Rates of Convergence for Geometric Inference

Eddie Aamari

September 1^{st} , 2017

Data with a Global Geometric Structure

Cyclo-octane conformations [Martin *et al.* 2010]

Data with a Global Geometric Structure

Cyclo-octane conformations [Martin *et al.* 2010]

 7×7 pixels patch space [Xia 2016]

Data with a Global Geometric Structure

Geometric Inference

Geometric Inference

Outline

Given a *n*-sample $X_n = \{X_1, \ldots, X_n\}$, what precision can we expect?

Regularity in Function Spaces

Usual regularity classes (Hölder, Sobolev, Besov) control increments

$$||f(x) - f(y)|| \le L ||x - y||^{\beta}$$

 (L,β) drives the difficulty of the statistical problem.

Regularity in Function Spaces

Usual regularity classes (Hölder, Sobolev, Besov) control increments

$$||f(x) - f(y)|| \le L ||x - y||^{\beta}$$

 (L,β) drives the difficulty of the statistical problem.

 \rightarrow Without natural coordinates, "||f(x) - f(y)||" = ?

Medial Axis

The **medial axis** of $M \subset \mathbb{R}^D$ is

 $Med(M) = \{z \in \mathbb{R}^D, z \text{ has several nearest neighbors on } M\}.$

Medial axis of a curve $M \subset \mathbb{R}^2$.

Reach

For a closed subset $M \subset \mathbb{R}^D$, the **reach** τ_M of M is the least distance to its medial axis.

$$\tau_M = \inf_{x \in M} d\left(x, Med(M)\right),\,$$

where $d(x, A) = \inf_{a \in A} ||x - a||$ for all $x \in \mathbb{R}^D$.

One can also flip the formula:

$$\tau_M = \inf_{z \in Med(M)} d(z, M) \, .$$

Global Regularity

The smaller τ_M , the tighter a bottleneck structure is possible.

Local Regularity

High curvature \equiv Small radius of curvature $\Rightarrow \tau_M \ll 1$.

Proposition (Federer 1959, Niyogi *et al.* 2006) The sectional curvatures κ of M satisfy

$$-2/\tau_M^2 \le \kappa \le 1/\tau_M^2.$$

Local Regularity

If $\tau_M \ge \tau_{\min} > 0$, M has local parametrizations of the form

$$\begin{split} \Psi_p : T_p M \longrightarrow M \subset \mathbb{R}^D \\ v \longmapsto p + v + \mathbf{N}_p(v) \end{split}$$

where $\mathbf{N}_{p}(0) = 0$ and $\left\| d_{v} \mathbf{N}_{p} \right\|_{op} \leq \left\| v \right\| / (2\tau_{\min}).$

Definition (Regularity class $C_{\tau_{\min}}^2$)

Let $C^2_{\tau_{\min}}$ be the set of d-dimensional compact connected submanifolds $M \subset \mathbb{R}^D$ with $\tau_M \geq \tau_{\min} > 0$.

Tangential Delaunay Complex

Theorem (Boissonnat,Ghosh 2014) If $M \in C^2_{\tau_{\min}}$, for all $\varepsilon \leq c_d \tau_{\min}$, if a point cloud $\mathcal{X} \subset M$ is -2ε -dense: $d_H(M,\mathcal{X}) \leq 2\varepsilon$, $-\varepsilon$ -sparse: $d(p,\mathcal{X} \setminus \{p\}) \geq \varepsilon$ for all $p \in \mathcal{X}$, there exists a triangulation $\hat{M}_{\text{TDC}}(\mathcal{X}, T_{\mathcal{X}}M)$ of \mathcal{X} such that:

- M and \hat{M}_{TDC} are isotopic - $d_H(M, \hat{M}_{\text{TDC}}) \leq C_d \varepsilon^2 / \tau_{\min}$.

Tangential Delaunay Complex

Theorem (Boissonnat,Ghosh 2014) If $M \in C^2_{\tau_{\min}}$, for all $\varepsilon \leq c_d \tau_{\min}$, if a point cloud $\mathcal{X} \subset M$ is -2ε -dense: $d_H(M, \mathcal{X}) \leq 2\varepsilon$, $-\varepsilon$ -sparse: $d(p, \mathcal{X} \setminus \{p\}) \geq \varepsilon$ for all $p \in \mathcal{X}$, there exists a triangulation $\hat{M}_{\text{TDC}}(\mathcal{X}, T_{\mathcal{X}}M)$ of \mathcal{X} such that:

- M and \hat{M}_{TDC} are isotopic - $d_H(M, \hat{M}_{\text{TDC}}) \leq C_d \varepsilon^2 / \tau_{\min}$.

Stability

Theorem (A.,Levrard, 2016)

The result still holds with:

- approximate tangent spaces: For all $p \in \mathcal{X}$, we use \hat{T}_p instead of T_pM , with $\angle(T_pM, \hat{T}_p) \lesssim \varepsilon$.

Stability

Theorem (A.,Levrard, 2016)

The result still holds with:

- approximate tangent spaces: For all $p \in \mathcal{X}$, we use \hat{T}_p instead of T_pM , with $\angle(T_pM, \hat{T}_p) \lesssim \varepsilon$.
- small noise: For all $p \in \mathcal{X}, d(p, M) \lesssim \varepsilon^2$.

Statistical Model $\mathcal{P}^2_{\tau_{\min}}$

We let $\mathcal{P}^2_{\tau_{\min}}$ denote the set of distributions P such that:

-
$$M = \overline{Supp}(P) \in \mathcal{C}^2_{\tau_{\min}},$$

- P has a density f with respect to the uniform measure on M, with

$$0 < f_{\min} \le f(x) \le f_{\max} < \infty.$$

We observe an i.i.d. *n*-sample $\mathbb{X}_n = \{X_1, \ldots, X_n\}$ of some $P \in \mathcal{P}^2_{\tau_{\min}}$.

Same model studied in [Genovese et al. 2012].

Tangent Space Estimation: Local PCA

Writing $P_n^{(j)}$ for the integration with respect to $\frac{1}{n} \sum_{\ell \neq j} \delta_{X_\ell - X_j}$, define

$$\hat{T}_{j}^{\text{PCA}} \in \operatorname*{argmin}_{T \in \mathbb{G}^{D,d}} P_{n}^{(j)} \left[\left\| x - \pi_{T}(x) \right\|^{2} \mathbb{1}_{B(0,h)}(x) \right]$$

 $\mathbb{G}^{D,d}$: space of *d*-dimensional linear subspaces of \mathbb{R}^D ; π_T : orthogonal projection onto *T*.

Tangent Space Estimation: Local PCA

Proposition (A., Levrard 2016) Taking $h \asymp \left(\frac{\log n}{n}\right)^{1/d}$, for n large enough, with high probability, $\max_{1 \le j \le n} \angle (T_{X_j}M, \hat{T}_j^{PCA}) \le ch$ and $d_H(M, \mathbb{X}_n) \le Ch$.

Convergence Rate

Theorem (A., Levrard 2016)

For a sparsified subsample $\mathbb{Y}_n \subset \mathbb{X}_n$, $\hat{M}_{\text{TDC}}\left(\mathbb{Y}_n, \hat{T}^{\text{PCA}}\right)$ satisfies

$$\lim_{n \to \infty} \mathbb{P}\left(d_H(M, \hat{M}_{\text{TDC}}) \le c \left(\frac{\log n}{n} \right)^{2/d} \text{ and } M \cong \hat{M}_{\text{TDC}} \right) = 1,$$

where \cong denotes the isotopy equivalence. Moreover, for n large enough,

$$\mathbb{E}_{P^n} d_H(M, \hat{M}_{\mathsf{TDC}}) \le C \left(\frac{\log n}{n}\right)^{2/d}$$

.

c, C depend only on $d, \tau_{\min}, f_{\min}, f_{\max}$ (not on D).

Minimax Optimality of the TDC

- We have

$$\sup_{P \in \mathcal{P}^2_{\tau_{\min}}} \mathbb{E}_{P^n} d_H(M, \hat{M}_{\mathsf{TDC}}) \le C \left(\frac{\log n}{n}\right)^{2/d},$$

for $C = C_{d,\tau_{\min},f_{\min},f_{\max}}$. - From [Kim & Zou 2015],

$$\inf_{\hat{M}} \sup_{P \in \mathcal{P}^2_{\tau_{\min}}} \mathbb{E}_{P^n} d_H(M, \hat{M}) \ge c \left(\frac{\log n}{n}\right)^{2/d},$$

where the infimum ranges over all the estimators $\hat{M} = \hat{M}(\mathbb{X}_n)$.

Minimax Optimality of the TDC

- We have

$$\sup_{P \in \mathcal{P}^2_{\tau_{\min}}} \mathbb{E}_{P^n} d_H(M, \hat{M}_{\text{TDC}}) \le C \left(\frac{\log n}{n}\right)^{2/d},$$

for $C = C_{d,\tau_{\min},f_{\min},f_{\max}}$. - From [Kim & Zou 2015],

$$\inf_{\hat{M}} \sup_{P \in \mathcal{P}^2_{\tau_{\min}}} \mathbb{E}_{P^n} d_H(M, \hat{M}) \ge c \left(\frac{\log n}{n}\right)^{2/d},$$

where the infimum ranges over all the estimators $\hat{M} = \hat{M}(\mathbb{X}_n)$.

 $\rightarrow \hat{M}_{\text{TDC}}$ is minimax optimal.

 $\rightarrow\,$ The minimax rate is achieved by computable triangulations.

Extensions to Noisy Data

Circle with noise amplitude $\sigma > 0$.

Tangent spaces: Local PCA.

Noise:

negigible if $\sigma \ll 1$.

Circle with portion $1 - \beta > 0$ outliers.

Tangent spaces: Local PCA.

Noise:

Remove outliers far away from M.

Optimality of Tangent Space Estimation?

In the process, we have shown that

$$\sup_{P \in \mathcal{P}^2_{\tau_{\min}}} \mathbb{E}_{P^n} \max_{1 \le j \le n} \angle \left(T_{X_j} M, \hat{T}_j^{\mathsf{PCA}} \right) \le C \left(\frac{\log n}{n} \right)^{1/d},$$

for $C = C_{d,\tau_{\min},f_{\min},f_{\max}}$.

Optimality of Tangent Space Estimation?

In the process, we have shown that

$$\sup_{P \in \mathcal{P}^2_{\tau_{\min}}} \mathbb{E}_{P^n} \max_{1 \le j \le n} \angle \left(T_{X_j} M, \hat{T}_j^{\text{PCA}} \right) \le C \left(\frac{\log n}{n} \right)^{1/d},$$

for $C = C_{d,\tau_{\min},f_{\min},f_{\max}}$.

→ Can we do better if M = Supp(P) is more regular than $C^2_{\tau_{\min}}$? → Is this rate optimal?

More Regularity

Reminder (Regularity Class $C^2_{\tau_{\min}}$) Submanifolds $M \in C^2_{\tau_{\min}}$ have local parametrizations

$$\Psi_p: T_p M \longrightarrow M \subset \mathbb{R}^D$$
$$v \longmapsto p + v + \mathbf{N}_p(v)$$

where $\mathbf{N}_{p}(0) = 0$, $d_{0}\mathbf{N}_{p} = 0$ and $\|d_{v}\mathbf{N}_{p}\|_{op} \leq \|v\|/(2\tau_{\min})$.

More Regularity

Definition (Model for \mathcal{C}^k submanifolds, $k \geq 3$) Let $\mathbf{L} = (L_2, L_3, \dots, L_k)$, and define $\mathcal{C}^k_{\tau_{\min}, \mathbf{L}}$ to be the subset of elements $M \in \mathcal{C}^2_{\tau_{\min}}$ that have local parametrizations

$$\Psi_p: T_p M \longrightarrow M \subset \mathbb{R}^D$$
$$v \longmapsto p + v + \mathbf{N}_p(v)$$

where $\mathbf{N}_p(0) = 0$, $d_0 \mathbf{N}_p = 0$ and $\left\| d_v^i \mathbf{N}_p \right\|_{op} \le L_i$ for $2 \le i \le k$.

Local PCA

Recall that $P_n^{(j)} = \frac{1}{n} \sum_{\ell \neq j} \delta_{X_\ell - X_j}$, and

$$\hat{T}_{j}^{\text{PCA}} \in \operatorname*{argmin}_{T \in \mathbb{G}^{D,d}} P_{n}^{(j)} \left[\left\| x - \pi_{T}(x) \right\|^{2} \mathbb{1}_{B(0,h)}(x) \right].$$

 $\mathbb{G}^{D,d}$: space of *d*-dimensional linear subspaces of \mathbb{R}^D ; π_T : orthogonal projection onto *T*.

Local Polynomials

We define $(\hat{T}_{j}^{\text{POLY}}, \hat{T}_{2,j}, \dots, \hat{T}_{k-1,j})$ to be a minimizer of

$$P_n^{(j)}\left[\left\|x - \pi_T(x) - \sum_{i=2}^{k-1} T^{(i)} \left(\pi_T(x)^{\otimes i}\right)\right\|^2 \mathbb{1}_{B(0,h)}(x)\right],$$

where

T: ranges in
$$\mathbb{G}^{D,d}$$
;
 $T^{(i)}$: ranges in the set of *i*-linear maps $(2 \le i \le k-1)$.

Similar method in [Cazals 2005] and [Cheng & Chiu 2016].

Convergence of Local Polynomials

Theorem (A., Levrard 2017)
If
$$h = C\left(\frac{\log n}{n}\right)^{1/d}$$
, for all $P \in \mathcal{P}^k_{\tau_{\min},\mathbf{L}}$,
 $\mathbb{E}_{P^n} \max_{1 \le j \le n} \angle \left(T_{X_j}M, \hat{T}^{\texttt{POLY}}_j\right) \le C\left(\frac{\log n}{n}\right)^{\frac{k-1}{d}}$,

where $C = C_{k,d,\tau_{\min},\mathbf{L},f_{\min},f_{\max}}$.

Minimax Risk for Tangent Space Estimation

The minimax risk over the model $\mathcal{P}^k_{\tau_{\min},\mathbf{L}}$ is

$$R_n^{(k)} \triangleq \inf_{\hat{T}} \sup_{P \in \mathcal{P}_{\tau_{\min},\mathbf{L}}^k} \mathbb{E}_{P^n} \angle (T_{X_1} M, \hat{T}),$$

where the infimum ranges over all the estimators $\hat{T} = \hat{T}(\mathbb{X}_n)$. Theorem (A., Levrard 2017) For n large enough,

$$R_n^{(k)} \le C\left(\frac{\log n}{n}\right)^{\frac{k-1}{d}},$$

where $C = C_{d,\tau_{\min},\mathbf{L},f_{\min},f_{\max}}$.

Minimax Risk for Tangent Space Estimation

The minimax risk over the model $\mathcal{P}^k_{\tau_{\min},\mathbf{L}}$ is

$$R_n^{(k)} \triangleq \inf_{\hat{T}} \sup_{P \in \mathcal{P}_{\tau_{\min},\mathbf{L}}^k} \mathbb{E}_{P^n} \angle (T_{X_1} M, \hat{T}),$$

where the infimum ranges over all the estimators $\hat{T} = \hat{T}(\mathbb{X}_n)$. Theorem (A., Levrard 2017)

For n large enough, (+ technical assumptions)

$$c\left(\frac{1}{n}\right)^{\frac{k-1}{d}} \le R_n^{(k)} \le C\left(\frac{\log n}{n}\right)^{\frac{k-1}{d}},$$

where $C = C_{d,\tau_{\min},\mathbf{L},f_{\min},f_{\max}}$ and $c = c_{d,\tau_{\min},\mathbf{L},f_{\min},f_{\max}}$.

Pointwise Lower Bound

For
$$\mathbf{x} \in \mathbb{R}^D$$
, write $\mathcal{P}^k_{\tau_{\min}, \mathbf{L}}(\mathbf{x}) = \{ P \in \mathcal{P}^k_{\tau_{\min}, \mathbf{L}} | x \in Supp(P) \}.$

$$R_n^{(k)}(\mathbf{x}) = \inf_{\hat{T}} \sup_{P \in \mathcal{P}^k_{\tau_{\min}, \mathbf{L}}(x)} \mathbb{E}_{P^n} \angle (T_{\mathbf{x}} M, \hat{T})$$

Pointwise Lower Bound

For
$$\mathbf{x} \in \mathbb{R}^D$$
, write $\mathcal{P}^k_{\tau_{\min},\mathbf{L}}(\mathbf{x}) = \{P \in \mathcal{P}^k_{\tau_{\min},\mathbf{L}} | x \in Supp(P)\}.$

$$R_n^{(k)}(\mathbf{x}) = \inf_{\hat{T}} \sup_{P \in \mathcal{P}^k_{\tau_{\min}, \mathbf{L}}(x)} \mathbb{E}_{P^n} \angle (T_{\mathbf{x}} M, \hat{T}) \ge c \left(\frac{1}{n}\right)^{\frac{k-1}{d}}$$

Outline of the proof:

- Le Cam's lemma;
- bumped hypotheses.

Random Point Lower Bound

$$\begin{aligned} R_n^{(k)} &= \inf_{\hat{T}} \sup_{P \in \mathcal{P}_{\tau_{\min},\mathbf{L}}^k} \mathbb{E}_{P^n} \angle (T_{\mathbf{X}_1} M, \hat{T}) \\ &= \inf_{\hat{T}} \sup_{P \in \mathcal{P}_{\tau_{\min},\mathbf{L}}^k} \mathbb{E}_{P^{n-1}} \left[\left\| \angle (T_{\mathbf{X}_1} M, \hat{T}) \right\|_{L^1(P(\mathbf{dx}_1))} \right] \end{aligned}$$

Random Point Lower Bound

$$R_n^{(k)} = \inf_{\hat{T}} \sup_{P \in \mathcal{P}_{\tau_{\min},\mathbf{L}}^k} \mathbb{E}_{P^n} \angle (T_{\mathbf{X}_1} M, \hat{T})$$
$$= \inf_{\hat{T}} \sup_{P \in \mathcal{P}_{\tau_{\min},\mathbf{L}}^k} \mathbb{E}_{P^{n-1}} \left[\left\| \angle (T_{\mathbf{X}_1} M, \hat{T}) \right\|_{L^1(P(\mathbf{dx}_1))} \right] \ge c \left(\frac{1}{n}\right)^{\frac{k-1}{d}}$$

Outline of the proof:

- conditional Assouad's lemma (condition on X_1);
- thick (mixture) bumped hypotheses.

Further Use of Local Polynomial

Curvature: letting II_p^M be the 2nd fundamental form of M at p,

$$\mathbb{E}_{P^n} \max_{1 \le j \le n} \left\| II_{X_j}^M \circ \pi_{T_{X_j}M} - \hat{T}_{2,j} \circ \pi_{\hat{T}_j^{\mathsf{POLY}}} \right\|_{op} \le C \left(\frac{\log n}{n} \right)^{\frac{k-2}{d}}$$

Support: using all the polynomials $\hat{T}_{j}^{\text{POLY}}, \hat{T}_{2,j}, \dots, \hat{T}_{k-1,j}$, we get

$$\mathbb{E}_{P^n} d_H \left(M, \hat{M}_{\mathsf{POLY}} \right) \le C' \left(\frac{\log n}{n} \right)^{\frac{k}{d}}$$

 \longrightarrow These rates are minimax optimal (up to a log *n* factor).

٠

Back to the Reach

Goal: Estimate the reach τ_M .

Geodesic Regularity for Reach Estimation

Definition (Regularity Class $\mathcal{C}^{(3)}_{\tau_{min},L}$)

For L > 0, we let $C^{(3)}_{\tau_{min},L}$ denote the subset of elements $M \in C^2_{\tau_{min}}$ for which all unit speed geodesics $\gamma_{p,v}$ satisfy

 $\left\|\gamma_{p,v}^{\prime\prime\prime}(t)\right\| \le L.$

Remark: We have $\mathcal{C}^3_{\tau_{min},\mathbf{L}'} \subset \mathcal{C}^{(3)}_{\tau_{min},L} \subset \mathcal{C}^2_{\tau_{min}}$.

Global and Local Reach

Theorem (A., Kim *et al.* 2017) If M is a closed C^3 -submanifold, either

- (Global case) M has a bottleneck

or

- (Local case) M has an arc-length parametrized geodesic such that $\|\gamma_{q_0,v_0}'(0)\| = \frac{1}{\tau_M}$.

A (Crucial) Local Formulation

Proposition (Federer 1959) For all closed submanifold $M \subset \mathbb{R}^D$,

$$\tau_M = \inf_{p \neq q \in M} \frac{\|q - p\|^2}{2d(q - p, T_p M)}.$$

A (Crucial) Local Formulation

Proposition (Federer 1959)

For all closed submanifold $M \subset \mathbb{R}^D$,

$$\tau_M = \inf_{p \neq q \in M} \frac{\|q - p\|^2}{2d (q - p, T_p M)}.$$

Plugin estimator: for any point cloud $\mathcal{X} \subset M$,

$$\hat{\tau}\left(\mathcal{X}\right) = \min_{x \neq y \in \mathcal{X}} \frac{\|y - x\|^2}{2d(y - x, T_x M)}$$

Global Case

Proposition (A., Kim *et al.* 2017) Assume that $M \in C^{(3)}_{\tau_{\min,L}}$ has a bottleneck $q_1, q_2 \in M$. If $x, y \in \mathcal{X}$ are close to q_1, q_2 ,

$$|\tau_M - \hat{\tau}(\mathcal{X})| \lesssim \max\{||x - q_1||, ||y - q_2||\}.$$

Global Case (Upper Bound)

Corollary (A., Kim *et al.* 2017) Let $P \in \mathcal{P}_{\tau_{min},L}^{(3)}$ and M = Supp(P). If M has a bottleneck, then

$$\mathbb{E}_{P^n} |\tau_M - \hat{\tau}(\mathbb{X}_n)| \le C \left(\frac{1}{n}\right)^{\frac{1}{d}},$$

where $C = C_{d,\tau_{\min},f_{\min}}$.

Assume there exist $q_0 \in M$ and $v_0 \in T_{q_0}M$ with $\left\|\gamma_{q_0,v_0}''(0)\right\| = 1/\tau_M$.

Assume there exist $q_0 \in M$ and $v_0 \in T_{q_0}M$ with $\|\gamma_{q_0,v_0}'(0)\| = 1/\tau_M$.

- (Directional Curvature Stability) If x, y are close to q_0 and $\theta = \angle (y - x, v_0)$ is small,

$$\|\gamma_{x \to y}'(0)\| \simeq \|\gamma_{q_0, v_0}'(0)\| = 1/\tau_M.$$

Assume there exist $q_0 \in M$ and $v_0 \in T_{q_0}M$ with $\|\gamma_{q_0,v_0}'(0)\| = 1/\tau_M$.

- (Directional Curvature Stability) If x, y are close to q_0 and $\theta = \angle (y - x, v_0)$ is small,

$$\|\gamma_{x \to y}'(0)\| \simeq \|\gamma_{q_0, v_0}'(0)\| = 1/\tau_M.$$

Assume there exist $q_0 \in M$ and $v_0 \in T_{q_0}M$ with $\left\|\gamma_{q_0,v_0}'(0)\right\| = 1/\tau_M$.

- (Directional Curvature Stability) If x, y are close to q_0 and $\theta = \angle (y - x, v_0)$ is small,

$$\|\gamma_{x \to y}'(0)\| \simeq \|\gamma_{q_0, v_0}'(0)\| = 1/\tau_M.$$

- (Directional Curvature Estimation) If ||y - x|| is small,

$$\frac{\|y - x\|^2}{2d(y - x, T_x M)} \simeq \|\gamma_{x \to y}''(0)\|.$$

Proposition (A., Kim *et al.* 2017) Assume that $M \in C^{(3)}_{\tau_{\min},L}$ has $\|\gamma_{q_0,v_0}'(0)\| = \frac{1}{\tau_M}$, and write $\theta_z = \angle (v_0, \gamma_{q_0 \to z}'(0)).$ If $x, y \in \mathcal{X}$ are close to q_0 , and $|\theta_x - \theta_y| \ge \pi/2$, $|\tau_M - \hat{\tau}(\mathcal{X})| \lesssim \max \{\|x - q_0\|, \|y - q_0\|\} + \sin^2(|\theta_x - \theta_y|).$

Local Case (Upper Bound)

Corollary (A., Kim *et al.* 2017) Let $P \in \mathcal{P}_{\tau_{min,L}}^{(3)}$ and M = Supp(P). Assume that M has a geodesic such that $\|\gamma_0''(0)\| = \frac{1}{\tau_M}$. Then,

$$\mathbb{E}_{P^n} |\tau_M - \hat{\tau}(\mathbb{X}_n)| \le C \left(\frac{1}{n}\right)^{\frac{2}{3d-1}},$$

where $C = C_{d,\tau_{\min},L,f_{\min}}$.

Overall Minimax Estimates

The minimax risk over $\bar{\mathcal{P}}_{\tau_{min},L}^{(3)}$ for reach estimation is,

 $\inf_{\hat{\tau}_n} \sup_{\bar{P} \in \bar{\mathcal{P}}_{\tau_{min},L}^{(3)}} \mathbb{E}_{\bar{P}^n} \left| \tau_{\bar{P}} - \hat{\tau}_n \right|,$

where the infimum ranges over all the estimators $\hat{\tau}_n = \hat{\tau}_n (\mathbb{X}_n, T_{\mathbb{X}_n}M)$. Proposition (A., Kim *et al.* 2017)

For n large enough,

$$\inf_{\hat{\tau}_n} \sup_{\bar{P} \in \bar{\mathcal{P}}_{\tau_{min},L}^{(3)}} \mathbb{E}_{\bar{P}^n} |\tau_{\bar{P}} - \hat{\tau}_n| \le C \left(\frac{1}{n}\right)^{\frac{2}{3d-1}},$$

where $C = C_{d,\tau_{\min},L,f_{\min}}$.

Overall Minimax Estimates

The minimax risk over $\bar{\mathcal{P}}_{\tau_{min},L}^{(3)}$ for reach estimation is,

$$\inf_{\hat{\tau}_n} \sup_{\bar{P} \in \bar{\mathcal{P}}_{\tau_{\min},L}^{(3)}} \mathbb{E}_{\bar{P}^n} \left| \tau_{\bar{P}} - \hat{\tau}_n \right|,$$

where the infimum ranges over all the estimators $\hat{\tau}_n = \hat{\tau}_n (\mathbb{X}_n, T_{\mathbb{X}_n} M)$. Proposition (A., Kim *et al.* 2017)

For n large enough, (+ technical assumptions)

$$c\left(\frac{1}{n}\right)^{\frac{1}{d}} \le \inf_{\hat{\tau}_n} \sup_{\bar{P} \in \bar{\mathcal{P}}_{\tau_{min},L}^{(3)}} \mathbb{E}_{\bar{P}^n} |\tau_{\bar{P}} - \hat{\tau}_n| \le C\left(\frac{1}{n}\right)^{\frac{2}{3d-1}},$$

where $C = C_{d,\tau_{\min},L,f_{\min}}$ and $c = c_{\tau_{\min}}$.

Conclusion

In this PhD thesis, we examined:

- Minimax estimates for estimation of $M, T_X M, II_X^M$ and τ_M .
- Stability of manifold reconstruction algorithms.
- Regularity classes for submanifolds.
- Lower bound techniques for $T_X M$ with random X.

Conclusion

In this PhD thesis, we examined:

- Minimax estimates for estimation of $M, T_X M, II_X^M$ and τ_M .
- Stability of manifold reconstruction algorithms.
- Regularity classes for submanifolds.
- Lower bound techniques for $T_X M$ with random X.

Which raised new questions for:

- Noise handling
- Broader regularity classes
 - including boundary;
 - based on other parameters $\lambda\text{-reach},\,\mu\text{-reach},\,\text{local}$ feature size.
- Effective implementation and calibration.

Summing Up

Minimax Risk Estimates.

Model Goal	$\mathcal{C}^2_{ au_{\min}}$	$\mathcal{C}^k_{ au_{\min},\mathbf{L}}$	$\mathcal{C}^{(3)}_{ au_{\min},L} \ T_X M$ known
М	$\left(\frac{\log n}{n}\right)^{\frac{2}{d}}$	$\left(\frac{[\log n]}{n}\right)^{\frac{k}{d}}$	
$T_X M$	$\left(\frac{\left[\log n\right]}{n}\right)^{\frac{1}{d}}$	$\left(\frac{\left[\log n\right]}{n}\right)^{\frac{k-1}{d}}$	0
II_X^M	c > 0	$\left(\frac{\left[\log n\right]}{n}\right)^{\frac{k-2}{d}}$	
$ au_M$	c > 0		$\frac{\left(\frac{1}{n}\right)^{\frac{1}{d}-[\alpha]}}{0 \le \alpha \le \frac{d-1}{d(3d-1)}}$

[] indicates a gap between upper and lower bounds. No constant depend on D.

Summing Up

Minimax Risk Estimates.

Model Goal	$\mathcal{C}^2_{ au_{\min}}$	$\mathcal{C}^k_{ au_{\min},\mathbf{L}}$	$\begin{array}{c} \mathcal{C}_{\tau_{\min},L}^{(3)} \\ T_X M \text{ known} \end{array}$
М	$\left(\frac{\log n}{n}\right)^{\frac{2}{d}}$	$\left(\frac{[\log n]}{n}\right)^{\frac{k}{d}}$	$\frac{\left(\frac{\left[\log n\right]}{n}\right)^{\frac{3}{d}-\left[\alpha\right]}}{0 \le \alpha \le \frac{1}{d}}$
$T_X M$	$\left \left(\frac{\left[\log n \right]}{n} \right)^{\frac{1}{d}} \right $	$\left(\frac{\left[\log n\right]}{n}\right)^{\frac{k-1}{d}}$	0
II_X^M	c > 0	$\left(\frac{\left[\log n\right]}{n}\right)^{\frac{k-2}{d}}$	$ \begin{pmatrix} \underline{[\log n]} \\ n \end{pmatrix}^{\frac{1}{d} - [\alpha]} \\ 0 \le \alpha \le \frac{1}{d} $
$ au_M$	c > 0	?	$\left(\frac{1}{n}\right)^{\frac{1}{d}-[\alpha]} \\ 0 \le \alpha \le \frac{d-1}{d(3d-1)}$

[] indicates a gap between upper and lower bounds. No constant depend on D.