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CHAPITRE 1

ANNEAUX

1. Définitions

Définition 1.1. — Un anneau (unitaire) est un triplet (A, +,-), ont
— (A, +) est un groupe abélien, dont I’élément neutre est noté 0 4 (ou simplement 0);
— la multiplication - est associative et posséde un élément neutre est noté 1 o (ou simplement 1) ;
— la multiplication est distributive par rapport a I’addition :

Ya,b,c € A a-(b+c)=a-b+a-c (b+c)-a=b-a+c-a.

On note souvent ab au lieu de a - b. On note aussi —a ’opposé de A, c’est-a-dire que a + (—a) = 04.
On a, pour tout a dans A,

04a = (04 +04)a=04a+04a,
d’ou, en ajoutant des deux cdtés —0 4a,
0g4a =04.
De méme,
a0y =04.
Pour tous éléments a et b de A, on a alors
ab+ (—a)b = (a+ (—a))b=04b =04,

donc

ainsi que
a(—b) = —ab (—a)(=b) = —(—a)b = —(—ab) = ab.

L’anneau (A, +, -) est commutatif si la multiplication est commutative. Si a € A et m € Z, on définit
ma (comme dans tout groupe abélien) par récurrence sur m en posant

0a:=04 , VmeZ (m+1)a=ma+a.

On a ainsi, pour tout m,n € Z,

(m + n)a = ma+ na.

Sia € Aetm € N, on définit o™ par récurrence sur m en posant
=14 , YmeN a1 =a".qa.

On a ainsi, pour tout m,n € N,

m+n _ m_n

a a a-.

Un sous-anneau d’un anneau (A, +,-) est un sous-ensemble B de A contenant 04 et 14 tel que B
muni de la restriction des opérations + et - est un anneau (c’est-a-dire qu’il est stable par addition et
multiplication).
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Exemple 1.2. — L’anneau nul A = {04} est un anneau commutatif. Un anneau A est nul si et seulement
si OA = 1,4.

Exemple 1.3. — Les triplets (Z, +, ) et (Z/nZ, +, -) sont des anneaux commutatifs.

Exemple 1.4. — Le produit direct Hie ; A; d’une famille d’anneaux (A;, +, -)ier est un anneau (pour les
lois d’addition et de multiplication terme a terme).

Exemple 1.5. — Soit A un anneau commutatif. On définit I’anneau des polyndomes a coefficients dans A
de 1a fagon suivante. Considérons I’ensemble A[X] (aussi noté AN)) des suites (a;);en d’éléments de A
dont tous les termes, sauf un nombre fini, sont nuls. On définit 1’addition en additionnant terme a terme.
Pour la multiplication, c’est plus compliqué : le produit des polyndmes (a;);en et (b;)jen est le polyndme
(ck)ren défini par ¢, = Zf:o a;bi—;. On vérifie que ces deux opérations vérifient les axiomes requis et
font de A[X] un anneau commutatif, avec 0 ayx] = (04,04,...) et 1a;x] = (14,04,04,...).

On considere A comme un sous-anneau de A[X] en identifiant « € A a la suite (a,04,04,...). On
note X la suite (04,14,04,...). Tout polyndme s’écrit alors de fagon unique comme

P(X):adXd+---+a1X+a0,

avecd € Netag,...,a1,a9 € A.
Exemple 1.6. — Soit A un anneau commutatif et soit n un entier strictement positif. On définit plus géné-
ralement I’anneau commutatif A[X7, ..., X,,] des polynomes a n indéterminées a coefficients dans A de

facon analogue : c’est I’ensemble des suites (ar) ren» d’éléments de A dont tous les termes, sauf un nombre
fini, sont 0 4. On définit I’addition en additionnant terme a terme et le produit de polyndmes (a;);en» et
(by)jenn comme le polyndme (cx ) xen défini par cx = ZLJeN,,L,IJrJ:K arby. On identifie encore A
a un sous-anneau de A[X1, ..., X,].

Pour ¢ € {1,...,n}, on note X; la suite dont tous les éléments sont 04 sauf celui correspondant
I’élément I de N™ dont toutes les coordonnées sont nulles sauf la ¢-ieme qui vaut 1. Tout élément de
A[Xy, ..., Xy,] s’écrit alors comme une somme finie

P(Xy1,..., X)) = > ai.a, X X
0<é;<d;
avec ai, . 4, € A.
Exemple 1.7. — Soit A un anneau commutatif. On définit I’anneau des séries formelles a coefficients dans
A de la fagon suivante. Considérons I’ensemble A[[X]] (aussi noté AN) des suites (a;);en d’éléments de

A. On définit X, I’addition et la multiplication comme pour les polyndmes. Il est clair que 1’anneau des
polyndmes A[X] est un sous-anneau de A[[X]]. On notera

00
E (Zin
=0

I’élément (a;);cn de A[[X]] (attention, c’est une notation : il n’est pas question de convergence ici).

Exemple 1.8. — Soit A un anneau commutatif et soit n un entier strictement positif. On définit 1’an-
neau des matrices carrées d’ordre m a coefficients dans A comme 1’ensemble .7, (A) des tableaux
(@i5)1<i,j<n d’ éléments de A muni de I’addition terme & terme, la multiplication de matrices (a;;)1<i,j<n
et (bij)1<i,j<n 6tant définie comme la matrice (¢;;)1<i,j<n, OU

n
Cij = E Qikbrj-
k=1

L’anneau .#,,(A) n’est commutatif que si A est I’anneau nul ou si n = 1.
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Définition 1.9. — Soient A et B des anneaux.

(1) Un morphisme (d’anneaux) entre A et B est une application f: A — B qui vérifie f(14) = 1p et

Ve,ye A flz+y) = flx)+ fly) flzy) = f(@)f(y)

Un isomorphisme entre A et B est un morphisme qui est bijectif (son inverse est alors automatiquement
aussi un morphisme).

(2) Un élément de A est inversible (on dit aussi que c’est une unité de A) s’il admet un inverse pour
la multiplication. L’ensemble des éléments inversibles, muni de la multiplication, est un groupe noté habi-
tuellement A*.

(3) L’anneau A est integre s’il est commutatif, non nul et si le produit de deux éléments non nuls de A est
encore non nul. C’est un corps s’il est commutatif, non nul et que tout élément non nul de A est inversible.

Exemple 1.10. — Soit A un anneau. Il existe un unique morphisme Z — A : il envoie tout entier n sur
TLIA.

Exemple 1.11. — L’anneau Z/nZ est integre si et seulement si n = 0 ou n est un nombre premier.
Exemple 1.12. — Les unités de I’anneau Z sont {—1, 1}. Si n est un entier strictement positif, les unités de

I’anneau Z/nZ sont les classes des entiers premiers a 7 ; en particulier, Z/nZ est un corps si et seulement
si n est un nombre premier.

Soit A un anneau commutatif. Les unités de 1’anneau de séries formelles A[[X]] sont les séries
S [ *
Yoicgai X" avec ag € A*.

Si un anneau A est intégre, on définit son corps des quotients (ou corps des fractions) K4 comme
I’ensemble des classes d’équivalence (appelées « fractions ») des paires (a, b), aveca € Aetb € A~ {0},
pour la relation d’équivalence

(a,b) ~ (a’,V) < ab = d'b.

La classe d’équivalence de (a, b) est notée §. Muni des opérations (addition et multiplication) habituelles
sur les fractions, on vérifie que K 4 est bien un corps.

Si K est un corps, on note K (X) le corps des fractions de ’anneau (intégre) de polynémes K [X]. Ses
éléments sont les fractions rationnelles a coefficients dans K. On définit de méme le corps K (X1,..., X,)
(etona K(Xy,...,X,) = K(Xy,...,Xn_1)(Xn)).

2. Idéaux

Soit A un anneau. Un idéal (bilatere) de A est une partie I de A qui est un sous-groupe additif tel que,
pourtouta € Aettoutx € I,onaax € I etxa € I. C’est exactement la propriété qu’il faut pour pouvoir
mettre sur le groupe additif A/I une structure d’anneau qui fait de la projection canonique A — A/I un
morphisme d’anneaux.

On notera le fait évident mais utile qu’un idéal I de A est égal a A si et seulementsi 14 € I.

L’intersection d’une famille quelconque d’idéaux de A est encore un idéal de A. Si S est une partie
de A, I’intersection de tous les idéaux de A contenant S est donc un idéal de A que I’on notera (.5), ou AS.
C’est I’ensemble des sommes finies 2?21 a;si,pourn € N,a; € Aets; € S.
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Si I et J sont des idéaux d’un anneau A, on note I + J I’idéal de A engendré par I U J et I.J I’idéal
de A engendré par {zxy |z € [,y € J}.Ona

I+J = {z+ylxel,yeJ}
1J = {Z:z:,;yi\nEN,:z:l,...,a:nGI,yl,...,ynGJ}.
i=1
Proposition 2.1. — Soit f: A — B un morphisme d’anneaux.

(1) Le noyau de f est un idéal de A. Plus généralement, l'image réciproque par f d’un idéal de B est un
idéal de A.

(2) Si I est un idéal de A, le morphisme | se factorise par la projection A — A/I si et seulement si
I C Ker(f).

L’image de f n’est en général pas un idéal de B.

Exemple 2.2. — Un anneau commutatif A est un corps si et seulement s’il n’est pas nul et que ses seuls
idéaux sont {04} et A. Un corps a donc toujours au moins deux éléments

Exemple 2.3. — Les idéaux de I’anneau Z sont les nZ, avec n € N (pourquoi ?); les quotients sont les
anneaux Z/nZ.

Soit I un idéal de I’anneau commutatif A. L’anneau A/I est intégre si et seulement si I est un idéal
premier, ¢’est-a-dire qu’il est distinct de A et qu’il vérifie la propriété :

Va,be A abel=(aeloubel).

L’anneau A/T est un corps si et seulement si [ est un idéal maximal, c¢’est-a-dire qu’il est distinct de A
et que I'unique idéal de A contenant strictement [ est A (en particulier, tout idéal maximal est premier). Il
résulte du théoreme de Zorn que tout idéal de A distinct de A est contenu dans un idéal maximal (). En
particulier, tout anneau non nul posseéde un idéal maximal.

Exemple 2.4. — Les idéaux premiers de I’anneau Z sont les pZ, ol p est un nombre premier; ce sont
aussi les idéaux maximaux.

Exemple 2.5. — L’anneau A est un corps si et seulement si {0} est un idéal maximal de A.

Exemple 2.6. — Si K est un corps, I’idéal (X;) de I’anneau K[X;, X5] est premier mais pas maximal.
L’idéal (X7, X2) est maximal.

Soit I un idéal d’un anneau commutatif A. On pose
VIi={acA|IneN a"ell}.

C’est un idéal de A qui contient I et qu’on appelle le radical de I (c’est en effet I’image inverse par le
morphisme canonique A — A/I de I’idéal des éléments nilpotents de A/T).

Théoréeme 2.7. — Soit A un anneau commutatif et soit I un idéal de A. Le radical de I est l'intersec-
tion des idéaux premiers de A contenant I. En particulier, I’ensemble des éléments nilpotents de A est
Uintersection des idéaux premiers de A.

1. Soit I un idéal de A distinct de A. L’ensemble des idéaux de A contenant [ et distincts de A est inductif car si (1) jc s est une
famille totalement ordonnée d’idéaux de A distincts de A, la réunion | J e 1; est encore un idéal (parce que la famille est totalement
ordonnée) distinct de A (parce qu’elle ne contient pas 1 4). On applique alors le lemme de Zorn.
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Démonstration. — Montrons le deuxieéme énoncé. Soit p un idéal premier de A. Il est clair que tout élé-
ment nilpotent @ de A est dans p : si a™ = 04, on a aussi a" = 0,4/, dans A/p, donc @ = 0,4/, (puisque
A/p est un anneau inteégre), soit a € p.

La réciproque est plus difficile. Si f € A n’est pas nilpotent, nous allons construire un idéal premier
p de A tel que f ¢ p. Considérons I’anneau A, défini dans ’exerc. 11.9(9). Il n’est pas nul car 04 n’est
pas dans la partie multiplicative engendrée par f (exerc. 11.9(5)). Il admet donc un idéal maximal (donc
premier) et celui-ci ne contient pas f /14 (parce que ce dernier est inversible dans 1’anneau A ¢). Son image
inverse par le morphisme A — Ay est un idéal premier de A qui ne contient pas f.

L’énoncé général se déduit de ce cas particulier : I’'image inverse par le morphisme canonique A — A/I
de 'intersection des idéaux premiers de A/I est I’intersection des idéaux premiers de A contenant /, mais
c’est aussi, par le cas déja traité, I'image inverse de 1’idéal des éléments nilpotents de A/I, c’est-a-dire le
radical de . O

3. Divisibilité, éléments irréductibles

Soit A un anneau intégre et soient a et b des éléments de A. On dit que a divise b, et on écrit a | b, s’il
existe ¢ € A tel que b = aq. En termes d’idéaux, c’est équivalent a (a) 2 (b). En particulier, tout élément
divise 0, 0 ne divise que lui-méme, et un élément de A est une unité si et seulement s’il divise tous les
éléments de A.

Ona(a | betb | a)sietseulement s’il existe u € A* tel que a = wb. On dit alors que a et b sont
associés.

Un élément de A est irréductible si a n’est pas inversible et que si a = xy, alors soit x, soit y est
inversible (il n’y a donc pas d’éléments irréductibles dans un corps). La seconde condition signifie que les
seuls diviseurs de a sont ses associés et les unités de A.

Exemple 3.1. — Les éléments irréductibles de Z sont les &-p, avec p nombre premier. Ceux de R[X] sont
les polyndmes de degré 1 et les polyndmes de degré 2 sans racine réelle.

On dit que des éléments de A sont premiers entre eux si leurs seuls diviseurs communs sont les unités
de A.

Lemme 3.2. — Soit A un anneau intégre et soit a un élément irréductible de A. Tout élément b de A est
ou bien premier avec a, ou bien divisible par a.

Démonstration. — Supposons que b n’est pas divisible par a. Soit x un diviseur commun de a et de b;
on écrit a = xy. Remarquons que y n’est pas une unité : sinon, a diviserait x, donc b. Comme a est
irréductible, on en déduit que x est une unité : tout diviseur commun a a et b est donc une unité. O

Soit a un élément non nul de A. Si I’idéal (a) est premier, a est irréductible, mais la réciproque est
fausse en général, comme le montre I’ex. 3.4 ci-dessous.

Exemple 3.3. — Sin > 1,1’anneau Z/nZ est intégre si et seulement si I’entier n est premier. C’est alors
un corps. On a

n est un nombre premier < 1’idéal (n) est premier < n est irréductible.

Exemple 3.4. — Dans le sous-anneau Z[Z\/g] de C, le nombre 3 est irréductible (pourquoi?) mais
I’idéal (3) n’est pas premier, car 3 divise le produit (1 4+ 4/5)(1 — 4/5) mais aucun des facteurs.
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Noter que la « bonne fagon » de voir I’anneau Z[iv/5] est de le considérer comme 1’anneau quotient
Z[X]/(X? +5) : inutile de construire C pour cela!

4. Anneaux principaux

Un anneau A est principal si A est integre et que tout idéal de A est principal, c’est-a-dire qu’il peut étre
engendré par un élément. L’anneau Z est donc principal (ex. 2.3), mais pas I’anneau Z[X] des polyndmes a
coefficients entiers, ni ’anneau K[X, Y] des polyndmes a deux indéterminées a coefficients dans un corps
K (pourquoi?).

Si a et b sont des éléments d’un anneau principal A, I’idéal (a, b) est engendré par un élément de A,
uniquement déterminé a multiplication par un élément inversible de A pres. On I’appelle un pgced (« plus
grand commun diviseur ») de a et b, parfois noté a A b. De méme, I’idéal (a) N (b) est engendré par un
élément de A, uniquement déterminé a multiplication par un élément inversible de A pres, le ppcm (« plus
grand commun multiple ») de a et b, parfois noté a V b. Les pged (ou les ppcm) ne sont en général pas
uniques, mais ils sont tous associés.

On peut définir la notion de pgcd et de ppcm dans les anneaux integres généraux (mais ils n’existent pas
toujours) : on dit que d est un pgcd de a et de b si d divise a et b et si tout diviseur commun de a et de b
divise d; on dit que m est un ppcm de a et de b si m est un multiple de a et de b et si tout multiple commun
de a et de b est un multiple de m. Il faut vérifier que cette définition est compatible avec celle donnée ci
dessus.

Dans ce contexte, le « théoreme de Bézout », qui dit que a et b sont premiers entre eux si et seulement
s’il existe z et y dans A tels que

1) za+yb=1
est une tautologie. Mentionnons comme conséquence un résultat classique.

Lemme 4.1 (Gauss). — Soit A un anneau principal. Si a, b et ¢ sont des éléments de A tels que a divise
bc mais est premier avec b, alors a divise c.

De facon équivalente, si a et b sont premiers entre eux et qu’un élément de A est divisible par a et par
b, il est divisible par ab.
Démonstration. — Ecrivons be = ad (puisque @ divise be) et xa + yb = 1 (puisque @ et b sont premiers
entre eux). On a alors ¢ = (xa + yb)c = xac + yad, qui est bien divisible par a.

Pour la deuxieme formulation, on écrit x = bc (si b divise x). Si a divise aussi z, il divise ¢ par la
premiere formulation, donc ab divise x. O

Proposition 4.2. — Soit A un anneau principal et soient a, by, . .., b, des éléments de A.
(1) Si a est premier avec chacun des b;, alors a est premier avec by - - - ..
(2) Si les b; sont premiers entre eux deux a deux et que a est divisible par chacun des b;, il est divisible par
by ---by.
Démonstration. — Pour (1), on écrit le théoréme de Bézout pour chacune des paires (a, b;) : on a x;a +
y;b1 = 1. En prenant le produit de toutes ces identités, on obtient

(rra 4+ y1b1) -+ (xra + yrbyr) = 1.

Le membre de gauche s’écrit za + y1 - - - b1 - - - b, = 1, pour un certain z € A, ce qui montre que a est
premier avec by - - - b,.
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Pour (2), on procede par récurrence sur r, le cas r = 1 étant trivial. Supposons r > 2. Le point (1) nous
dit que b, est premier avec by - - - b,._1 et ’hypothése de récurrence que a est divisible par by - - - b,_1 (et
par b,.). La deuxieme version du lemme de Gauss entraine que a est divisible par by - - - b,.. 0

Dans un anneau principal A, les équivalences de I’ex. 3.3 restent vraies.

Proposition 4.3. — Soit A un anneau principal et soit a un élément non nul de A. Les propriétés suivantes
sont équivalentes :

(i) ’idéal (a) est premier, ¢’est-a-dire que I’anneau quotient A/(a) est intégre;
(ii) a est irréductible;

(iii) ’idéal (a) est maximal, c¢’est-a-dire que I’anneau quotient A/(a) est un corps.

En particulier, ’anneau Z[i/5] de 1’ex. 3.4 n’est pas principal. Nous verrons dans le § 6 que les pro-
priétés (i) et (ii) (mais pas (iii) en général) restent équivalentes pour une classe bien plus vaste d’anneaux,
les anneaux factoriels.

Démonstration. — On sait qu’en général (iii) = (i) = (ii). Supposons a irréductible et soit I un idéal
de A contenant (a). Comme A est principal, on peut écrire I = (x), de sorte qu’il existe y € A tel que
a = zy. Comme a est irréductible, soit z est inversible et [ = A, soit y est inversible et / = (a). Comme
a n’est pas inversible, on a (a) # A, donc I’idéal (a) est maximal. O

Théoreme 4.4 (des restes chinois). — Soit A un anneau principal et soient a1, . . . a, des éléments de A
premiers entre eux deux a deux. L’application

A — A/(ar) x - x A/(a,)
x — (T,...,T)

est un morphisme d’anneaux surjectif et son noyau est I'idéal (a1 - - - a,). Il induit donc un isomorphisme
d’anneaux

Af(ay---a.) = Af(ar) x -+ x Af(a).

Démonstration. — 11 est clair que 1’application en question est un morphisme d’anneaux. Posons a =
ay - -+ a, et montrons que son noyau est I’idéal (a). Il est clair que cet idéal est contenu dans le noyau.
Inversement, si x est dans le noyau, il est divisible par a1, . .., a, donc par a (cor. 4.2(2)). Le théoréme de
factorisation donne donc un morphisme injectif

Af(ar--ar) = Af(ar) x - x Af(ar).

Notons que lorsqu’on a A = Z, on peut abréger le reste de la démonstration en remarquant que ces deux
ensembles sont finis (on peut supposer qu’aucun des a; n’est nul) et de méme cardinal. L’application est
donc bijective.

Revenons au cas général pour montrer que I’application est surjective. Procédons par récurrence sur 7.
Sir =2,onécrit 1 = x1a; + x2ag. Siby, b € A, I'image de x1a1be + x2a2by dans A/(aq) x A/(ag) est
alors (b1, by). L’application est donc surjective.

Pour passer de » — 1 a v, on remarque que a; est premier avec asg - - - a, (prop. 4.2(1)). On a donc (cas
r = 2) une surjection
A— Af(ar) x Af(ag---ay)

et on conclut avec I’hypothese de récurrence, qui donne un isomorphisme A/(as - - - a,) = A/(az) X -+ - X
A/(a,) : par composition, on obtient que le morphisme A — A/(ay) x - -- x A/(a,) est bien surjectif. [
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Le théoréme des restes chinois nous permet d’analyser la structure du groupe multiplicatif (Z/nZ)* des
unités de I’anneau Z /nZ.

Lemme 4.5. — Soit n un entier strictement positif. Le groupe (Z/nZ)* des unités de I’anneau Z /nZ est
Sformé des classes d’entiers premiers avec n. On note p(n) son cardinal.

Démonstration. — Les éléments inversibles de 1’anneau Z/nZ sont les classes Z telles qu’il existe une
classe g vérifiant 7y = 1 dans Z/nZ, c’est-a-dire xy = 1 (mod n). Par le théoréme de Bézout (1), c’est
équivalent a dire que y et n sont premiers entre eux. U

On appelle ¢ la fonction indicatrice d’Euler. Une premiere conséquence du théoréeme des restes chinois
est que si m et n sont des entiers premiers entre eux, on a

p(mn) = p(m)p(n).

Théoréme 4.6. — Soit n un entier strictement positif et soit n = p;*

de facteurs premiers.

- plr sa décomposition en produit

(1) On a un isomorphisme d’anneaux
Z/nZ ~Z/p"ZL x - X L) Zp;".
(2) On a un isomorphisme de groupes
(Z/nZ)" = (Z/p"Z)" x --- x (Z/p;" Z)".
(3)Ona
e(n) =n(l—1/p1)--- (1 —=1/py).

Démonstration. — Les points (1) et (2) résultent du théoréme des restes chinois, puisque les p;* sont
premiers entre eux deux a deux. Pour le point (3), il suffit de remarquer que le cardinal de (Z/p}*Z)*, qui
est le nombre d’entiers m premiers a p;* et tels que 1 < m < p;*, est p;* — p;"i_l (il suffit de retirer les
multiples de p;). O

On peut aller plus loin dans cette analyse et étudier la structure du groupe multiplicatif (Z/p?Z)* pour
p premier et v > 1. Le cas p > 3 est assez simple : les groupes (Z/p¥Z)* sont tous cycliques; mais ce
n’est plus le cas pour les groupes (Z/p”Z)* lorsque v > 3. Nous laissons ¢a en exercice (voir prop. 11.2.17
pour le cas de (Z/pZ)*).

5. Anneaux euclidiens

Dans la pratique, on montre souvent qu’un anneau intégre A est principal en exhibant une division
euclidienne sur A, c¢’est-a-dire une fonction ¢ : A \ {04} — N telle que pour tous éléments a et b de A,
avec b £ 0, on puisse écrire a = bg+ 1 avec r = 0, our # 0 et p(r) < ¢(b) (on ne demande pas I’ unicité).
Un anneau est euclidien s’il est integre et qu’il existe une telle fonction ¢ (appelée « stathme euclidien »).

Les deux exemples fondamentaux sont :
e I’anneau Z est euclidien pour la fonction ¢(n) = |n|;

e si K est un corps, I’anneau K [X] est euclidien pour la fonction ¢(P) = deg(P).

Théoréme 5.1. — Tout anneau euclidien est principal.
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Démonstration. — Soit A un anneau intégre muni d’un stathme euclidien ¢ : A\ {04} — N. Soit I un
idéal de A. Si I est nul, il est engendré par 0 4. Sinon, soit z un élément non nul de I tel que ¢(x) soit
minimal. Nous allons montrer que I est engendré par x.

Soit a un élément quelconque non nul de I. On écrit a = xq + r avec r = 0, our # 0 et p(r) < ().
Comme q et x sont dans I, il en est de méme pour r = a — xq. Sir # 0, on a p(r) < ¢(x), ce qui est
impossible puisque () est minimal. On adonc r =0 et a € (). O

Il existe des anneaux principaux non euclidiens, mais ils sont difficiles a construire (c’est le cas de

I’anneau Z[(1 + /—19)/2)).

Dans un anneau euclidien A, la division permet d’écrire un algorithme (dit « d’Euclide ») qui, étant
donnés des éléments a et b non nuls de A, fournit un pgcd. Il fonctionne ainsi :
— on fait la division a = bg + r;
— sir = 0 (c’est-a-dire si b divise a), on arréte : a A b = b;
— sir # 0, onreplace (a, b) par (b, r) (avec p(r) < p(b)).
Comme la suite des entiers naturels ((b) est strictement décroissante, I”algorithme s’arréte en temps fini. A
chaque étape, le pged de a et b ne change pas (puisqu’on remplace (a, b) par (b, a — bq)) : on aboutit donc
bien a a A b. D’autre part, 1’algorithme fournit bien des éléments x et y de A tels que xa + yb=a A b : si
on note (a;, b;) la paire obtenue a I’étape ¢, avec b, = a Ab,onaa; = b;_1 etb; = a;—1 — b;_1¢;—1, donc
@i41 = a;—1 — a;q;—1,d’on

aANb = Ap+1

Ap—1 — GpnQn—1 =: Tp—10p—1 + Yn—10an

Tp_10p-1 + ynfl(anf2 - an71Qn72) =!Tp_20p_2+ Yn—20n—1

= xi1a0+ Y101 = T1a0 + Y1bo.

Exemple 5.2. — Calculons le pgcd de deux nombres de Fibonacci consécutifs (c’est 1a ou 1’algorithme
est le plus long), par exemple 8 A 13. On écrit

8§ = 13-0+8 (8,13) — (13,8)

13 = 8-145 (13,8) — (8,5)

8§ = 5-143 (8,5) — (5,3)

5 = 3-142 (5,3) — (3,2)

3 = 2141 (3,2) = (2,1)

2 = 1-240 8AN13=1

Pour calculer les coefficients de Bézout, on écrit
1=3-2=3-(5-3)=2-3—-5=2-(8—5)—5=2-8—3-5=2-8—3-(13—-8)=5-8—3-13.
La division euclidienne est aussi utile pour décomposer une matrice a coefficients dans un anneau eu-

clidien comme produit de matrices élémentaires (ce qu’on ne peut pas toujours faire pour les matrices a
coefficients dans un anneau principal).

6. Anneaux factoriels

La notion de factorialité généralise la propriété de décomposition unique des nombres entiers en pro-
duit de nombres premiers. Le résultat principal de cette section est que tous les anneaux principaux sont
factoriels. Commengons par la définition formelle.
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Définition 6.1. — Soit A un anneau. On dit que A est factoriel s’il vérifie les propriétés suivantes
() A est un anneau intégre;
(E) tout élément non nul de A s’écrit sous la forme upy ---p,, avec u € A*, r € N et p1,...,p:r
irréductibles ;

(U) cette décomposition est unique, « a permutation et a multiplication par des inversibles pres » : si
upL - Pr = VG- qs, avec u, v € A* et p1,...,pr,q1,...,qs, onar = s etil existe 0 € S, tel
que p; et g (;) Solent associés pour tout i.

Il est pratique d’introduire un systéme de représentants &7 des éléments irréductibles de A, c’est-a-dire
un sous-ensemble & de A qui contient un et un seul élément irréductible par classe d’associés. Lorsque
A = Z, on peut prendre pour & les nombres premiers positifs. Lorsque A est I’anneau des polyndmes a
une indéterminée a coefficients dans un corps, on peut prendre pour &2 I’ensemble des polyndmes irréduc-
tibles unitaires. Tout élément a d’un anneau factoriel s’écrit alors de fagon unique comme

@ a=u [[ ",

pEZ

ot les vy (a) (la valuation p-adique de a) sont des entiers naturels presque tous nuls.

Dans la définition ci-dessus, c¢’est la propriété (U) qui est la plus contraignante ; la propriété (E) est en fait
satisfaite dans une classe beaucoup plus vaste d’anneaux. Expliquons pourquoi. Soit A un anneau intégre
et soit a un élément de A ne pouvant s’écrire comme dans (E). Il n’est alors pas irréductible, donc on peut
I’écrire @ = a;1by, ol ni ay, ni by ne sont des unités, c’est-a-dire (a) C (a1) et (a) < (b1). Remarquons
que a; et by ne peuvent étre tous les deux irréductibles; on peut donc écrire par exemple a; = asbs, ol
ni ag, ni by ne sont des unités. On continue ainsi le processus, ce qui construit une suite infinie strictement
croissante d’idéaux

(a) € (a1) & (a2) S (a3) & -
Il s’avere que de telles chaines infinies d’idéaux (pas nécessairement principaux) n’existent pas dans les
anneaux noethériens (on peut prendre ¢ca comme leur définition), une classe tres vaste d’anneaux (qui
contient celle des anneaux principaux) nommés ainsi en ’honneur d’Emmy Noether, mathématicienne
allemande du début du XX° siecle, qui les a beaucoup étudiés. C’est par ailleurs clair dans 1’anneau Z
(puisqu’on a alors |a;1+1] < |a;|), ou dans I’anneau des polyndmes a une indéterminée a coefficients dans
un corps (puisqu’on a alors deg(a;+1) < deg(a;)), ou plus généralement dans un anneau euclidien.

Théoréme 6.2. — Tout anneau principal est factoriel.

Démonstration. — Nous allons procéder en deux temps, en montrant d’abord que les anneaux principaux
vérifient la propriété (E), puis en donnant une caractérisation des anneaux factoriels parmi les anneaux
integres vérifiant (E).

Lemme 6.3. — Tout anneau principal vérifie la propriété (E).

Démonstration. — Comme on 1’a remarqué plus haut, il suffit de montrer qu’il n’existe pas de suite infinie
(I,)nen strictement croissante d’idéaux d’un anneau principal A. Soit [ := UnEN I,,; c’est un idéal de
A:siz,y € l,ilexiste m,n € Ntelsquex € I, ety € I,,. Sia € A,onabien azx € I,;, C I. On a aussi
T,y € Imax{mvn}, doncx+y € Imax{m,n} Cr

Comme A est principal, 1’idéal I est engendré par un élément a de I. Il existe un entier » € N tel que
a € I.,desorte que I = (a) C I, C I,etl, = I, = I pour tout s > r, ce qui contredit I’hypotheése que la
suite (I, )nen est strictement croissante. O

Lemme 6.4. — Soit A un anneau intégre vérifiant la propriété (E). Les propriétés suivantes sont équiva-
lentes :
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(i) I’anneau A est factoriel ;

(i) pour tout élément irréductible p de A, I’idéal (p) est premier;

(iii) le lemme de Gauss 4.1 est vrai dans A : si a, b et ¢ sont des éléments de A tels que a divise bc mais
est premier avec b, alors a divise c.

Démonstration. — Supposons (iii). Soit p un élément irréductible de A. On a (p) # A car p n’est pas
inversible. Si ab € (p), alors p | ab. Par le lemme 3.2, soit p divise a, auquel cas a € (p), soit p est premier
avec a, auquel cas p divise b par le lemme de Gauss, ¢’est-a-dire b € (p). Donc (iii) = (ii).

Supposons (ii). Pour montrer que A est factoriel, il suffit de comparer des décompositions a =
ull,e P = v][],c5p*r. Siwy, # vy, pourunpy € &, on a par exemple wy,, > vy, et py divise
HpE P ppo p”P: Comme.l’ldeal (‘.DO) est Premler, po divise un p # pg. C.es .deux éléments irréductibles
sont alors associés, ce qui contredit le choix de 7. On a donc une contradiction, de sorte que wp, = vy,
pour tout py € &, donc (ii) = (i).

Enfin, si ’anneau A est factoriel et que a divise be, soit a = 0, auquel cas be = 0, donc soit b, soit ¢ est
nul, et a le divise, soit a, b, ¢ # 0, auquel cas on a v,(a) < v,(b) + v,(c) pour tout p € & (car a divise
be). Comme @ est premier avec b, on a, pour tout p, soit v,(a) = 0, soit v,(b) = 0. Dans les deux cas, on

obtient v, (a) < vp(c), ¢’est-a-dire a | c. Donc (i) = (iii). O
Le théoreme résulte alors de I’implication (ii) = (i) et de la prop. 4.3. O
Proposition 6.5. — Soit A un anneau factoriel et soient a et b des éléments non nuls de A qu’on écrit

comme dans (2). Alors a divise b si et seulement si v,(a) < v, (b) pour tout p € 2.

Démonstration. — Si v,(a) < v,(b) pour tout p € 22, il est clair que @ | b. Inversement, si a | b, alors,

vp, (@

pour tout py € &, ona pg ) | Hpe@ per®).si Up, (@) > vp, (b), alors po | Hpeﬂ,p#po p ), ce qui est
absurde puisque 1’idéal (pg) est premier (lemme 6.4(ii)) mais que po ne divise aucun des termes du produit
e ptno p?»(®). On a donc démontré v, (a) < vy, (b), d’ou la proposition. O

Les pgcd et les ppcm, qu’on a définis dans tout anneau integre (§ 4), mais dont on n’a montré I’existence
que dans les anneaux principaux, existent aussi dans les anneaux factoriels.

Proposition 6.6. — Soit A un anneau factoriel et soient a et b des éléments de A. Alors le pged a \'b et le
ppem a NV b existent : si a et b sont non nuls et que

a=u [ p@ , b=uv]]p"®,
peEPL peEP
ona

anb= [[ pne@n®) gy p = J] prextmne)
peEP peP

En particulier, on a, dans un anneau factoriel, (a A b)(a V b) = ab, une propriété qu’on avait déja établie
dans les anneaux principaux (exerc. 11.11).

Démonstration. — Sia =0,ona0Ab=>bet0Vb=0.Supposons a et b non nuls. Avec les notations de
I’énoncé de la proposition, d := [ c 5 prind{vp(@).ve ()} divise a et b. Siz divise a et b, on a v, (z) < vp(a)
et vp(z) < vp(b) pour tout p € & (prop. 6.5), donc vy, (x) < vp(d), et x| d (prop. 6.5). Ceci montre que d
est bien un pged de a et b. On procede de fagon analogue pour le ppcm. O
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7. Factorialité des anneaux de polynémes

Soit A un anneau factoriel. Nous allons montrer que ’anneau A[X| des polyndmes a une variable a
coefficients dans A est encore factoriel. Pour cela, nous identifions tout d’abord les éléments irréductibles
de ’anneau A[X] en les comparant a ceux de I’anneau principal K 4[X], puis nous utilisons la factorialité
de I’anneau K 4[X] (th. 6.2). On rappelle que, comme A est integre, les unités de I’anneau A[X] sont celles
de A.

Définition 7.1. — Soit A un anneau factoriel. Le contenu d’un élément P de A[X], noté c(P), est le pged
de ses coefficients. On dit que P est primitif si ¢(P) = 1.

Le contenu n’est défini qu’a multiplication par une unité prés. Si P est un polyndme non nul, ¢(P) est
non nul et P/¢(P) est un polyndme primitif.

Lemme 7.2 (Gauss). — Soit A un anneau factoriel. Si P,Q € A[X], on a ¢(PQ) = ¢(P)c(Q).

Démonstration. — On peut supposer P et () non nuls et il suffit, en considérant P/c¢(P) et Q/c(Q), de
montrer que le produit de polyndmes primitifs P, () est encore primitif.

Or si ¢(PQ) # 1, il est divisible par un élément irréductible p. Cela signifie que dans I’anneau intégre
A/(p)[X], on a PQ = 0 donc, par exemple P = 0. Cela signifie que tous les coefficients de P sont
divisibles par p, c’est-a-dire p | ¢(P), ce qui contredit I’hypothese que P est primitif. O

Théoréme 7.3. — Soit A un anneau factoriel de corps des fractions K 4. Les éléments irréductibles de
I’anneau A[X)| sont :

— les éléments irréductibles de A;

— les polynomes primitifs de degré au moins 1 qui sont irréductibles dans K 4[X].

Démonstration. — Soit P € A[X] un polyndme constant (c’est-a-dire de degré 0, ou encore dans A). S’il
s’écrit P = @R, les polyndmes @) et R sont aussi de degré 0, donc dans A. Comme A[X]* = A*, cela
revient donc au méme, pour un polyndme constant, d’étre irréductible dans A ou dans A[X].

Supposons maintenant P de degré au moins 1. Si P est irréductible dans A[X], il est primitif puisqu’on
peut toujours le décomposer en produit P = ¢(P)(P/c(P)) de deux éléments de A[X]. Montrons qu’il est
irréductible dans K 4[X]. Si P = QR, avec Q, R € K 4[X], on peut écrire Q = Q1 /g et R = Ry /r, avec
g, € Anonnuls et Q1, Ry € A[X], soit encore gr P = Q1 R;. En prenant les contenus, on obtient, par le
lemme de Gauss,

gr =c(Q1)c(R1) (mod A*),

Q1R Q1R Q1 Ry

P=QR= = = mod A*).
R =0 = auem) = (@) my) - 01 4

Comme P est irréductible dans A[X], I'un de ces facteurs est une unité dans A[X], donc est de degré 0.

L’un des facteurs Q ou R est alors de degré 0, donc inversible dans K 4[X]. On a donc bien montré que P

est irréductible dans K 4[X].

soit encore

Supposons inversement P primitif et irréductible dans K4[X]. Si P = QR, avec @, R € A[X], l'un
des facteurs, par exemple @, est une unité dans K 4[X], donc de degré 0. Comme ¢(P) = ¢(Q)c(R) est
une unité, @ et R sont tous deux primitifs, et @) est inversible dans A[X]. On a ainsi montré que P est
irréductible dans A[X]. O

Le th. 7.3 dit que pour un polynéme primitif de A[X], il revient au méme d’étre irréductible dans
A[X] que dans I’anneau principal K 4[X] (ce n’est pas du tout évident, puisqu’il y a a priori plus de
décompositions possibles dans K 4[X] que dans A[X]).



7. FACTORIALITE DES ANNEAUX DE POLYNOMES 13

Théoréme 7.4. — Soit A un anneau factoriel. Les anneaux de polynomes A[ X, ..., A,] sont aussi fac-
toriels.

Démonstration. — 1l suffit bien sir de traiter le cas n = 1, ¢’est-a-dire de montrer que 1’anneau A[X] est
factoriel.

Comme A est factoriel, il est integre, donc A[X] est aussi integre. Montrons la propriété (E) d’existence
d’une décomposition de P € A[X] non nul en produit d’irréductibles. En écrivant P = ¢(P)(P/c(P)) et
en décomposant ¢(P) en produit d’irréductibles de A (qui sont irréductibles dans A[X] par le th. 7.3), on
voit qu’il suffit de traiter le cas ou P est un polyndme primitif non constant.

L’anneau K 4 [X|] étant principal, donc factoriel, il existe une décomposition de P en produit de polynd-
mes irréductibles de K 4[X]. En chassant les dénominateurs, on peut écrire cette décomposition comme

aP=P ---P. otacAetP,..., P, € A[X], irréductibles dans K 4[X].

En prenant les contenus, on obtient, par le lemme de Gauss, a = ¢(P) - - - ¢(F,), d’ou

Py P,

() e(Pr)

Les P; /c(P;) sont des polyndmes primitifs de A[X] associés aux P; dans K 4[X], donc encore irréductibles
dans cet anneau. IIs sont donc irréductibles dans A[X] par le th. 7.3. Ceci établit bien la propriété (E).

avecu € A*.

P=u
c

Par le lemme 6.4, il suffit maintenant de montrer que si P € A[X] est irréductible, alors 1’idéal (P) est
premier. Si P est constant, ¢’est un élément irréductible de A et comme A est factoriel, il engendre un idéal,
encore noté (P), premier dans A. Or les anneaux A[X]/(P) et (A/(P))[X] sontisomorphes : cela provient
de la factorisation canonique du morphisme d’anneaux surjectif A[X] — (A/(P))[X]; comme A/(P) est
un anneau intégre, il en est de méme de ’anneau (A/(P))[X], donc aussi de I’anneau A[X]/(P), de sorte
que I’idéal (P) est bien premier dans A[X].

Supposons maintenant P de degré au moins 1. Il est alors primitif et irréductible dans K 4[X] (th. 7.3).
Montrons que 1’idéal (P) est premier dans A[X]. Si P divise QR, avec ), R € A[X], il divise par exemple
Q dans K 4[X] (puisque P est irréductible dans cet anneau principal). On peut donc écrire comme d’habi-
tude a@ = PS, aveca € Aet S € A[X]; en prenant les contenus, on obtient ac(Q) = ¢(S), donc a | ¢(5)
et S/a € A[X]. Comme Q = P - (S/a), on en déduit que P divise @ dans A[X]. Ceci montre que 1’idéal
(P) est bien premier dans A[X]. O

Exemple 7.5. — Les polyndmes irréductibles de C[X] sont les polyndmes de degré 1. Les polyndmes
irréductibles de R[X] sont les polyndmes de degré 1 et les polyndmes aX? + bX + c avec b2 — 4ac < 0.

Le théoréme suivant est un critere d’irréductibilité bien pratique pour les polyndmes a coefficients dans
un anneau factoriel.

Théoreme 7.6 (Critere d’Eisenstein). — Soit A un anneau factoriel de corps des fractions K 5 et soit
P=a, X"+ --+ag € A[X] un polynéme non constant. On suppose qu’il existe un élément irréductible
p de A tel que

(a) p ne divise pas a,,;

(b) pdivise ap—1,...,a9;

(c) p? ne divise pas ay.
Alors P est irréductible dans K 5[ X| (et donc dans A[X)] s’il est primitif).

Démonstration. — La propriété (a) entraine que le contenu ¢(P) n’est pas divisible par p. Le polyndéme
primitif P/c(P) vérifie donc les propriétés (a), (b) et (c) et on peut supposer P primitif de degré au moins 2.
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Si P n’est pas irréductible dans K 4[X], il ne I’est pas non plus dans A[X] par le th. 7.3, donc il s’écrit
P=QR=(b;X"+ - +bp)(cs X+ -+ cp),
avec @, R € A[X] de degré aumoins 1 etr,s > 1. Onadonc n =r + set a,, = b.cs.

Réduisons cela modulo p, ¢’est-a-dire que 1’on regarde cette égalité dans 1’anneau integre (A/(p))[X].
On a par hypothese P = a,, X", avec a,, # 0, de sorte que b,,é; # 0. Comme X est irréductible dans
I’anneau principal K 4 /() [X], c’est la décomposition de P en produit d’irréductibles dans cet anneau. Le
seul facteur irréductible de Q et de R est donc X, de sorte que Q = b, X" et R = ¢,X*. On en déduit
0 =by = &, ce qui signifie que by et cy sont tous les deux divisibles par p. Mais ag = bgcg est alors
divisible par p?, ce qui contredit (c). On a donc bien montré que P est irréductible dans K 4 [X]. ]

On peut aussi terminer la preuve ci-dessus avec I’argument plus terre-a-terre suivant : comme ag =
boco n’est pas divisible par p?, les éléments by et ¢y de A ne peuvent é&tre tous les deux divisibles par p.
Supposons donc p 1 by et soit t € {0, s} le plus petit entier tel que p 1 ¢;, de sorte que ¢;—1,¢i—2, . .. sont
divisibles par p. Alors, a; = bocy + bici—1 + - -+ = bpey Z 0 (mod p), ce qui contredit 1’hypothése (b).

8. Polynomes a une variable

8.1. Racines d’un polynéome a une variable. — Soit A un anneau commutatif et soit
P(X)=a, X"+ - +ao
un élément de A[X]. Soit = un élément de A. On pose
P(z):=apa"™ + -+ ag € A.

L’application

est un morphisme d’anneaux appelé évaluation en x.

On a pour tout entier m > 1 I’identité remarquable
m—1
X" —a"m=(X - m)(z xle_l_’).
i=0

En particulier, le polyndme X — z™ est divisible par X — z. Il s’ensuit que le polynéme

P(X)—P(z)=(an X"+ - +ap) — (a2 + -+ ap) =an (X" —2")+ -+ a1(X — x)

est aussi divisible par X — x (2).

On dit qu’un élément x de A est une racine de P si P(x) = 04. Nous avons donc démontré le résultat
suivant.

Proposition 8.1. — Soit A un anneau commutatif, soit P un élément de A[X] et soit x un élément de A.
On a équivalence entre

(1) x est racine de P, c’est-a-dire P(x) =04 ;

(ii) le polynome P est divisible par X — x dans A[X].

2. On peut aussi raisonner ainsi : comme le polyndme X — z est unitaire, on peut diviser P par X — x dans A[X]. On obtient
P(X)=(X —2)Q(X) + R(X), avec R = 0 oudeg(R) < deg(X — z) = 1, c’est-a-dire que R est une constante. En « faisant
X = z»,onobtient R(X) = P(x),d o P(X) = (X — 2)Q(X) + P(z) : le polyndme P(X) — P(x) est donc bien divisible
par X — z.
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Définition 8.2. — Soit A un anneau commutatif, soit P un élément non nul de A[X] et soit x un élément

de A. On appelle multiplicité de x comme racine de P le plus grand entier m tel que P est divisible par
(X —x)™

Cette définition a un sens méme si A n’est pas intégre : le polynéme (X — x)™ étant unitaire, on a
m < deg(P) s’il divise P.

Proposition 8.3. — Soit A un anneau intégre. Soit P un élément non nul de A[X| et soient x1,...,x, € A
des racines distinctes de P, de multiplicités respectives myq, . .., m,. Alors P est divisible par le polynome
(X —z1)™ ... (X — x.)™. En particulier, deg(P) > mq + - - + m,.

Un polyndme a coefficients dans un anneau integre qui a un nombre infini de racines est donc nul.

La conclusion de la proposition ne subsiste pas dans un anneau non intégre : dans Z/8Z, le polyno-
me 4X, de degré 1, a quatre racines (simples), 0, 2, 4, 6.

Démonstration. — Plagons-nous dans 1’anneau principal K 4[X]. Soit ¢ # j; comme X — z; et X — z;
sont premiers entre eux (une relation de Bézout est — iz (X —2;) — (X —x;)) = 1), il en est de méme
de (X — ;)™ et (X —x;)™, par deux applications]de la prop. 4.2(1). Comme P est divisible par chaque
(X — x;)™, il est divisible par leur produit (prop. 4.2(2)), dans I’anneau K 4[X]. Mais le quotient de P

par [[,(X — x;)™ est en fait dans A[X], puisque [[,(X — 2;)™ est un polynéme unitaire. O

8.2. Relations entre coefficients et racines d’un polynéme. — On dit qu’un élément P de A[X] est
scindé (dans A[X]) si
P(X) = a(X 1)+ (X — ),

avec a, x1,...,T, € A (pas nécessairement distincts).
Définition 8.4. — Soit A un anneau commutatif et soient n et r des entiers strictement positifs. On appelle
r-ieme polyndmes symétrique élémentaire le polynéme

Se(Xp, o X)) = Y X X

1< < <ir<n
Ces polyndmes sont a coefficients entiers. On a en particulier
El(Xl,...,Xn):X1+~'~+Xn7 En(Xl,...,X7L)=X1~'~Xn, Z,.(Xl,...,Xn):0pourr>n.
Ces polyndmes sont symétriques dans le sens ou, pour toute permutation s € &,,, on a
S (X os Xom) = So(Xn -, Xo).

Proposition 8.5. — Soit A un anneau intégre. Soit P(X) = a, X™ + - -+ + ag un polynéme scindé de
A[X], avec a,, # 0, de racines x1, . .., x,, (pas nécessairement distinctes). Pour toutr € {1,...,n}, ona

S, zn) = (1) an—r/an.

Démonstration. — 11 suffit de développer I’expression P(X) = a,(X — 1) -+ (X — x,,) et d’identifier
les coefficients de X . 0

Par exemple, si n = 3 et agag # 0, on a

1 1 1 o ToX3 + T1T3 + T1X2 - al/ag o aq
T X9 w3 T17273 —ag/a3 ao
ainsi que
2
aj + 2asas3
2} + 23 + 23 = (21 + 22 + 3)° — 2(2122 + Taw3 + 2371) = (a1/a3)” — 2(—az/az) = —5——

as
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On peut ainsi calculer ces expressions, qui sont symétriques en les racines, sans effectivement connaitre
celles-ci.

8.3. Polynome dérivé et formule de Taylor. —

Définition 8.6. — Soit A un anneau commutatif et soit P = a, X™ + - -+ + ag un élément de A[X]. On
appelle polyndome dérivé de P le polynome

P/(X):=na, X" '+ +a.

Il est clair que la dérivation est linéaire (c’est un morphisme de groupes abéliens) : on a (P 4+ Q)" =
P’ 4+ @Q’. On vérifie par un calcul direct la formule de Leibniz

VP,Q e AlX]  (PQ) =PQ+PQ,
ainsi que
VP, Q € AlX] (PoQ) = (P oQ)Q".

Lorsque A = R, la fonction polynomiale z — P’(x) est bien la dérivée (au sens des fonctions réelles de
variable réelle) de la fonction polynomiale x — P(x), mais notre définition générale est purement formelle
et ne fait pas intervenir de notion de limite (qui n’aurait aucun sens dans un anneau général).

La dérivée d’un polyndme constant est nulle mais un polyndome de dérivée nulle peut ne pas étre
constant : si p est un nombre premier, c¢’est le cas du polyndéme X? dans (Z/pZ)[X].

On peut itérer I’opération de dérivation en posant P := (P')’, etc. On définit ainsi P("), la dérivée

r-iéme de P, pour tout entier naturel . Noter que P(") = 0 pour tout 7 > deg(P).

Proposition 8.7 (Formule de Taylor). — Soir A un anneau commutatif, soit P € A[X] un polyndéme de
degré inférieur ou égal a n, et soit v € A.

(1) Si n! - 14 est inversible dans A, on a

X _ X _ n
Puj:P@HJﬂmLT§Q+~AJﬂ%mL—ﬁL.
! n!
(2) Sim! - 14 est inversible dans A, on a, lorsque 0 < m < n,
& est racine de P d’ordre >m <= P(z)=---= P™(z) = 0.
Démonstration. — 11 suffit de montrer la proposition pour x = 04 puis de I'appliquer au polyndome
Q(X) := P(X + z), en notant que P (z) = Q) (0). O

Exemple 8.8. — Considérons le polyndme P(X) = X? — X € (Z/pZ)[X]. Comme (Z/pZ)* est un
groupe (multiplicatif) d’ordre p — 1, on a (théoréme de Lagrange) =1 = 1 pour tout x € (Z/pZ)*,
donc 2P = z pour tout x € Z/pZ. Le polyndme P a donc au moins p racines distinctes. Comme il est de
degré p, ce sont toutes ses racines, elles sont simples et (prop. 8.5)

xXP-X= [ (xX-2) e (z/pz)X].
x€Z/pZ

On vérifie dans ce cas la prop. 8.7(2) : on a P/(X) = —1 donc toutes les racines de P sont simples.
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9. Décomposition en éléments simples des fractions rationnelles

Soit K un corps. Une fraction rationnelle (a coefficients dans K) est un élément du corps des fractions
K (X) de I'anneau de polynémes K [X]. Elle s’écrit donc P/Q, avec P, @ € K[X] et Q non nul. Comme
I’anneau K'[X] est factoriel, on peut toujours supposer P et () premiers entre eux.

Le théoreme suivant est parfois utile pour trouver des primitives des fractions rationnelles. C’est un
classique des programmes de classes préparatoires dont la vraie utilité mathématique est marginale. Il est
aussi au programme de 1’agrégation. L’ énoncé théorique est simple a démontrer ; la mise en ceuvre pratique
de la décomposition donne lieu a des myriades d’astuces (mais les ordinateurs font ¢a tres bien).

Théoréme 9.1. — Soit K un corps. Soient P et Q des éléments de K[X| premiers entre eux et soit
”
o-Tor
i=1

la décomposition de ) en produit de facteurs irréductibles. On peut écrire

SE+§(‘Z;1 ++125;’>,

on E,A;; € K[X]etdeg(4,; ;) < deg(Q:).

Le polyndme F est appelé partie entiére de la fraction rationnelle P/Q). Il est obtenu comme quotient
de la division euclidienne de P par Q).

Dans la pratique, on est souvent dans C, de sorte que les (); sont des polyndmes de degré 1 et les
A; ; des constantes, ou dans R (auquel cas il est souvent utile de commencer par décomposer sur C : on
regroupe ensuite les fractions dont les dénominateurs sont conjugués).

Je ne donnerai qu’une seule astuce : si Q1(X) = X — z et v; = 1 (c’est-a-dire x est racine simple de
Q). il est facile de déterminer la constante a = A; ;. Ecrivons Q(X) = (X — z)R(X), avec R(z) # 0;
on peut alors écrire

P a P1
T _pye & 1
0 "tTx—2T®m

On en déduit, en réduisant au méme dénominateur,
P(X) = E(X)Q(X) + aR(X) + (X — ) P1(X),
d’ott a = P(z)/R(z). On obtient d’autre part par dérivation Q'(X) = R(X) + (X — z)R/(X), soit
R(z) = Q'(x), d’ou finalement
_ P(z)
Q'(x)

a

Exemple 9.2. — Soit P € C[X] et soit n > deg(P); on pose w := ¢*7/™, Cherchons la décomposition
en éléments simples

D’apres ce qui précede, on a
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Si P € R[X], on peut en déduire la décomposition en éléments simples sur R[X] : si on suppose pour
simplifier n impair, on a

P(X) 1 wkP(wh)
Xr—1 2 n X —wk
k=0
(X 1) — n X — whk X —wk
- L (nl)/21<ka(wk)(X — o) + &P P(@R) (X —wk))
(X -1 — n (X —wF) (X — k)
- 1 X (Re(ka(wk))X - Re(P(wk)))
(X 1) n X2 —2cos 2km 41

10. Polynomes a plusieurs indéterminées

Soit A un anneau commutatif et soit n un entier naturel. On a construit dans I’ex. 1.6 ’anneau commu-
tatif A[X,...,X,] des polyndmes a n indéterminées a coefficients dans A.

10.1. Polynomes homogeénes. — Un mondme est un polynéme du type X fl c X

n

avec i1,...,%t, €
N. Son degré est I’entier naturel ¢ +- - -+4,,. Un polyndme P est homogene de degré d s’il est combinaison
linéaire a coefficients dans A de monémes de méme degré d. C’est équivalent a dire qu’on a I’égalité

P(YXy,...,YX,) =Y?P(X1,...,X,)
dans ’anneau A[X1,...,X,,Y].
Tout polyndome P non nul s’écrit de fagon unique comme somme
P=PFPy+ -+ Py,
ou d est le degré de P et P; est un polyndme homogene de degré .

Le produit de deux polyndmes homogenes de degré respectifs d et e est un polyndme homogene de
degré d + e. La somme de deux polynémes homogenes de méme degré d est un polyndme homogene de
degré d.

Si K est un corps, les polyndmes homogenes de degré d en n variables forment un K -espace vectoriel

de dimension (”Jrj*l).

Remarque 10.1. — On peut tres bien affecter aux indéterminées des degrés (entiers) différents,
deg(X;) = d;. Le degré du mondme X' - -+ X'» estalors iydy + - -+ + indy,.

10.2. Polynémes symétriques. — Soit A un anneau commutatif et soit n un entier naturel. On dit qu’un
polyndme P € A[X, ..., X,] est symétrique si, pour toute permutation o € &, on a

P(Xa(1)7 vee 7X0(n)) = P(Xla s aXn)
On a introduit dans la déf. 8.4 les polyndmes symétriques élémentaires

Se(XpL X)) = Y Xy e X,

1<i1 < <ip<n
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pour > 1. Le polyndme X, est symétrique, homogene de degré r. On peut aussi définir ces polyndmes
par I’identité
3) [Ty -x)=v"—Si(X1,... . X)Y" 44 (F1)"S0 (X, X)

i=1

ou encore
n

H(YXZ» +1) =S, (X, X))V 4 4+ 5 (X, XY +1
i=1

dans ’anneau A[X, ..., X,,Y] (avec &, = 0 pour r > n).

Théoréme 10.2. — Soit A un anneau commutatif et soit n un entier naturel. Pour tout polynéme symé-
trique P € A[X1, ..., X,), il existe un unique polynéme Q € A[Y1,...,Y,] tel que

P=Q(.,....5).

La démonstration de ce théoreme, sans étre difficile, demande du soin. Certaines preuves fournissent un
algorithme pour trouver le polynéme (). L’exercice 11.46 propose une telle preuve.

10.3. Sommes de Newton. — Soit A un anneau commutatif et soit n un entier naturel. Les sommes de
Newton sont les polyndmes symétriques

Sd(Xl,...,Xn) ::XflJr"'Jng

pour d > 0. D’apres le th. 10.2, ce sont des polyndmes a coefficients entiers en les polyndmes symétriques
élémentaires. On a par exemple S; = X1 et So = X2 — 23,.

Pour le théoreme suivant, on rappelle que X, = 0 pour r» > n.
Théoréme 10.3 (Formules de Newton—Girard—Waring). — On a, pour tout d € N,

Sqg— 21541+ + (—1)d_12d,151 + (—1)dd2d =0.
Ces relations permettent d’exprimer de proche en proche les S; comme polynomes en les ;..

Démonstration. — En substituant Y = X; dans (3), on obtient
X =S X e (-1, =0.
Si d > n, on multiplie par X l-d*" et on somme sur ¢, ce qui nous donne la formule cherchée.

Supposons maintenant d < n. Il s’agit de montrer que le polynéme Sy — X1 Sq_1 +- - -+ (—=1)4d%, est
nul. Or, chaque mondme qui pourrait apparaitre dans ce polyndme est de degré d; il implique donc au plus
d des variables X1, ..., X,. On voit aussi qu’il ne change pas si on annule les autres variables. Si on écrit,
en degré d, I’identité de Newton (qu’on vient de démontrer) pour ces d variables, on voit que le coefficient
de ce mondme est en fait nul. O

11. Exercices

11.1. Généralités. —

Exercice 11.1. — Montrer qu’un anneau integre fini est un corps.
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Exercice 11.2. — Soit A un anneau integre.

(1) Montrer que I’anneau A[X] des polynémes & une indéterminée a coefficients dans A est aussi intégre
et que son corps des fractions est K 4 (X).

(2) Quelles sont les unités de A[X]?
Exercice 11.3. — (1) Soit A un anneau commutatif. Décrire les unités des anneaux A[X] et A[[X]].

(2) Soit A un anneau intégre. Montrer que I’anneau A[X] des polyndmes 2 une indéterminée 2 coefficients
dans A est aussi integre et que son corps des fractions est K 4 (X).

(3) Soit K un corps. Montrer que I’anneau K [[X]] des séries formelles a coefficients dans K est un anneau
intégre et décrire les éléments de son corps des fractions (qu’on note K ((X))).

(4) Soit A un anneau intégre. Montrer que ’anneau A[[X]] des séries formelles a coefficients dans A est
aussi intégre. Montrer que son corps des fractions K 4[(x)) est un sous-corps de K4 ((X)) et caractériser
les éléments de K 4 ((X)) qui sont dans K af(x])-

Exercice 11.4. — Soit K un corps. Déterminer tous les idéaux de 1’anneau de séries formelles K [[X]].
Lesquels sont premiers ? Maximaux ?

Exercice 11.5. — Soit A un anneau commutatif.

(1) Soit I un idéal de A. Relier les idéaux de I’anneau A/T a ceux de A. Méme question pour les idéaux
premiers et maximaux.

(2) Soit f: A — B un morphisme d’anneaux. Montrer que I’'image réciproque par f d’un idéal premier est
un idéal premier. Que se passe-t-il pour les idéaux maximaux ?

(3) Soient I C J des idéaux de A. Montrer que I’anneau A/J est canoniquement isomorphe au quotient
de A/I par J/I.

(4) Soient I et J des idéaux de A. Montrer que I.J est inclus dans I N J. A-t-on toujours égalité ?

(5) Soient m et n des entiers naturels et soient I = mZ et J = nZ les idéaux qu’ils engendrent dans Z.
Déterminer les idéaux IJ, INJetl + J.

Exercice 11.6. — Soit A un anneau commutatif et soient I, ..., I,. des idéaux de A, avec r > 2, qui
vérifient I; + I; = Apourtout 1 <i < j<r.

(1) Montrer I’égalité Iy + I --- I, = A.

(2) Montrer I’égalité I --- I, = I, N--- N L.

(3) Montrer qu’on a un isomorphisme d’anneaux
A/(LNn---NL) = AL x - x A/

Exercice 11.7. — Soit A un anneau. Montrer 1’égalité

m=A A"

m idéal maximal de A

Exercice 11.8. — Soit A un anneau commutatif.
(1) Soit n un entier naturel. Etablir la formule du « bindme de Newton » :
n n . .
Va,b e A b)" = B A
a (a+b) ; <Z>a

(2) On dit qu’un élément a de A est nilpotent s’il existe un entier naturel n tel que a™ = 04. Montrer que
I’ensemble des éléments nilpotents de A forme un idéal de A.
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(3) Quels sont les éléments nilpotents de ’anneau Z/1000Z?

Exercice 11.9. — Soit A un anneau commutatif et soit S une partie multiplicative de A, c’est-a-dire
qu’elle contient 1 4 et qu’elle vérifie

Vs, t € S st € S.

(1) Montrer que la relation
(a,8) ~ (d',8") = (3t e S tlas’' —a's) =04)
sur A x S est une relation d’équivalence. On note ¢ la classe d’équivalence de (a, s).

(2) Montrer que 1’ensemble des classes d’équivalence pour cette relation, muni des opérations habituelles
sur les fractions, est un anneau. On le note S—! A.

(3) Si A est un anneau integre, montrer que S := A ~\ {04} est une partie multiplicative de A. Identifier
’anneau S—1 A.

(4) Montrer que les unités de I’anneau S~! A sont les fractions < telles que a divise un €lément de S.

(5) Montrer que S~! A est I’anneau nul si et seulement si S contient 0 4.

a

i est un morphisme d’anneaux. A quelle

(6) Montrer que 1’application A — S~!A qui envoie a sur
condition sur S est-il injectif ?

(7) Soit S C Z I’ensemble des entiers de la forme 10™, avec m € N. Décrire les éléments de S—1Z. Soit
T C Z I’ensemble des entiers de la forme 2™5™, avec m,n € N. Décrire les éléments de T~ 'Z. Plus
généralement, soit s (resp. t) un entier strictement positif et soit S (resp. T') I’ensemble des puissances de
s (resp. t). Quand les sous-anneaux S~'Z et T~'Z de Q sont-ils les mémes ?

(8) Soit p un idéal premier de A. Montrer que S := A \ p est une partie multiplicative de A. On note
habituellement A, I’anneau S~! A. Montrer que cet anneau n’a qu’un seul idéal maximal.

(9) Soit f un élément de A et soit S C Z la partie multiplicative des puissances positives de f. On note en
général Ay I’anneau S~'Z. Montrer que cet anneau est isomorphe a ’anneau A[X]/(fX — 14). Quel est
’anneau (Z/6Z), ? (L’anneau S—! A peut donc étre intégre sans que A le soit!)

(10) Si I’anneau A est principal et que 04 ¢ S, montrer que I’anneau S—! A est principal. Quelles sont ses
éléments irréductibles ?

(11) Si I’anneau A est factoriel et que 04 ¢ S, montrer que I’anneau S—!A est factoriel. Quels sont ses
éléments irréductibles ?
Exercice 11.10. — Soit ¢ 1’anneau (commutatif) des fonctions continues de [0, 1] dans R.
(1) Montrer que I’anneau % n’est pas intégre.
(2) Quels sont les idéaux maximaux de 1’anneau % ?
(3) On pose
I ={f € €| f estnulle au voisinage de 0}.

Montrer que I est un idéal radical de € (c’est-a-dire que v/I = I). En déduire qu’il existe dans % des
idéaux premiers non maximaux.

(4) Avec les notations précédentes, on munit ¢ de la topologie de la convergence uniforme. Montrer que
tout idéal premier est contenu dans un unique idéal maximal et qu’il y est dense. Tout idéal premier fermé
de € est donc maximal.
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11.2. Anneaux principaux et euclidiens. —
Exercice 11.11. — Soient a et b des éléments d’un anneau principal A.

(1) Sia A b= 1, montrer que a V b = ab.

(2) Si d est un élément de A divisant a et b, montrer que § A g = “T/\b etV g = “TW’
(3) Montrer que (a A b)(a V b) = ab (plus exactement, ils sont associés).
Exercice 11.12 (Suite de Fibonacci). — Soit (F),),cn la suite d’entiers définie par les relations

=1, Fi=1, VYneN Fn+2:Fn+1+Fn-
(1) Calculer Fy, ..., Fig.
(2) Montrer que pour tout n € N, les entiers F}, et F,, 1 sont premiers entre eux et qu’on a la relation de

Bézout
Vn 2 2 Fn,QFn+1 - anan = (—1)”

(3) Montrer que pour tout m,n € N, on a
Fm A Fn = 'man-

Exercice 11.13. — Une bande de 17 pirates possede un trésor constitué de pieces d’or d’égale valeur. Ils
projettent de se les partager également et de donner le reste au cuisinier. Celui-ci recevrait alors 3 pieces.
Mais les pirates se querellent et six d’entre eux sont tués. Un nouveau partage donnerait au cuisinier 4
pieces. Dans un naufrage ultérieur, seuls le trésor, six pirates et le cuisinier sont sauvés, et le partage
donnerait alors 5 pieces d’or a ce dernier. Quelle est la fortune minimale que peut espérer le cuisinier s’il
décide d’empoisonner le reste des pirates ?

Exercice 11.14. — Soit A un anneau commutatif qui n’est pas un corps. Montrer que I’anneau A[X| n’est
pas principal.

Exercice 11.15. — Soient m et n des entiers strictement positifs. Montrer (2™ —1)A (2" —1) = 2™/ —1,

Exercice 11.16 (Nombres de Mersenne). — (1) Soient m et n des entiers avec m, n > 2, tels que m"™ —1
est premier. Montrer que m = 2 et n est premier.

(2) Soit p un entier premier et soit ¢ un diviseur premier de 27 — 1. Montrer que p divise ¢ — 1.

Exercice 11.17 (Nombres de Fermat). — (1) Soit n un entier strictement positif tel que 2" 4 1 est un
nombre premier. Montrer que n est une puissance de 2.

(2) Soient m et n des entiers strictement positifs distincts. Montrer que 22 4 1 et 22" + 1 sont premiers
entre eux ).

Exercice 11.18. — Soit n un entier strictement positif. Montrer la relation

p(n) =Y o(d).
d|n

Exercice 11.19. — Si K est un corps, montrer que I’anneau des séries formelles K [[X]] est euclidien.

Exercice 11.20. — Si K est un corps, montrer que I’anneau K[X,Y]/(XY —1) est principal (Indication :
on pourra utiliser ’exerc. 11.9).

3. Posons F}, := 22" + 1. On sait que Fp = 3, F1 = 5, Fp = 17, F3 = 257 et F;, = 65537 sont premiers (on n’en connait
aucun autre !), mais que 641 divise F5 (Euler). On sait aussi que Fg, ..., F32 et F2543548 ne sont pas premiers, mais cela ne veut
pas dire que I’on sait les factoriser : si on sait par exemple factoriser explicitement Fg = 274177 - 67280421310721, F%, F3, Fo,
F1p et F11 (un nombre de 617 chiffres), et que I’on connait explicitement un facteur non trivial pour Fy4, Fao, F31 et Fo543548, on
ne connait aucun facteur non trivial pour les nombres Foq et Fby.
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Exercice 11.21. — Soit K un corps infini. Montrer qu’un idéal principal de K[X, Y] n’est jamais maxi-
mal.
Exercice 11.22. — Soit A un anneau intégre dans lequel tout idéal premier est principal. Montrer que

I’anneau A est principal (Indication : on pourra considérer un élément maximal / dans la famille des
idéaux non principaux de A, des éléments x et y de A \ [ tels que zy € I, un générateur z de 1’idéal
I 4 (x), un générateur w de I'idéal {a € A | az € I}, et montrer que zw engendre I).

11.3. Anneaux factoriels. —

Exercice 11.23. — On considere I’anneau
Z[V=5]:={a+bV/-5|a,beZ}.

Siz =a+ by/—5,onnote T = a — by/—b.

(1) Montrer que les unités de ’anneau Z[/—5] sont +1 (Indication : si x est une unité, d’inverse y, on
pourra calculer xZyy).

(2) Montrer que 3 est irréductible dans I’anneau Z[/—5].

(3) Montrer que I’idéal (3) n’est pas premier (Indication : on pourra considérer 1’égalité (1 + /—5)(1 —
v/—5) = 2 - 3). En particulier, I’anneau Z[/—5] n’est pas factoriel.

(4) On considére maintenant 1I’anneau
Z\V5) = {a+bV5 | a,bec Z}.

Montrer que 9 + 41/5 en est une unité et que le groupe des unités de I’anneau Z[\/g} est infini. Montrer
que I’anneau Z[+/5] n’est pas factoriel.

Exercice 11.24. — (1) Soit A un anneau factoriel de corps des fractions K 4. Soitx € K 4 tel que P(x) =
0, ou P € A[X] est unitaire. Montrer que « € A (on dit que A est intégralement clos).

(2) En déduire que I’anneau Z[/—3] n’est pas factoriel (Indication : on pourra considérer le polyndéme
X2+ X +1).

(3) Montrer que I’anneau Z[+/—5] est intégralement clos (bien qu’il ne soit pas factoriel par I’exerc. 11.23(3)).
Exercice 11.25. — Soit K un corps et soit A 1’anneau quotient K [X,Y]/(X? — Y?3).

(1) Montrer que A est isomorphe & un sous-anneau de K[T']. Il est donc integre.

(2) Montrer que le corps des fractions de A est isomorphe a K (7).

(3) Montrer que I’anneau A n’est pas factoriel.

Exercice 11.26. — Soit I I’idéal de R[X, Y] engendré par le polynome X2 + Y2 — 1 et soit A I’anneau
quotient R[X,Y]/I.

(1) Montrer que A est un anneau integre.

(2) Montrer que I est I’ensemble des polyndmes dans R[X, Y] qui s’annulent sur le cercle {(z,y) € R? |
2?2 +y? =1}

(3) Montrer que I'image de X dans A est irréductible et en déduire que A n’est pas un anneau factoriel.
(4) Montrer que ’anneau C[X, Y]/(X? + Y2 — 1) est principal.

Exercice 11.27. — Soit I I'idéal de R[X, Y, Z] engendré par le polynome X2 + Y2 + Z2? — 1 et soit A
I’anneau quotient R[X, Y, Z]/1I.

(1) Montrer que A est un anneau integre.
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(2) Montrer que (Z — 1) est un idéal premier de A.
(3) Montrer que les anneaux suivants sont isomorphes
A[T,U]/(TU — 1),
R[X,Y,Z,T,U]/(TU — 1, X%+ Y2+ 2% - T?),
RIX, Y, T, U V'|/(T' - UV -1, X2+ Y2+ T'U").
(4) Montrer que I’anneau A est factoriel.

Exercice 11.28 (Bézout). — Soit K un corps et soient P et @ des éléments de K[X,Y] sans facteur
irréductible commun.

(1) Montrer qu’il existe A, B € K[X,Y] et D € K[X] non nul tels que D = AP + BQ (Indication : on
pourra travailler dans I’anneau principal K (X)[Y]).

(2) En déduire que I’ensemble

{(z,y) € K* | (P(z,y) = Q(z,y) = 0}

est fini.

11.4. Polynomes. —

Exercice 11.29. — Silepolynéme a, X"+ - -+a1 X +ag € Z[X], avec a,, # 0, a une racine rationnelle,
que I’on écrit sous forme de fraction réduite a/b, alors a | ag et b | ap.

Exercice 11.30. — Montrer que le polyndme X 163 4+ 24 X57 — 6 a exactement une racine réelle. Est-elle
rationnelle ?

Exercice 11.31. — Soit K un corps. Montrer qu’il y a un infinité de polyndmes irréductibles dans K[X]
(Indication : on pourra copier la preuve qu’il existe une infinité de nombres premiers).

Exercice 11.32. — Factoriser le polyndme X* + 4 en produit de facteurs irréductibles dans (Z/5Z)[X].

Exercice 11.33. — Montrer que le polyndme X* + 1 est irréductible dans Q[X].

Exercice 11.34. — Soit a un entier non nul. Montrer que le polynéme X* + a X — 1 est irréductible dans
Q[X].
Exercice 11.35. — Factoriser le polynéme X° + 1 en produit de facteurs irréductibles dans C[X], dans

RI[X], puis dans Q[X].

Exercice 11.36. — Factoriser le polyndme X™ — 1 en produit de facteurs irréductibles dans C[X] puis
dans R[X].
Exercice 11.37. — Soient m et n des entiers positifs.

(1) Calculer les pged des polyndmes X™ — 1 et X™ — 1.

(2) Calculer le pged des polyndmes X™ ' 4 -+ X +let X" 1 4.+ X + 1.

Exercice 11.38. — (1) Déterminer tous les polyndmes irréductibles de degré 3 dans (Z/2Z)[X].
(2) Déterminer tous les polyndmes irréductibles de degré 4 dans (Z/2Z)[X].

(3) Montrer que le polyndome X* + a3 X2 + as X2 + a1 X + ag, ol az et ay sont des entiers pairs et a; et
ag des entiers impairs, est irréductible dans Q[X].

Exercice 11.39. — Soit p un nombre premier. Montrer que le polyndme P(X) = XP~ 1 +... 4+ X + 1 est
irréductible dans Q[X] (Indication : on pourra appliquer le critere d’Eisenstein au polyndme P(X + 1)).
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Exercice 11.40. — Soit p un nombre premier et soit 7 un entier strictement positif. Montrer que le polynd-
me ®,- (X + 1) satisfait le critére d’Eisenstein (th. 1.7.6). En déduire que le polynéme ®,,- est irréductible
dans Q[X].

Exercice 11.41. — Montrer que le polyndme X6 + Y2X® + Y est irréductible dans C[X, Y.

Exercice 11.42 (Ram Murty). — Soit P(X) = a, X™ + - - - + ao un polyndme de degré n > 1 a coeffi-
cients entiers. On pose

1
= o max{|a,_1],...,|ao|}.
n

(1) Soit x une racine complexe de P. Montrer ’inégalité |z| < M + 1.

(2) On suppose qu’il existe un nombre entier m > M + 2 tel que P(m) soit un nombre premier. Montrer
que le polyndme P est irréductible dans Q[X].

(3) Montrer que le polyndme P(X) := X* + 6X?2 + 1 est irréductible dans Q[X|] (Indication : on pourra
calculer P(8)).

(4) Montrer que le polyndme P(X) := 4X* + 7X3 + 7X? + 1 est irréductible dans Q[X] (Indication :
on pourra calculer P(10)).

Exercice 11.43. — (1) Soit A un anneau intégre et soient F', G € A[X;,..., X,] des polyndmes homo-
genes de degrés respectifs d et d + 1, premiers entre eux. Montrer que le polynéme F' + G est irréductible
dans A[Xq,..., X,

(2) A quelle condition nécessaire et suffisante sur les entiers naturels m et n le polyndme X — Y™ est-
il irréductible dans C[X,Y]? (Indication : on pourra attribuer & X et 2 Y des degrés bien choisis pour
pouvoir appliquer (1); ¢f. rem. 10.1.)

Exercice 11.44. — Exprimer a I’aide des polyndmes symétriques élémentaires, lorsque cela est possible,
les expressions suivantes :

o X1 Xo+ XoX3+ XsXy+ Xy Xy

° 223:1 XPX;;

b Z:Lzl x%
Exercice 11.45. — Soit A un anneau intégre. Montre qu’un polynéme P € A[X] non constant est de

dérivée nulle si et seulement s’il existe un nombre premier p tel que p- 14 = 04 (on dit que I’anneau A est
de caractéristique p; ¢f. § II.1.1) et un polyndme @) € A[X] tels que P(X) = Q(XP).

Exercice 11.46. — Soient i,j € N™. Nous dirons que i = (i1, ..., 4,) est plus petit que j = (j1,...,jn)

S1

® SOItY ;1 ik < Y py Jks
® SOitY p_yix = jretilexiste k € {1,...,n}telqueis = ji,... i1 = jr—1 €tigx < ji.

(1) Montrer que si i, j € N™ sont distincts, alors soit i est plus petit que j, soit j est plus petit que i.
(2) On se donne i € N™. Montrer que I’ensemble des j € N™ qui sont plus petits que i est fini.

Soit A un anneau commutatif. Soit P € A[X7, ..., X,,] un polyndme symétrique non nul et soit i =:
ht(P) le plus grand (au sens de la définition précédente) élément de N™ tel que le coefficient de X' - - - Xn
dans P soit non nul; on note ce coefficient dom(P).

(3) Montrer i1 > - -+ > 1.
(4) On pose
dy =iy — i, dy =i —i3,...,dp_1 = in_1 — in, dy = in.

Montrer que
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e soit P = dom(P)x{ - .- %dn;
e soit ht(P — dom(P)X% ... %29 ) est plus petit que ht(P).
(5) En déduire le th. 10.2.



CHAPITRE 1I

CORPS

1. Généralités

On rappelle qu’un corps est un anneau /X commutatif, non nul (c’est-a-dire que 15 # Ok), dans lequel
tout élément non nul est inversible. Ses seuls idéaux sont donc {0k} et K, et tout morphisme d’anneaux
d’origine K vers un anneau (unitaire) non nul est injectif.

Si K et L sont des corps, un morphisme (de corps) de K vers L est un morphisme d’anneaux (unitaires)
de K vers L; il est nécessairement injectif et I’on dit que L est une extension de K. On identifiera souvent
une extension K < L avec une inclusion X C L.

1.1. Caractéristique d’un corps. — Soit K un corps. Il existe un plus petit sous-corps de K, appelé
sous-corps premier de K : c’est le sous-corps engendré par 1. Il est isomorphe soit a QQ, auquel cas on
dit que K est de caractéristique 0, soit & un corps de la forme Z/pZ ; I’entier p est alors premier et ’on dit
que K est de caractéristique p. Dans ce dernier cas, on a p - 1x = Ox et la formule magique (V)

4) Vo, y € K (x+y)? =aP +yP.
Autrement dit, I’application de Frobenius

) Frg: K — K

6) r — aP

est un morphisme de corps (injectif, mais pas nécessairement surjectif).

2. Extensions de corps

Soit K C L une extension de corps. Son degré est la dimension du K -espace vectoriel L, notée [L : K.
L’extension est dite finie si ce degré I’est, infinie sinon.

Exemple2.1. — Ona[C:R]=2,[K(X): K] =occet[C: Q] = oo (cf ex. 2.7) 2.
Théoréme 2.2. — Soient K C L et L C M des extensions de corps. On a
[M:K]=[M:L]L:K].
1. On peut ’obtenir en remarquant que la dérivée du polyndme (X + y)P? € K[X] est nulle, de sorte que le coefficient de X7,
pour chaque 0 < i < p, est nul (puisque la dérivée de X? ne I’est pas). Il ne reste donc que le terme de degré p, qui est XP, et le
terme de degré 0, qui est yP. On a donc montré (X + y)P = XP + yP.

2. On ne se préoccupera pas ici des différentes « sortes » d’infini dans ce cours; mais ce degré devrait bien sir étre considéré
comme un cardinal.
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En particulier, I’extension K C M est finie si et seulement si les extensions K C L et L C M le sont.

Démonstration. — Soit (I;);cr une base du K-espace vectoriel L et soit (m;),c.; une base du L-espace
vectoriel M. Nous allons montrer que la famille (limj)(i, jyeIx . est une base du K-espace vectoriel M.

Cette famille est libre. Supposons que I’on ait une relation Z(i felxd ki jlim; = 0,avecdes k; ; € K

presque tous nuls. On a
0= > hkijlim;= Z(Z ’fwli)mj-

(6,4)eIxJ jeJ iel
Comme la famille (m; )¢ est libre, on en déduit que pour chaque j € J,ona

> kijli =0.

icl
Comme la famille (I;);c est libre, on en déduit que pour chaque i € I et chaque j € J,onak; ; = 0.

Cette famille est génératrice. Soit y un élément de M. Comme la famille (m;);c s est génératrice, il
existe des x; € L presque tous nuls tels que y = > jeg Tjm;. Comme la famille (1;)icr est génératrice,
il existe pour chaque j € J des k;; € K presque tous nuls tels que 2; = . ; k; jl;. On a donc

y= Zje] Zie[ ki jli.
On en déduit
[M : K] = Card(I x J) = Card(I) Card(J) = [M : L][L : K],

ce qui termine la démonstration du théoreme. O

2.1. Eléments algébriques et transcendants. —

Définition 2.3. — Soit K C L une extension de corps et soit x un élément de L. On dit que x est algé-
brique sur K s’il existe un polynome non nul P € K|[X] tel que P(x) = 0. Dans le cas contraire, on dit
que z est transcendant sur K.

L’extension K C L est dite algébrique si tous les éléments de L sont algébriques sur K.

Exemple 2.4. — Le corps C est une extension algébrique de R. Le réel v/2 est algébrique sur Q. L’en-
semble des nombres réels algébriques sur QQ est dénombrable (pourquoi?) : il existe donc des nombres
réels transcendants sur Q (on dit souvent simplement « transcendants »). Le nombre réel Zn>0 107 est
transcendant (Liouville, 1844 ; c¢f. exerc. 5.21), ainsi que 7 (Lindemann, 1882). L’extension Q C R n’est
donc pas algébrique.

Soit K C L une extension de corps et soit S une partie de L. L’intersection de tous les sous-anneaux de
L contenant K et S est un sous-anneau de L que 1’on notera K [S], appelé sous-K -algébre de L engendrée
par S. Ses éléments sont tous les éléments de L de la forme P(sq,...,s,),oun € N, P € K[Xy,...,X,]
est un polyndme a coefficients dans K, et s1,...,s, € S. De méme, I’intersection des sous-corps de L
contenant K et S est un sous-corps de L, noté K (S); c’est le corps des fractions de K'[S].

Si z € L, la sous-K-algébre K|[z] de L engendrée par x est donc I’image du morphisme d’anneaux
K-linéaire
v, K[X] — L
P +— Px).

On dit qu’une extension K C L est de type fini s’il existe une partie finie S C L telle que L = K(5).
Attention : une extension finie est de type finie (elle est engendrée par les éléments d’une base) mais la
réciproque n’est pas vraie en général : ’extension K C K (X) est de type fini mais pas finie.

Théoréme 2.5. — Soit K C L une extension de corps et soit x un élément de L.
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(1) Six est transcendant sur K, le morphisme @, est injectif, le K -espace vectoriel K [x] est de dimen-
sion infinie et U'extension K C K (x) est infinie.

(2) Si x est algébrique sur K, il existe un unique polynéme unitaire P de degré minimal vérifiant
P(z) = 0. Ce polynome est irréductible, on a K|x] = K(x) et cette extension de K est finie de
degré deg(P). On appelle P le polyndme minimal de x sur K. C’est 'unique polyndme unitaire,
irréductible dans K[X], dont x est racine dans L.

Démonstration. — La transcendance de x est équivalente par définition a I’injectivité de .. Si @, est
injectif, le sous-anneau K [z] de L engendré par z est isomorphe & K[X] donc c¢’est un K -espace vectoriel
de dimension infinie. De méme, le sous-corps K (x) de L engendré par = est isomorphe & 1’anneau des
fractions rationnelles K (X ') (corps des fractions de K [X]) donc c’est un K-espace vectoriel de dimension
infinie. Ceci montre (1).

Si x est algébrique sur K, le noyau de ¢, est un idéal non nul de K[X], qui est donc principal (§ 1.4),
engendré par un polyndme non nul de degré minimal P qui annule  (c’est-a-dire P(x) = 0). Il est unique
si on le prend unitaire. L’anneau K[z] est alors isomorphe & 1’anneau quotient K[X]/(P) (§ 1.2). Or
I’anneau K [z] est intégre car ¢’est un sous-anneau de L ; il s’ensuit que 1’idéal (P) est premier, donc P est
un polyndme irréductible. De plus, I’anneau K [X]/(P) est un corps (prop. 1.4.3) et il en est de méme pour
K [z]. Enfin, les K -espaces vectoriels K [z] et K[X]/(P) sont aussi isomorphes, et on vérifie que ce dernier
admet comme base les classes de 1, X, ..., X9~!, ot d = deg(P). Ils sont donc de dimension d. O

Exemple 2.6. — Si a + b est un nombre complexe avec b # 0, son polyndme minimal sur R est (X —

a)? 4+ b%. Le polyndme minimal de /2 sur Q est X2 — 2. Le sous-anneau Q[v/2] = {z +yv2 | =,y € Q}
z—yv2

de R est un corps; I’inverse de x + y\/§, si x et y ne sont pas tout deux nuls, est Ty

Exemple 2.7. — Soit p un nombre premier. Le polyndme minimal de w := €2/ sur Q est P(X) :=
XP~ly4...4 X +1,desorte que w est de degré p — 1 sur Q. En effet, P est irréductible (exerc. 1.11.43) et
w en est racine. En revanche, le polyndme minimal de w sur R est (X —w)(X —@) = X2 —2X cos 2?” +1.

Comme il existe des nombres premiers arbitrairement grands, on en déduit [C : Q] = oo, puis
[R : Q] = o en appliquant par exemple le th. 2.2.

Corollaire 2.8. — Toute extension finie de corps est algébrique.

Attention ! La réciproque est fausse (cf. ex. 2.13).

Démonstration. — Soit K C L une extension finie de corps et soit z € L. Le K-espace vectoriel K [z]
est un sous-espace vectoriel de L, donc est de dimension finie. Le th. 2.5 entraine que x est algébrique
sur K. O
Corollaire 2.9. — Toute extension de corps K C L engendrée par un nombre fini d’éléments algébriques

sur K est finie, donc algébrique. En particulier, toute extension de corps algébrique et de type fini est finie.

Démonstration. — On procede par récurrence sur le cardinal d’une partie finie S C L telle que L =

K(S).

Si S est vide, c’est évident. Sinon, on prend = € S et ’on pose L' = K (S \ {z}). L'hypothese de
récurrence entraine que ’extension K C L' est finie. Comme x est algébrique sur K, il I’est sur L', donc
I’extension L’ C L = L’(x) est finie par le th. 2.5. Le corollaire résulte alors du th. 2.2 et du cor. 2.8. O

Théoréme 2.10. — Soit K C L une extension de corps. L’ensemble des éléments de L algébriques sur K
est un sous-corps de L contenant K. C’est une extension algébrique de K.
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Démonstration. — Soient x et y des éléments non nuls de L algébriques sur K. Le cor. 2.9 entraine que
I’extension K C K (x,y) est finie, donc algébrique. Les éléments 2 — y et 2:/y de L sont donc algébriques
sur K. O
Corollaire 2.11. — Toute extension de corps K C L engendrée par des éléments algébriques sur K est
algébrique.

Démonstration. — Soit S C L un ensemble d’éléments de L algébriques sur K et engendrant L. Par le

théoréme, 1’ensemble des éléments de L algébriques sur K est un sous-corps de L, et il contient .S. Comme
S engendre L, c’est donc L, qui est ainsi une extension algébrique de K, de nouveau par le théoreme. [J

Exemple 2.12. — Le réel /2 + /3 + /5 est algébrique (sur Q), de méme que le nombre complexe
V2 + V3 +iV5.

Exemple 2.13. — Le corps Q C C des nombres algébriques (sur Q) est une extension algébrique de Q.
Elle est infinie parce qu’il existe des polynomes irréductibles dans Q[X] de degré arbitrairement grand
(exerc. I.11.43 et ex. 2.7).

Théoréme 2.14. — Soient K C L et L C M des extensions de corps. Si un élément x de M est algébrique
sur L et que L est une extension algébrique de K, alors x est algébrique sur K.

En particulier, si L est une extension algébrique de K et que M est une extension algébrique de L,
alors M est une extension algébrique de K.

Démonstration. — Si un élément x de M est algébrique sur L, il est racine d’un polyndme P € L[X].
Si I’extension K C L est algébrique, I’extension L’ C L de K engendrée par les coefficients de P est
alors finie (cor. 2.9). Comme z est algébrique sur L', I’extension L’ C L/(x) est finie (th. 2.5). Le th. 2.2
entraine que I’extension K C L'(x) est finie, donc algébrique (cor. 2.8), et = est algébrique sur K. O

Remarque 2.15. — Si K C Let L C M sont des extensions de corps, on a donc (th. 2.2 et th. 2.14)
K CLetL C M finies <= K C M finie,
K C LetL C M algébriques <= K C M algébrique.

2.2. Racines de I'unité. — Soit K un corps et soit n un entier > 1. On appelle groupe des racines
n-iemes de [’unité dans K le groupe multiplicatif

pn(K)={Ce K| (" =1}
C’est I’ensemble des racines du polyndme P(X) = X™ — 1 et il a donc au plus n éléments (prop. 1.4.5).
Un élément ¢ de p,, (K) est dit racine primitive n-iéme de I'unité si (¢ # 1 pour toutd € {1,...,n — 1};
en d’autres termes, si ¢ est d’ordre n dans le groupe ., (K). S’il existe une racine primitive n-iéme de
Punité ¢ dans K, elle engendre le groupe i, (K), qui est alors isomorphe & Z/nZ. Il y a alors
¢(n) = Card((Z/nZ)*) = Card{d € {1,...,n—1} | dAn =1}
différentes racines primitives n-iemes de I’unité, a savoir les (¢ pour d A n = 1.

Exemple 2.16. — On a

{1} si n est impair;
n(R) = pn(Q) = . .

{1,—1} sinest pair.
Il n’y a donc de racines primitives n-iemes de I’'unité dans R ou dans Q que si n € {1,2}. En revanche,
ona

pn(C) =~ Z/nZ.
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Proposition 2.17. — Pour tout corps K et tout entier n > 1, le groupe 11,(K) est cyclique d’ordre un
diviseur de n. Plus généralement, tout sous-groupe fini de (K*, X) est cyclique.

En particulier, le groupe multiplicatif d’un corps fini est cyclique.

Démonstration. — Posons m = Card (., (K)). Tout élément ¢ de pu, (K) est d’ordre un diviseur d de m
(par le théoreme de Lagrange) et de n (puisque (" = 1); c’est alors une racine primitive d-ieéme de 1’unité.
On a vu plus haut que I’ensemble Py C pu,, (K') des racines primitives d-ieémes de I’unité est soit vide, soit
de cardinal ¢(d). Comme
pn(K) = U Py,
dlmAn

onadoncm < 3 i, n, ©(d). Or (exerc. 11.18), pour tout entier e > 1,0na ;. ¢(d) = e. On en déduit
m < mAn,doncm | n,et P, # @. 1l existe donc un élément d’ordre m dans u,, (K'), qui est ainsi un
groupe cyclique d’ordre un diviseur de n. Ceci montre le premier point.

Si G est un sous-groupe de (K*, x) de cardinal m, il est contenu par le théoréme de Lagrange dans le
groupe cyclique i, (K), qui est de cardinal au plus m. On a donc G = p,,, (K) =~ Z/mZ. Ceci termine la
démonstration de la proposition. U

2.3. Polynomes cyclotomiques complexes. — Soit 7 un entier strictement positif. On définit le n-ieme
polynéme cyclotomique par

3, (X) = I &-0

(¢ racine primitive
n-iéme de 1 dans C

D’aprés ce qui précede, c’est un polynéme unitaire de degré ¢(n) a coefficients complexes. On a par
exemple

P(X) = X -1,
Dy(X) = X +1,
P3(X) = X2+ X+1,
PyX) = X241
Pour tout entier premier p, on a
= Xr—1
&, (X) = [[(x —e**m/p) < T =X XL
k=1
Proposition 2.18. — Pour tout entiern > 1, on a
(7 X" —1= chd(x).
dln

Le polynome ®,, est a coefficients entiers.

Démonstration. — On a X" — 1 = [[;c, c)(X — (). Comme dans la preuve de la prop. 2.17, on
remarque que (i, (C) est la réunion disjointe de ses parties Py, pour d | n. On a donc

xt—1=]] [] & -0 =]]2aX).
dln (EPq d|n

Pour montrer que ®,, est a coefficients entiers, on procede par récurrence sur n : par (7), ®,, est le quotient
de X™ — 1 par le polynéme unitaire [ dln, dsn ®,4(X), qui est a coefficients entiers par hypothese de
récurrence. C’est donc un polyndme a coefficients entiers. O
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Exemple 2.19. — Pour tout entier premier p, ona X?* —1 = D2 (X) P, (X)P1(X) = P2 (X)(XP—1),

donc
2

Xr -1 1 o
D2 (X) = ﬁ:Xp(p ) 4 xP(P=2) 4 ... XP 1,
Plus généralement, pour tout entier r > 1, on a
Xr -1 - - - -
P, (X) = I xP -l oxpt (-2 L xR ] = d,(XP" ).
Théoréme 2.20. — Pour tout entier n. > 1, le polyndéme ®,, est irréductible dans Q[X]. En particulier,

[Q(e*™/™) : Q] = p(n).

La preuve de ce théoreme est un peu compliquée mais reste du niveau de 1’agrégation. C’est un déve-
loppement classique pour I’oral.

Exercice 2.21. — Montrer qu’une extension finie de Q ne contient qu’un nombre fini de racines de 1’unité.

2.4. Constructions a la regle et au compas. —

Définition 2.22. — Soit X un sous-ensemble de R?. On dit qu’un point P € R? est constructible (3
la regle et au compas) a partir de X si on peut obtenir P a partir des points de X par une suite finie
d’opérations de 'un des types suivants :

e prendre ’intersection de deux droites non paralléles passant chacune par deux points distincts déja
construits ;

e prendre I'un des points d’intersection d’une droite passant par deux points distincts déja construits
et d’un cercle de rayon joignant deux points distincts déja construits ;

e prendre ['un des points d’intersection de deux cercles distincts dont les rayons joignent chacun deux
points distincts déja construits.

On dira qu’une droite est constructible (a partir de X) si elle passe par deux points constructibles dis-
tincts, et qu’un cercle est constructible si son centre I’est et qu’il passe par un point constructible. On
montre que la perpendiculaire et la parallele a une droite constructible passant par un point constructible
sont constructibles, et que le cercle de centre un point constructible et de rayon la distance entre deux points
constructibles est constructible.

Si 3 est un sous-ensemble de R contenant 0 et 1, on dit qu'un réel x est constructible a partir de X si
c’est I’abcisse d’un point P constructible a partir de 3 x {0} au sens de la définition ci-dessus. Cela revient
au méme de dire que les points (z, 0) et (0, 2) sont constructibles a partir de & x {0}.

Théoréme 2.23. — Soit 3. un sous-ensemble de R contenant 0 et 1. L’ensemble 6~ des réels construc-
tibles a partir de Y. est un sous-corps de R tel que, si x € €y, alors /|| € €.

Démonstration. — L’addition et I’opposé sont évidents (utiliser des cercles). Le produit xy est I’ordonnée
de U'intersection de la droite joignant I’origine au point (1, x) avec la verticale passant par (0, y) ; ’inverse
de z non nul est I’ordonnée de 1’intersection de la droite joignant 1’origine au point (z, 1) avec la verticale
passant par (0, 1). La racine carrée d’un élément positif = de %% s’obtient par le théoréme de Pythagore en
construisant un triangle rectangle dont un des cotés est %|x — 1] et dont I’hypothénuse est %(m +1). O

En particulier, étre constructible a partir de {0, 1} est la méme chose qu’étre constructible a partir de Q ;
on dit simplement « constructible ».
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Théoreme 2.24 (Wantzel, 1837). — Soit K un sous-corps de R. Un réel x est constructible a partir de
K si et seulement s’il existe une suite d’extensions

K=KyCK C---CK,CR
telle que [K; : K;_1] =2 etz € K,,.

Avant de démontrer le théoréme, on va décrire en général les extensions de degré 2.

Lemme 2.25. — Soit K un corps de caractéristique différente de 2 et soit K C L une extension de
degré 2. Il existe v € L\ K tel que 2*> € K et L = K|[z].

Démonstration. — Siy € L~ K, la famille (1, y) est K-libre, donc c’est une base du K-espace vectoriel
L. 1l existe donc a et b dans K tels que

v =ay +b.
Comme la caractéristique de K est différente de 2, on peut poser z = y — 5. On a alors

2 2

9 9 a a
=y — —=b+—¢cK
=y —ay+ 1 + 1 5
et L = K[y] = K|[z]. O
Démonstration du théoréeme. — Soit L un sous-corps de R. On vérifie par des calculs directs que :

e les coordonnées du point d’intersection de deux droites non paralleles passant chacune par deux
points distincts a coordonnées dans L, sont dans L;

e les coordonnées de 1’un des points d’intersection d’une droite passant par deux points a coordonnées
dans L et d’un cercle de rayon joignant deux points distincts a coordonnées dans L sont solutions
d’une équation de degré 2 a coefficients dans L;

e les coordonnées des points d’intersection de deux cercles distincts, chacun de rayon joignant deux
points distincts & coordonnées dans L, sont solutions d’une équation de degré 2 a coefficients dans L.

Par récurrence, on voit que les coordonnées d’un point constructible a partir de K sont dans un corps du
type K, décrit dans I’énoncé du théoreme.

Inversement, pour montrer que tout point dans un corps de type K, est constructible a partir de K, il
suffit de montrer que tout réel dans une extension quadratique d’un corps L contenue dans R. est construc-
tible a partir de L. Une telle extension est engendrée par un réel z tel que 2% € L (lemme 2.25 ). Mais alors

x = v/ x2 est constructible a partir de L (th. 2.23). O
Corollaire 2.26. — Soit x un réel constructible sur un sous-corps K de R. Alors x est algébrique sur K

de degré une puissance de 2.

Démonstration. — Si x est un réel constructible, il est dans une extension K,, du type décrit dans le
théoreme de Wantzel (th. 2.24), pour laquelle [K, : K] = 2" (th. 2.2). En considérant la suite d’extensions
K C K(z) C K,, on voit que [K(x) : K] est une puissance de 2 (th. 2.2). O

Remarque 2.27. — Attention, la réciproque du corollaire est fausse telle quelle (exerc. 5.24). On peut
montrer qu’un nombre réel x est constructible si et seulement s’il vérifie la propriété suivante : x est algé-
brique sur Q et si P est son polyndme minimal (sur Q) et si z1, ..., x4 sont toutes les racines (complexes)
de P, alors le degré de I’extension Q C Q(z1, ..., x4) est une puissance de 2.

Corollaire 2.28 (Duplication du cube). — Le réel /2 n’est pas constructible (sur Q).
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Démonstration. — C’est une racine du polyndme X> — 2. Si ce dernier est réductible sur Q, il a un
facteur de degré 1, donc une racine rationnelle que 1’on écrit sous forme de fraction réduite a/b. On a alors
a® = 2b3, donc a est pair. On écrit a = 2a’ avec 4a’ 3 — b3, donc b est pair, contradiction (voir aussi
I’exerc. 11.29).

Ainsi, le degré de v/2 sur Q est 3 : il n’est donc pas constructible par cor. 2.26. O
Corollaire 2.29 (Quadrature du cercle). — Le réel \/m n’est pas constructible.
Démonstration. — Ici, on triche : il faut savoir que 7 est transcendant (ex. 2.4), donc aussi /7. O

On dit qu’un angle « est constructible & partir d’un angle 6 si le point (cos ¢, sin «) est constructible a
partir de {(0,0), (0,1), (cosf,sin#)}. Comme sin « est constructible a partir de cos a, ¢’est équivalent a
dire que cos « est constructible a partir de {0, 1, cos 6}.

Corollaire 2.30 (Trisection de I’angle). — L’angle 0/3 est constructible a partir de I’angle 0 si et seule-
ment si le polynome X3 — 3X — 2 cos 0 a une racine dans Q(cos ).

En particulier, I'angle 27 /9 n’est pas constructible a la régle et au compas.

Démonstration. — Comme cos 3u = 4 cos® u — 3 cos u, le réel cos /3 est racine du polynome
P(X)=4X3—-3X — cos¥.

Si P est irréductible sur Q(cos 0), le réel cos §/3 est de degré 3 sur ce corps et ne peut y étre constructible
par cor. 2.26.

Si P estréductible sur Q(cos #), étant de degré 3, il doit avoir une racine dans ce corps et se factoriser sur
ce corps en le produit d’un polyndome de degré 1 et d’un polyndome de degré 2. Le réel cos 6/3 est racine
de I'un de ces deux polyndmes, donc est constructible sur Q(cos§) (lemme 2.25 et th. 2.24). Comme
2P(X/2) = X3 — 3X — 2 cos 0, cela montre la premiére partie de 1’énoncé.

On a Q(cos 27/3) = Q, donc I’angle 27 /9 est constructible si et seulement si le polyndme X3 —3X —1
a une racine dans Q, ce qui n’est pas le cas (exerc. 11.29). U

On peut aussi s’intéresser plus généralement, aprés Fermat, aux polygones réguliers constructibles a la
reégle et au compas. Soit .4 I’ensemble des nombres entiers n > 1 tels que le polygone régulier a n cotés,
inscrit dans le cercle unité et dont I'un des sommets est (0, 1), soit constructible a la régle et au compas,
c’est-a-dire tels que e2*™/™ (ou, de fagon équivalente, I’angle 27 /m) soit constructible. On vient de voir
que 9 n’est pas dans A",

Rappelons qu’un nombre premier de Fermat est un nombre premier de la forme F,, := 22" + 1.

Théoréme 2.31. — Si un polygone régulier a n cotés est constructible a la regle et au compas, n est le
produit d’une puissance de 2 et de nombres premiers de Fermat distincts.

La réciproque est vraie, mais sa preuve nécessite de connaitre la théorie de Galois. En particulier, le
polygone régulier a 17 cotés est constructible a la regle et au compas (Gauss, 1796).

Démonstration. — Sin € A, le degré de €*7/™ sur Q est une puissance de 2 (cor. 2.30). De plus,
2n € 4 (on peut bissecter n’importe quel angle constructible) et tout diviseur de n est dans 4. Il suffit
donc de montrer que si un nombre premier impair p appartiennent a .4, ¢’est un nombre premier de Fermat,
et que le carré d’un nombre premier impair n’est pas dans .4,

Soit p un nombre premier impair. Le degré de exp(2im/p) sur Q est p — 1 (ex. 2.7). Sip € A/, Ientier
p — 1 est donc une puissance de 2, et p est un nombre premier de Fermat.
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Pour montrer que p? n’est jamais dans .4, rappelons (exerc. 11.40 et th. 2.20) que le degré de
exp(2im/p?) sur Q est p(p?) = p(p — 1), qui n’est pas une puissance de 2 (il est divisible par p). O

3. Construction d’extensions

On prend maintenant le probleme dans 1’autre sens : au lieu de se donner une extension d’un corps K et
de regarder si les éléments de cette extension sont, ou non, racines de polyndomes a coefficients dans K, on
part d’un polyndme P € K[X] et I’on cherche & construire une extension de corps de K dans laquelle P
aura une racine, ou méme, sera scindé (produit de facteurs du premier degré).

3.1. Corps de rupture. — Etant donné un polyndme irréductible, on commence par construire une ex-
tension dans lequel P a une racine.

Définition 3.1. — Soit K un corps et soit P € K[X] un polynome irréductible. On appelle corps de
rupture de P sur K une extension K C L telle que L = K(z), avec P(z) = 0.

Exemple 3.2. — Le corps C est un corps de rupture du polyndme irréductible X2 + 1 € R[X]. De
méme, le polyndme X2 + X + 1 est aussi irréductible sur R et C est encore un corps de rupture. Plus
généralement, C est le corps de rupture de n’importe quel polyndme de R[X] de degré deux sans racine
réelle (cf. ex. 3.1).

Exemple 3.3. — Le corps Q(+/2) est un corps de rupture du polyndme irréductible X> — 2 € Q[X]; le
corps Q(jv/2) en est un autre. Remarquons que le polyndme X3 — 2 n’est pas scindé dans ces corps.

Théoréme 3.4. — Soit K un corps et soit P € K|[X| un polynome irréductible. Il existe un corps de
rupture de P sur K.

Démonstration. — L' anneau K[X] étant principal, ’anneau quotient Kp := K[X]/(P) est un corps
(prop. 4.3). Soit xp € Kp I'image de X dans Kp. On a alors P(zp) = 0et Kp = K(zp), donc Kp est
un corps de rupture de P sur K. O

Nous allons maintenant nous intéresser a I’unicité du corps de rupture.

Définition 3.5. — Soient K C L et K C L' des extensions de corps. On appelle K-morphisme de L dans
L' un morphisme de corps L — L’ qui est Iidentité sur K.

Proposition 3.6. — Soit P € K[X] un polynéme irréductible. Pour toute extension K C L et toute racine
x de P dans L, il existe un unique K-morphisme Kp — L qui envoie xp sur x.

Démonstration. — Le morphisme K[X] — L qui envoie X sur « est nul sur P, donc définit par passage
au quotient I'unique K -morphisme de K p vers L qui envoie xp sur x. O

Corollaire 3.7. — Soit P € K|[X] un polynéme irréductible. Deux corps de rupture de P sont K-
isomorphes.

On remarquera que I’isomorphisme entre deux corps de rupture n’est en général pas unique. Plus préci-
sément, étant donnés des corps de rupture K C Let K C L' de P, etdesracinesx € Letz’ € L' de P,
il existe un unique K-isomorphisme o : L = L’ tel que o(x) = 2.
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3.2. Corps de décomposition. — Etant donné un polynéme P 2 coefficients dans K, on cherche mainte-
nant a construire une extension de K dans laquelle P est scindé, ¢’est-a-dire produit de facteurs du premier
degré.

Théoréme 3.8. — Soit K un corps et soit P € K[X].

(1) Il existe une extension K C L dans laquelle le polynome P est scindé, de racines x1, . .., xq, telle
que L = K(x1,...,24q).

(2) Deux telles extensions sont isomorphes.

Une telle extension s’appelle un corps de décomposition de P. C’est une extension algébrique de type
fini, donc finie de K (cor. 2.9).

Démonstration. — On procede par récurrence sur le degré d de P. Sid = 1, le corps L = K est le seul
qui convient.

Sid > 1, soit () un facteur irréductible de P dans K[X] (¢f. th. 1.6.2) et soit K¢ le corps de rupture
de @ construit plus haut. Le polynome P admet la racine xg dans K, donc s’écrit

P(X) = (X = 2q)R(X),

avec R € Kg[X] de degré d — 1. L’hypothese de récurrence appliquée a R fournit un corps de décompo-
sition K € L de R sur Kg. Alors R est scindé dans L[X], de racines z1,...,24_1, donc aussi P, de
racines g, &1, ..., Tq—1. Deplus, L = Kg(z1,...,2q-1) = K(zg)(x1,...,24-1), donc L est un corps
de décomposition de P, et ceci montre (1).

Soient K C Let K C L’ des corps de décomposition de P, et soient = une racine de P dans L et 2’ une
racine de P dans L'. Le corps K () C L est un corps de rupture pour P sur K, et il en est de méme pour
le corps K (z') C L’. 1l existe donc (cor. 3.7) un K-isomorphisme K (x) = K (x’) qui envoie z sur z’. Il
permet de considérer L' comme une extension de K (x) via le morphisme composé K (x) = K (z') C L'.

Ecrivons comme plus haut P(X) = (X —z)R(X) avec R € K (x)[X] de degré d — 1. Les extensions L
et L’ de K (z) sont alors des corps de décomposition de R sur K (x). L’hypothése de récurrence appliquée
a R entraine que L et L’ sont K (z)-isomorphes, donc K -isomorphes. Ceci prouve (2). O

Exemple 3.9. — Pour tout d > 3, le corps C est un corps de décomposition pour le polynéme X — 1 €
R[X].

Exemple 3.10. — Le corps Q(+/2, j) est un corps de décomposition pour le polynéme X3 — 2 € Q[X].
En considérant la suite d’extensions Q C Q(+/2) € Q(+/2, ), on voit que c’est une extension de degré 6
de Q.

3.3. Cloture algébrique. —

Définition 3.11. — On dit qu’un corps < est algébriquement clos si tout polynéme non constant de Q[ X|
a une racine dans ().

Une cloture algébrique d’un corps K est une extension algébrique de corps K C Q telle que ) est un
corps algébriquement clos.

Si Q est un corps algébriquement clos, tout polyndme non constant de Q[ X] est scindé dans €.

Exemple 3.12. — Le corps C est algébriquement clos (c’est le théoréeme de d’ Alembert—Gauss, qui est
au programme de I’agrégation). C’est une cloture algébrique de R, mais pas de Q (car 'extension Q C C
n’est pas algébrique : il existe des nombres complexes transcendants).
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Proposition 3.13. — Soit K C L une extension algébrique de corps. On suppose que tout polynome de
K[X] est scindé dans L. Alors L est une cloture algébrique de K.

Démonstration. — Soit Q) € L[X] un polyndme irréductible et soit  une racine de () dans une extension
de L. Alors z est algébrique sur L donc sur K (th. 2.14). Soit P € K[X] son polyndme minimal ; puisque
Q estirréductible sur L, on a @ | P dans L[X]. Mais par hypothése, P est scindé dans L, donc x € L, et Q)
a donc une racine dans L. Comme tout élément de L[ X ]| est produit de polyndmes irréductibles (th. 1.6.2),
on a montré que L est une cldture algébrique de K. O

A partir d’un corps algébriquement clos, il est facile de construire une cloture algébrique pour n’importe
quel sous-corps.

Proposition 3.14. — Soit Q un corps algébriquement clos et soit K C ) un sous-corps. L’ensemble des
éléments de ) qui sont algébriques sur K est une cloture algébrique de K.

Démonstration. — On a déja vu que I’ensemble K des éléments de 2 qui sont algébriques sur K est
un sous-corps de 2 (th. 2.10), extension algébrique de K. Montrons qu’il est algébriquement clos. Soit
P € K[X] un polyndme non constant et soit x une racine de P dans Q. Alors x est algébrique sur K, donc
aussi sur K (th. 2.14), de sorte que = € K. O

Exemple 3.15. — Le corps Q C C des nombres algébriques (cf. ex. 2.13) est une cloture algébrique de Q.
C’est un corps dénombrable (pourquoi ?).

Théoreme 3.16 (Steinitz, 1910). — Soit K un corps. 1l existe une cloture algébrique de K. Deux clotures

algébriques de K sont K -isomorphes.

Démonstration. — Nous supposerons pour simplifier la démonstration que le corps K est (au plus) dé-
nombrable. L’ensemble K[X] est alors dénombrable. On peut donc numéroter ses éléments en une suite
(Pp)nen- On construit une suite (K, ),en de corps emboités en posant Ky = K et en prenant pour K, 1
un corps de décomposition du polyndéme P,,, vu comme élément de K,,[X]. Posons

L= UKn.

Il existe sur L une (unique) structure de corps faisant de chaque K, un sous-corps de L et K C L est une
extension algébrique.

Tout polynéme de K[X] est un des P, donc est par construction scindé dans L. Ce dernier est donc une
cloture algébrique de K par la prop. 3.13.

Nous ne démontrerons pas I’unicité. O

4. Corps finis

On dit qu’un corps K est fini s’il n’a qu’un nombre fini d’éléments. Sa caractéristique est alors un
nombre premier p et son sous-corps premier le corps Z/pZ. L’extension Z/pZ — K est de degré fini n,
de sorte que K est de cardinal p™.

Théoréeme 4.1. — (1) Pour tout entier premier p et tout entier n. > 1, il existe un corps fini a p™ éléments.

(2) Tout corps fini a p™ éléments est un corps de décomposition du polynome XP" — X sur le corps
Z/pZ. En particulier, deux tels corps sont isomorphes.

On parlera souvent du corps a p™ éléments, noté F .
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Démonstration. — Soit Z/pZ C K un corps de décomposition du polyndme P(X) := X?" — X sur
Z/pZ et soit K’ := {x1,...,zpn } € K I’ensemble des racines de P dans K. Par la formule magique (4),
c’est un sous-corps de K, qui lui est donc égal puisque K est engendré par ces racines. Ces racines sont
toutes distinctes car sa dérivée étant —1, le polyndme P n’a pas de racine multiple (prop. 1.8.7(2)). En
particulier, Card(K') = p™. Ceci montre (1).

Soit K un corps fini & p™ éléments. Le groupe (K*, x) étant d’ordre p™ — 1, tout élément non nul x de
K vérifie zP"~1 = 1 (théoréme de Lagrange). En particulier, les p™ éléments de K sont exactement les
racines de P, qui est ainsi scindé dans K. Le corps K est donc un corps de décomposition de P sur F,,.
Par le th. 3.8, ceci montre (2). O

5. Exercices
5.1. Généralités. —

Exercice 5.1. — Soit K un corps de caractéristique 3. Montrer que les médianes de tout triangle dans K2
sont paralleles.

Exercice 5.2. — Soit p un nombre premier, soit X un corps de caractéristique p et soit Fry: K — K le
morphisme de Frobenius, défini par Fry (x) = 2P (cf. (5)).

(1) Si K est un corps fini, montrer que Frx est bijectif.

(2) Donner un exemple d’un corps K de caractéristique p pour lequel Frx n’est pas surjectif.

Exercice 5.3. — Pour tous nombres complexes a et b, montrer

Q(a> b, \/67 \/I;) = Q(a7 b, \/& + \/I;)

(Indication : on pourra commencer par montrer que vab € Q(a, b, \/a + Vb))

5.2. Extensions finies. —
Exercice 5.4. — Trouver le polyndme minimal de v/3 + i sur Q.

Exercice 5.5. — (1) Calculer le degré de I’extension Q(v/2,v/3) de Q.
(2) Calculer le degré de I’extension Q(\@ + \/§) de Q.
(3) Calculer le degré de I’extension Q(v/2, v/2) de Q.

Exercice 5.6. — Soit K C L une extension de corps finie de degré premier. Pour tout € L\ K, montrer
que L = K(x).
Exercice 5.7. — Soit K C L une extension de corps finie de degré impair. On suppose qu’il existe x € L

tel que L = K (). Montrer que L = K (2?).

Exercice 5.8. — Soit K C M une extension de corps et soient K C L C M et K C L' C M des
extensions intermédiaires. Notons LL’ le sous-corps de M engendré par L et L. Montrer [LL' : L'] <
[L : K] (Indication : on pourra prendre une base de L sur K et montrer qu’elle engendre LL’ sur L’).
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5.3. Racines de unité. —

Exercice 5.9. — Soit K un corps de caractéristique p > 0 et soit 7 un entier > 1. Quels sont les groupes
pipr (K) ?
Exercice 5.10. — Soit p un nombre premier. Déterminer selon les valeurs de I’entier n > 1 le groupe

tn(Z/pZ) (Indication : on pourra commencer par le casn = p — 1).
Exercice 5.11. — Soit K un corps infini. Montrer que le groupe (K™, x) n’est pas cyclique.

Exercice 5.12. — Soit p un nombre premier. Déterminer selon les valeurs de I’entier n > 1 le groupe
1n(Z/pZ) (Indication : on pourra commencer par le cas n = p — 1).

Exercice 5.13. — Montrer que les polyndmes cyclotomiques ®,, sont réciproques : X ‘P(")én(l /X) =
D, (X).

Exercice 5.14. — Montrer 1’égalité Q(e2™/®) = Q(v/2,1).

Exercice 5.15. — Soit p un nombre premier, soit X un corps et soit a € K. Montrer que le polyndme
XP — q est irréductible dans K[X] si et seulement s’il n’a pas de racines dans K (Indication : on pourra
montrer que si X? —a = PQ, avec n := deg(P), on a a™ = (£P(0))?, en décomposant X? — a en
facteurs de degré 1).

Exercice 5.16. — Pour tout entier k strictement positif, on pose (j, := e*7/*_ Soient m et n des entiers
strictement positifs premiers entre eux. On veut montrer 1’égalité

Q(¢m) N Q(C) = Q.
On pose K := Q((m) N Q(¢n)-
(1) Montrer qu’on a K((m) = Q(¢m ), K(Gn) = Q(Gn) et K(Gmn) = Q(Gmn)-
(2) Avec les notations de ’exerc. 5.8, montrer Q(( ) Q(Cn) = Q(Cnn)-

(3) En déduire [Q((n)Q(¢rn) @ Q(Gn)] = ¢(n) puis, en utilisant I'exerc. 5.8, [Q((,) : K] = ¢(n).
Conclure.

(3) En déduire tous les entiers strictement positifs n tels que /2 € Q((,) (Indication : on pourra utiliser
I’exerc. 5.14).

5.4. Extensions algébriques. —

Exercice 5.17. — Trouver toutes les extensions algébriques du corps C.

Exercice 5.18. — Montrer que tout corps algébriquement clos est infini.

Exercice 5.19. — On considere le corps K = Q(T') et ses sous-corps K1 = Q(T?) et Ky = Q(T*-T).
Montrer que les extensions K1 C K et Ko C K sont algébriques, mais pas I’extension {1 N Ky C K
(Indication : on pourra montrer K1 N Ky = Q).

Exercice 5.20. — Soit K un corps et soit L un corps tel que K C L C K(T).

(1) Si L est une extension algébrique de K, montrer que L = K.

(2) Si K # L, montrer que K (7T') est une extension finie de L.
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Exercice 5.21 (Nombres de Liouville). — Le but de cet exercice est de donner un exemple explicite de
nombre transcendant.

(1) Soit & un nombre complexe algébrique irrationel. Montrer qu’il existe un réel C' strictement positif et
un entier n tels que

VpeZ VqeZ~ {0} ‘a—glzqgn

(Indication : on pourra introduire un polynéme a coefficients entiers qui annule « et appliquer judicieuse-
ment I’inégalité des accroissements finis).

(2) Montrer que le nombre réel ) -, 10~™" est transcendant (sur Q).

5.5. Corps de décomposition. —

Exercice 5.22. — Déterminer le corps de décomposition du polyndme X3 — 3 sur Q et en donner une
base sur Q.
Exercice 5.23. — Montrer que le corps de décomposition d’un polynéme de degré d est une extension de

degré au plus d!.

5.6. Nombres constructibles. —

Exercice 5.24. — Considérons le polynome P(X) = X* - X — 1 € Q[X].

(1) Montrer que P a exactement deux racines réelles distinctes x; et zo.

(2) On écrit (X — 21)(X — z2) = X2 4+ aX + bavec a, b € R. Montrer [Q(a?) : Q] = 3.

(3) Montrer que x; et x2 ne peuvent étre tous les deux constructibles, bien qu’ils soient de degré 4 sur Q.

5.7. Corps finis. —
Exercice 5.25. — FEcrire les tables d’addition et de multiplication du corps F.
Exercice 5.26. — Quel est le groupe additif (Fp»,+)?

Exercice 5.27. — Soient p et q des nombres premiers. Montrer que F,» est isomorphe a un sous-corps
de F» si et seulement si p = g et m divise n.

Exercice 5.28. — (1) Montrer que le polyndme X* — X — 1 n’a pas de racine dans le corps Fas.

(2) Montrer que le polyndme X* — X — 1 est irréductible dans F5[X].



