, fournit un pgcd. Il fonctionne ainsi :

— on fait la division a = bq + r ;
— si r = 0 (c’est-à-dire si b divise a), on arrête : a ∧ b = b ;
— si r 6= 0, on replace (a, b) par (b, r) (avec ϕ(r) < ϕ(b)).

Comme la suite des entiers naturels ϕ(b) est strictement décroissante, l’algorithme s’arrête en temps fini. À
chaque étape, le pgcd de a et b ne change pas (puisqu’on remplace (a, b) par (b, a− bq)) : on aboutit donc
bien à a ∧ b. D’autre part, l’algorithme fournit bien des éléments x et y de A tels que xa+ yb = a ∧ b : si
on note (ai, bi) la paire obtenue à l’étape i, avec bn = a∧ b, on a ai = bi−1 et bi = ai−1 − bi−1qi−1, donc
ai+1 = ai−1 − aiqi−1, d’où

a ∧ b = an+1

= an−1 − anqn−1 =: xn−1an−1 + yn−1an

= xn−1an−1 + yn−1(an−2 − an−1qn−2) =: xn−2an−2 + yn−2an−1

...

= x1a0 + y1a1 = x1a0 + y1b0.

Exemple 5.2. — Calculons le pgcd de deux nombres de Fibonacci consécutifs (c’est là où l’algorithme
est le plus long), par exemple 8 ∧ 13. On écrit

8 = 13 · 0 + 8 (8, 13) 7→ (13, 8)

13 = 8 · 1 + 5 (13, 8) 7→ (8, 5)

8 = 5 · 1 + 3 (8, 5) 7→ (5, 3)

5 = 3 · 1 + 2 (5, 3) 7→ (3, 2)

3 = 2 · 1 + 1 (3, 2) 7→ (2, 1)

2 = 1 · 2 + 0 8 ∧ 13 = 1.

Pour calculer les coefficients de Bézout, on écrit

1 = 3− 2 = 3− (5− 3) = 2 · 3− 5 = 2 · (8− 5)− 5 = 2 · 8− 3 · 5 = 2 · 8− 3 · (13− 8) = 5 · 8− 3 · 13.

La division euclidienne est aussi utile pour décomposer une matrice à coefficients dans un anneau eu-
clidien comme produit de matrices élémentaires (ce qu’on ne peut pas toujours faire pour les matrices à
coefficients dans un anneau principal).

6. Anneaux factoriels

La notion de factorialité généralise la propriété de décomposition unique des nombres entiers en pro-
duit de nombres premiers. Le résultat principal de cette section est que tous les anneaux principaux sont
factoriels. Commençons par la définition formelle.
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Définition 6.1. — Soit A un anneau. On dit que A est factoriel s’il vérifie les propriétés suivantes
(I) A est un anneau intègre ;
(E) tout élément non nul de A s’écrit sous la forme up1 · · · pr, avec u ∈ A∗, r ∈ N et p1, . . . , pr

irréductibles ;
(U) cette décomposition est unique, « à permutation et à multiplication par des inversibles près » : si

up1 · · · pr = vq1 · · · qs, avec u, v ∈ A∗ et p1, . . . , pr, q1, . . . , qs, on a r = s et il existe σ ∈ Sr tel
que pi et qσ(i) soient associés pour tout i.

Il est pratique d’introduire un système de représentants P des éléments irréductibles de A, c’est-à-dire
un sous-ensemble P de A qui contient un et un seul élément irréductible par classe d’associés. Lorsque
A = Z, on peut prendre pour P les nombres premiers positifs. Lorsque A est l’anneau des polynômes à
une indéterminée à coefficients dans un corps, on peut prendre pour P l’ensemble des polynômes irréduc-
tibles unitaires. Tout élément a d’un anneau factoriel s’écrit alors de façon unique comme

(2) a = u
∏
p∈P

pvp(a),

où les vp(a) (la valuation p-adique de a) sont des entiers naturels presque tous nuls.

Dans la définition ci-dessus, c’est la propriété (U) qui est la plus contraignante ; la propriété (E) est en fait
satisfaite dans une classe beaucoup plus vaste d’anneaux. Expliquons pourquoi. Soit A un anneau intègre
et soit a un élément de A ne pouvant s’écrire comme dans (E). Il n’est alors pas irréductible, donc on peut
l’écrire a = a1b1, où ni a1, ni b1 ne sont des unités, c’est-à-dire (a) ( (a1) et (a) ( (b1). Remarquons
que a1 et b1 ne peuvent être tous les deux irréductibles ; on peut donc écrire par exemple a1 = a2b2, où
ni a2, ni b2 ne sont des unités. On continue ainsi le processus, ce qui construit une suite infinie strictement
croissante d’idéaux

(a) ( (a1) ( (a2) ( (a3) ( · · ·
Il s’avère que de telles chaînes infinies d’idéaux (pas nécessairement principaux) n’existent pas dans les
anneaux noethériens (on peut prendre ça comme leur définition), une classe très vaste d’anneaux (qui
contient celle des anneaux principaux) nommés ainsi en l’honneur d’Emmy Noether, mathématicienne
allemande du début du XXe siècle, qui les a beaucoup étudiés. C’est par ailleurs clair dans l’anneau Z

(puisqu’on a alors |ai+1| < |ai|), ou dans l’anneau des polynômes à une indéterminée à coefficients dans
un corps (puisqu’on a alors deg(ai+1) < deg(ai)), ou plus généralement dans un anneau euclidien.

Théorème 6.2. — Tout anneau principal est factoriel.

Démonstration. — Nous allons procéder en deux temps, en montrant d’abord que les anneaux principaux
vérifient la propriété (E), puis en donnant une caractérisation des anneaux factoriels parmi les anneaux
intègres vérifiant (E).

Lemme 6.3. — Tout anneau principal vérifie la propriété (E).

Démonstration. — Comme on l’a remarqué plus haut, il suffit de montrer qu’il n’existe pas de suite infinie
(In)n∈N strictement croissante d’idéaux d’un anneau principal A. Soit I :=

⋃
n∈N In ; c’est un idéal de

A : si x, y ∈ I , il existe m,n ∈ N tels que x ∈ Im et y ∈ In. Si a ∈ A, on a bien ax ∈ Im ⊆ I . On a aussi
x, y ∈ Imax{m,n}, donc x+ y ∈ Imax{m,n} ⊆ I .

Comme A est principal, l’idéal I est engendré par un élément a de I . Il existe un entier r ∈ N tel que
a ∈ Ir, de sorte que I = (a) ⊆ Ir ⊆ I , et Ir = Is = I pour tout s > r, ce qui contredit l’hypothèse que la
suite (In)n∈N est strictement croissante.

Lemme 6.4. — Soit A un anneau intègre vérifiant la propriété (E). Les propriétés suivantes sont équiva-
lentes :
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(i) l’anneau A est factoriel ;
(ii) pour tout élément irréductible p de A, l’idéal (p) est premier ;
(iii) le lemme de Gauss 4.1 est vrai dans A : si a, b et c sont des éléments de A tels que a divise bc mais

est premier avec b, alors a divise c.

Démonstration. — Supposons (iii). Soit p un élément irréductible de A. On a (p) 6= A car p n’est pas
inversible. Si ab ∈ (p), alors p | ab. Par le lemme 3.2, soit p divise a, auquel cas a ∈ (p), soit p est premier
avec a, auquel cas p divise b par le lemme de Gauss, c’est-à-dire b ∈ (p). Donc (iii)⇒ (ii).

Supposons (ii). Pour montrer que A est factoriel, il suffit de comparer des décompositions a =

u
∏
p∈P pvp = v

∏
p∈P pwp . Si wp0 6= vp0 pour un p0 ∈ P , on a par exemple wp0 > vp0 et p0 divise∏

p∈P,p6=p0 p
vp . Comme l’idéal (p0) est premier, p0 divise un p 6= p0. Ces deux éléments irréductibles

sont alors associés, ce qui contredit le choix de P . On a donc une contradiction, de sorte que wp0 = vp0
pour tout p0 ∈P , donc (ii)⇒ (i).

Enfin, si l’anneau A est factoriel et que a divise bc, soit a = 0, auquel cas bc = 0, donc soit b, soit c est
nul, et a le divise, soit a, b, c 6= 0, auquel cas on a vp(a) 6 vp(b) + vp(c) pour tout p ∈ P (car a divise
bc). Comme a est premier avec b, on a, pour tout p, soit vp(a) = 0, soit vp(b) = 0. Dans les deux cas, on
obtient vp(a) 6 vp(c), c’est-à-dire a | c. Donc (i)⇒ (iii).

Le théorème résulte alors de l’implication (ii)⇒ (i) et de la prop. 4.3.

Proposition 6.5. — Soit A un anneau factoriel et soient a et b des éléments non nuls de A qu’on écrit
comme dans (2). Alors a divise b si et seulement si vp(a) 6 vp(b) pour tout p ∈P .

Démonstration. — Si vp(a) 6 vp(b) pour tout p ∈ P , il est clair que a | b. Inversement, si a | b, alors,
pour tout p0 ∈P , on a pvp0 (a)

0 |
∏
p∈P pvp(b). Si vp0(a) > vp0(b), alors p0 |

∏
p∈P,p6=p0 p

vp(b), ce qui est
absurde puisque l’idéal (p0) est premier (lemme 6.4(ii)) mais que p0 ne divise aucun des termes du produit∏
p∈P,p6=p0 p

vp(b). On a donc démontré vp0(a) 6 vp0(b), d’où la proposition.

Les pgcd et les ppcm, qu’on a définis dans tout anneau intègre (§ 4), mais dont on n’a montré l’existence
que dans les anneaux principaux, existent aussi dans les anneaux factoriels.

Proposition 6.6. — Soit A un anneau factoriel et soient a et b des éléments de A. Alors le pgcd a∧ b et le
ppcm a ∨ b existent : si a et b sont non nuls et que

a = u
∏
p∈P

pvp(a) , b = v
∏
p∈P

pvp(b),

on a

a ∧ b =
∏
p∈P

pmin{vp(a),vp(b)} , a ∨ b =
∏
p∈P

pmax{vp(a),vp(b)}.

En particulier, on a, dans un anneau factoriel, (a∧ b)(a∨ b) = ab, une propriété qu’on avait déjà établie
dans les anneaux principaux (exerc. 11.11).

Démonstration. — Si a = 0, on a 0∧ b = b et 0∨ b = 0. Supposons a et b non nuls. Avec les notations de
l’énoncé de la proposition, d :=

∏
p∈P pmin{vp(a),vp(b)} divise a et b. Si x divise a et b, on a vp(x) 6 vp(a)

et vp(x) 6 vp(b) pour tout p ∈P (prop. 6.5), donc vp(x) 6 vp(d), et x | d (prop. 6.5). Ceci montre que d
est bien un pgcd de a et b. On procède de façon analogue pour le ppcm.
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7. Factorialité des anneaux de polynômes

Soit A un anneau factoriel. Nous allons montrer que l’anneau A[X] des polynômes à une variable à
coefficients dans A est encore factoriel. Pour cela, nous identifions tout d’abord les éléments irréductibles
de l’anneau A[X] en les comparant à ceux de l’anneau principal KA[X], puis nous utilisons la factorialité
de l’anneauKA[X] (th. 6.2). On rappelle que, commeA est intègre, les unités de l’anneauA[X] sont celles
de A.

Définition 7.1. — Soit A un anneau factoriel. Le contenu d’un élément P de A[X], noté c(P ), est le pgcd
de ses coefficients. On dit que P est primitif si c(P ) = 1.

Le contenu n’est défini qu’à multiplication par une unité près. Si P est un polynôme non nul, c(P ) est
non nul et P/c(P ) est un polynôme primitif.

Lemme 7.2 (Gauss). — Soit A un anneau factoriel. Si P,Q ∈ A[X], on a c(PQ) = c(P )c(Q).

Démonstration. — On peut supposer P et Q non nuls et il suffit, en considérant P/c(P ) et Q/c(Q), de
montrer que le produit de polynômes primitifs P,Q est encore primitif.

Or si c(PQ) 6= 1, il est divisible par un élément irréductible p. Cela signifie que dans l’anneau intègre
A/(p)[X], on a P̄ Q̄ = 0 donc, par exemple P̄ = 0. Cela signifie que tous les coefficients de P sont
divisibles par p, c’est-à-dire p | c(P ), ce qui contredit l’hypothèse que P est primitif.

Théorème 7.3. — Soit A un anneau factoriel de corps des fractions KA. Les éléments irréductibles de
l’anneau A[X] sont :

— les éléments irréductibles de A ;
— les polynômes primitifs de degré au moins 1 qui sont irréductibles dans KA[X].

Démonstration. — Soit P ∈ A[X] un polynôme constant (c’est-à-dire de degré 0, ou encore dans A). S’il
s’écrit P = QR, les polynômes Q et R sont aussi de degré 0, donc dans A. Comme A[X]∗ = A∗, cela
revient donc au même, pour un polynôme constant, d’être irréductible dans A ou dans A[X].

Supposons maintenant P de degré au moins 1. Si P est irréductible dans A[X], il est primitif puisqu’on
peut toujours le décomposer en produit P = c(P )(P/c(P )) de deux éléments de A[X]. Montrons qu’il est
irréductible dans KA[X]. Si P = QR, avec Q,R ∈ KA[X], on peut écrire Q = Q1/q et R = R1/r, avec
q, r ∈ A non nuls et Q1, R1 ∈ A[X], soit encore qrP = Q1R1. En prenant les contenus, on obtient, par le
lemme de Gauss,

qr = c(Q1)c(R1) (mod A∗),

soit encore
P = QR =

Q1R1

qr
=

Q1R1

c(Q1)c(R1)
=
( Q1

c(Q1)

)( R1

c(R1)

)
(mod A∗).

Comme P est irréductible dans A[X], l’un de ces facteurs est une unité dans A[X], donc est de degré 0.
L’un des facteurs Q ou R est alors de degré 0, donc inversible dans KA[X]. On a donc bien montré que P
est irréductible dans KA[X].

Supposons inversement P primitif et irréductible dans KA[X]. Si P = QR, avec Q,R ∈ A[X], l’un
des facteurs, par exemple Q, est une unité dans KA[X], donc de degré 0. Comme c(P ) = c(Q)c(R) est
une unité, Q et R sont tous deux primitifs, et Q est inversible dans A[X]. On a ainsi montré que P est
irréductible dans A[X].

Le th. 7.3 dit que pour un polynôme primitif de A[X], il revient au même d’être irréductible dans
A[X] que dans l’anneau principal KA[X] (ce n’est pas du tout évident, puisqu’il y a a priori plus de
décompositions possibles dans KA[X] que dans A[X]).
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Théorème 7.4. — Soit A un anneau factoriel. Les anneaux de polynômes A[X1, . . . , An] sont aussi fac-
toriels.

Démonstration. — Il suffit bien sûr de traiter le cas n = 1, c’est-à-dire de montrer que l’anneau A[X] est
factoriel.

Comme A est factoriel, il est intègre, donc A[X] est aussi intègre. Montrons la propriété (E) d’existence
d’une décomposition de P ∈ A[X] non nul en produit d’irréductibles. En écrivant P = c(P )(P/c(P )) et
en décomposant c(P ) en produit d’irréductibles de A (qui sont irréductibles dans A[X] par le th. 7.3), on
voit qu’il suffit de traiter le cas où P est un polynôme primitif non constant.

L’anneau KA[X] étant principal, donc factoriel, il existe une décomposition de P en produit de polynô-
mes irréductibles de KA[X]. En chassant les dénominateurs, on peut écrire cette décomposition comme

aP = P1 · · ·Pr où a ∈ A et P1, . . . , Pr ∈ A[X], irréductibles dans KA[X].

En prenant les contenus, on obtient, par le lemme de Gauss, a = c(P1) · · · c(Pr), d’où

P = u
P1

c(P1)
· · · Pr

c(Pr)
avec u ∈ A∗.

Les Pi/c(Pi) sont des polynômes primitifs deA[X] associés aux Pi dansKA[X], donc encore irréductibles
dans cet anneau. Ils sont donc irréductibles dans A[X] par le th. 7.3. Ceci établit bien la propriété (E).

Par le lemme 6.4, il suffit maintenant de montrer que si P ∈ A[X] est irréductible, alors l’idéal (P ) est
premier. Si P est constant, c’est un élément irréductible deA et commeA est factoriel, il engendre un idéal,
encore noté (P ), premier dansA. Or les anneauxA[X]/(P ) et (A/(P ))[X] sont isomorphes : cela provient
de la factorisation canonique du morphisme d’anneaux surjectif A[X]→ (A/(P ))[X] ; comme A/(P ) est
un anneau intègre, il en est de même de l’anneau (A/(P ))[X], donc aussi de l’anneau A[X]/(P ), de sorte
que l’idéal (P ) est bien premier dans A[X].

Supposons maintenant P de degré au moins 1. Il est alors primitif et irréductible dans KA[X] (th. 7.3).
Montrons que l’idéal (P ) est premier dansA[X]. Si P diviseQR, avecQ,R ∈ A[X], il divise par exemple
Q dans KA[X] (puisque P est irréductible dans cet anneau principal). On peut donc écrire comme d’habi-
tude aQ = PS, avec a ∈ A et S ∈ A[X] ; en prenant les contenus, on obtient ac(Q) = c(S), donc a | c(S)

et S/a ∈ A[X]. Comme Q = P · (S/a), on en déduit que P divise Q dans A[X]. Ceci montre que l’idéal
(P ) est bien premier dans A[X].

Exemple 7.5. — Les polynômes irréductibles de C[X] sont les polynômes de degré 1. Les polynômes
irréductibles de R[X] sont les polynômes de degré 1 et les polynômes aX2 + bX + c avec b2 − 4ac < 0.

Le théorème suivant est un critère d’irréductibilité bien pratique pour les polynômes à coefficients dans
un anneau factoriel.

Théorème 7.6 (Critère d’Eisenstein). — Soit A un anneau factoriel de corps des fractions KA et soit
P = anX

n + · · ·+ a0 ∈ A[X] un polynôme non constant. On suppose qu’il existe un élément irréductible
p de A tel que

(a) p ne divise pas an ;
(b) p divise an−1, . . . , a0 ;
(c) p2 ne divise pas a0.

Alors P est irréductible dans KA[X] (et donc dans A[X] s’il est primitif).

Démonstration. — La propriété (a) entraîne que le contenu c(P ) n’est pas divisible par p. Le polynôme
primitif P/c(P ) vérifie donc les propriétés (a), (b) et (c) et on peut supposer P primitif de degré au moins 2.
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Si P n’est pas irréductible dans KA[X], il ne l’est pas non plus dans A[X] par le th. 7.3, donc il s’écrit

P = QR = (brX
r + · · ·+ b0)(csX

s + · · ·+ c0),

avec Q,R ∈ A[X] de degré au moins 1 et r, s > 1. On a donc n = r + s et an = brcs.

Réduisons cela modulo p, c’est-à-dire que l’on regarde cette égalité dans l’anneau intègre (A/(p))[X].
On a par hypothèse P̄ = ānX

n, avec ān 6= 0, de sorte que b̄r, c̄s 6= 0. Comme X est irréductible dans
l’anneau principal KA/(p)[X], c’est la décomposition de P̄ en produit d’irréductibles dans cet anneau. Le
seul facteur irréductible de Q̄ et de R̄ est donc X , de sorte que Q̄ = b̄rX

r et R̄ = c̄sX
s. On en déduit

0 = b̄0 = c̄0, ce qui signifie que b0 et c0 sont tous les deux divisibles par p. Mais a0 = b0c0 est alors
divisible par p2, ce qui contredit (c). On a donc bien montré que P est irréductible dans KA[X].

On peut aussi terminer la preuve ci-dessus avec l’argument plus terre-à-terre suivant : comme a0 =

b0c0 n’est pas divisible par p2, les éléments b0 et c0 de A ne peuvent être tous les deux divisibles par p.
Supposons donc p - b0 et soit t ∈ {0, s} le plus petit entier tel que p - ct, de sorte que ct−1, ct−2, . . . sont
divisibles par p. Alors, at = b0ct + b1ct−1 + · · · ≡ b0ct 6≡ 0 (mod p), ce qui contredit l’hypothèse (b).

8. Polynômes à une variable

8.1. Racines d’un polynôme à une variable. — Soit A un anneau commutatif et soit

P (X) = anX
n + · · ·+ a0

un élément de A[X]. Soit x un élément de A. On pose

P (x) := anx
n + · · ·+ a0 ∈ A.

L’application

evx : A[X] −→ A

P 7−→ P (x)

est un morphisme d’anneaux appelé évaluation en x.

On a pour tout entier m > 1 l’identité remarquable

Xm − xm = (X − x)
(m−1∑
i=0

xiXm−1−i
)
.

En particulier, le polynôme Xm − xm est divisible par X − x. Il s’ensuit que le polynôme

P (X)− P (x) = (anX
n + · · ·+ a0)− (anx

n + · · ·+ a0) = an(Xn − xn) + · · ·+ a1(X − x)

est aussi divisible par X − x (2).

On dit qu’un élément x de A est une racine de P si P (x) = 0A. Nous avons donc démontré le résultat
suivant.

Proposition 8.1. — Soit A un anneau commutatif, soit P un élément de A[X] et soit x un élément de A.
On a équivalence entre

(i) x est racine de P , c’est-à-dire P (x) = 0A ;
(ii) le polynôme P est divisible par X − x dans A[X].

2. On peut aussi raisonner ainsi : comme le polynôme X − x est unitaire, on peut diviser P par X − x dans A[X]. On obtient
P (X) = (X − x)Q(X) +R(X), avec R = 0 ou deg(R) < deg(X − x) = 1, c’est-à-dire que R est une constante. En « faisant
X = x », on obtient R(X) = P (x), d’où P (X) = (X − x)Q(X) + P (x) : le polynôme P (X) − P (x) est donc bien divisible
par X − x.
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Définition 8.2. — Soit A un anneau commutatif, soit P un élément non nul de A[X] et soit x un élément
de A. On appelle multiplicité de x comme racine de P le plus grand entier m tel que P est divisible par
(X − x)m.

Cette définition a un sens même si A n’est pas intègre : le polynôme (X − x)m étant unitaire, on a
m 6 deg(P ) s’il divise P .

Proposition 8.3. — SoitA un anneau intègre. Soit P un élément non nul deA[X] et soient x1, . . . , xr ∈ A
des racines distinctes de P , de multiplicités respectives m1, . . . ,mr. Alors P est divisible par le polynôme
(X − x1)m1 . . . (X − xr)mr . En particulier, deg(P ) > m1 + · · ·+mr.

Un polynôme à coefficients dans un anneau intègre qui a un nombre infini de racines est donc nul.

La conclusion de la proposition ne subsiste pas dans un anneau non intègre : dans Z/8Z, le polynô-
me 4X , de degré 1, a quatre racines (simples), 0, 2, 4, 6.

Démonstration. — Plaçons-nous dans l’anneau principal KA[X]. Soit i 6= j ; comme X − xi et X − xj
sont premiers entre eux (une relation de Bézout est 1

xj−xi

(
(X − xi)− (X − xj)

)
= 1), il en est de même

de (X −xi)mi et (X −xj)mj , par deux applications de la prop. 4.2(1). Comme P est divisible par chaque
(X − xi)mi , il est divisible par leur produit (prop. 4.2(2)), dans l’anneau KA[X]. Mais le quotient de P
par
∏
i(X − xi)mi est en fait dans A[X], puisque

∏
i(X − xi)mi est un polynôme unitaire.

8.2. Relations entre coefficients et racines d’un polynôme. — On dit qu’un élément P de A[X] est
scindé (dans A[X]) si

P (X) = a(X − x1) · · · (X − xn),

avec a, x1, . . . , xn ∈ A (pas nécessairement distincts).

Définition 8.4. — SoitA un anneau commutatif et soient n et r des entiers strictement positifs. On appelle
r-ième polynômes symétrique élémentaire le polynôme

Σr(X1, . . . , Xn) :=
∑

16i1<···<ir6n

Xi1 · · ·Xir .

Ces polynômes sont à coefficients entiers. On a en particulier

Σ1(X1, . . . , Xn) = X1+· · ·+Xn , Σn(X1, . . . , Xn) = X1 · · ·Xn , Σr(X1, . . . , Xn) = 0 pour r > n.

Ces polynômes sont symétriques dans le sens où, pour toute permutation s ∈ Sn, on a

Σr(Xσ(1), . . . , Xσ(n)) = Σr(X1, . . . , Xn).

Proposition 8.5. — Soit A un anneau intègre. Soit P (X) = anX
n + · · · + a0 un polynôme scindé de

A[X], avec an 6= 0, de racines x1, . . . , xn (pas nécessairement distinctes). Pour tout r ∈ {1, . . . , n}, on a

Σr(x1, . . . , xn) = (−1)ran−r/an.

Démonstration. — Il suffit de développer l’expression P (X) = an(X − x1) · · · (X − xn) et d’identifier
les coefficients de Xr.

Par exemple, si n = 3 et a0a3 6= 0, on a
1

x1
+

1

x2
+

1

x3
=
x2x3 + x1x3 + x1x2

x1x2x3
=

a1/a3

−a0/a3
= −a1

a0

ainsi que

x2
1 + x2

2 + x2
3 = (x1 + x2 + x3)2 − 2(x1x2 + x2x3 + x3x1) = (a1/a3)2 − 2(−a2/a3) =

a2
1 + 2a2a3

a2
3

.
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On peut ainsi calculer ces expressions, qui sont symétriques en les racines, sans effectivement connaître
celles-ci.

8.3. Polynôme dérivé et formule de Taylor. —

Définition 8.6. — Soit A un anneau commutatif et soit P = anX
n + · · · + a0 un élément de A[X]. On

appelle polynôme dérivé de P le polynôme

P ′(X) := nanX
n−1 + · · ·+ a1.

Il est clair que la dérivation est linéaire (c’est un morphisme de groupes abéliens) : on a (P + Q)′ =

P ′ +Q′. On vérifie par un calcul direct la formule de Leibniz

∀P,Q ∈ A[X] (PQ)′ = P ′Q+ PQ′,

ainsi que

∀P,Q ∈ A[X] (P ◦Q)′ = (P ′ ◦Q)Q′.

Lorsque A = R, la fonction polynomiale x 7→ P ′(x) est bien la dérivée (au sens des fonctions réelles de
variable réelle) de la fonction polynomiale x 7→ P (x), mais notre définition générale est purement formelle
et ne fait pas intervenir de notion de limite (qui n’aurait aucun sens dans un anneau général).

La dérivée d’un polynôme constant est nulle mais un polynôme de dérivée nulle peut ne pas être
constant : si p est un nombre premier, c’est le cas du polynôme Xp dans (Z/pZ)[X].

On peut itérer l’opération de dérivation en posant P ′′ := (P ′)′, etc. On définit ainsi P (r), la dérivée
r-ième de P , pour tout entier naturel r. Noter que P (r) = 0 pour tout r > deg(P ).

Proposition 8.7 (Formule de Taylor). — Soit A un anneau commutatif, soit P ∈ A[X] un polynôme de
degré inférieur ou égal à n, et soit x ∈ A.

(1) Si n! · 1A est inversible dans A, on a

P (X) = P (x) + P ′(x)
(X − x)

1!
+ · · ·+ P (n)(x)

(X − x)n

n!
.

(2) Si m! · 1A est inversible dans A, on a, lorsque 0 < m 6 n,

x est racine de P d’ordre > m ⇐⇒ P (x) = · · · = P (m)(x) = 0.

Démonstration. — Il suffit de montrer la proposition pour x = 0A puis de l’appliquer au polynôme
Q(X) := P (X + x), en notant que P (r)(x) = Q(r)(0).

Exemple 8.8. — Considérons le polynôme P (X) = Xp − X ∈ (Z/pZ)[X]. Comme (Z/pZ)∗ est un
groupe (multiplicatif) d’ordre p − 1, on a (théorème de Lagrange) xp−1 = 1 pour tout x ∈ (Z/pZ)∗,
donc xp = x pour tout x ∈ Z/pZ. Le polynôme P a donc au moins p racines distinctes. Comme il est de
degré p, ce sont toutes ses racines, elles sont simples et (prop. 8.5)

Xp −X =
∏

x∈Z/pZ

(X − x) ∈ (Z/pZ)[X].

On vérifie dans ce cas la prop. 8.7(2) : on a P ′(X) = −1 donc toutes les racines de P sont simples.
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9. Décomposition en éléments simples des fractions rationnelles

Soit K un corps. Une fraction rationnelle (à coefficients dans K) est un élément du corps des fractions
K(X) de l’anneau de polynômes K[X]. Elle s’écrit donc P/Q, avec P,Q ∈ K[X] et Q non nul. Comme
l’anneau K[X] est factoriel, on peut toujours supposer P et Q premiers entre eux.

Le théorème suivant est parfois utile pour trouver des primitives des fractions rationnelles. C’est un
classique des programmes de classes préparatoires dont la vraie utilité mathématique est marginale. Il est
aussi au programme de l’agrégation. L’énoncé théorique est simple à démontrer ; la mise en œuvre pratique
de la décomposition donne lieu à des myriades d’astuces (mais les ordinateurs font ça très bien).

Théorème 9.1. — Soit K un corps. Soient P et Q des éléments de K[X] premiers entre eux et soit

Q =

r∏
i=1

Qvii

la décomposition de Q en produit de facteurs irréductibles. On peut écrire

P

Q
= E +

r∑
i=1

(Ai,1
Qi

+ · · ·+ Ai,vi
Qvii

)
,

où E,Ai,j ∈ K[X] et deg(Ai,j) < deg(Qi).

Le polynôme E est appelé partie entière de la fraction rationnelle P/Q. Il est obtenu comme quotient
de la division euclidienne de P par Q.

Dans la pratique, on est souvent dans C, de sorte que les Qi sont des polynômes de degré 1 et les
Ai,j des constantes, ou dans R (auquel cas il est souvent utile de commencer par décomposer sur C : on
regroupe ensuite les fractions dont les dénominateurs sont conjugués).

Je ne donnerai qu’une seule astuce : si Q1(X) = X − x et v1 = 1 (c’est-à-dire x est racine simple de
Q), il est facile de déterminer la constante a = A1,1. Écrivons Q(X) = (X − x)R(X), avec R(x) 6= 0 ;
on peut alors écrire

P

Q
= E +

a

X − x
+
P1

R
,

On en déduit, en réduisant au même dénominateur,

P (X) = E(X)Q(X) + aR(X) + (X − x)P1(X),

d’où a = P (x)/R(x). On obtient d’autre part par dérivation Q′(X) = R(X) + (X − x)R′(X), soit
R(x) = Q′(x), d’où finalement

a =
P (x)

Q′(x)
.

Exemple 9.2. — Soit P ∈ C[X] et soit n > deg(P ) ; on pose ω := e2iπ/n. Cherchons la décomposition
en éléments simples

P (X)

Xn − 1
=

n−1∑
k=0

ak
X − ωk

.

D’après ce qui précède, on a

ak =
P (ωk)

n(ωk)n−1
=

1

n
ωkP (ωk).
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Si P ∈ R[X], on peut en déduire la décomposition en éléments simples sur R[X] : si on suppose pour
simplifier n impair, on a

P (X)

Xn − 1
=

n−1∑
k=0

1

n

ωkP (ωk)

X − ωk

=
1

n(X − 1)
+

(n−1)/2∑
k=1

1

n

(ωkP (ωk)

X − ωk
+
ω̄kP (ω̄k)

X − ω̄k
)

=
1

n(X − 1)
+

(n−1)/2∑
k=1

1

n

(ωkP (ωk)(X − ω̄k) + ω̄kP (ω̄k)(X − ωk)

(X − ωk)(X − ω̄k)

)

=
1

n(X − 1)
+

(n−1)/2∑
k=1

2

n

(Re(ωkP (ωk))X − Re(P (ωk))

X2 − 2 cos 2kπ
n + 1

)
.

10. Polynômes à plusieurs indéterminées

Soit A un anneau commutatif et soit n un entier naturel. On a construit dans l’ex. 1.6 l’anneau commu-
tatif A[X1, . . . , Xn] des polynômes à n indéterminées à coefficients dans A.

10.1. Polynômes homogènes. — Un monôme est un polynôme du type Xi1
1 · · ·Xin

n , avec i1, . . . , in ∈
N. Son degré est l’entier naturel i1+· · ·+in. Un polynôme P est homogène de degré d s’il est combinaison
linéaire à coefficients dans A de monômes de même degré d. C’est équivalent à dire qu’on a l’égalité

P (Y X1, . . . , Y Xn) = Y dP (X1, . . . , Xn)

dans l’anneau A[X1, . . . , Xn, Y ].

Tout polynôme P non nul s’écrit de façon unique comme somme

P = P0 + · · ·+ Pd,

où d est le degré de P et Pi est un polynôme homogène de degré i.

Le produit de deux polynômes homogènes de degré respectifs d et e est un polynôme homogène de
degré d + e. La somme de deux polynômes homogènes de même degré d est un polynôme homogène de
degré d.

Si K est un corps, les polynômes homogènes de degré d en n variables forment un K-espace vectoriel
de dimension

(
n+d−1

d

)
.

Remarque 10.1. — On peut très bien affecter aux indéterminées des degrés (entiers) différents,
deg(Xi) = di. Le degré du monôme Xi1

1 · · ·Xin
n est alors i1d1 + · · ·+ indn.

10.2. Polynômes symétriques. — Soit A un anneau commutatif et soit n un entier naturel. On dit qu’un
polynôme P ∈ A[X1, . . . , Xn] est symétrique si, pour toute permutation σ ∈ Sn, on a

P (Xσ(1), . . . , Xσ(n)) = P (X1, . . . , Xn).

On a introduit dans la déf. 8.4 les polynômes symétriques élémentaires

Σr(X1, . . . , Xn) :=
∑

16i1<···<ir6n

Xi1 · · ·Xir
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pour r > 1. Le polynôme Σr est symétrique, homogène de degré r. On peut aussi définir ces polynômes
par l’identité

n∏
i=1

(Y −Xi) = Y n − Σ1(X1, . . . , Xn)Y n−1 + · · ·+ (−1)nΣn(X1, . . . , Xn)(3)

ou encore
n∏
i=1

(Y Xi + 1) = Σn(X1, . . . , Xn)Y n + · · ·+ Σ1(X1, . . . , Xn)Y + 1

dans l’anneau A[X1, . . . , Xn, Y ] (avec Σr = 0 pour r > n).

Théorème 10.2. — Soit A un anneau commutatif et soit n un entier naturel. Pour tout polynôme symé-
trique P ∈ A[X1, . . . , Xn], il existe un unique polynôme Q ∈ A[Y1, . . . , Yn] tel que

P = Q(Σ1, . . . ,Σn).

La démonstration de ce théorème, sans être difficile, demande du soin. Certaines preuves fournissent un
algorithme pour trouver le polynôme Q. L’exercice 11.46 propose une telle preuve.

10.3. Sommes de Newton. — Soit A un anneau commutatif et soit n un entier naturel. Les sommes de
Newton sont les polynômes symétriques

Sd(X1, . . . , Xn) := Xd
1 + · · ·+Xd

n

pour d > 0. D’après le th. 10.2, ce sont des polynômes à coefficients entiers en les polynômes symétriques
élémentaires. On a par exemple S1 = Σ1 et S2 = Σ2

1 − 2Σ2.

Pour le théorème suivant, on rappelle que Σr = 0 pour r > n.

Théorème 10.3 (Formules de Newton–Girard–Waring). — On a, pour tout d ∈ N,

Sd − Σ1Sd−1 + · · ·+ (−1)d−1Σd−1S1 + (−1)ddΣd = 0.

Ces relations permettent d’exprimer de proche en proche les Sd comme polynômes en les Σr.

Démonstration. — En substituant Y = Xi dans (3), on obtient

Xn
i − Σ1X

n−1
i + · · ·+ (−1)nΣn = 0.

Si d > n, on multiplie par Xd−n
i et on somme sur i, ce qui nous donne la formule cherchée.

Supposons maintenant d < n. Il s’agit de montrer que le polynôme Sd−Σ1Sd−1 + · · ·+ (−1)ddΣd est
nul. Or, chaque monôme qui pourrait apparaître dans ce polynôme est de degré d ; il implique donc au plus
d des variables X1, . . . , Xn. On voit aussi qu’il ne change pas si on annule les autres variables. Si on écrit,
en degré d, l’identité de Newton (qu’on vient de démontrer) pour ces d variables, on voit que le coefficient
de ce monôme est en fait nul.

11. Exercices

11.1. Généralités. —

Exercice 11.1. — Montrer qu’un anneau intègre fini est un corps.
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Exercice 11.2. — Soit A un anneau intègre.

(1) Montrer que l’anneau A[X] des polynômes à une indéterminée à coefficients dans A est aussi intègre
et que son corps des fractions est KA(X).

(2) Quelles sont les unités de A[X]?

Exercice 11.3. — (1) Soit A un anneau commutatif. Décrire les unités des anneaux A[X] et A[[X]].

(2) Soit A un anneau intègre. Montrer que l’anneau A[X] des polynômes à une indéterminée à coefficients
dans A est aussi intègre et que son corps des fractions est KA(X).

(3) Soit K un corps. Montrer que l’anneau K[[X]] des séries formelles à coefficients dans K est un anneau
intègre et décrire les éléments de son corps des fractions (qu’on note K((X))).

(4) Soit A un anneau intègre. Montrer que l’anneau A[[X]] des séries formelles à coefficients dans A est
aussi intègre. Montrer que son corps des fractions KA[[X]] est un sous-corps de KA((X)) et caractériser
les éléments de KA((X)) qui sont dans KA[[X]].

Exercice 11.4. — Soit K un corps. Déterminer tous les idéaux de l’anneau de séries formelles K[[X]].
Lesquels sont premiers ? Maximaux?

Exercice 11.5. — Soit A un anneau commutatif.

(1) Soit I un idéal de A. Relier les idéaux de l’anneau A/I à ceux de A. Même question pour les idéaux
premiers et maximaux.

(2) Soit f : A→ B un morphisme d’anneaux. Montrer que l’image réciproque par f d’un idéal premier est
un idéal premier. Que se passe-t-il pour les idéaux maximaux?

(3) Soient I ⊆ J des idéaux de A. Montrer que l’anneau A/J est canoniquement isomorphe au quotient
de A/I par J/I .

(4) Soient I et J des idéaux de A. Montrer que IJ est inclus dans I ∩ J . A-t-on toujours égalité ?

(5) Soient m et n des entiers naturels et soient I = mZ et J = nZ les idéaux qu’ils engendrent dans Z.
Déterminer les idéaux IJ , I ∩ J et I + J .

Exercice 11.6. — Soit A un anneau commutatif et soient I1, . . . , Ir des idéaux de A, avec r > 2, qui
vérifient Ii + Ij = A pour tout 1 6 i < j 6 r.

(1) Montrer l’égalité I1 + I2 · · · Ir = A.

(2) Montrer l’égalité I1 · · · Ir = I1 ∩ · · · ∩ Ir.

(3) Montrer qu’on a un isomorphisme d’anneaux

A/(I1 ∩ · · · ∩ Ir) ∼−→A/I1 × · · · ×A/Ir.

Exercice 11.7. — Soit A un anneau. Montrer l’égalité⋃
m idéal maximal deA

m = ArA∗.

Exercice 11.8. — Soit A un anneau commutatif.

(1) Soit n un entier naturel. Établir la formule du « binôme de Newton » :

∀a, b ∈ A (a+ b)n =

n∑
i=0

(
n

i

)
aibn−i.

(2) On dit qu’un élément a de A est nilpotent s’il existe un entier naturel n tel que an = 0A. Montrer que
l’ensemble des éléments nilpotents de A forme un idéal de A.
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(3) Quels sont les éléments nilpotents de l’anneau Z/1000Z?

Exercice 11.9. — Soit A un anneau commutatif et soit S une partie multiplicative de A, c’est-à-dire
qu’elle contient 1A et qu’elle vérifie

∀s, t ∈ S st ∈ S.

(1) Montrer que la relation

(a, s) ∼ (a′, s′)⇐⇒ (∃t ∈ S t(as′ − a′s) = 0A)

sur A× S est une relation d’équivalence. On note a
s la classe d’équivalence de (a, s).

(2) Montrer que l’ensemble des classes d’équivalence pour cette relation, muni des opérations habituelles
sur les fractions, est un anneau. On le note S−1A.

(3) Si A est un anneau intègre, montrer que S := A r {0A} est une partie multiplicative de A. Identifier
l’anneau S−1A.

(4) Montrer que les unités de l’anneau S−1A sont les fractions a
s telles que a divise un élément de S.

(5) Montrer que S−1A est l’anneau nul si et seulement si S contient 0A.

(6) Montrer que l’application A → S−1A qui envoie a sur a
1A

est un morphisme d’anneaux. À quelle
condition sur S est-il injectif ?

(7) Soit S ⊆ Z l’ensemble des entiers de la forme 10m, avec m ∈ N. Décrire les éléments de S−1Z. Soit
T ⊆ Z l’ensemble des entiers de la forme 2m5n, avec m,n ∈ N. Décrire les éléments de T−1Z. Plus
généralement, soit s (resp. t) un entier strictement positif et soit S (resp. T ) l’ensemble des puissances de
s (resp. t). Quand les sous-anneaux S−1Z et T−1Z de Q sont-ils les mêmes?

(8) Soit p un idéal premier de A. Montrer que S := A r p est une partie multiplicative de A. On note
habituellement Ap l’anneau S−1A. Montrer que cet anneau n’a qu’un seul idéal maximal.

(9) Soit f un élément de A et soit S ⊆ Z la partie multiplicative des puissances positives de f . On note en
général Af l’anneau S−1Z. Montrer que cet anneau est isomorphe à l’anneau A[X]/(fX − 1A). Quel est
l’anneau (Z/6Z)2 ? (L’anneau S−1A peut donc être intègre sans que A le soit !)

(10) Si l’anneau A est principal et que 0A /∈ S, montrer que l’anneau S−1A est principal. Quelles sont ses
éléments irréductibles?

(11) Si l’anneau A est factoriel et que 0A /∈ S, montrer que l’anneau S−1A est factoriel. Quels sont ses
éléments irréductibles?

Exercice 11.10. — Soit C l’anneau (commutatif) des fonctions continues de [0, 1] dans R.

(1) Montrer que l’anneau C n’est pas intègre.

(2) Quels sont les idéaux maximaux de l’anneau C ?

(3) On pose

I = {f ∈ C | f est nulle au voisinage de 0}.

Montrer que I est un idéal radical de C (c’est-à-dire que
√
I = I). En déduire qu’il existe dans C des

idéaux premiers non maximaux.

(4) Avec les notations précédentes, on munit C de la topologie de la convergence uniforme. Montrer que
tout idéal premier est contenu dans un unique idéal maximal et qu’il y est dense. Tout idéal premier fermé
de C est donc maximal.
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11.2. Anneaux principaux et euclidiens. —

Exercice 11.11. — Soient a et b des éléments d’un anneau principal A.

(1) Si a ∧ b = 1, montrer que a ∨ b = ab.

(2) Si d est un élément de A divisant a et b, montrer que a
d ∧

b
d = a∧b

d et ad ∨
b
d = a∨b

d

(3) Montrer que (a ∧ b)(a ∨ b) = ab (plus exactement, ils sont associés).

Exercice 11.12 (Suite de Fibonacci). — Soit (Fn)n∈N la suite d’entiers définie par les relations

F0 = 1 , F1 = 1 , ∀n ∈ N Fn+2 = Fn+1 + Fn.

(1) Calculer F0, . . . , F10.

(2) Montrer que pour tout n ∈ N, les entiers Fn et Fn+1 sont premiers entre eux et qu’on a la relation de
Bézout

∀n > 2 Fn−2Fn+1 − Fn−1Fn = (−1)n.

(3) Montrer que pour tout m,n ∈ N, on a

Fm ∧ Fn = Fm∧n.

Exercice 11.13. — Une bande de 17 pirates possède un trésor constitué de pièces d’or d’égale valeur. Ils
projettent de se les partager également et de donner le reste au cuisinier. Celui-ci recevrait alors 3 pièces.
Mais les pirates se querellent et six d’entre eux sont tués. Un nouveau partage donnerait au cuisinier 4
pièces. Dans un naufrage ultérieur, seuls le trésor, six pirates et le cuisinier sont sauvés, et le partage
donnerait alors 5 pièces d’or à ce dernier. Quelle est la fortune minimale que peut espérer le cuisinier s’il
décide d’empoisonner le reste des pirates?

Exercice 11.14. — SoitA un anneau commutatif qui n’est pas un corps. Montrer que l’anneauA[X] n’est
pas principal.

Exercice 11.15. — Soientm et n des entiers strictement positifs. Montrer (2m−1)∧(2n−1) = 2m∧n−1.

Exercice 11.16 (Nombres de Mersenne). — (1) Soientm et n des entiers avecm,n > 2, tels quemn−1

est premier. Montrer que m = 2 et n est premier.

(2) Soit p un entier premier et soit q un diviseur premier de 2p − 1. Montrer que p divise q − 1.

Exercice 11.17 (Nombres de Fermat). — (1) Soit n un entier strictement positif tel que 2n + 1 est un
nombre premier. Montrer que n est une puissance de 2.

(2) Soient m et n des entiers strictement positifs distincts. Montrer que 22m

+ 1 et 22n

+ 1 sont premiers
entre eux (3).

Exercice 11.18. — Soit n un entier strictement positif. Montrer la relation

ϕ(n) =
∑
d|n

ϕ(d).

Exercice 11.19. — Si K est un corps, montrer que l’anneau des séries formelles K[[X]] est euclidien.

Exercice 11.20. — SiK est un corps, montrer que l’anneauK[X,Y ]/(XY −1) est principal (Indication :
on pourra utiliser l’exerc. 11.9).

3. Posons Fn := 22
n
+ 1. On sait que F0 = 3, F1 = 5, F2 = 17, F3 = 257 et F4 = 65537 sont premiers (on n’en connaît

aucun autre !), mais que 641 divise F5 (Euler). On sait aussi que F6, . . . , F32 et F2543548 ne sont pas premiers, mais cela ne veut
pas dire que l’on sait les factoriser : si on sait par exemple factoriser explicitement F6 = 274177 · 67280421310721, F7, F8, F9,
F10 et F11 (un nombre de 617 chiffres), et que l’on connaît explicitement un facteur non trivial pour F14, F22, F31 et F2543548, on
ne connaît aucun facteur non trivial pour les nombres F20 et F24.
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Exercice 11.21. — Soit K un corps infini. Montrer qu’un idéal principal de K[X,Y ] n’est jamais maxi-
mal.

Exercice 11.22. — Soit A un anneau intègre dans lequel tout idéal premier est principal. Montrer que
l’anneau A est principal (Indication : on pourra considérer un élément maximal I dans la famille des
idéaux non principaux de A, des éléments x et y de A r I tels que xy ∈ I , un générateur z de l’idéal
I + (x), un générateur w de l’idéal {a ∈ A | az ∈ I}, et montrer que zw engendre I).

11.3. Anneaux factoriels. —

Exercice 11.23. — On considère l’anneau

Z[
√
−5] := {a+ b

√
−5 | a, b ∈ Z}.

Si x = a+ b
√
−5, on note x̄ = a− b

√
−5.

(1) Montrer que les unités de l’anneau Z[
√
−5] sont ±1 (Indication : si x est une unité, d’inverse y, on

pourra calculer xx̄yȳ).

(2) Montrer que 3 est irréductible dans l’anneau Z[
√
−5].

(3) Montrer que l’idéal (3) n’est pas premier (Indication : on pourra considérer l’égalité (1 +
√
−5)(1 −√

−5) = 2 · 3). En particulier, l’anneau Z[
√
−5] n’est pas factoriel.

(4) On considère maintenant l’anneau

Z[
√

5] := {a+ b
√

5 | a, b ∈ Z}.

Montrer que 9 + 4
√

5 en est une unité et que le groupe des unités de l’anneau Z[
√

5] est infini. Montrer
que l’anneau Z[

√
5] n’est pas factoriel.

Exercice 11.24. — (1) SoitA un anneau factoriel de corps des fractionsKA. Soit x ∈ KA tel que P (x) =

0, où P ∈ A[X] est unitaire. Montrer que x ∈ A (on dit que A est intégralement clos).

(2) En déduire que l’anneau Z[
√
−3] n’est pas factoriel (Indication : on pourra considérer le polynôme

X2 +X + 1).

(3) Montrer que l’anneau Z[
√
−5] est intégralement clos (bien qu’il ne soit pas factoriel par l’exerc. 11.23(3)).

Exercice 11.25. — Soit K un corps et soit A l’anneau quotient K[X,Y ]/(X2 − Y 3).

(1) Montrer que A est isomorphe à un sous-anneau de K[T ]. Il est donc intègre.

(2) Montrer que le corps des fractions de A est isomorphe à K(T ).

(3) Montrer que l’anneau A n’est pas factoriel.

Exercice 11.26. — Soit I l’idéal de R[X,Y ] engendré par le polynôme X2 + Y 2 − 1 et soit A l’anneau
quotient R[X,Y ]/I .

(1) Montrer que A est un anneau intègre.

(2) Montrer que I est l’ensemble des polynômes dans R[X,Y ] qui s’annulent sur le cercle {(x, y) ∈ R2 |
x2 + y2 = 1}.

(3) Montrer que l’image de X dans A est irréductible et en déduire que A n’est pas un anneau factoriel.

(4) Montrer que l’anneau C[X,Y ]/(X2 + Y 2 − 1) est principal.

Exercice 11.27. — Soit I l’idéal de R[X,Y, Z] engendré par le polynôme X2 + Y 2 + Z2 − 1 et soit A
l’anneau quotient R[X,Y, Z]/I .

(1) Montrer que A est un anneau intègre.
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(2) Montrer que (Z̄ − 1) est un idéal premier de A.

(3) Montrer que les anneaux suivants sont isomorphes

A[T,U ]/(TU − 1),

R[X,Y, Z, T, U ]/(TU − 1, X2 + Y 2 + Z2 − T 2),

R[X,Y, T ′, U ′, V ′]/((T ′ − U ′)V ′ − 1, X2 + Y 2 + T ′U ′).

(4) Montrer que l’anneau A est factoriel.

Exercice 11.28 (Bézout). — Soit K un corps et soient P et Q des éléments de K[X,Y ] sans facteur
irréductible commun.

(1) Montrer qu’il existe A,B ∈ K[X,Y ] et D ∈ K[X] non nul tels que D = AP + BQ (Indication : on
pourra travailler dans l’anneau principal K(X)[Y ]).

(2) En déduire que l’ensemble

{(x, y) ∈ K2 | (P (x, y) = Q(x, y) = 0}

est fini.

11.4. Polynômes. —

Exercice 11.29. — Si le polynôme anXn+· · ·+a1X+a0 ∈ Z[X], avec an 6= 0, a une racine rationnelle,
que l’on écrit sous forme de fraction réduite a/b, alors a | a0 et b | an.

Exercice 11.30. — Montrer que le polynôme X163 + 24X57 − 6 a exactement une racine réelle. Est-elle
rationnelle ?

Exercice 11.31. — Soit K un corps. Montrer qu’il y a un infinité de polynômes irréductibles dans K[X]

(Indication : on pourra copier la preuve qu’il existe une infinité de nombres premiers).

Exercice 11.32. — Factoriser le polynôme X4 + 4 en produit de facteurs irréductibles dans (Z/5Z)[X].

Exercice 11.33. — Montrer que le polynôme X4 + 1 est irréductible dans Q[X].

Exercice 11.34. — Soit a un entier non nul. Montrer que le polynôme X4 + aX − 1 est irréductible dans
Q[X].

Exercice 11.35. — Factoriser le polynôme X6 + 1 en produit de facteurs irréductibles dans C[X], dans
R[X], puis dans Q[X].

Exercice 11.36. — Factoriser le polynôme Xn − 1 en produit de facteurs irréductibles dans C[X] puis
dans R[X].

Exercice 11.37. — Soient m et n des entiers positifs.

(1) Calculer les pgcd des polynômes Xm − 1 et Xn − 1.

(2) Calculer le pgcd des polynômes Xm−1 + · · ·+X + 1 et Xn−1 + · · ·+X + 1.

Exercice 11.38. — (1) Déterminer tous les polynômes irréductibles de degré 3 dans (Z/2Z)[X].

(2) Déterminer tous les polynômes irréductibles de degré 4 dans (Z/2Z)[X].

(3) Montrer que le polynôme X4 + a3X
3 + a2X

2 + a1X + a0, où a3 et a2 sont des entiers pairs et a1 et
a0 des entiers impairs, est irréductible dans Q[X].

Exercice 11.39. — Soit p un nombre premier. Montrer que le polynôme P (X) = Xp−1 + · · ·+X+1 est
irréductible dans Q[X] (Indication : on pourra appliquer le critère d’Eisenstein au polynôme P (X + 1)).
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Exercice 11.40. — Soit p un nombre premier et soit r un entier strictement positif. Montrer que le polynô-
me Φpr (X + 1) satisfait le critère d’Eisenstein (th. I.7.6). En déduire que le polynôme Φpr est irréductible
dans Q[X].

Exercice 11.41. — Montrer que le polynôme X6 + Y 2X5 + Y est irréductible dans C[X,Y ].

Exercice 11.42 (Ram Murty). — Soit P (X) = anX
n + · · ·+ a0 un polynôme de degré n > 1 à coeffi-

cients entiers. On pose

M :=
1

|an|
max{|an−1|, . . . , |a0|}.

(1) Soit x une racine complexe de P . Montrer l’inégalité |x| < M + 1.

(2) On suppose qu’il existe un nombre entier m > M + 2 tel que P (m) soit un nombre premier. Montrer
que le polynôme P est irréductible dans Q[X].

(3) Montrer que le polynôme P (X) := X4 + 6X2 + 1 est irréductible dans Q[X] (Indication : on pourra
calculer P (8)).

(4) Montrer que le polynôme P (X) := 4X4 + 7X3 + 7X2 + 1 est irréductible dans Q[X] (Indication :
on pourra calculer P (10)).

Exercice 11.43. — (1) Soit A un anneau intègre et soient F,G ∈ A[X1, . . . , Xn] des polynômes homo-
gènes de degrés respectifs d et d+ 1, premiers entre eux. Montrer que le polynôme F +G est irréductible
dans A[X1, . . . , Xn].

(2) À quelle condition nécessaire et suffisante sur les entiers naturels m et n le polynôme Xm − Y n est-
il irréductible dans C[X,Y ]? (Indication : on pourra attribuer à X et à Y des degrés bien choisis pour
pouvoir appliquer (1) ; cf. rem. 10.1.)

Exercice 11.44. — Exprimer à l’aide des polynômes symétriques élémentaires, lorsque cela est possible,
les expressions suivantes :
• X1X2 +X2X3 +X3X4 +X4X1 ;
•
∑n
i,j=1X

3
iXj ;

•
∑n
i=1

1
Xi

.

Exercice 11.45. — Soit A un anneau intègre. Montre qu’un polynôme P ∈ A[X] non constant est de
dérivée nulle si et seulement s’il existe un nombre premier p tel que p · 1A = 0A (on dit que l’anneau A est
de caractéristique p ; cf. § II.1.1) et un polynôme Q ∈ A[X] tels que P (X) = Q(Xp).

Exercice 11.46. — Soient i, j ∈ Nn. Nous dirons que i = (i1, . . . , in) est plus petit que j = (j1, . . . , jn)

si
• soit

∑n
k=1 ik <

∑n
k=1 jk,

• soit
∑n
k=1 ik =

∑n
k=1 jk et il existe k ∈ {1, . . . , n} tel que i1 = j1, . . . , ik−1 = jk−1 et ik < jk.

(1) Montrer que si i, j ∈ Nn sont distincts, alors soit i est plus petit que j, soit j est plus petit que i.

(2) On se donne i ∈ Nn. Montrer que l’ensemble des j ∈ Nn qui sont plus petits que i est fini.

Soit A un anneau commutatif. Soit P ∈ A[X1, . . . , Xn] un polynôme symétrique non nul et soit i =:

ht(P ) le plus grand (au sens de la définition précédente) élément de Nn tel que le coefficient deXi1
1 · · ·Xin

n

dans P soit non nul ; on note ce coefficient dom(P ).

(3) Montrer i1 ≥ · · · ≥ in.

(4) On pose
d1 = i1 − i2, d2 = i2 − i3, . . . , dn−1 = in−1 − in, dn = in.

Montrer que
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• soit P = dom(P )Σd11 · · ·Σdnn ;
• soit ht(P − dom(P )Σd11 · · ·Σdnn ) est plus petit que ht(P ).

(5) En déduire le th. 10.2.



CHAPITRE II

CORPS

1. Généralités

On rappelle qu’un corps est un anneau K commutatif, non nul (c’est-à-dire que 1K 6= 0K), dans lequel
tout élément non nul est inversible. Ses seuls idéaux sont donc {0K} et K, et tout morphisme d’anneaux
d’origine K vers un anneau (unitaire) non nul est injectif.

Si K et L sont des corps, un morphisme (de corps) de K vers L est un morphisme d’anneaux (unitaires)
de K vers L ; il est nécessairement injectif et l’on dit que L est une extension de K. On identifiera souvent
une extension K ↪→ L avec une inclusion K ⊆ L.

1.1. Caractéristique d’un corps. — Soit K un corps. Il existe un plus petit sous-corps de K, appelé
sous-corps premier de K : c’est le sous-corps engendré par 1K . Il est isomorphe soit à Q, auquel cas on
dit que K est de caractéristique 0, soit à un corps de la forme Z/pZ ; l’entier p est alors premier et l’on dit
que K est de caractéristique p. Dans ce dernier cas, on a p · 1K = 0K et la formule magique (1)

(4) ∀x, y ∈ K (x+ y)p = xp + yp.

Autrement dit, l’application de Frobenius

FrK : K −→ K(5)

x 7−→ xp(6)

est un morphisme de corps (injectif, mais pas nécessairement surjectif).

2. Extensions de corps

SoitK ⊆ L une extension de corps. Son degré est la dimension duK-espace vectoriel L, notée [L : K].
L’extension est dite finie si ce degré l’est, infinie sinon.

Exemple 2.1. — On a [C : R] = 2, [K(X) : K] =∞ et [C : Q] =∞ (cf. ex. 2.7) (2).

Théorème 2.2. — Soient K ⊆ L et L ⊆M des extensions de corps. On a

[M : K] = [M : L][L : K].

1. On peut l’obtenir en remarquant que la dérivée du polynôme (X + y)p ∈ K[X] est nulle, de sorte que le coefficient de Xi,
pour chaque 0 < i < p, est nul (puisque la dérivée de Xi ne l’est pas). Il ne reste donc que le terme de degré p, qui est Xp, et le
terme de degré 0, qui est yp. On a donc montré (X + y)p = Xp + yp.

2. On ne se préoccupera pas ici des différentes « sortes » d’infini dans ce cours ; mais ce degré devrait bien sûr être considéré
comme un cardinal.
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En particulier, l’extension K ⊆M est finie si et seulement si les extensions K ⊆ L et L ⊆M le sont.

Démonstration. — Soit (li)i∈I une base du K-espace vectoriel L et soit (mj)j∈J une base du L-espace
vectoriel M . Nous allons montrer que la famille (limj)(i,j)∈I×J est une base du K-espace vectoriel M .

Cette famille est libre. Supposons que l’on ait une relation
∑

(i,j)∈I×J ki,j limj = 0, avec des ki,j ∈ K
presque tous nuls. On a

0 =
∑

(i,j)∈I×J

ki,j limj =
∑
j∈J

(∑
i∈I

ki,j li

)
mj .

Comme la famille (mj)j∈J est libre, on en déduit que pour chaque j ∈ J , on a∑
i∈I

ki,j li = 0.

Comme la famille (li)i∈I est libre, on en déduit que pour chaque i ∈ I et chaque j ∈ J , on a ki,j = 0.

Cette famille est génératrice. Soit y un élément de M . Comme la famille (mj)j∈J est génératrice, il
existe des xj ∈ L presque tous nuls tels que y =

∑
j∈J xjmj . Comme la famille (li)i∈I est génératrice,

il existe pour chaque j ∈ J des ki,j ∈ K presque tous nuls tels que xj =
∑
i∈I ki,j li. On a donc

y =
∑
j∈J

∑
i∈I ki,j li.

On en déduit

[M : K] = Card(I × J) = Card(I) Card(J) = [M : L][L : K],

ce qui termine la démonstration du théorème.

2.1. Éléments algébriques et transcendants. —

Définition 2.3. — Soit K ⊆ L une extension de corps et soit x un élément de L. On dit que x est algé-
brique sur K s’il existe un polynôme non nul P ∈ K[X] tel que P (x) = 0. Dans le cas contraire, on dit
que x est transcendant sur K.

L’extension K ⊆ L est dite algébrique si tous les éléments de L sont algébriques sur K.

Exemple 2.4. — Le corps C est une extension algébrique de R. Le réel
√

2 est algébrique sur Q. L’en-
semble des nombres réels algébriques sur Q est dénombrable (pourquoi ?) : il existe donc des nombres
réels transcendants sur Q (on dit souvent simplement « transcendants »). Le nombre réel

∑
n>0 10−n! est

transcendant (Liouville, 1844 ; cf. exerc. 5.21), ainsi que π (Lindemann, 1882). L’extension Q ⊆ R n’est
donc pas algébrique.

Soit K ⊆ L une extension de corps et soit S une partie de L. L’intersection de tous les sous-anneaux de
L contenant K et S est un sous-anneau de L que l’on notera K[S], appelé sous-K-algèbre de L engendrée
par S. Ses éléments sont tous les éléments deL de la forme P (s1, . . . , sn), où n ∈ N, P ∈ K[X1, . . . , Xn]

est un polynôme à coefficients dans K, et s1, . . . , sn ∈ S. De même, l’intersection des sous-corps de L
contenant K et S est un sous-corps de L, noté K(S) ; c’est le corps des fractions de K[S].

Si x ∈ L, la sous-K-algèbre K[x] de L engendrée par x est donc l’image du morphisme d’anneaux
K-linéaire

ϕx : K[X] −→ L

P 7−→ P (x).

On dit qu’une extension K ⊆ L est de type fini s’il existe une partie finie S ⊆ L telle que L = K(S).
Attention : une extension finie est de type finie (elle est engendrée par les éléments d’une base) mais la
réciproque n’est pas vraie en général : l’extension K ⊆ K(X) est de type fini mais pas finie.

Théorème 2.5. — Soit K ⊆ L une extension de corps et soit x un élément de L.
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(1) Si x est transcendant sur K, le morphisme ϕx est injectif, le K-espace vectoriel K[x] est de dimen-
sion infinie et l’extension K ⊆ K(x) est infinie.

(2) Si x est algébrique sur K, il existe un unique polynôme unitaire P de degré minimal vérifiant
P (x) = 0. Ce polynôme est irréductible, on a K[x] = K(x) et cette extension de K est finie de
degré deg(P ). On appelle P le polynôme minimal de x sur K. C’est l’unique polynôme unitaire,
irréductible dans K[X], dont x est racine dans L.

Démonstration. — La transcendance de x est équivalente par définition à l’injectivité de ϕx. Si ϕx est
injectif, le sous-anneau K[x] de L engendré par x est isomorphe à K[X] donc c’est un K-espace vectoriel
de dimension infinie. De même, le sous-corps K(x) de L engendré par x est isomorphe à l’anneau des
fractions rationnelles K(X) (corps des fractions de K[X]) donc c’est un K-espace vectoriel de dimension
infinie. Ceci montre (1).

Si x est algébrique sur K, le noyau de ϕx est un idéal non nul de K[X], qui est donc principal (§ I.4),
engendré par un polynôme non nul de degré minimal P qui annule x (c’est-à-dire P (x) = 0). Il est unique
si on le prend unitaire. L’anneau K[x] est alors isomorphe à l’anneau quotient K[X]/(P ) (§ I.2). Or
l’anneau K[x] est intègre car c’est un sous-anneau de L ; il s’ensuit que l’idéal (P ) est premier, donc P est
un polynôme irréductible. De plus, l’anneau K[X]/(P ) est un corps (prop. I.4.3) et il en est de même pour
K[x]. Enfin, lesK-espaces vectorielsK[x] etK[X]/(P ) sont aussi isomorphes, et on vérifie que ce dernier
admet comme base les classes de 1, X, . . . ,Xd−1, où d = deg(P ). Ils sont donc de dimension d.

Exemple 2.6. — Si a + ib est un nombre complexe avec b 6= 0, son polynôme minimal sur R est (X −
a)2 + b2. Le polynôme minimal de

√
2 sur Q est X2− 2. Le sous-anneau Q[

√
2] = {x+ y

√
2 | x, y ∈ Q}

de R est un corps ; l’inverse de x+ y
√

2, si x et y ne sont pas tout deux nuls, est x−y
√

2
x2+2y2 .

Exemple 2.7. — Soit p un nombre premier. Le polynôme minimal de ω := e2iπ/p sur Q est P (X) :=

Xp−1 + · · ·+X+ 1, de sorte que ω est de degré p−1 sur Q. En effet, P est irréductible (exerc. I.11.43) et
ω en est racine. En revanche, le polynôme minimal de ω sur R est (X−ω)(X− ω̄) = X2−2X cos 2π

p +1.

Comme il existe des nombres premiers arbitrairement grands, on en déduit [C : Q] = ∞, puis
[R : Q] =∞ en appliquant par exemple le th. 2.2.

Corollaire 2.8. — Toute extension finie de corps est algébrique.

Attention ! La réciproque est fausse (cf. ex. 2.13).

Démonstration. — Soit K ⊆ L une extension finie de corps et soit x ∈ L. Le K-espace vectoriel K[x]

est un sous-espace vectoriel de L, donc est de dimension finie. Le th. 2.5 entraîne que x est algébrique
sur K.

Corollaire 2.9. — Toute extension de corps K ⊆ L engendrée par un nombre fini d’éléments algébriques
sur K est finie, donc algébrique. En particulier, toute extension de corps algébrique et de type fini est finie.

Démonstration. — On procède par récurrence sur le cardinal d’une partie finie S ⊆ L telle que L =

K(S).

Si S est vide, c’est évident. Sinon, on prend x ∈ S et l’on pose L′ = K(S r {x}). L’hypothèse de
récurrence entraîne que l’extension K ⊆ L′ est finie. Comme x est algébrique sur K, il l’est sur L′, donc
l’extension L′ ⊆ L = L′(x) est finie par le th. 2.5. Le corollaire résulte alors du th. 2.2 et du cor. 2.8.

Théorème 2.10. — Soit K ⊆ L une extension de corps. L’ensemble des éléments de L algébriques sur K
est un sous-corps de L contenant K. C’est une extension algébrique de K.
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Démonstration. — Soient x et y des éléments non nuls de L algébriques sur K. Le cor. 2.9 entraîne que
l’extension K ⊆ K(x, y) est finie, donc algébrique. Les éléments x− y et x/y de L sont donc algébriques
sur K.

Corollaire 2.11. — Toute extension de corps K ⊆ L engendrée par des éléments algébriques sur K est
algébrique.

Démonstration. — Soit S ⊆ L un ensemble d’éléments de L algébriques sur K et engendrant L. Par le
théorème, l’ensemble des éléments de L algébriques surK est un sous-corps de L, et il contient S. Comme
S engendre L, c’est donc L, qui est ainsi une extension algébrique de K, de nouveau par le théorème.

Exemple 2.12. — Le réel
√

2 +
√

3 +
√

5 est algébrique (sur Q), de même que le nombre complexe√
2 +
√

3 + i
√

5.

Exemple 2.13. — Le corps Q̄ ⊆ C des nombres algébriques (sur Q) est une extension algébrique de Q.
Elle est infinie parce qu’il existe des polynômes irréductibles dans Q[X] de degré arbitrairement grand
(exerc. I.11.43 et ex. 2.7).

Théorème 2.14. — SoientK ⊆ L etL ⊆M des extensions de corps. Si un élément x deM est algébrique
sur L et que L est une extension algébrique de K, alors x est algébrique sur K.

En particulier, si L est une extension algébrique de K et que M est une extension algébrique de L,
alors M est une extension algébrique de K.

Démonstration. — Si un élément x de M est algébrique sur L, il est racine d’un polynôme P ∈ L[X].
Si l’extension K ⊆ L est algébrique, l’extension L′ ⊆ L de K engendrée par les coefficients de P est
alors finie (cor. 2.9). Comme x est algébrique sur L′, l’extension L′ ⊆ L′(x) est finie (th. 2.5). Le th. 2.2
entraîne que l’extension K ⊆ L′(x) est finie, donc algébrique (cor. 2.8), et x est algébrique sur K.

Remarque 2.15. — Si K ⊆ L et L ⊆M sont des extensions de corps, on a donc (th. 2.2 et th. 2.14)

K ⊆ L et L ⊆M finies ⇐⇒ K ⊆M finie,

K ⊆ L et L ⊆M algébriques ⇐⇒ K ⊆M algébrique.

2.2. Racines de l’unité. — Soit K un corps et soit n un entier > 1. On appelle groupe des racines
n-ièmes de l’unité dans K le groupe multiplicatif

µn(K) = {ζ ∈ K | ζn = 1}.

C’est l’ensemble des racines du polynôme P (X) = Xn − 1 et il a donc au plus n éléments (prop. I.4.5).
Un élément ζ de µn(K) est dit racine primitive n-ième de l’unité si ζd 6= 1 pour tout d ∈ {1, . . . , n− 1} ;
en d’autres termes, si ζ est d’ordre n dans le groupe µn(K). S’il existe une racine primitive n-ième de
l’unité ζ dans K, elle engendre le groupe µn(K), qui est alors isomorphe à Z/nZ. Il y a alors

ϕ(n) = Card((Z/nZ)∗) = Card{d ∈ {1, . . . , n− 1} | d ∧ n = 1}

différentes racines primitives n-ièmes de l’unité, à savoir les ζd pour d ∧ n = 1.

Exemple 2.16. — On a

µn(R) = µn(Q) =

{
{1} si n est impair ;

{1,−1} si n est pair.

Il n’y a donc de racines primitives n-ièmes de l’unité dans R ou dans Q que si n ∈ {1, 2}. En revanche,
on a

µn(C) ' Z/nZ.
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Proposition 2.17. — Pour tout corps K et tout entier n > 1, le groupe µn(K) est cyclique d’ordre un
diviseur de n. Plus généralement, tout sous-groupe fini de (K∗,×) est cyclique.

En particulier, le groupe multiplicatif d’un corps fini est cyclique.

Démonstration. — Posons m = Card(µn(K)). Tout élément ζ de µn(K) est d’ordre un diviseur d de m
(par le théorème de Lagrange) et de n (puisque ζn = 1) ; c’est alors une racine primitive d-ième de l’unité.
On a vu plus haut que l’ensemble Pd ⊆ µn(K) des racines primitives d-ièmes de l’unité est soit vide, soit
de cardinal ϕ(d). Comme

µn(K) =
⋃

d|m∧n

Pd,

on a donc m 6
∑
d|m∧n ϕ(d). Or (exerc. 11.18), pour tout entier e > 1, on a

∑
d|e ϕ(d) = e. On en déduit

m 6 m ∧ n, donc m | n, et Pm 6= ∅. Il existe donc un élément d’ordre m dans µn(K), qui est ainsi un
groupe cyclique d’ordre un diviseur de n. Ceci montre le premier point.

Si G est un sous-groupe de (K∗,×) de cardinal m, il est contenu par le théorème de Lagrange dans le
groupe cyclique µm(K), qui est de cardinal au plus m. On a donc G = µm(K) ' Z/mZ. Ceci termine la
démonstration de la proposition.

2.3. Polynômes cyclotomiques complexes. — Soit n un entier strictement positif. On définit le n-ième
polynôme cyclotomique par

Φn(X) =
∏

ζ racine primitive
n-ième de 1 dans C

(X − ζ).

D’après ce qui précède, c’est un polynôme unitaire de degré ϕ(n) à coefficients complexes. On a par
exemple

Φ1(X) = X − 1,

Φ2(X) = X + 1,

Φ3(X) = X2 +X + 1,

Φ4(X) = X2 + 1.

Pour tout entier premier p, on a

Φp(X) =

p−1∏
k=1

(X − e2ikπ/p) =
Xp − 1

X − 1
= Xp−1 + · · ·+X + 1.

Proposition 2.18. — Pour tout entier n > 1, on a

(7) Xn − 1 =
∏
d|n

Φd(X).

Le polynôme Φn est à coefficients entiers.

Démonstration. — On a Xn − 1 =
∏
ζ∈µn(C)(X − ζ). Comme dans la preuve de la prop. 2.17, on

remarque que µn(C) est la réunion disjointe de ses parties Pd, pour d | n. On a donc

Xn − 1 =
∏
d|n

∏
ζ∈Pd

(X − ζ) =
∏
d|n

Φd(X).

Pour montrer que Φn est à coefficients entiers, on procède par récurrence sur n : par (7), Φn est le quotient
de Xn − 1 par le polynôme unitaire

∏
d|n, d 6=n Φd(X), qui est à coefficients entiers par hypothèse de

récurrence. C’est donc un polynôme à coefficients entiers.
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Exemple 2.19. — Pour tout entier premier p, on aXp2−1 = Φp2(X)Φp(X)Φ1(X) = Φp2(X)(Xp−1),
donc

Φp2(X) =
Xp2 − 1

Xp − 1
= Xp(p−1) +Xp(p−2) + · · ·+Xp + 1.

Plus généralement, pour tout entier r > 1, on a

Φpr (X) =
Xpr − 1

Xpr−1 − 1
= Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1

+ 1 = Φp(X
pr−1

).

Théorème 2.20. — Pour tout entier n > 1, le polynôme Φn est irréductible dans Q[X]. En particulier,

[Q(e2iπ/n) : Q] = ϕ(n).

La preuve de ce théorème est un peu compliquée mais reste du niveau de l’agrégation. C’est un déve-
loppement classique pour l’oral.

Exercice 2.21. — Montrer qu’une extension finie de Q ne contient qu’un nombre fini de racines de l’unité.

2.4. Constructions à la règle et au compas. —

Définition 2.22. — Soit Σ un sous-ensemble de R2. On dit qu’un point P ∈ R2 est constructible (à
la règle et au compas) à partir de Σ si on peut obtenir P à partir des points de Σ par une suite finie
d’opérations de l’un des types suivants :

• prendre l’intersection de deux droites non parallèles passant chacune par deux points distincts déjà
construits ;

• prendre l’un des points d’intersection d’une droite passant par deux points distincts déjà construits
et d’un cercle de rayon joignant deux points distincts déjà construits ;

• prendre l’un des points d’intersection de deux cercles distincts dont les rayons joignent chacun deux
points distincts déjà construits.

On dira qu’une droite est constructible (à partir de Σ) si elle passe par deux points constructibles dis-
tincts, et qu’un cercle est constructible si son centre l’est et qu’il passe par un point constructible. On
montre que la perpendiculaire et la parallèle à une droite constructible passant par un point constructible
sont constructibles, et que le cercle de centre un point constructible et de rayon la distance entre deux points
constructibles est constructible.

Si Σ est un sous-ensemble de R contenant 0 et 1, on dit qu’un réel x est constructible à partir de Σ si
c’est l’abcisse d’un point P constructible à partir de Σ×{0} au sens de la définition ci-dessus. Cela revient
au même de dire que les points (x, 0) et (0, x) sont constructibles à partir de Σ× {0}.

Théorème 2.23. — Soit Σ un sous-ensemble de R contenant 0 et 1. L’ensemble CΣ des réels construc-
tibles à partir de Σ est un sous-corps de R tel que, si x ∈ CΣ, alors

√
|x| ∈ CΣ.

Démonstration. — L’addition et l’opposé sont évidents (utiliser des cercles). Le produit xy est l’ordonnée
de l’intersection de la droite joignant l’origine au point (1, x) avec la verticale passant par (0, y) ; l’inverse
de x non nul est l’ordonnée de l’intersection de la droite joignant l’origine au point (x, 1) avec la verticale
passant par (0, 1). La racine carrée d’un élément positif x de CΣ s’obtient par le théorème de Pythagore en
construisant un triangle rectangle dont un des côtés est 1

2 |x− 1| et dont l’hypothénuse est 1
2 (x+ 1).

En particulier, être constructible à partir de {0, 1} est la même chose qu’être constructible à partir de Q ;
on dit simplement « constructible ».
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Théorème 2.24 (Wantzel, 1837). — Soit K un sous-corps de R. Un réel x est constructible à partir de
K si et seulement s’il existe une suite d’extensions

K = K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R

telle que [Ki : Ki−1] = 2 et x ∈ Kn.

Avant de démontrer le théorème, on va décrire en général les extensions de degré 2.

Lemme 2.25. — Soit K un corps de caractéristique différente de 2 et soit K ⊆ L une extension de
degré 2. Il existe x ∈ LrK tel que x2 ∈ K et L = K[x].

Démonstration. — Si y ∈ LrK, la famille (1, y) est K-libre, donc c’est une base du K-espace vectoriel
L. Il existe donc a et b dans K tels que

y2 = ay + b.

Comme la caractéristique de K est différente de 2, on peut poser x = y − a
2 . On a alors

x2 = y2 − ay +
a2

4
= b+

a2

4
∈ K,

et L = K[y] = K[x].

Démonstration du théorème. — Soit L un sous-corps de R. On vérifie par des calculs directs que :

• les coordonnées du point d’intersection de deux droites non parallèles passant chacune par deux
points distincts à coordonnées dans L, sont dans L ;

• les coordonnées de l’un des points d’intersection d’une droite passant par deux points à coordonnées
dans L et d’un cercle de rayon joignant deux points distincts à coordonnées dans L sont solutions
d’une équation de degré 2 à coefficients dans L ;

• les coordonnées des points d’intersection de deux cercles distincts, chacun de rayon joignant deux
points distincts à coordonnées dans L, sont solutions d’une équation de degré 2 à coefficients dans L.

Par récurrence, on voit que les coordonnées d’un point constructible à partir de K sont dans un corps du
type Kn décrit dans l’énoncé du théorème.

Inversement, pour montrer que tout point dans un corps de type Kn est constructible à partir de K, il
suffit de montrer que tout réel dans une extension quadratique d’un corps L contenue dans R est construc-
tible à partir de L. Une telle extension est engendrée par un réel x tel que x2 ∈ L (lemme 2.25 ). Mais alors
x = ±

√
x2 est constructible à partir de L (th. 2.23).

Corollaire 2.26. — Soit x un réel constructible sur un sous-corps K de R. Alors x est algébrique sur K
de degré une puissance de 2.

Démonstration. — Si x est un réel constructible, il est dans une extension Kn du type décrit dans le
théorème de Wantzel (th. 2.24), pour laquelle [Kn : K] = 2n (th. 2.2). En considérant la suite d’extensions
K ⊆ K(x) ⊆ Kn, on voit que [K(x) : K] est une puissance de 2 (th. 2.2).

Remarque 2.27. — Attention, la réciproque du corollaire est fausse telle quelle (exerc. 5.24). On peut
montrer qu’un nombre réel x est constructible si et seulement s’il vérifie la propriété suivante : x est algé-
brique sur Q et si P est son polynôme minimal (sur Q) et si x1, . . . , xd sont toutes les racines (complexes)
de P , alors le degré de l’extension Q ⊆ Q(x1, . . . , xd) est une puissance de 2.

Corollaire 2.28 (Duplication du cube). — Le réel 3
√

2 n’est pas constructible (sur Q).
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Démonstration. — C’est une racine du polynôme X3 − 2. Si ce dernier est réductible sur Q, il a un
facteur de degré 1, donc une racine rationnelle que l’on écrit sous forme de fraction réduite a/b. On a alors
a3 = 2b3, donc a est pair. On écrit a = 2a′ avec 4a′

3
= b3, donc b est pair, contradiction (voir aussi

l’exerc. 11.29).

Ainsi, le degré de 3
√

2 sur Q est 3 : il n’est donc pas constructible par cor. 2.26.

Corollaire 2.29 (Quadrature du cercle). — Le réel
√
π n’est pas constructible.

Démonstration. — Ici, on triche : il faut savoir que π est transcendant (ex. 2.4), donc aussi
√
π.

On dit qu’un angle α est constructible à partir d’un angle θ si le point (cosα, sinα) est constructible à
partir de {(0, 0), (0, 1), (cos θ, sin θ)}. Comme sinα est constructible à partir de cosα, c’est équivalent à
dire que cosα est constructible à partir de {0, 1, cos θ}.

Corollaire 2.30 (Trisection de l’angle). — L’angle θ/3 est constructible à partir de l’angle θ si et seule-
ment si le polynôme X3 − 3X − 2 cos θ a une racine dans Q(cos θ).

En particulier, l’angle 2π/9 n’est pas constructible à la règle et au compas.

Démonstration. — Comme cos 3u = 4 cos3 u− 3 cosu, le réel cos θ/3 est racine du polynôme

P (X) = 4X3 − 3X − cos θ.

Si P est irréductible sur Q(cos θ), le réel cos θ/3 est de degré 3 sur ce corps et ne peut y être constructible
par cor. 2.26.

Si P est réductible sur Q(cos θ), étant de degré 3, il doit avoir une racine dans ce corps et se factoriser sur
ce corps en le produit d’un polynôme de degré 1 et d’un polynôme de degré 2. Le réel cos θ/3 est racine
de l’un de ces deux polynômes, donc est constructible sur Q(cos θ) (lemme 2.25 et th. 2.24). Comme
2P (X/2) = X3 − 3X − 2 cos θ, cela montre la première partie de l’énoncé.

On a Q(cos 2π/3) = Q, donc l’angle 2π/9 est constructible si et seulement si le polynômeX3−3X−1

a une racine dans Q, ce qui n’est pas le cas (exerc. 11.29).

On peut aussi s’intéresser plus généralement, après Fermat, aux polygones réguliers constructibles à la
règle et au compas. Soit N l’ensemble des nombres entiers n > 1 tels que le polygone régulier à n côtés,
inscrit dans le cercle unité et dont l’un des sommets est (0, 1), soit constructible à la règle et au compas,
c’est-à-dire tels que e2iπ/n (ou, de façon équivalente, l’angle 2π/n) soit constructible. On vient de voir
que 9 n’est pas dans N .

Rappelons qu’un nombre premier de Fermat est un nombre premier de la forme Fm := 22m

+ 1.

Théorème 2.31. — Si un polygone régulier à n côtés est constructible à la règle et au compas, n est le
produit d’une puissance de 2 et de nombres premiers de Fermat distincts.

La réciproque est vraie, mais sa preuve nécessite de connaître la théorie de Galois. En particulier, le
polygone régulier à 17 côtés est constructible à la règle et au compas (Gauss, 1796).

Démonstration. — Si n ∈ N , le degré de e2iπ/n sur Q est une puissance de 2 (cor. 2.30). De plus,
2n ∈ N (on peut bissecter n’importe quel angle constructible) et tout diviseur de n est dans N . Il suffit
donc de montrer que si un nombre premier impair p appartiennent à N , c’est un nombre premier de Fermat,
et que le carré d’un nombre premier impair n’est pas dans N .

Soit p un nombre premier impair. Le degré de exp(2iπ/p) sur Q est p− 1 (ex. 2.7). Si p ∈ N , l’entier
p− 1 est donc une puissance de 2, et p est un nombre premier de Fermat.
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Pour montrer que p2 n’est jamais dans N , rappelons (exerc. 11.40 et th. 2.20) que le degré de
exp(2iπ/p2) sur Q est ϕ(p2) = p(p− 1), qui n’est pas une puissance de 2 (il est divisible par p).

3. Construction d’extensions

On prend maintenant le problème dans l’autre sens : au lieu de se donner une extension d’un corps K et
de regarder si les éléments de cette extension sont, ou non, racines de polynômes à coefficients dans K, on
part d’un polynôme P ∈ K[X] et l’on cherche à construire une extension de corps de K dans laquelle P
aura une racine, ou même, sera scindé (produit de facteurs du premier degré).

3.1. Corps de rupture. — Étant donné un polynôme irréductible, on commence par construire une ex-
tension dans lequel P a une racine.

Définition 3.1. — Soit K un corps et soit P ∈ K[X] un polynôme irréductible. On appelle corps de
rupture de P sur K une extension K ⊆ L telle que L = K(x), avec P (x) = 0.

Exemple 3.2. — Le corps C est un corps de rupture du polynôme irréductible X2 + 1 ∈ R[X]. De
même, le polynôme X2 + X + 1 est aussi irréductible sur R et C est encore un corps de rupture. Plus
généralement, C est le corps de rupture de n’importe quel polynôme de R[X] de degré deux sans racine
réelle (cf. ex. 3.1).

Exemple 3.3. — Le corps Q( 3
√

2) est un corps de rupture du polynôme irréductible X3 − 2 ∈ Q[X] ; le
corps Q(j 3

√
2) en est un autre. Remarquons que le polynôme X3 − 2 n’est pas scindé dans ces corps.

Théorème 3.4. — Soit K un corps et soit P ∈ K[X] un polynôme irréductible. Il existe un corps de
rupture de P sur K.

Démonstration. — L’anneau K[X] étant principal, l’anneau quotient KP := K[X]/(P ) est un corps
(prop. 4.3). Soit xP ∈ KP l’image de X dans KP . On a alors P (xP ) = 0 et KP = K(xP ), donc KP est
un corps de rupture de P sur K.

Nous allons maintenant nous intéresser à l’unicité du corps de rupture.

Définition 3.5. — Soient K ⊆ L et K ⊆ L′ des extensions de corps. On appelle K-morphisme de L dans
L′ un morphisme de corps L ↪→ L′ qui est l’identité sur K.

Proposition 3.6. — Soit P ∈ K[X] un polynôme irréductible. Pour toute extensionK ⊆ L et toute racine
x de P dans L, il existe un unique K-morphisme KP ↪→ L qui envoie xP sur x.

Démonstration. — Le morphisme K[X] → L qui envoie X sur x est nul sur P , donc définit par passage
au quotient l’unique K-morphisme de KP vers L qui envoie xP sur x.

Corollaire 3.7. — Soit P ∈ K[X] un polynôme irréductible. Deux corps de rupture de P sont K-
isomorphes.

On remarquera que l’isomorphisme entre deux corps de rupture n’est en général pas unique. Plus préci-
sément, étant donnés des corps de rupture K ⊆ L et K ⊆ L′ de P , et des racines x ∈ L et x′ ∈ L′ de P ,
il existe un unique K-isomorphisme σ : L ∼→L′ tel que σ(x) = x′.
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3.2. Corps de décomposition. — Étant donné un polynôme P à coefficients dans K, on cherche mainte-
nant à construire une extension deK dans laquelle P est scindé, c’est-à-dire produit de facteurs du premier
degré.

Théorème 3.8. — Soit K un corps et soit P ∈ K[X].

(1) Il existe une extension K ⊆ L dans laquelle le polynôme P est scindé, de racines x1, . . . , xd, telle
que L = K(x1, . . . , xd).

(2) Deux telles extensions sont isomorphes.

Une telle extension s’appelle un corps de décomposition de P . C’est une extension algébrique de type
fini, donc finie de K (cor. 2.9).

Démonstration. — On procède par récurrence sur le degré d de P . Si d = 1, le corps L = K est le seul
qui convient.

Si d > 1, soit Q un facteur irréductible de P dans K[X] (cf. th. I.6.2) et soit KQ le corps de rupture
de Q construit plus haut. Le polynôme P admet la racine xQ dans KQ, donc s’écrit

P (X) = (X − xQ)R(X),

avec R ∈ KQ[X] de degré d− 1. L’hypothèse de récurrence appliquée à R fournit un corps de décompo-
sition KQ ⊆ L de R sur KQ. Alors R est scindé dans L[X], de racines x1, . . . , xd−1, donc aussi P , de
racines xQ, x1, . . . , xd−1. De plus, L = KQ(x1, . . . , xd−1) = K(xQ)(x1, . . . , xd−1), donc L est un corps
de décomposition de P , et ceci montre (1).

SoientK ⊆ L etK ⊆ L′ des corps de décomposition de P , et soient x une racine de P dans L et x′ une
racine de P dans L′. Le corps K(x) ⊆ L est un corps de rupture pour P sur K, et il en est de même pour
le corps K(x′) ⊆ L′. Il existe donc (cor. 3.7) un K-isomorphisme K(x) ∼→K(x′) qui envoie x sur x′. Il
permet de considérer L′ comme une extension de K(x) via le morphisme composé K(x) ∼→K(x′) ⊆ L′.

Écrivons comme plus haut P (X) = (X−x)R(X) avecR ∈ K(x)[X] de degré d−1. Les extensions L
et L′ de K(x) sont alors des corps de décomposition de R sur K(x). L’hypothèse de récurrence appliquée
à R entraîne que L et L′ sont K(x)-isomorphes, donc K-isomorphes. Ceci prouve (2).

Exemple 3.9. — Pour tout d > 3, le corps C est un corps de décomposition pour le polynôme Xd − 1 ∈
R[X].

Exemple 3.10. — Le corps Q( 3
√

2, j) est un corps de décomposition pour le polynôme X3 − 2 ∈ Q[X].
En considérant la suite d’extensions Q ⊆ Q( 3

√
2) ⊆ Q( 3

√
2, j), on voit que c’est une extension de degré 6

de Q.

3.3. Clôture algébrique. —

Définition 3.11. — On dit qu’un corps Ω est algébriquement clos si tout polynôme non constant de Ω[X]

a une racine dans Ω.

Une clôture algébrique d’un corps K est une extension algébrique de corps K ⊆ Ω telle que Ω est un
corps algébriquement clos.

Si Ω est un corps algébriquement clos, tout polynôme non constant de Ω[X] est scindé dans Ω.

Exemple 3.12. — Le corps C est algébriquement clos (c’est le théorème de d’Alembert–Gauss, qui est
au programme de l’agrégation). C’est une clôture algébrique de R, mais pas de Q (car l’extension Q ⊆ C

n’est pas algébrique : il existe des nombres complexes transcendants).
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Proposition 3.13. — Soit K ⊆ L une extension algébrique de corps. On suppose que tout polynôme de
K[X] est scindé dans L. Alors L est une clôture algébrique de K.

Démonstration. — Soit Q ∈ L[X] un polynôme irréductible et soit x une racine de Q dans une extension
de L. Alors x est algébrique sur L donc sur K (th. 2.14). Soit P ∈ K[X] son polynôme minimal ; puisque
Q est irréductible sur L, on a Q | P dans L[X]. Mais par hypothèse, P est scindé dans L, donc x ∈ L, et Q
a donc une racine dans L. Comme tout élément de L[X] est produit de polynômes irréductibles (th. I.6.2),
on a montré que L est une clôture algébrique de K.

À partir d’un corps algébriquement clos, il est facile de construire une clôture algébrique pour n’importe
quel sous-corps.

Proposition 3.14. — Soit Ω un corps algébriquement clos et soit K ⊆ Ω un sous-corps. L’ensemble des
éléments de Ω qui sont algébriques sur K est une clôture algébrique de K.

Démonstration. — On a déjà vu que l’ensemble K̄ des éléments de Ω qui sont algébriques sur K est
un sous-corps de Ω (th. 2.10), extension algébrique de K. Montrons qu’il est algébriquement clos. Soit
P ∈ K̄[X] un polynôme non constant et soit x une racine de P dans Ω. Alors x est algébrique sur K̄, donc
aussi sur K (th. 2.14), de sorte que x ∈ K̄.

Exemple 3.15. — Le corps Q̄ ⊆ C des nombres algébriques (cf. ex. 2.13) est une clôture algébrique de Q.
C’est un corps dénombrable (pourquoi ?).

Théorème 3.16 (Steinitz, 1910). — SoitK un corps. Il existe une clôture algébrique deK. Deux clôtures
algébriques de K sont K-isomorphes.

Démonstration. — Nous supposerons pour simplifier la démonstration que le corps K est (au plus) dé-
nombrable. L’ensemble K[X] est alors dénombrable. On peut donc numéroter ses éléments en une suite
(Pn)n∈N. On construit une suite (Kn)n∈N de corps emboîtés en posant K0 = K et en prenant pour Kn+1

un corps de décomposition du polynôme Pn, vu comme élément de Kn[X]. Posons

L =
⋃
n∈N

Kn.

Il existe sur L une (unique) structure de corps faisant de chaque Kn un sous-corps de L et K ⊆ L est une
extension algébrique.

Tout polynôme de K[X] est un des Pn donc est par construction scindé dans L. Ce dernier est donc une
clôture algébrique de K par la prop. 3.13.

Nous ne démontrerons pas l’unicité.

4. Corps finis

On dit qu’un corps K est fini s’il n’a qu’un nombre fini d’éléments. Sa caractéristique est alors un
nombre premier p et son sous-corps premier le corps Z/pZ. L’extension Z/pZ ↪→ K est de degré fini n,
de sorte que K est de cardinal pn.

Théorème 4.1. — (1) Pour tout entier premier p et tout entier n > 1, il existe un corps fini à pn éléments.

(2) Tout corps fini à pn éléments est un corps de décomposition du polynôme Xpn − X sur le corps
Z/pZ. En particulier, deux tels corps sont isomorphes.

On parlera souvent du corps à pn éléments, noté Fpn .
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Démonstration. — Soit Z/pZ ⊆ K un corps de décomposition du polynôme P (X) := Xpn − X sur
Z/pZ et soit K ′ := {x1, . . . , xpn} ⊆ K l’ensemble des racines de P dans K. Par la formule magique (4),
c’est un sous-corps de K, qui lui est donc égal puisque K est engendré par ces racines. Ces racines sont
toutes distinctes car sa dérivée étant −1, le polynôme P n’a pas de racine multiple (prop. I.8.7(2)). En
particulier, Card(K) = pn. Ceci montre (1).

Soit K un corps fini à pn éléments. Le groupe (K∗,×) étant d’ordre pn − 1, tout élément non nul x de
K vérifie xp

n−1 = 1 (théorème de Lagrange). En particulier, les pn éléments de K sont exactement les
racines de P , qui est ainsi scindé dans K. Le corps K est donc un corps de décomposition de P sur Fp.
Par le th. 3.8, ceci montre (2).

5. Exercices

5.1. Généralités. —

Exercice 5.1. — Soit K un corps de caractéristique 3. Montrer que les médianes de tout triangle dans K2

sont parallèles.

Exercice 5.2. — Soit p un nombre premier, soit K un corps de caractéristique p et soit FrK : K → K le
morphisme de Frobenius, défini par FrK(x) = xp (cf. (5)).

(1) Si K est un corps fini, montrer que FrK est bijectif.

(2) Donner un exemple d’un corps K de caractéristique p pour lequel FrK n’est pas surjectif.

Exercice 5.3. — Pour tous nombres complexes a et b, montrer

Q(a, b,
√
a,
√
b) = Q(a, b,

√
a+
√
b)

(Indication : on pourra commencer par montrer que
√
ab ∈ Q(a, b,

√
a+
√
b)).

5.2. Extensions finies. —

Exercice 5.4. — Trouver le polynôme minimal de
√

3 + i sur Q.

Exercice 5.5. — (1) Calculer le degré de l’extension Q(
√

2,
√

3) de Q.

(2) Calculer le degré de l’extension Q(
√

2 +
√

3) de Q.

(3) Calculer le degré de l’extension Q(
√

2, 3
√

2) de Q.

Exercice 5.6. — SoitK ⊆ L une extension de corps finie de degré premier. Pour tout x ∈ LrK, montrer
que L = K(x).

Exercice 5.7. — Soit K ⊆ L une extension de corps finie de degré impair. On suppose qu’il existe x ∈ L
tel que L = K(x). Montrer que L = K(x2).

Exercice 5.8. — Soit K ⊆ M une extension de corps et soient K ⊆ L ⊆ M et K ⊆ L′ ⊆ M des
extensions intermédiaires. Notons LL′ le sous-corps de M engendré par L et L′. Montrer [LL′ : L′] 6
[L : K] (Indication : on pourra prendre une base de L sur K et montrer qu’elle engendre LL′ sur L′).
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5.3. Racines de l’unité. —

Exercice 5.9. — Soit K un corps de caractéristique p > 0 et soit r un entier > 1. Quels sont les groupes
µpr (K)?

Exercice 5.10. — Soit p un nombre premier. Déterminer selon les valeurs de l’entier n > 1 le groupe
µn(Z/pZ) (Indication : on pourra commencer par le cas n = p− 1).

Exercice 5.11. — Soit K un corps infini. Montrer que le groupe (K∗,×) n’est pas cyclique.

Exercice 5.12. — Soit p un nombre premier. Déterminer selon les valeurs de l’entier n > 1 le groupe
µn(Z/pZ) (Indication : on pourra commencer par le cas n = p− 1).

Exercice 5.13. — Montrer que les polynômes cyclotomiques Φn sont réciproques : Xϕ(n)Φn(1/X) =

Φn(X).

Exercice 5.14. — Montrer l’égalité Q(e2iπ/8) = Q(
√

2, i).

Exercice 5.15. — Soit p un nombre premier, soit K un corps et soit a ∈ K. Montrer que le polynôme
Xp − a est irréductible dans K[X] si et seulement s’il n’a pas de racines dans K (Indication : on pourra
montrer que si Xp − a = PQ, avec n := deg(P ), on a an = (±P (0))p, en décomposant Xp − a en
facteurs de degré 1).

Exercice 5.16. — Pour tout entier k strictement positif, on pose ζk := e2iπ/k. Soient m et n des entiers
strictement positifs premiers entre eux. On veut montrer l’égalité

Q(ζm) ∩Q(ζn) = Q.

On pose K := Q(ζm) ∩Q(ζn).

(1) Montrer qu’on a K(ζm) = Q(ζm), K(ζn) = Q(ζn) et K(ζmn) = Q(ζmn).

(2) Avec les notations de l’exerc. 5.8, montrer Q(ζm)Q(ζn) = Q(ζmn).

(3) En déduire [Q(ζm)Q(ζn) : Q(ζm)] = ϕ(n) puis, en utilisant l’exerc. 5.8, [Q(ζn) : K] > ϕ(n).
Conclure.

(3) En déduire tous les entiers strictement positifs n tels que
√

2 ∈ Q(ζn) (Indication : on pourra utiliser
l’exerc. 5.14).

5.4. Extensions algébriques. —

Exercice 5.17. — Trouver toutes les extensions algébriques du corps C.

Exercice 5.18. — Montrer que tout corps algébriquement clos est infini.

Exercice 5.19. — On considère le corpsK = Q(T ) et ses sous-corps K1 = Q(T 2) etK2 = Q(T 2−T ).
Montrer que les extensions K1 ⊆ K et K2 ⊆ K sont algébriques, mais pas l’extension K1 ∩ K2 ⊆ K

(Indication : on pourra montrer K1 ∩K2 = Q).

Exercice 5.20. — Soit K un corps et soit L un corps tel que K ⊆ L ⊆ K(T ).

(1) Si L est une extension algébrique de K, montrer que L = K.

(2) Si K 6= L, montrer que K(T ) est une extension finie de L.
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Exercice 5.21 (Nombres de Liouville). — Le but de cet exercice est de donner un exemple explicite de
nombre transcendant.

(1) Soit α un nombre complexe algébrique irrationel. Montrer qu’il existe un réel C strictement positif et
un entier n tels que

∀p ∈ Z ∀q ∈ Zr {0}
∣∣∣α− p

q

∣∣∣ ≥ C

qn

(Indication : on pourra introduire un polynôme à coefficients entiers qui annule α et appliquer judicieuse-
ment l’inégalité des accroissements finis).

(2) Montrer que le nombre réel
∑
n≥0 10−n! est transcendant (sur Q).

5.5. Corps de décomposition. —

Exercice 5.22. — Déterminer le corps de décomposition du polynôme X3 − 3 sur Q et en donner une
base sur Q.

Exercice 5.23. — Montrer que le corps de décomposition d’un polynôme de degré d est une extension de
degré au plus d!.

5.6. Nombres constructibles. —

Exercice 5.24. — Considérons le polynôme P (X) = X4 −X − 1 ∈ Q[X].

(1) Montrer que P a exactement deux racines réelles distinctes x1 et x2.

(2) On écrit (X − x1)(X − x2) = X2 + aX + b avec a, b ∈ R. Montrer [Q(a2) : Q] = 3.

(3) Montrer que x1 et x2 ne peuvent être tous les deux constructibles, bien qu’ils soient de degré 4 sur Q.

5.7. Corps finis. —

Exercice 5.25. — Écrire les tables d’addition et de multiplication du corps F4.

Exercice 5.26. — Quel est le groupe additif (Fpn ,+)?

Exercice 5.27. — Soient p et q des nombres premiers. Montrer que Fpm est isomorphe à un sous-corps
de Fqn si et seulement si p = q et m divise n.

Exercice 5.28. — (1) Montrer que le polynôme X4 −X − 1 n’a pas de racine dans le corps F25.

(2) Montrer que le polynôme X4 −X − 1 est irréductible dans F5[X].


