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Chapitre I

Introduction générale

La recherche de caractéristiques pertinentes associées à des jeux de données suscite un
intérêt croissant du fait de leur acquisition massive. Ces caractéristiques ont pour but de
résumer des données non structurées, souvent représentées par des nuages de points en
grande dimension, en les réduisant à des descripteurs simples à analyser. Pour appréhender
des données vivant en grande dimension, un cadre statistique raisonnable consiste à supposer
qu’elles se concentrent sur un ensemble de dimension intrinsèque d, petite par rapport à
la dimension D de l’espace des mesures. Ce postulat est fondé sur l’idée que les données
contiennent une forme de redondance ou de corrélation, et qu’elles ne comportent pas
véritablement D degrés de liberté.

Les techniques linéaires de réduction de dimension ont fait l’objet de nombreux travaux.
En particulier, les méthodes parcimonieuses du type LASSO, qui visent à annuler des
coefficients d’un paramètre à estimer, ont connu un essor considérable [HTF09]. Au delà
des techniques mises en œuvre, notons que l’idée d’annuler des coefficients repose de
manière implicite sur la confiance en une paramétrisation particulière du phénomène. En
effet, le caractère creux d’un vecteur n’est pas stable par déformation, même rigide, de
l’espace ambiant. Lorsqu’un système de coordonnées n’est pas fiable, interprétable, ou
pas même disponible — par exemple pour des données prenant la forme d’une matrice
de distances [GG12] —, de telles méthodes ne peuvent pas s’appliquer directement. De
manière encore plus critique, un modèle de régression peut ne s’appliquer dans aucun
système de coordonnées. En effet, les graphes de fonctions modélisent mal des jeux de
données repliés sur eux-mêmes, présentant une topologie non triviale autre que celle d’un
convexe. C’est par exemple le cas pour les configurations admissibles de cetains systèmes
thermodynamiques, les conformations de biomolécules, ou bien la répartition filamentaire
des galaxies en cosmologie [LV07]. Les données présentent alors une géométrie dont les
caractéristiques peuvent être informatives, donc intéressantes à étudier.

Dans un contexte tout autre, la géométrie algorithmique s’intéresse au traitement
des problèmes de nature géométrique sur ordinateur [BY98]. Par exemple, si l’on dispose
d’une numérisation discrète d’un objet continu, on peut chercher à le reconstruire avec
des triangulations. Dans ce domaine, les guaranties théoriques obtenues reposent sur des
conditions déterministes d’échantillonnage, souvent basées sur la densité et la généricité
d’un nuage de points vis-à-vis de la forme sous-jacente. En dimension 2 et 3, l’estimation
de descripteurs géométriques a déjà été très étudiée. Les nombreuses techniques existantes,
asorties d’heuristiques ainsi que de structures de données efficaces fournissent un contexte
satisfaisant pour leur utilisation [BT07]. En dimension supérieure, on trouve une littérature
assez riche pour l’inférence de caractéristiques topologiques, mais bien moins d’occurrences
pour des quantités géométriques.
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CHAPITRE I. INTRODUCTION GÉNÉRALE

Géométrie des données
L’analyse topologique de données est un domaine visant à extraire une information de nature
géométrique ou topologique à partir de données [Car09]. Les mesures sont considérées
comme étant générées sur «une forme M», ce qui ouvre de nombreuses questions sur
leur géométrie. On s’intéresse alors à des notions qui sont invariantes par changement
de coordonnées. De fait, cela amène aussi à considérer des invariants topologiques et
des quantités intrinsèques issues de la géométrie différentielle comme pouvant résumer
les données. On peut ensuite tirer profit de ces signatures géométriques en utilisant des
méthodes classiques d’apprentissage, par exemple via des techniques de segmentation ou
de classification [HTF09]. L’analyse topologique de données se place donc à l’interface
entre géométrie algorithmique et statistiques. Elle soulève notamment le problème de la
grande dimension en géométrie algorithmique et réciproquement, elle amène de nouveaux
descripteurs en statistiques.

Décrivons maintenant quelques objets géométriques et topologiques d’intérêt, ainsi que
l’interprétation que l’on peut en avoir vis-à-vis des données étudiées. On adopte le cadre,
qui nous intéressera tout au long de cette thèse, dans lequel les données proviennent d’une
sous-variété source M ⊂ RD de classe au moins C2.

D’abord, la sous-variété M elle-même renseigne sur la localisation des données. On
parle alors d’estimation de support, ou d’ensemble [Cue09]. La qualité de l’approximation
de M par un estimateur M̂ peut être évaluée par différentes pertes selon les propriétés
de l’estimation recherchée. Parmi les plus classiques, citons la mesure de la différence
symétrique µ(M4M̂), qui peut garantir la détection fine de valeurs aberrantes dans la
surveillance d’un système [BCP08]. D’autre part, la distance de Hausdorff dH(M,M̂)
fournit une mesure assez rigide pour garantir des propriétés de stabilité géométrique dans
les cas réguliers [CCSL06]. La dimension intrinsèque d = dim(M) informe sur le nombre de
degrés de liberté du système sous-jacent [LV07]. Inversement, la codimension D− d précise
le nombre de corrélations locales entre les variables étudiées. En homologie, le nombre
de Betti β0(M) correspond au nombre de composantes connexes de M . Sa détermination
préalable peut être nécessaire dans certains algorithmes de clustering [SJ03]. L’espace
tangent TxM est la meilleure approximation linéaire de M en x ∈M . Par conséquent, il
fournit les directions de grande variabilité locale du système étudié [ACLZ17]. C’est aussi
un bon candidat pour un domaine de paramétrisation locale de dimension d. Concernant
les quantités différentielles d’ordre deux, la seconde forme fondamentale IIMx précise à quel
point M s’éloigne localement du cadre linéaire TxM , ainsi que les directions dans lesquelles
cela a lieu. Elle encode complètement la courbure et informe sur une échelle locale à laquelle
regarder les données [CP05]. On peut aussi citer d’autres objets globaux et plus élaborés
tels que le reach [DS06], le volume [BH98], les nombres de Betti d’ordres supérieurs βk(M)
[BRS+12], la persistance topologique [Oud15], les graphes de Reeb [GSBW11], le bord
[CRC04], la distance géodésique [MS05] ou la distance à la mesure [CCSM11]. La liste
est bien loin d’être exhaustive [Was]. Chacun de ces objets peut constituer un paramètre
d’intérêt attaché aux données que l’on peut chercher à estimer.

Cette thèse s’intéresse à l’estimation optimale, à partir de nuages de points Xn =
{X1, . . . , Xn}, de quantités géométriques associées à des sous-variétés M de l’espace
euclidien RD, dans un cadre statistique non-asymptotique. Nous examinons les vitesses
optimales d’estimation de ces objets pour différentes classes de régularité de la sous-variété
source inconnue M .
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Optimalité et vitesse de convergence
Jusqu’à récemment, les questions d’optimalité ont été peu traitées en inférence géométrique.
En géométrie algorithmique, l’optimalité fait souvent référence à la complexité algorithmique
lorsque le problème est de nature combinatoire [AL13]. Quand ce n’est pas le cas, la notion
d’optimalité repose sur des constructions de nuages de points ad hoc et non génériques
[Cla06]. À l’inverse, les notions d’optimalité abondent en statistiques à la fois paramétrique
[LC98] et non-paramétrique [Tsy09]. Dans cette thèse, nous utiliserons le risque minimax,
un critère d’optimalité très répandu en statistique non-paramétrique. Décrivons maintenant
sa construction dans un cadre général.

On considère le problème de l’estimation d’un paramètre d’intérêt θ(P ) dépendant
de la loi commune P ∈ P d’un n-échantillon Xn = {X1, . . . , Xn} ayant pour support
M = Supp(P ). Pour θ(P ), on peut penser par exemple aux quantités géométriques et
topologiques décrites auparavant, ou bien de manière plus classique à une fonction de
régression ou une densité. On cherche à répondre à la question «peut-on estimer θ(P ) étant
donné un n-échantillon Xn = {X1, . . . , Xn} de loi P ?». Par estimer, on veut dire trouver
θ̂ = θ̂(Xn) qui rende petite, en moyenne, une mesure de qualité d(θ(P ), θ̂) préalablement
fixée. À P fixée, le théorème fondamental de la statistique affirme que la mesure empirique
Pn converge presque sûrement vers P quand n tend vers l’infini. Pourvu que la fonctionnelle
d’intérêt P 7→ θ(P ) soit stable par rapport à P , on peut espérer estimer θ(P ) au moins
asymptotiquement. Cependant, il est impossible d’obtenir une vitesse de convergence quand
n tend vers l’infini si P est autorisée à se rapprocher de cas pathologiques. Par exemple, si
aucune hypothèse de régularité n’est faite sur une fonction de régression, il est sans espoir
de discerner le signal du bruit.

Pour obtenir une réponse à la question, plus précise, «à quelle vitesse peut-on estimer
θ(P ) ?», il faut donc restreindre le domaine d’étude — un modèle P réputé contenir P —
et en étudier les limitations intrinsèques. Le risque minimax Rn(P) sur le modèle P pour
l’estimation du paramètre θ(P ) sur un échantillon de taille n est le meilleur risque moyen
atteignable uniformément sur P par un estimateur. C’est-à-dire,

Rn(P) = inf
θ̂

sup
P∈P

EPnd(θ(P ), θ̂),

où l’infimum est pris sur l’ensemble des estimateurs θ̂ = θ̂(X1, . . . , Xn). Le risque minimax
correspond à la meilleure performance qu’il est possible d’obtenir à partir de n points.
Lorsque n devient grand, Rn(P) informe sur la vitesse optimale d’approximation de la
quantité d’intérêt θ(P ) sur P. Par conséquent, un estimateur θ̂ est dit optimal au sens
minimax lorsque, pour n assez grand,

Rn(P) ≤ sup
P∈P

EPnd(θ(P ), θ̂) ≤ CPRn(P), (I.1)

pour CP > 1. Pour étudier le comportement d’un risque minimax et obtenir un résultat du
type (I.1), on procède généralement en deux étapes tout à fait indépendantes.

(i) Borner supérieurement le risque minimax revient à exhiber un estimateur θ̂ et
à en étudier la performance uniformément sur P. Cela se résume en une borne
supP∈P EPnd(θ(P ), θ̂) ≤ vn. Cette borne est spécifique à chaque problème et repose
sur les propriétés non-asymptotiques de l’estimateur θ̂ considéré.

(ii) Pour démontrer qu’on ne peut pas faire mieux, une borne inférieure Rn(P) ≥ v′n est
obtenue avec des arguments Bayésiens [Yu97]. L’argument sous-jacent correspond
à une étude en pire cas. En effet, si (au moins) deux distributions P1, P2 ∈ P sont
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telles que leurs n-échantillons respectifs ont des lois proches mais que les paramètres
θ(P1) et θ(P2) sont éloignés, aucun estimateur ne peut à la fois être proche de θ(P1)
et θ(P2) simultanément et commettra une erreur de l’ordre de d(θ(P1), θ(P2)) avec
grande probabilité.

Si vn ≤ CPv′n, on obtient alors (I.1) et l’on dit que vn, ou de manière équivalente v′n, est la
vitesse optimale d’estimation de θ(P ) sur P.

Ici, le fait de considérer un risque moyen sur des n-échantillons permet de formaliser la
notion de généricité d’un nuage de points. Ainsi, une procédure renvoyant une quantité
θ̂(x1, . . . , xn) contruite sur n points {x1, . . . , xn} (vus comme déterministes) pourra être
considérée comme génériquement optimale si elle atteint la vitesse minimax lorsqu’elle est
évaluée sur un n-échantillon Xn. L’aléa donne un cadre où la notion d’optimalité est bien
posée.

Notions quantitatives de régularité géométrique
Comme décrit précédemment, une étude minimax nécessite la spécification préalable d’un
modèle P. Celui-ci définit la classe de régularité des objets étudiés. Ici, la notion de
régularité est à prendre au sens large et peut recouvrir la dimension, la massivité d’espace,
l’approximabilité des objets, ou le caractère lisse au sens différentiel classique. Plus cette
classe est grande, plus le problème est général et difficile. Plus cette classe est restreinte, plus
le problème est spécifique et donc accessible. Définir un modèle revient donc à caractériser
quantitativement la difficulté d’estimation d’un objet.

Par régularité quantitative, on exprime la nécessité de borner les objets étudiés. En
analogie avec la regression, les classes Ck de fonctions k fois continûment différentiables ne
présentent pas une information suffisante pour exploiter de façon uniforme leur régularité.
La densité de Ck dans l’ensemble des fonctions continues atteste du fait qu’il est possible
de s’approcher de cas pathologiques non-lisses. À l’inverse, les classes de Hölder Ck(L)
— composées des fonctions k − 1 fois différentiables dont la dérivée (k − 1)-ième est L-
Lipschitzienne — évitent ce phénomène. De la même manière, pour des modèles de
sous-variétés de RD, la régularité doit être quantifiée. L’absence de système de coordonnées
canonique et de paramétrisation naturelle rend le sujet plus complexe que pour les fonctions.

Une première caractéristique de régularité est la dimension intrisèque d = dim(M).
Elle régit en premier lieu la massivité métrique d’une sous-variété M , de la même manière
que dans le cas euclidien. Par la suite, on supposera toujours la dimension d connue. Nous
verrons que d influe fortement sur les vitesses d’estimation des objets étudiés. Par ailleurs,
nous prêterons une attention particulière à développer une analyse insensible à la dimension
ambiante D qui, extrinsèque, est potentiellement très grande devant d.

Ensuite, à dimension d fixée, un paramètre de régularité particulièrement populaire en
inférence géométrique est le reach1. Introduit pour la première fois par Herbert Federer
dans le cadre de la théorie géométrique de la mesure [Fed59], le reach τM de M ⊂ RD est
le plus grand rayon r ≥ 0 tel que tout point ambiant à distance au plus r de M possède
un unique plus proche voisin sur M . Le reach est un paramètre de convexité généralisé, au
sens où M est convexe si et seulement si τM =∞. C’est une notion purement métrique
qui permet de quantifier la régularité d’un ensemble sans faire appel à un système de
coordonnées particulier. Le fait qu’un ensemble M ait un reach minoré par une constante
fixe τM ≥ τmin > 0 nous informe à la fois sur ses propriétés locales et globales. En effet, M
ne peut alors pas être trop courbée, car τmin prescrit un rayon de courbure minimal pour
M . De manière équivalente, on voit que M possède une courbure controllée par 1/τmin,

1On pourrait traduire reach par la portée. L’usage a cependant consacré l’emploi de l’anglais.
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τM

Figure I.1 – Le reach τM d’une courbe fermée plane M .

ce que l’on peut assimiler à la classe de Hölder C2(1/τmin) en termes de paramétrisations
locales. De plus, τmin > 0 empêche M de présenter des régions où elle est proche de
s’auto-intersecter (voir Figure I.1), c’est-à-dire des zones d’étranglement arbitrairement
petites.

Pour des notions de régularité impliquant des ordres de différentiabilité supérieurs k ≥ 3
qui s’apparenteraient aux classes Ck(L), on trouve quelques tentatives de définitions dans
la littérature [CP05], mais pas d’étude minimax sur de tels modèles. Pourtant, il semble
naturel de pouvoir gagner en vitesse d’estimation lorsque l’objet sous-jacent est plus lisse.

Contributions de cette thèse
Ce manuscrit réunit des résultats d’inférence géométrique issus de trois articles distincts.
Les chapitres IV et VI sont le fruit d’une collaboration avec Clément Levrard. Le chapitre V
rapporte des travaux effectués avec Jisu Kim, en collaboration avec Frédéric Chazal,
Bertrand Michel, Alessandro Rinaldo et Larry Wasserman.

Dans chaque cas, on échantillonne de manière indépendante et identiquement distribuée
selon une mesure P ayant pour support M . L’ensemble sous-jacent M est une sous-variété
de RD au moins de classe C2. Nous étudions alors, en fonction de la régularité de M , les
vitesses minimax d’estimation de fonctionnelles de M . Les fonctionnelles en question sont
M elle-même, le reach τM , l’espace tangent TXM et la seconde forme fondamentale IIMX ,
pour X ∈M à la fois déterministe et aléatoire. La thèse est présentée par ordre croissant
de régularité des sous-variétés M étudiées.

Chaque chapitre peut être lu de manière indépendante, ce qui induit quelques redon-
dances, notamment pour ce qui est de la définition des objets. Ainsi, chaque chapitre
possède une introduction propre décrivant l’état de l’art pour chaque question traitée.
Pour faciliter la présentation des résultats, les preuves et lemmes techniques ont été placés
en appendice. Nous détaillons maintenant l’organisation du manuscrit et les principaux
résultats obtenus.

Résultats préliminaires

Nous commençons par une partie préliminaire qui introduit des notions courament uti-
lisées en inférence géométrique. Nous établissons quelques résultats techniques à la fois
géométriques et probabilistes qui seront utiles par la suite.

Stabilité et optimalité minimax des complexes de Delaunay tangentiels
pour la reconstruction de variétés

L’estimation de support, aussi appelée reconstruction de variété en géométrie algorithmique,
consiste en l’estimation de M à partir d’un nuage de point Xn tiré sur ou près de M . Sous
une hypothèse de reach analogue à C2(1/τmin), il a été prouvé que le complexe de Delaunay
tangentiel [BG14] était consistant en l’absence de bruit et lorsque les espaces tangents sont
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connus. Plus précisément, si Xn est assez densément réparti à l’échelle ε ≤ cdτM sur M ,
alors le complexe de Delaunay tangentiel est une triangulation ayant pour sommets Xn qui
possède la même topologie que M et qui en est proche à ε2 pour la distance de Hausdorff
dH . Celui-ci est fournit avec un algorithme polynomial en n permettant de le calculer.
Indépendamment, sous la même hypothèse de régularité, les auteurs de [GPPVW12a] ont
donné, dans un cadre aléatoire, les vitesses de convergence minimax d’estimation de M
pour la distance de Hausdorff. Les auteurs montrent que la vitesse minimax est de l’ordre
de (logn/n)2/d. Bien qu’optimal, l’estimateur proposé n’est pas calculable.

Dans ce chapitre, nous démontrons que le complexe de Delaunay tangentiel de [BG14],
ajouté à une procédure d’estimation d’espaces tangents basée sur des Analyses en Com-
posantes Principales (ACP) locales, fournit la vitesse optimale (logn/n)2/d d’estimation
pour la distance de Hausdorff donnée dans [GPPVW12a]. Ce résultat reste valide dans un
modèle avec bruit additif de petite amplitude.

Inversement, nos résultats montrent que les vitesses optimales [GPPVW12a] sont
atteignables avec des triangulations. Ces triangulations sont par ailleurs calculables en
temps polynomial.

De plus, en présence de données aberrantes, nous proposons une méthode itérative de
débruitage basée sur ces mêmes ACP locales. Le débruitage conduit à la vitesse optimale
d’approximation

(
logn/(βn)

)2/d, où 0 < β ≤ 1 correspond à la proportion moyenne de
points tirés sur M , et 1 − β celle de données aberrantes. Ici, l’estimation des espaces
tangents est utilisée dans la procédure de débruitage et, réciproquement, le nuage de points
ainsi débruité permet une estimation plus fine des espaces tangents.

Au cours de l’analyse, on montre que le complexe de Delaunay tangentiel est stable
lorsque ses paramètres d’entrée — points et espaces tangents — sont perturbés. L’argument
est global, constructif, et peut être appliqué à d’autres méthodes de reconstruction prenant
les espaces tangents en paramètre.

Approximation et géométrie du reach

La régularité et les paramètres d’échelle jouent un rôle crucial en analyse de données, en
particulier quand il s’agit d’implémentation effective. Comme illustré dans le chapitre IV,
le reach τM est un paramètre d’échelle et de régularité qui intervient de façon centrale en
géométrie algorithmique. Il dicte notamment une échelle minimale pour les caractéristiques
géométriques de M .

Nous étudions dans ce chapitre la question de l’estimation du reach à partir de nuages
de points X . Avant d’aborder son estimation à proprement parler, on décrit précisément ce
à quoi le reach est lié pour les sous-variétés. En particulier, nous démontrons rigoureusement
que le reach provient d’une zone de forte courbure (cas local), ou d’une zone d’étranglement
(cas global) comme illustré Figure I.1.

Un estimateur plug-in τ̂ de τM est proposé lorsque les espaces tangents sont connus et
lorsqu’ils sont inconnus. L’analyse des performances de τ̂ est tout d’abord effectuée dans un
cadre déterministe, où l’on décrit les propriétés du nuage de points X qui rendent efficace
l’estimation de τM par τ̂(X ). Cette analyse est effectuée de manière différente selon que M
est dans le cas local ou le cas global, mais l’estimateur τ̂ ne nécessite pas cette information.

Nous examinons l’optimalité de l’estimateur τ̂ via les performances de τ̂(Xn) lorsque
Xn = {X1, . . . , Xn} est un n-échantillon. Lorsque M est dans un modèle C3, on montre que
τ̂(Xn) estime τM à la vitesse (1/n)2/(3d−1) dans le cas local, et (1/n)1/d dans le cas global.
De plus, une borne inférieure sur le risque minimax de l’ordre de (1/n)1/d est obtenue,
montrant que τ̂(Xn) est optimal dans le cas global.

Dans ce chapitre, le modèle C3 de régularité est formulé en termes des trajectoires
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géodésiques. On suppose que toute géodésique γ(t) de M vérifie ‖γ′′′(t)‖ ≤ L. Ici encore,
cette notion de régularité ne fait pas appel à un système de coordonnées ambiant.

Vitesses non-asymptotiques d’estimation de variétés, d’espaces tangents
et de courbure

Dans ce chapitre, nous étudions les vitesses optimales d’estimation de quantités différentielles
associées à des sous-variété jusqu’à l’ordre deux : (0) la sous-variété M elle-même, (1)
l’espace tangent TXM et (2) la seconde forme fondamentale IIMX , pour X ∈M à la fois
déterministe et aléatoire.

On introduit une collection de modèles pour les sous-variétés Ck (k ≥ 3), qui généralisent
de manière naturelle le modèle utilisé au chapitre IV pour k = 2. La régularité est exprimée
en termes du reach et de l’existence de paramétrisations unitaires bornées dans Ck(L).
On insiste sur la nécessité d’imposer des contraintes à la fois locales et globales pour
l’estimation de la courbure et des espaces tangents. En effet, on montre qu’il est impossible
d’estimer TXM et IIMX si le reach τM est autorisé à être arbitrairement petit, malgré des
bornes fixes sur la régularité des paramétrisations locales de M .

Les estimateurs proposés sont tous basés sur une unique approche par polynômes
locaux, qui généralise l’ACP locale du chapitre IV. On traite ainsi les trois problèmes
d’estimation de manière unifiée. À des facteurs logn près, on montre que les vitesses
minimax sont (0) (logn/n)k/d pour l’estimation de M avec la perte donnée par la distance
de Hausdorff, (1) (logn/n)(k−1)/d pour les espaces tangents et (2) (logn/n)(k−2)/d pour la
seconde forme fondamentale. Autrement dit, la vitesse obtenue pour l’estimation d’une
quantité différentielle d’ordre i = 0, 1, 2 est (logn/n)(k−i)/d. Les vitesses obtenues montrent
en particulier que l’estimation d’espaces tangents par ACP locale du chapitre IV est
optimale pour le cas k = 2.

Les bornes inférieures minimax sont obtenues via des techniques Bayésiennes déjà
connues, bien qu’une nouvelle version conditionnelle du lemme d’Assouad est utilisée pour
les espaces tangents et la courbure lorsque le point de base X est aléatoire. En effet, dans
ces cas, le paramètre d’intérêt est TX1M ou IIMX1

avec Xn = {X1, . . . , Xn}, et l’on est
amené à considérer le risque minimax

inf
θ̂

sup
P∈P

EPnd(θX1(P ), θ̂) = inf
θ̂

sup
P∈P

EPn−1

∥∥∥d(θx1(P ), θ̂)
∥∥∥
L1(P (dx1))

.

Cette écriture montre que la perte considérée est de type L1, mais la mesure d’intégration P
de cette norme L1 est la loi sous-jacente de l’échantillon, rendant inopérantes les techniques
déjà existantes.
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Chapter II

General Introduction

As a result of massive data acquisition, the search for relevant features associated to data
raises an increasing interest. These features aim at summarize unstructured data, often
represented as point clouds in high dimension, by reducing them to descriptors that are
simple to analyze. To understand data living in high dimension, a reasonable statistical
framework consists in assuming it concentrates on a set of intrinsic dimension d, small
compared to the dimension D of the space of measures. This assumption is based on the
idea that data are subject to redundancy or correlation, and do not actually include D
degrees of freedom.

Linear dimension reduction techniques have been studied extensively. In particular,
interests in sparse LASSO-type methods, which aim at setting coefficients of an estimated
parameter to zero, have grown considerably [HTF09]. Beyond the developed tools, let us
note that the idea of setting coefficients to zero is implicitly based on the reliance on a
particular parametrization of the problem. Indeed, the sparsity property of a vector is
not stable under deformations, even rigid ones, of the ambient space. When a coordinate
system is not reliable, interpretable, or even not available — for instance, distance matrix
data [GG12] —, such methods do not apply immediately. In an even more critical
situation a regression model may apply in no coordinate system. Indeed, folded up datasets
exhibiting nontrivial topology — different from that of a convex — are poorly modeled by
graphs of functions. This is the case, for instance, for admissible configurations of some
thermodynamic systems, biomolecule conformations, or filamentary distribution of galaxies
[LV07]. Then, data present some geometry of which features may be informative, and
hence interesting to study.

In a very different context, computational geometry is devoted to study algorithmic
problems related to geometry [BY98]. For instance, given a discrete scan of a continuous
object, we can try to reconstruct it with triangulations. In this field, theoretical guarantees
rely on deterministic sampling conditions, often based on the density and the genericity
of a point cloud with respect to the underlying shape. In dimension 2 and 3, geometric
feature estimation has been examined widely. The many existing techniques combined with
heuristics and efficient data structures provide a satisfactory context for their use [BT07].
In higher dimensions, the literature is quite abundant for topological feature inference, but
much less for geometric quantities.

Geometry of Data
Topological data analysis aims at extracting information of geometric or topological nature
from data [Car09]. Measures are considered as being generated on “a shapeM”, which opens
many questions on their geometry. This field gets interested in notions that are invariant
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under coordinate transformations. De facto, it leads to consider topological invariants and
intrinsic quantities coming from differential geometry as providing summaries of data. We
can then take advantage of these geometric signatures by using classical learning techniques,
such as segmentation or classification [HTF09]. Topological data analysis is at the interface
between computational geometry and statistics. It raises the issue of high dimension in
computational geometry and, reciprocally, it brings up new descriptors in statistics.

Let us now describe few geometric and topological objects of interest, together with
the interpretation on data we can have of it. We take the case considered throughout this
thesis, where data come from a source submanifold M ⊂ RD of class at least C2.

First, the submanifold M itself informs us about location of data. Its estimation
is referred to as support, or set estimation [Cue09]. The approximation quality of M
by an estimator M̂ can be appraised with different losses, depending on the sought
properties of approximation. Among the most common ones, let us mention the measure
of the symmetric difference µ(M4M̂), that can guarantee fine outlier detection in system
monitoring [BCP08]. On the other hand, the Hausdorff distance dH(M,M̂) provides a
measure which is rigid enough to guarantee geometric stability properties in regular cases
[CCSL06]. Furthermore, the intrinsic dimension d = dim(M) informs on the degrees of
freedom of the underlying system [LV07]. Conversely, the codimension D − d specifies
the number of local correlations between variables. In homology, the Betti number β0(M)
corresponds to the number of connected components of M . Its preliminary estimation can
be necessary in some clustering algorithms [SJ03]. The tangent space TxM is the best
linear approximation of M at x ∈M . As a consequence, it provides local directions of high
variability [ACLZ17]. It is also a good candidate for a domain of local parametrization of
dimension d nearby x. As to differential quantities of order two, the second fundamental
form IIMx describes how much M deviates from the linear framework TxM , as well as
the directions where it comes about. It fully encodes curvature, and informs on a local
scale at which to look at data [CP05]. Let us also mention more elaborated and global
objects such as reach [DS06], volume [BH98], higher order Betti numbers βk(M) [BRS+12],
topological persistence [Oud15], Reeb graphs [GSBW11], boundary [CRC04], geodesic
distance [MS05] or distance to a measure [CCSM11]. This list is far from exhaustive [Was].
Each of these objects can be a parameter of interest, attached to data, that may be a
target for estimation.

This thesis focuses on optimal estimation, from point clouds Xn = {X1, . . . , Xn}, of
geometric quantities associated to submanifolds M of the Euclidean space RD in a non-
asymptotic statistical framework. We investigate optimal rates for estimation of these
quantities with different regularity classes for the unknown source submanifold M .

Optimality and Convergence Rates
Up to recently, optimality questions has garnered few attention in geometric inference. In
computational geometry, optimality often refers to algorithmic complexity when the problem
is of combinatorial nature [AL13]. When it is not the case, the notion of optimality relies
on ad hoc constructions of point clouds that are not generic [Cla06]. On the contrary, there
are plenty of notions of optimality in statistics, both parametric [LC98] and nonparametric
[Tsy09]. In this thesis, we will use the minimax risk, a broadly used optimality criterion in
nonparametric statistics. Let us describe its construction in a general framework.

Let us consider the estimation of a parameter of interest θ(P ) depending on the common
distribution P ∈ P of an n-sample Xn = {X1, . . . , Xn} with support M = Supp(P ). For
θ(P ), one can think of the geometric and topological quantities described previously, or
more classically, of a regression or density function. We aim at answering the question
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“can we estimate θ(P ) from an n-sample Xn = {X1, . . . , Xn} with distribution P?”. By
estimating, we mean to find θ̂ = θ̂(Xn) making a measure of quality d(θ(P ), θ̂), fixed
beforehand, small on average. With P fixed, the Glivenko–Cantelli theorem states that the
empirical distribution Pn converges almost surely to P when n goes to infinity. Provided
that the functional of interest P 7→ θ(P ) is stable with respect to P , one can hope to
estimate θ(P ), at least asymptotically. However, it is impossible to derive a rate of
convergence as n goes to infinity if P is allowed to get close to pathological cases. For
instance, with no regularity assumption on a regression function, distinguishing the signal
from the noise is hopeless.

To get an answer to the — more precise — question “How fast can we estimate θ(P )?”,
it is hence necessary to restrict the field of study — a model P known to contain P —
and to examine its intrinsic limitations. The minimax risk Rn(P) on the model P for the
estimation of the parameter θ(P ) with a sample of size n is the best integrated risk that is
achievable uniformly on P by an estimator. Namely,

Rn(P) = inf
θ̂

sup
P∈P

EPnd(θ(P ), θ̂),

where the infimum ranges among the set of estimators θ̂ = θ̂(X1, . . . , Xn). The minimax
risk corresponds to the best attainable performance with n sample points. When n becomes
large, Rn(P) informs on the optimal rate of approximation of the quantity of interest θ(P )
on P. Hence, an estimator θ̂ is said to be minimax optimal if, for n large enough,

Rn(P) ≤ sup
P∈P

EPnd(θ(P ), θ̂) ≤ CPRn(P), (II.1)

for CP > 1. For studying the behavior of a minimax risk and deriving a result like (II.1),
we usually proceed in two very independent steps.

(i) Bounding from above the minimax risk boils down to exhibit an estimator θ̂ and
to study its performance uniformly on P. It can be summarized by a bound
supP∈P EPnd(θ(P ), θ̂) ≤ vn. This bound is problem-specific and relies on nonasymp-
totic properties of the considered estimator θ̂.

(ii) To show that one cannot achieve better, a lower bound Rn(P) ≥ v′n is derived with
Bayesian arguments [Yu97]. It corresponds to a worst-case study. Indeed, if (at
least) two distributions P1, P2 ∈ P are such that their respective n-samples have
distributions that are close, but with parameters θ(P1) and θ(P2) far away from
each other, then no estimator can be both close to θ(P1) and θ(P2) simultaneously.
Hence, no estimator can be accurate at a scale smaller than d(θ(P1), θ(P2)) with high
probability.

If vn ≤ CPv′n, we get (II.1) and we say that vn, or equivalently v′n, is the optimal rate
of estimation of θ(P ) on P.

Here, considering a mean risk on n-samples allows to formalize the notion of genericity
of a point cloud. Therefore, a procedure that outputs a quantity θ̂(X ) built on top of n
point X = {x1, . . . , xn} (seen as deterministic) may be considered as generically optimal if
it reaches the minimax rate when evaluated on a n-sample Xn. Randomness provides a
framework where the notion of optimality is well-posed.

Quantitative Notions of Geometric Regularity
As described previously, a minimax study requires to specify a model P beforehand. It
defines the regularity class of the objects in question. Here, regularity is to be understood
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in the broad sense, and may include dimension, space massiveness, approximability of
objects, or smoothness in the classical differential sense. The broader this class is, the
more general and difficult the problem becomes. The smaller it is, the more specific and
accessible the estimation is. Defining a model boils down to characterize quantitatively the
difficulty of estimation of an object.

By quantitative regularity, we express the need for bounding the studied objects. In
analogy with regression, classes Ck of functions k times continuously differentiable do not
furnish a sufficient information to exploit uniformly their smoothness. Density of Ck in the
set of continuous maps shows that it is possible to get close to non-smooth pathological
cases. On the contrary, Hölder classes Ck(L) — composed of k − 1 times differentiable
functions with L-Lipschitz (k − 1)th derivative — avoid this phenomenon. Similarly, for
models of submanifolds M ⊂ RD, smoothness must be quantified. Yet, the absence of a
canonical coordinate system makes the subject more intricate than for functions.

For a submanifold M , a first regularity characteristic is its intrinsic dimension d =
dim(M). It drives its metric massiveness in the first place as in the Euclidean case.
Thereafter, we will always assume the dimension d to be known. We will see that d impacts
considerably the rates of estimation of the objects studied. Besides, we will carefully
develop an analysis that is unaffected by the ambient dimension D which, extrinsic, may
be very large compared to d.

Then, for fixed dimension d, a very popular regularity parameter in geometric inference
is the reach. First introduced by Herbert Federer for geometric measure theory [Fed59], the
reach τM of M ⊂ RD is the largest radius r ≥ 0 such that any ambient point at distance at
most r from M has a unique nearest neighbor on M . The reach is a generalized convexity

τM

Figure II.1 – The reach τM of a closed curve M in the plane.

parameter, in the sense that M is convex if and only if τM = ∞. It is a purely metric
notion that allows to quantify the regularity of a set without regard of any particular
coordinate system. For a set M , having its reach bounded from below by a fixed constant
τM ≥ τmin > 0 informs us both on its local and global properties. Indeed, M cannot
be too curved, since τmin prescribes a minimal radius of curvature for M . Equivalently,
we see that M has curvature controlled by 1/τmin, which we can think of as a Hölder
class C2(1/τmin) in terms of local parametrizations. Furthermore, τmin > 0 prevents M to
contain regions where it is close to self-intersect. That is, arbitrarily narrow bottleneck
structures (see Figure II.1).

For regularity notions involving higher orders of differentiability k ≥ 3, which would be
similar to Ck(L) classes, one can find some attempts of definitions in the litterature [CP05],
but no minimax study on such models. Though, it seems natural to get faster estimation
rates when the underlying object is smoother.

Contribution of this Thesis
This thesis manuscript gathers results on geometric inference coming from three distinct
articles. Chapters IV and VI are the results of a collaboration with Clément Levrard.
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Chapter V relates works carried out with Jisu Kim, in collaboration with Frédéric Chazal,
Bertrand Michel, Alessandro Rinaldo and Larry Wasserman.

In each case, we sample independently a distribution P having support M . The
underlying set M is a submanifold of RD of class at least C2. We study, depending on
the regularity of M , the minmax rates of estimation of functionals of M . The studied
functionals areM itself, the reach τM , the tangent space TXM and the second fundamental
form IIMX , for X ∈M deterministic and random. The thesis is exposed in ascending order
of regularity of the submanifolds M .

Each chapter can be read independently, which gives rise to few redundancies, especially
for definitions of objects. Thus, each chapter has its own introduction describing the state
of the art for each question we deal with. For ease of exposition, the proofs and technical
lemmas are placed in appendices. Let us now detail the overall organization of the thesis,
together with the main results we obtained.

Preliminary Results

We get started with a preliminary chapter in which we introduce notions that are commonly
used in geometric inference. We derive both geometric and probabilistic technical results
that will be useful later on.

Stability and Minimax Optimality of Tangential Delaunay Complexes for
Manifold Reconstruction

Support estimation, also referred to as manifold reconstruction in computational geometry,
consists in the estimation of M from point cloud — say Xn — drawn on or nearby M .
Under a reach regularity condition similar to C2(1/τmin), the tangential Delaunay complex
[BG14] was shown to be consistent if no noise is present and tangent spaces are known.
More precisely, if Xn is distributed densely enough at scale ε ≤ cdε0 on M , then the
tangential Delaunay complex is a triangulation with vertices Xn that has the same topology
as M , and is ε2-close to it for the Hausdorff distance. It is computable with an algorithm
which is polynomial in n. Independently, under the same regularity assumptions, the
authors of [GPPVW12a] derived, in a random framework, minimax rates of estimation
of M for the Hausdorff distance. The authors showed that the minimax rate is of order
(logn/n)2/d. Though optimal, the estimator of [GPPVW12a] is not constructive.

In this chapter, we show that the tangential Delaunay complex of [BG14], together with
a tangent space estimation procedure based on local Principal Component Analysis (PCA),
yields the optimal estimation rate (logn/n)2/d for the Hausdorff distance that was given
in [GPPVW12a]. This result still holds in a model with additive noise of small amplitude.

Conversely, our results show that the optimal rates [GPPVW12a] are achievable with
triangulations. In addition, these triangulations are computable in polynomial time.

Furthermore, in the presence of outliers, we propose an iterative denoising method
based on the same local PCA’s. Denoising leads up to the optimal approximation rate
(logn/(βn))2/d, where 0 < β ≤ 1 is the average proportion of points drawn onM , and 1−β
that of outliers. Here, tangent space estimation is used in the denoising procedure and,
conversely, the denoised point cloud allows for a more accurate tangent space estimation.

In the analysis, we show that the tangential Delaunay complex is stable when its
input parameters — points and tangent spaces — are perturbed. The argument is global,
constructive, and may be applied to other reconstruction methods taking tangent spaces
as input.
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Approximation and Geometry of the Reach

Regularity and scale parameters play a crucial role in data analysis, in particular for
effective implementation. As illustrated in Chapter IV, the reach τM is one that appears
in a central way in computational geometry. In particular, it gives a minimal scale of
geometric features of M .

In this chapter, we study the problem of estimation of the reach from a point cloud
X . Before tackling estimation itself, we describe precisely what reach is linked to for
submanifolds. In particular, we show in a rigorous way that the reach either comes from a
highly curved zone (local case), or from a bottleneck structure (global case) as illustrated
Figure II.1.

A plugin estimator τ̂(X ) of τM is proposed when tangent spaces are both known
and unknown. The analysis of performances of τ̂ are first carried out in a deterministic
framework, by describing the properties of X making efficient the estimation of τM by
τ̂(X ). This analysis is different depending on whether M is in the local or the global case,
but the estimator τ̂ does need this information.

We advocate the optimality of τ̂ with the performances of τ̂(Xn), when Xn is an
n-sample. When M belongs to a C3 model, we show that τ̂(Xn) approximates τM at rate
(1/n)2/(3d−1) in the local case, and (1/n)1/d in the global case. Moreover, a minimax lower
bound of order (1/n)1/d is derived, showing that τ̂(Xn) is optimal in the global case.

In this chapter, the C3 model of regularity is expressed in terms of geodesic trajectories.
We assume that any geodesic γ(t) of M satisfies ‖γ′′′(t)‖ ≤ L. Here, again, this regularity
notion does not rely on an ambient coordinate system.

Non-Asymptotic Rates for Manifold, Tangent Space and Curvature Esti-
mation

In this chapter, we study the optimal rates of estimation for differential quantities associated
to submanifolds up to order two: (0) the submanifold M itself, (1) the tangent space TXM
and (2) the second fundamental form IIMX , for X ∈M both deterministic and random.

We introduce a collection of models for Ck-submanifolds (k ≥ 3), that generalize
naturally the model used in Chapter IV for k = 2. Regularity is expressed in terms of the
reach and of the existence of unit parametrizations that are bounded in Ck(L). We insist
on the need to impose both local and global constraints for estimation of curvature and
tangent spaces. Indeed, we show that it is impossible to estimate TXM and IIMX if the
reach τM is allowed to be arbitrarily small, despite fixed bounds on the regularity of local
parametrizations of M .

The proposed estimators are all based on a single approach of local polynomial fitting.
It generalizes local PCA of Chapter IV. Thus, we deal with the three estimation problems
in a unified way. Up to logn terms, we show that the minimax rates are (0) (logn/n)k/d
for the estimation of M with the loss given by the Hausdorff distance, (1) (logn/n)(k−1)/d

for tangent spaces, and (2) (logn/n)(k−2)/d for the second fundamental form. In other
words, the rate for a differential quantity of order i is (logn/n)(k−i)/d. In particular, the
derived rates show that the tangent space procedure of Chapter IV, based on local PCA,
is optimal for k = 2.

Minimax lower bounds are derived with existing Bayesian techniques, although a new
conditional version of Assouad’s lemma is used for tangent spaces and curvature when the
base point X is random. Indeed, in this case, the parameter of interest is TX1M or IIMX1

,
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with Xn = {X1, . . . , Xn}, which leads to consider the minimax risk

inf
θ̂

sup
P∈P

EPnd(θX1(P ), θ̂) = inf
θ̂

sup
P∈P

EPn−1

∥∥∥d(θx1(P ), θ̂)
∥∥∥
L1(P (dx1))

.

This formulation shows that the loss involved is of type L1. However, the integration
measure P of this L1-norm is the underlying distribution of the sample, which makes the
existing techniques unsuccessful.
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Chapter III

Preliminary Results

Abstract

We introduce notions that are commonly used in geometric inference, such as the Hausdorff
distance and the reach. We derive both geometric and probabilistic technical results that
will be useful later on.

Content
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III.1 Hausdorff Distance and Measurability
In Chapters IV and VI, we tackle reconstruction problems. Given random variables
X1, . . . , Xn, we build — with various methods depending on the context — estimators
M̂ = M̂(X1, . . . , Xn) aiming at approximate a target compact subset M ⊂ RD. Hence,
we have to make clear what “approximate” means for compact sets. For this, we use the
Hausdorff distance dH . Consequently, we have to clarify what to be a compact sets-valued
“estimator” means, or equivalently, describe measurability properties in the space of compact
subsets endowed with the Hausdorff distance. To ensure not to focus on technical details
about measurability later on, we choose to address this in this section.

Roughly speaking, the take-away message is that the class of compact subsets of a
metric space behaves as well as the metric space itself. Hence, random variables with
values in it do so. For (much) more details about measurability in classes of subspaces, we
refer to [Mat75], and to [Bee93] for the functional approach we adopt.
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III.1.1 Hausdorff Distance

Let (D, d) be a metric space. This thesis only tackles the case (D, d) = (RD, ‖·‖). However,
we state Hausdorff distance properties in full generality to emphasize the key points that
have our case work. We let K(D) denote the set of nonempty compact subsets of (D, d).
For x ∈ D and K ⊂ D, the distance from x to K is

d(x,K) = inf {d(x, y), y ∈ K} . (III.1)

One easily checks that d(.,K) is a 1-Lipschitz map. Let us define the Hausdorff distance.

Definition III.2. For two compact subsets A,B ⊂ RD, the Hausdorff distance between A
and B is defined by

dH(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
.

dH is a distance on the space K(D) of nonempty compact subsets of (D, d).

An equivalent formulation of dH can be written in terms of offsets. The r-offset of K is

Kr = {x ∈ D, d(x,K) ≤ r} , (III.3)

the set of ambient points that are at distance less than or equal to r from K.

Proposition III.4. For all A,B ∈ K(D),

dH(A,B) = inf {r > 0, Ar ⊃ B and Br ⊃ A} .

The Hausdorff distance is a rigid distance, in the sense a single point added to a set —
say, an outlier — can have the Hausdorff distance blow up, since dH(A,A ∪ x) = d(x,A).
It plays the role of a L∞ dissimilarity in the space of compact sets. One can make this
idea precise by identifying a compact subset A ⊂ D to its distance function d(·, A), which
is locally bounded.

Proposition III.5. The map

(K(D), dH) −→ (C(D,R+), ‖·‖∞)
A 7−→ d(·, A)

is an isometry. In other words, for all A,B ∈ K(D),

dH(A,B) = sup
x∈D
|d(x,A)− d(x,B)|.

Moreover, if (D, d) is complete, (K(D), dH) is closed in (C(D,R+), ‖·‖∞).

Actually, we prove the slightly stronger identity

dH(A,B) = sup
x∈K
|d(x,A)− d(x,B)|,

for all A ∪B ⊂ K ⊂ D, meaning that one can restrict the distance function to the domain
A ∪B to compare A and B. When measuring the dissimilarity between compact subsets,
we can somehow restrict to the geometry of (A ∪B, d).
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By identifying a compact subset with its associated distance function, one can see
(K(D), dH) as a closed subset of (C(D,R+), ‖·‖∞). Consequently, it inherits its usual
topological and metric properties. Conversely, one has the isometric closed inclusion

(D, d) −→ (K(D), dH)
x 7−→ {x} ,

that allows to identify a point x to the singleton {x}. Hence, roughly speaking, (K(D), dH)
cannot have better metric properties than (D, d). We recall that a metric space is said
to be boundedly compact if all its closed bounded subsets are compact. In particular, a
boundedly compact metric space is complete.

Proposition III.6. Let (D, d) be a metric space.

(i) (D, d) is separable if and only if (K(D), dH) is separable,

(ii) (D, d) is compact if and only if (K(D), dH) is compact,

(iii) (D, d) is boundedly compact if and only if (K(D), dH) is boundedly compact,

(iv) (D, d) is complete if and only if (K(D), dH) is complete,

(v) (D, d) is Polish if and only if (K(D), dH) is Polish.

To avoid measure-theoretic difficulties, the mildest framework commonly adopted to
develop probability theory is random variables with values in Polish spaces [Par05]. Hence,
working in (K(D), dH) when (D, d) is Polish will have all the usual probability theory
tools operate in a non-pathological way. In particular, manipulating random variables in
(K(RD), dH) will not raise any specific issue.

III.1.2 Compact Set-Valued Random Variables

Now that we made sure handling compact sets-valued random variables is not problematic,
let us describe some of them in the case (D, d) = (RD, ‖·‖). We give a few examples of
measurable maps in K(RD) endowed with the Borel σ-field associated to the Hausdorff
metric dH . We let C(RD,RD) denote the set of continuous map from RD to itself, that we
endow with the topology of the uniform convergence on compact sets, and its Borel σ-field.

Proposition III.7. Equip K(RD) with the Borel σ-field associated to the Hausdorff metric
dH . Then the following maps are measurable:

(i) RD 3 x 7−→
{
x
}
, for all x ∈ RD,

(ii) C(RD,RD)×K(RD) 3 (f,A) 7→ f(A) =
{
f(x), x ∈ A

}
,

(iii) K(RD)×K(RD) 3 (A,B) 7−→ A ∪B,

(iv) K(RD) 3 A 7→ conv(A).

By composition, Proposition III.7 actually allows to describe a wide variety of measur-
able maps. For instance, a simplicial complex is a finite union of simplicies, and simplicies
are convex hulls of finite sets. As a consequence, (i),(ii) and (iv) show that simplicial
complexes M̂ built on top of a random point cloud Xn for which the presence of each
simplex is determined by a measurable event, yield estimators. As a consequence, the
simplicial complexes M̂TDC, M̂TDCδ and M̂TDC+ of Chapter V are measurable. Similarly, the
union of local polynomial patches M̂POLY of Chapter VI are measurable from (ii) and (iii).
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III.2 Measure, Diameter, and Sampling
In this section, we consider a general metric-measure space (D, d, µ) 1 , and we investigate
the links between the local behavior of µ and metric properties of D.

For sake of simplicity, (D, d) will be assumed to be separable. All the metric quantities
considered here refer to d: balls B(x, r), diameter diam(·), Hausdorff distance dH(·, ·), and
so on. The support Supp(µ) ⊂ D of µ is the smallest closed set C ⊂ D of mass one.

Definition III.8 (Standard Measure). The distribution µ is called (a, b)-standard at scale
r0 if for all x ∈ Supp(µ) and all r ≤ r0,

µ (B(x, r)) ≥ arb.

Roughly speaking, a measure that is (a, b)-standard at scale r0 behaves like the b-
dimensional Lebesgue measure, though b need not be an integer. This assumption is pretty
popular in the literature on set estimation, and its properties will be used extensively in
the results of this thesis. Up to now, it was considered with b = D in RD [Cue09], except
in [CCSL06] in a theoretical framework. As we will see shortly, such an assumption gives
bounds on massiveness of the support Supp(µ) ⊂ D.

To measure massiveness of subsets K ⊂ D, we will use packing and covering numbers.
That is, numbers of balls optimally displayed at some scale r in K. A r-covering of K
is a subset x = {x1, . . . , xk} ⊂ K such that for all x ∈ K, d(x,x) ≤ r. A r-packing of
K is a subset y = {y1, . . . , yk} ⊂ K such that for all y, y′ ∈ y, B(y, r) ∩ B(y′, r) = ∅ (or
equivalently d(y, y′) > 2r).

Definition III.9. For K ⊂ D and r > 0, the covering number cv(K, r) is the minimum
number of balls of radius r that are necessary to cover K,

cv(K, r) = min {k > 0, there exists a r-covering of cardinality k} .

The packing number pk(K, r) is the maximum number of disjoint balls of radius r that can
be packed in K,

pk(K, r) = max {k > 0, there exists a r-packing of cardinality k} .

Usually, for a given space K, covering and packing numbers have the same order of
magnitude. Namely, they are linked by the relations

pk(K, 2r) ≤ cv(K, 2r) ≤ pk(K, r). (III.10)

Indeed, for the left-hand side inequality, notice that if K is covered by a family of balls
of radius 2r, each of these balls contain at most one point of a maximal packing y at
scale 2r. Conversely, the right-hand side inequality follows from the fact that a maximal
r-packing y is always a 2r-covering. If it was not the case, one could add a point x0 such
that d(x0,y) > 2r, which is impossible by maximality of y.

It is interesting to note that any (a, b)-standard measure µ has support massiveness
controlled, in the following sense.

Proposition III.11. Let µ be a (a, b)-standard probability distribution at scale r0 > 0.
Then for r ≤ r0,

pk (Supp(µ), r) ≤ 1
arb

.

1That is, a metric space (D, d) with a probability distribution µ on D equipped with its Borel σ-algebra.
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For r ≤ 2r0,

cv (Supp(µ), r) ≤ 2b

arb
.

As a consequence, one can derive an upper bound on the diameter of such a support, if
it is assumed to be path-connected. This is based on the following bound.

Lemma III.12. Let K ⊂ RD be a bounded subset. If K is path-connected, then for all
ε > 0, diam(K) ≤ 2εcv(K, ε).

Thereby, Proposition III.13 follows from Lemma III.12 applied with r = 2r0 , together
with Proposition III.11.

Proposition III.13. If µ is (a, b)-standard at scale r0 and has a path-connected support
Supp(µ), then

diam (Supp(µ)) ≤ 4r1−b
0 /a.

Note that connectedness is crucial here. Consider for instanceKx = B(−x, 1)∪B(x, 1) ⊂
RD for ‖x‖ arbitrarily large. Then diam(Kx) = 2 ‖x‖+ 1→∞ although the distribution
on Kx is (a,D)-standard at scale 1 with fixed a > 0. Proposition III.13, yields that for all
x ∈ Supp(µ) (path-connected) and r > 0, we have

- if r ≤ r0, µ (B(x, r)) ≥ arb,

- if r ≥ diam(Supp(µ)), µ (B(x, r)) = 1,

- if r0 ≤ r ≤ diam(Supp(µ)),

µ (B(x, r)) ≥ µ (B(x, r0))

≥ arb0 = a

(
r0
r

)b
rb

≥ a
(
ar0

4r1−b
0

)b
rb = a

(
arb0
4

)b
rb.

In turn, if Supp(µ) is path-connected, µ
(
B(x, r)

)
≥ a′rb ∧ 1 for all r > 0, where a′ ,

a
(
arb0/4

)b. This property was used in [CCSL06] and called “(a, b)-standardness” (with no
scale). Conversely, if µ (B(x, r)) ≥ a′rb ∧ 1 for all r > 0, then µ

(
B(x, a′1/b)

)
= 1 for all

x ∈ Supp(µ), so that diam(Supp(µ)) ≤ a′1/b.
Further investigating the properties of (a, b)-standard measures at scale r0 > 0, let us

now give the convergence rate of a sample point cloud Xn = {X1, . . . , Xn} towards its
underlying support Supp(µ).

Proposition III.14. If µ is (a, b)-standard at scale r0 > 0, and Xn = {X1, . . . , Xn} is an
i.i.d. n-sample with common distribution µ, then for all r ≤ 2r0,

P
(
dH
(
Supp(µ),Xn

)
> r

)
≤ 4b

arb
exp

(
−narb

)
.

In particular, for any α > 0, for n large enough so that
(
Ca,b,α

logn
n

)1/b
≤ 2r0, with

probability at least 1−
(

1
n

)α
,

dH
(
Supp(µ),Xn

)
≤
(
Ca,b,α

logn
n

)1/b
,

where Ca,b,α = (1+α)∨4b
a .
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In other words, with n points, the typical density of sampling of a (a, b)-standard
measure is of order (logn/n)1/b. Roughly speaking, it relies on the fact that standard
measures have uniformly spread mass on their support. Hence, an n-sample would visit
all the areas of its support with high probability. This comes from the fact that the
massiveness of Supp(µ) (in terms of covering number) is controlled.

III.3 Reach and Submanifolds of RD

We now introduce the reach and describe links between curvature, reach, diameter, and
volume in the case of submanifolds.

III.3.1 Reach of Closed Subsets

Let us first describe the reach in full generality, as first introduced by Federer [Fed59]. Given
a closed subset A ⊂ RD, the medial axisMed(A) of A is the subset of RD consisting of points
that have at least two nearest neighbors on A. Namely, denoting by d(z,A) = infp∈A ‖p− z‖
the distance function to A,

Med(A) =
{
z ∈ RD|∃p 6= q ∈ A, ‖p− z‖ = ‖q − z‖ = d(z,A)

}
.

The reach of A is then defined as the minimal distance from A to Med(A).

Definition III.15. The reach of a closed subset A ⊂ RD is defined as

τA = inf
p∈A

d (p,Med(A)) = inf
z∈Med(A)

d (z,A) . (III.16)

Some authors refer to τ−1
A as the condition number [NSW08, SW12]. Indeed, the

value of the reach quantifies the degree of regularity of a set, with larger values associated
to more regular sets. From the definition of the medial axis, the projection πA(x) =
arg minp∈A ‖p− x‖ onto A is well defined outside Med(A). The reach is the largest
distance ρ ≥ 0 such that πA is well defined on the ρ-offset Aρ = {x ∈ RD|d(x,A) ≤ ρ}.
Hence, the condition τA ≥ τmin can be seen as a generalization of convexity, since a set
A ⊂ RD is convex if and only if τA =∞.

Positive reach is the minimal regularity assumption in geometric measure theory and
integral geometry [Fed69]. Sets with positive reach exhibit a structure that is close to be
differential, with the so-called tangent and normal cones [Fed59]. It is a C2 notion, in the
sense that it is stable under C2 ambient deformations. Let us state a stability result for
the reach with respect to C2 diffeomorphisms.

Lemma III.17 (Theorem 4.19 in [Fed59]). Let A ⊂ RD be a closed subset with τA ≥
τmin > 0 and Φ : RD −→ RD is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz
with Lipschitz constants K,N and R respectively, then

τΦ(A) ≥
1

(Kτ−1
min +R)N2 .

We do not detail further properties of sets with positive reach with no extra regularity
assumption. The interested reader may refer to the original article [Fed59], and to [Thä08]
for a more recent review.
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Figure III.1 – Geometric interpretation of quantities involved in (V.5).

M
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τM

Figure III.2 – Small reach τM may witness high curvature.

III.3.2 Geometry of Submanifolds with Reach Bounded Away from Zero

In the case of submanifolds, one can reformulate the definition of the reach in the following
manner. Here, for all p ∈M , TpM stands for the tangent space of M at p [dC92, Chapter
0].

Theorem III.18 (Theorem 4.18 in [Fed59]). For any submanifold M ⊂ RD,

τM = inf
q 6=p∈M

‖q − p‖2

2d(q − p, TpM) . (III.19)

Another way to state (III.19) is that τM ≥ τmin > 0 if and only if for all p, q ∈M ,

d(q − p, TpM) ≤ ‖q − p‖
2

2τmin
.

In other words, one gets a quantitative bound on how fast the submanifoldM deviates from
its tangent spaces. By definition of tangent spaces, this happens at most with a quadratic
growth O(‖q − p‖2), but the reach allows for an explicit constant and no restriction of
‖q − p‖ small. Furthermore, the ratio appearing in (III.19) can be interpreted geometrically,
as suggested in Figure III.1. It is the radius of an ambient ball, tangent to M at p and
passing through q. Hence, at a differential level, the reach gives an upper bound on the
radii of curvature of M . Equivalently, τ−1

M is a bound on the curvature of M , as illustrated
Figure III.2.

Proposition III.20 (Proposition 6.1 in [NSW08]). Let M ⊂ RD be a compact submanifold
with reach τM ≥ τmin > 0, and γ an arc-length parametrized geodesic of M . Then for all t,∥∥γ′′(t)∥∥ ≤ 1/τmin.
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τM

M

Med(M)

Figure III.3 – Small reach τM may witness a narrow bottleneck structure.

Furthermore, as illustrated in Figure III.3, the condition τM ≥ τmin > 0 also prevents
bottleneck structures where M is nearly self-intersecting.

As a consequence, at a scale of order τM , one can link the (extrinsic) Euclidean distance
to the (intrinsic) geodesic distance dM of M . The precise bound is the following.

Lemma III.21 (Proposition 6.3 in [NSW08]). If τM ≥ τmin, then for all p, q ∈M such
that ‖p− q‖ ≤ τmin/2,

‖q − p‖ ≤ dM (p, q) ≤ τmin

1−
√

1− 2 ‖p− q‖
τmin

 .
Let us move to other bounds on differential geometric quantities. For this, we need

notation from differential geometry. First, BM denote closed balls for the geodesic distance
dM , and

◦
B,

◦
BM are open balls. We let IIMp : TpM × TpM → TpM

⊥ denote the second
fundamental form of M at p [dC92, p. 125]. IIMp characterizes the curvature of M at p.
For all p ∈M and all unit v ∈ TpM , we denote by γp,v the unique arc-length parametrized
geodesic of M such that γp,v(0) = p and γ′p,v(0) = v. The exponential map is then defined
as expp(v) = γp,v(1). Finally, Hd stands for the d-dimensional Hausdorff measure on RD
[Fed69, p. 171].

Proposition III.22. Let M ⊂ RD be a d-dimensional submanifold with reach τM ≥
τmin > 0.

(i) For all p ∈M and all unit v ∈ TpM ,
∥∥∥IIMp (v, v)

∥∥∥ ≤ 1/τmin.

(ii) The injectivity radius of M is at least πτmin. That is, for all p ∈ M , the map
expp :

◦
BTpM (0, πτmin)→

◦
BM (p, πτmin) is a diffeomorphism

(iii) The sectional curvatures κ of M satisfy − 2
τ2
min
≤ κ ≤ 1

τ2
min

.

(iv) For all ‖v‖ < πτmin
2
√

2 and w ∈ TpM ,(
1− ‖v‖

2

6τ2
min

)
‖w‖ ≤

∥∥∥dv expp ·w
∥∥∥ ≤ (1 + ‖v‖

2

τ2
min

)
‖w‖

(v) For all p ∈M , r ≤ πτmin
2
√

2 , and a Borel set A ⊂ BTqM (0, r) ⊂ TqM ,

(
1− r2

6τ2
min

)d
Hd(A) ≤ Hd(expq(A)) ≤

(
1 + r2

τ2
min

)d
Hd(A).
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Proposition III.22 collects results that were already known and scattered in the literature.
(i) is stated in Proposition 2.1 in [NSW08], yielding (ii) from Corollary 1.4 in [AB06a]. (iii)
follows using (i) again and the Gauss equation [dC92, p. 130]. (iv) is derived from (iii)
by a direct application of Lemma 8 in [DVW15]. (v) follows from (iv) and Lemma 6 in
[ACLZ17].

From the above results, we see that submanifolds with reach bounded away from zero
by a fixed constant behave well — quantitatively — with respect to standard differential
geometry quantities. It will then provide good statistical models.

III.3.3 Sampling on Submanifolds with Reach Bounded Away from Zero

Let us come back to consider M as generating data. Here, if τM ≥ τmin > 0 and that
we sample roughly uniformly on M , Proposition III.22 yields that, at scale τmin, the
distribution of points roughly behaves like the d-dimensional Lebesgue measure.

Lemma III.23. Let M ⊂ RD be a compact d-dimensional submanifold with reach τM ≥
τmin > 0. Let P be a probability distribution that has a density fmin ≤ f ≤ fmax with
respect to the volume measure on M . Then for all r ≤ τmin/4 and x in M ,

cdfminr
d ≤ P

(
B(x, r)

)
≤ Cdfmaxrd,

for some cd, Cd > 0. As a consequence, if Xn = {X1, . . . , Xn} is an i.i.d. n-sample of P ,
then for for r ≤ τmin/2,

P
(
dH
(
M,Xn

)
> r

)
≤ 4d

cdfminrd
exp

(
−ncdfminrd

)
.

In particular, letting h =
(
C′dk
fmin

logn
n

)1/d
with C ′d large enough, the following holds. For n

large enough so that h ≤ τmin/2, with probability at least 1−
(

1
n

)k/d
,

dH (M,Xn) ≤ h.

The proof of Lemma III.23 is a straightforward combination of Lemma III.21 and
Proposition III.22 (v), yielding standardness of the distribution P at scale τmin/4 (Definition
B.3). Conclude with Proposition III.14 for the Hausdorff distance bounds. It is worth noting
that here, the assumption f ≤ fmax is not necessary to derive deviations on dH(M,Xn).

Lemma III.23 is a key result for all the inference geometry results we will derive in this
thesis. Indeed, if one wants to estimate geometric or topological quantities associated to
M from point a cloud Xn, then the least we can ask is that Xn covers M densely enough.
If not, there is not hope to recover any geometric information from zones that Xn does not
span in M .

III.3.4 Implicit Constraints under Reach Regularity Condition

The models considered in this thesis all satisfy the assumptions of Proposition III.23 (with
fmax =∞ for Chapter V). By now, it is worth noting that although the assumptions may
seem weak, they actually provide extra information about the geometry of the studied
submanifolds.

First, from Proposition III.23 and Proposition III.13 we see that the diameter of
submanifolds cannot be arbitrarily large.
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Lemma III.24. Let M ⊂ RD be a compact connected d-dimensional submanifold. Let P
be a probability distribution having support M with a density f ≥ fmin with respect to the
Hausdorff measure on M . Then,

diam(M) ≤ Cd

τd−1
M fmin

,

for some constant Cd > 0 depending only on d.

In particular, if τM ≥ τmin > 0, then diam(M) ≤ Cd/(τd−1
minfmin). Hence, if τmin

and fmin are fixed, one gets a bound on diam(M), although not required explicitly.
Furthermore, considering the uniform probability distribution on M — corresponding to
f = Hd(M)−1 = V ol(M)−1 — notice that we obtain the bound

diam(M) ≤ Cd
V ol(M)
τd−1
M

,

which is interesting for itself.
Let us carry on with a bound relating directly reach and diameter. One can see the

following Proposition III.25 as a complementary constraint to Lemma III.24, as it states
that the reach is a lower bound on the diameter, up to universal constants.

Proposition III.25. If K ⊂ RD is not homotopy equivalent to a point,

τK ≤
√

D

2(D + 1)diam(K).

The proof of Proposition III.25 is a straightforward combination of Lemma A.1 and
Lemma A.2, that we defer to the appendix. Notice that the assumption that K is not
homotopy equivalent to a point cannot be released. Indeed, if one takes K to be a spherical
cap of radius 1 and height 0 < h < 1, then τK = 1 although diam(K) goes to 0 as h goes
to 0.

Finally, notice that if M is a submanifold of dimension d, then Theorem 3.26 in [Hat02]
asserts that it has a non trivial homology group of dimension d over Z/2Z, so that it cannot
be homotopy equivalent to a point. Therefore, combining Lemma III.24 and Proposition
III.25 yields the following.

Proposition III.26. Let M ⊂ RD be a compact connected d-dimensional submanifold.
Let P be a probability distribution having support M with a density f ≥ fmin with respect
to the Hausdorff measure on M . Then,

τdM ≤
Cd
fmin

,

for some constant Cd > 0 depending only on d.

As a consequence, if one considers a statistical model composed of distributions P with
support being submanifolds M with reach τM ≥ τmin > 0, and with densities f ≥ fmin > 0,
then both diameter diam(M) and reach τM are bounded away from 0 and ∞ by constants
depending only on d, τmin and fmin.
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III.4 Angles Between Vector Subspaces
In this thesis, we consider the question of estimating tangent spaces of a submanifold. For
that, we need a notion of angle between vector subspaces of dimension greater than one.
In addition, angles between subspaces will be a useful technical tool in several derivations.
As it is not standard in the literature, let us define the notion of angles we use.

For two vector subspaces U, V of RD, we will measure the angle between them by

∠(U, V ) = ‖πV − πU‖op . (III.27)

In other words, we identify a subspace to its orthogonal projector, yielding a metric induced
by matrix norms. Any other norm on the space of matrix would give a good notion of
angle. However, some of these may depend cruedly on the ambient dimension D, which is
not the case for the operator norm, since

‖πV − πU‖op = sup
x∈U+V

‖πV (x)− πU (x)‖
‖x‖

,

where dim(U+V ) ≤ dim(U)+dim(V ). Note that the Frobenius norm ‖A‖F =
√

trace(AtA)
yields a notion of angle equivalent to ∠(U, V ) up to constants independent of D, since

‖πV − πU‖op ≤ ‖πV − πU‖F ≤
√

rank(πV − πU ) ‖πV − πU‖op

≤
√

dim(U + V ) ‖πV − πU‖op .

Another popular definition of angle is the principal angle [BGO09]. The principal
angles between U and V is

sin θ(U, V ) = max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

√
1− < u, v >2 (III.28)

Note that θ(U, V ) has no reason to be equal to θ(V,U) in general. For instance, if U ⊂ V
and dim(U) < dim(V ), we have θ(U, V ) = 0 while θ(V,U) = π/2. These two notions of
angle are closely related, as stated in the following proposition, which proof follows from
Theorem 2.6.1 in [GVL96] and Theorem 3.6 in [KA02].

Proposition III.29. For all vector subspaces U, V of RD, sin θ(U, V ) = ‖πV ⊥ ◦ πU‖op .
The principal angle satisfies θ(U⊥, V ⊥) = θ(V,U), and if dim(U) = dim(V ), then θ(U, V ) =
θ(V,U). Moreover, in his case,

∠(U, V ) = sin θ(U, V ).

Furthermore, there exists a rotation RU→V of RD such that RU→V : U → V is bijective,
and ‖RU→V − ID‖op ≤ 2 sin (θ(U, V )/2).

To sum up, 0 ≤ ∠(U, V ) ≤ 1, and if U and V have the same dimension, their angle
∠(U, V ) coincides with the sine sin θ(U, V ) of the principal angle. It is zero if and only
if U = V , and one if and only if U ∩ V ⊥ 6= {0}. Finally, let us mention that the angle
∠(U, V ) = sin θ(U, V ) when dim(U) = dim(V ) = d can be computed in O(Dd2) using a
singular value decomposition [GVL96, §12.4.3].

Let us illustrate these notions of angles with the variations of tangent spaces of a
submanifold with reach bounded away from zero. We saw in Section III.3.2 that τ−1

M yields
a bound on the curvature of M . Such a bound casts in terms of tangent space variations
as follows.
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Proposition III.30. Let M ⊂ RD be a submanifold with τM ≥ τmin > 0. Then, for all
p, q ∈M ,

sin θ (TpM,< q − p >) ≤ ‖q − p‖2τmin
,

where < u > denotes the span of u ∈ RD. Furthermore, for ‖q − p‖ ≤ τmin/2,

∠(TpM,TqM) ≤ 2‖q − p‖
τmin

√
1−

(‖q − p‖
τmin

)2
.

The first statement is (III.19) rephrased in terms of angle, and the second statement
can be found in Lemma 3.4 in [BSW09].
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Appendix A

Proofs for Chapter III

Content
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A.1 Hausdorff Distance
Proof for Definition III.2. It is clear from the definition that dH(·, ·) is finite on compact
sets, and symmetric. Moreover, if dH(A,B) = 0, then for all a ∈ A, d(a,B) = 0. Since B
is a closed subset, we get A ⊂ B. Symmetrically, we get B ⊂ A, which shows that dH is
separated. Let now A,B,C ∈ K(D). Since d(·, B) is 1-Lipschitz, for all a ∈ A and c ∈ C,
d(a,B) ≤ d(c,B) + d(a, c). By definition, d(c,B) ≤ dH(C,B). Hence,

d(a,B) ≤ dH(C,B) + inf
c∈C

d(a, c)

= dH(C,B) + d(a,C)
≤ dH(C,B) + dH(A,C),

so that supa∈A d(a,B) ≤ dH(C,B) + dH(A,C). Symmetrically, we get supb∈B d(b, A) ≤
dH(C,A) +dH(B,C), which gives the triangle inequality dH(A,B) ≤ dH(A,C) +dH(C,B).

Proof of Proposition III.4. By definition, for all a ∈ A, d(a,B) ≤ dH(A,B), which yields
BdH(A,B) ⊃ A. Symmetrically, AdH(A,B) ⊃ B, and hence

dH(A,B) ≥ inf {r > 0, Ar ⊃ B and Br ⊃ A} .

Conversely, without loss of generality, there exists a point a0 ∈ A such that d(a0, B) =
dH(A,B). Hence, for all r < dH(A,B), a0 /∈ Br and in particular Br + A. Hence the
result.

Proof of Proposition III.5. For all x ∈ A, d(x,A) = 0, so that

sup
a∈A

d(a,B) = sup
x∈A

d(x,B)− d(x,A) ≤ sup
x∈D

d(x,B)− d(x,A).
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We now prove the reverse inequality. For x ∈ D, write πA(x) for any element of A such
that d(x,A) = d(x, πA(x)). Then, since d(·, B) is 1-Lipschitz,

d(x,B)− d(x,A) = d(x,B)− d(x, πA(x))
≤ d(πA(x), B)
≤ sup

a∈A
d(a,B),

which yields the desired reverse bound, and hence

sup
a∈A

d(a,B) = sup
x∈D

d(x,B)− d(x,A).

By symmetry,

sup
b∈B

d(b, A) = sup
x∈D

d(x,A)− d(x,B).

Conclude writing

sup
x∈D
|d(x,A)− d(x,B)| = max

{
sup
x∈D

d(x,B)− d(x,A), sup
x∈D

d(x,A)− d(x,B)
}

= max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

= dH(A,B).

Finally, if (D, d) is complete, the closedness of K(D) in the space of continuous functions is
proved in Lemma 3.1.1 of [Bee93].

Proof of Proposition III.6. (i) For the direct sense, notice that a dense sequence {xi}i∈N
of D provides the countable family {∪i∈I {xi}}finite I⊂N which is dense in K(D).
Conversely, if K(D) is separable, so is D, as a closed subset of the metric space K(D).

(ii) If (D, d) is compact, then K(D) ' {d(·, A)}A∈K(D) is an equicontinuous and relatively
compact family of C(D,R+), with D compact. Hence, it is compact. Conversely, if
K(D) is compact, so is D, as a closed subset of K(D).

(iii) Follows from the same argument as (ii) by localizing.

(iv) From Proposition III.5, K(D) is a closed subset of the complete space space C(D,R+),
so it is complete. Conversely, if K(D) is complete, so is D, as a closed subset of K(D).

(v) Is a rephrasing of (i) with (iv).

Proof of III.7. We actually prove continuity of the considered map, which is stronger than
measurability.

(i) It is an isometry.

(ii) To prove that the map (f,A) 7→ f(A) is jointly measurable, it is sufficient to prove
continuous in each variable separately, from Lemma 4.51 in [AB06b]. Fix A ∈ K(RD).
Then for all f, g continous, dH(f(A), g(A)) ≤ supx∈A |f(x)−g(x)|, which goes to zero
when g converges to f on the compact A. Let now f be fixed. Then for all A ∈ K(RD),
consider K = A1 the offset of radius 1 of A. Then f is uniformly continuous on the
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compact set K. Hence, for all ε > 0, there exists η > 0 such that for all x, y ∈ K
such that ‖y − x‖ ≤ η, ‖f(y)− f(x)‖ ≤ ε. Hence, for dH(A,B) ≤ η ∧ 1, we get
dH(f(A), f(B)) ≤ ε, which proves continuity of B 7→ f(B) at A, and concludes the
proof.

(iii) Writting r = max
{
dH(A1, A2), dH(B1, B2)

}
, we have (A1∪B1)r = Ar1∪Br

1 ⊃ A2∪B2.
Symmetrically, (A2 ∪B2)r ⊃ A1 ∪A2, so that

dH(A1 ∪B1, A2 ∪B2) ≤ max
{
dH(A1, A2), dH(B1, B2)

}
.

(iv) For any convex combination ā =
∑
i λiai ∈ conv(A) of elements of A, considering

convex combinations b̄ =
∑
i λibi for bi ∈ B clearly yields

d(ā, conv(B)) ≤
∑
i

λid(ai, B) ≤
∑
i

λidH(A,B) = dH(A,B).

Symmetrically, we obtain d(b̄, conv(A)) for all b̄ ∈ conv(B). Hence,

dH(conv(A), conv(B)) ≤ dH(A,B).

A.2 Standard Measures
Proof of Proposition III.11. The proof follows that of Lemma 10 in [CGLM15]. Let y =
{y1, . . . , yk} (k = pk (Supp(µ), r))be a maximal r-packing of Supp(µ). We have

1 = µ (Supp(µ)) ≥ µ (∪i=1B(yi, r))

≥
k∑
i=1

µ (B(yi, r))

≥ karb = pk (Supp(µ), r) arb,

hence the first result. The bound on cv (Supp(µ), r) then follows from (III.10).

Proof of Lemma III.12. Let p, q ∈ K and γ : [0, 1] → K be a continuous path joining
γ(0) = p and γ(1) = q. Writing N = cv(K, ε), let x1, . . . , xN ∈ RD be the centers of a
covering of K by open balls of radii ε. We let Ui denote {t, ‖γ(t)− xi‖ < ε} ⊂ [0, 1]. By
construction of the covering, there exists x(1) ∈ {x1, . . . , xN} such that

∥∥∥p− x(1)

∥∥∥ < ε.
Then U(1) 3 γ(0) = p is a non-empty open subset of [0, 1], so that t(1) = supU(1) is positive.
If t(1) = 1, then

∥∥∥q − x(1)

∥∥∥ ≤ ε, and in particular ‖q − p‖ ≤ 2ε. If t(1) < 1, since U(1) is
an open subset of [0, 1], we see that γ(t(1)) /∈ U(1). But ∪Ni=1Ui is an open cover of [0, 1],
which yields the existence U(2) such that γ(t(1)) ∈ U(2), and for all t < t(1), γ(t) /∈ U(2).
Then consider t(2) = supU(2), and so on. Doing so, we build by induction a sequence
of numbers 0 < t(1) < . . . < t(k) ≤ 1 and distinct centers x(1), . . . , x(k) ∈ {x1, . . . , xN}
(k ≤ N) such that

∥∥∥p− x(1)

∥∥∥ < ε,
∥∥∥q − x(k)

∥∥∥ ≤ ε, with
∥∥∥γ(t(i))− x(i)

∥∥∥ ≤ ε for 1 ≤ i ≤ k

and
∥∥∥γ(t(i))− x(i+1)

∥∥∥ < ε for 1 ≤ i ≤ k − 1. In particular,
∥∥∥x(i) − x(i+1)

∥∥∥ ≤ 2ε for all
1 ≤ i ≤ k − 1. To conclude, write

‖p− q‖ ≤
∥∥∥p− x(1)

∥∥∥+
∥∥∥x(1) − x(k)

∥∥∥+
∥∥∥q − x(k)

∥∥∥
≤ ε+

k−1∑
i=1

∥∥∥x(i) − x(i+1)

∥∥∥+ ε

≤ 2kε ≤ 2εcv(K, ε).
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Since this bound holds for all p, q ∈ K, we get the announced bound on the diameter of
K.

Proof of Proposition III.14. Since Xn ⊂ Supp(µ) with probability one, the Hausdorff
distance between Xn and Supp(µ) writes

dH
(
Supp(µ),Xn

)
= sup

x∈Supp(µ)
min

1≤j≤n
d(x,Xj).

For some δ > 0 to be chosen later, consider a minimal δ-covering x = {x1, . . . , xk} of
Supp(µ) (k = cv(Supp(µ), δ)). For all x ∈ Supp(µ), there exists some xi ∈ x such that
d(x, xi) ≤ δ. Hence,

min
1≤j≤n

d(x,Xj) ≤ δ + max
1≤i≤k

min
1≤j≤n

d(xi, Xj).

As a consequence,

P
(
dH
(
Supp(µ),Xn

)
> r

)
≤ P

(
max
1≤i≤k

min
1≤j≤n

d(xi, Xj) > r − δ
)

≤
k∑
i=1

P
(

min
1≤j≤n

d(xi, Xj) > r − δ
)

But whenever r − δ ≤ r0, for all 1 ≤ i ≤ k,

P
(

min
1≤j≤n

d(xi, Xj) > r − δ
)

=
∏

1≤j≤n
P (d(xi, Xj) > r − δ)

= (1− µ (B(xi, r − δ)))n

≤
(
1− a(r − δ)b

)n
≤ exp

(
−na(r − δ)b

)
.

Therefore, Proposition III.11 yields for all δ ≤ 2r0 such that r − δ ≤ r0,

P
(
dH
(
Supp(µ),Xn

)
> r

)
≤ cv(Supp(µ), δ) exp

(
−na(r − δ)b

)
≤ 2b

aδb
exp

(
−na(r − δ)b

)
.

Setting δ = r/2 yields the announced result.

A.3 Constraints Given by the Reach
This section includes two intermediate results yielding Proposition III.25. We let conv(·)
denote the closed convex hull of a set.

Lemma A.1. For all K ⊂ RD, dH (K, conv(K)) ≤
√

D
2(D+1)diam(K).

Proof of Lemma A.1. It is a straightforward corollary of Jung’s Theorem 2.10.41 in [Fed69],
which states that K is contained in a (unique) closed ball with (minimal) radius at most√

D
2(D+1)diam(K).

Lemma A.2. If K ⊂ RD is not homotopy equivalent to a point, τK ≤ dH (K, conv(K)).
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Proof of Lemma A.2. Let us prove the contrapositive. Assume that τK > dH (K, conv(K)).
Then,

conv(K) ⊂
⋃
x∈K
B (x, dH (K, conv(K))) ⊂

⋃
x∈K

◦
B (x, τK) ⊂Med(K)c.

Therefore, the map πK : conv(K) → K is well defined and continuous, so that K is a
retract of conv(K) (see Chapter 0 in [Hat02]). Therefore, K is homotopy equivalent to a
point, since the convex set conv(K) is.
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Chapter IV

Stability and Minimax Optimality
of Tangential Delaunay Complexes
for Manifold Reconstruction
Abstract
We consider the problem of optimality in manifold reconstruction. A random sample
Xn = {X1, . . . , Xn} ⊂ RD composed of points close to a d-dimensional submanifold M ,
with or without outliers drawn in the ambient space, is observed. Based on the Tangential
Delaunay Complex [BG14], we construct an estimator M̂ that is ambient isotopic and
Hausdorff-close to M with high probability. The estimator M̂ is built from existing
algorithms. In a model with additive noise of small amplitude, we show that this estimator
is asymptotically minimax optimal for the Hausdorff distance over a class of submanifolds
satisfying a reach constraint. Therefore, even with no a priori information on the tangent
spaces of M , our estimator based on Tangential Delaunay Complexes is optimal. This
shows that the optimal rate of convergence can be achieved through existing algorithms. A
similar result is also derived in a model with outliers. A geometric interpolation result is
derived, showing that the Tangential Delaunay Complex is stable with respect to noise and
perturbations of the tangent spaces. In the process, a decluttering procedure and a tangent
space estimator both based on local principal component analysis (PCA) are studied.
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CHAPTER IV. SIMPLICIAL MANIFOLD RECONSTRUCTION

IV.1 Introduction
Throughout many fields of applied science, data in RD can naturally be modeled as lying
on a d-dimensional submanifold M . As M may carry a lot of information about the
studied phenomenon, it is then natural to consider the problem of either approximating M
geometrically, recovering it topologically, or both from a point sample Xn = {X1, . . . , Xn}.
It is of particular interest in high codimension (d � D) where it can be used as a
preliminary processing of the data for reducing its dimension, and then avoiding the curse
of dimensionality. This problem is usually referred to as manifold reconstruction in the
computational geometry community, and rather called set/support estimation or manifold
learning in the statistics literature.

The computational geometry community has now been active on manifold reconstruction
for many years, mainly in deterministic frameworks. In dimension 3, [Dey07] provides a
survey of the state of the art. In higher dimension, the employed methods rely on variants
of the ambient Delaunay triangulation [CDR05, BG14]. The geometric and topological
guarantees are derived under the assumption that the point cloud — fixed and nonrandom
— densely samples M at scale ε, with ε small enough or going to 0.

In the statistics literature, most of the attention has been paid to approximation
guarantees, rather than topological ones. The approximation bounds are given in terms of
the sample size n, that is assumed to be large enough or going to infinity. To derive these
bounds, a broad variety of assumptions on M have been considered. For instance, if M
is a bounded convex set and Xn does not contain outliers, a natural idea is to consider
the convex hull M̂ = conv(Xn) to be the estimator. conv(Xn) provides optimal rates
of approximation for several loss functions [MT95, DW96]. These rates depend crudely
on the regularity of the boundary of the convex set M . In addition, conv(Xn) is clearly
ambient isotopic to M so that it has both good geometric and topological properties.
Generalisations of the notion of convexity based on rolling ball-type assumptions such as
r-convexity and reach bounds [CRC04, GPPVW12a] yield rich classes of sets with good
geometric properties. In particular, the reach, as introduced by Federer [Fed59], appears
to be a key regularity and scale parameter [CCSL06, GPPVW12a, MMS16].

This chapter mainly follows up the two articles [BG14, GPPVW12a], both dealing with
the case of a d-dimensional submanifold M ⊂ RD with a reach regularity condition and
where the dimension d is known.

On one hand, [BG14] focuses on a deterministic analysis and proposes a provably
faithful reconstruction. The authors introduce a weighted Delaunay triangulation restricted
to tangent spaces, the so-called Tangential Delaunay Complex. This chapter gives a
reconstruction up to ambient isotopy with approximation bounds for the Hausdorff distance
along with computational complexity bounds. This work provides a simplicial complex
based on the input point cloud and tangent spaces. However, it lacks stability up to now,
in the sense that the assumptions used in the proofs of [BG14] do not resist ambient
perturbations. Indeed, it heavily relies on the knowledge of the tangent spaces at each
point and on the absence of noise.

On the other hand, [GPPVW12a] takes a statistical approach in a model possibly
corrupted by additive noise, or containing outlier points. The authors derive an estimator
that is proved to be minimax optimal for the Hausdorff distance dH . Roughly speaking,
minimax optimality of the proposed estimator means that it performs best in the worst
possible case up to numerical constants, when the sample size n is large enough. Although
theoretically optimal, the proposed estimator appears to be intractable in practice. At last,
[MMS16] proposes a manifold estimator based on local linear patches that is tractable but
fails to achieve the optimal rates.
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Contribution

Our main contributions (Theorems IV.7, IV.8 and IV.9) make a two-way link between the
approaches of [BG14] and [GPPVW12a].

From a geometric perspective, Theorem IV.7 shows that the Tangential Delaunay
Complex of [BG14] can be combined with local PCA to provide a manifold estimator that
is optimal in the sense of [GPPVW12a]. This remains possible even if data is corrupted
with additive noise of small amplitude. Also, Theorems IV.8 and IV.9 show that, if outlier
points are present (clutter noise), the Tangential Delaunay Complex of [BG14] still yields
the optimal rates of [GPPVW12a], at the price of an additional decluttering procedure.

From a statistical point of view, our results show that the optimal rates described in
[GPPVW12a] can be achieved by a tractable estimator M̂ that (1) is a simplicial complex
of which vertices are the data points, and (2) such that M̂ is ambient isotopic to M with
high probability.

In the process, a stability result for the Tangential Delaunay Complex (Theorem IV.14)
is proved. Let us point out that this stability is derived using an interpolation result
(Theorem IV.11) which is interesting in its own right. Theorem IV.11 states that if a point
cloud X lies close to a submanifold M , and that estimated tangent spaces at each sample
point are given, then there is a submanifold M ′ (ambient isotopic, and close to M for the
Hausdorff distance) that interpolates X , with TpM ′ agreeing with the estimated tangent
spaces at each point p ∈ X . Moreover, the construction can be done so that the reach
of M ′ is bounded in terms of the reach of M , provided that X is sparse, points of X lie
close to M , and error on the estimated tangent spaces is small. Hence, Theorem IV.11
essentially allows to consider a noisy sample with estimated tangent spaces as an exact
sample with exact tangent spaces on a proxy submanifold. This approach can provide
stability for any algorithm that takes point cloud and tangent spaces as input, such as the
so-called cocone complex [CDR05].

Outline
This chapter deals with the case where a sample Xn = {X1, . . . , Xn} ⊂ RD of size n is
randomly drawn on/around M . First, the statistical framework is described (Section
IV.2.1) together with minimax optimality (Section IV.2.2). Then, the main results are
stated (Section IV.2.3).

Two models are studied, one where Xn is corrupted with additive noise, and one where
Xn contains outliers. We build a simplicial complex M̂TDC(Xn) ambient isotopic to M and
we derive the rate of approximation for the Hausdorff distance dH(M,M̂TDC), with bounds
holding uniformly over a class of submanifolds satisfying a reach regularity condition. The
derived rate of convergence is minimax optimal if the amplitude σ of the additive noise
is small. With outliers, similar estimators M̂TDCδ and M̂TDC+ are built. M̂TDC, M̂TDCδ and
M̂TDC+ are based on the Tangential Delaunay Complex (Section IV.3), that is first proved
to be stable (Section IV.4) via an interpolation result. A method to estimate tangent spaces
and to remove outliers based on local Principal Component Analysis (PCA) is proposed
(Section IV.5). We conclude with general remarks and possible extensions (Section IV.6).
For ease of exposition, all the proofs are placed in the appendix.

Notation
In what follows, we consider a compact d-dimensional submanifold without boundary
M ⊂ RD to be reconstructed. For all p ∈M , TpM designates the tangent space of M at
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p. Tangent spaces will either be considered vectorial or affine depending on the context.
The standard inner product in RD is denoted by 〈·, ·〉 and the Euclidean distance ‖·‖. We
let B(p, r) denote the closed Euclidean ball of radius r > 0 centered at p. We let ∧ and
∨ denote respectively the minimum and the maximum of real numbers. As introduced
in [Fed59], the reach of M , denoted by τM is the maximal offset radius for which the
projection πM onto M is well defined. Denoting by d(·,M) the distance to M , the medial
axis of M med(M) = {x ∈ RD|∃a 6= b ∈ M, ‖x− a‖ = ‖x− b‖ = d(x,M)} is the set of
points which have at least two nearest neighbors onM . Then, τM = inf

p∈M
d(p,med(M)). We

simply write π for πM when there is no possibility of confusion. For any smooth function
Φ : RD → RD, we let daΦ and d2

aΦ denote the first and second order differentials of Φ
at a ∈ RD. For a linear map A, At designates its transpose. Let ‖A‖op = supx

‖Ax‖
‖x‖ and

‖A‖F =
√

trace (AtA) denote respectively the operator norm induced by the Euclidean
norm and the Frobenius norm. The distance between two linear subspaces U, V ⊂ RD of
the same dimension is measured by the sine

∠(U, V ) = max
u∈U

max
v′∈V ⊥

〈u, v′〉
‖u‖ ‖v′‖

= ‖πU − πV ‖op

of their largest principal angle, as defined Section III.4. The Hausdorff distance between
two compact subsets K,K ′ of RD is denoted by dH(K,K ′) = supx∈RD |d(x,K)− d(x,K ′)|.
Finally, we let ∼= denote the ambient isotopy relation in RD.
Throughout, Cα will denote a generic constant depending on the parameter α. For clarity’s
sake, cα and Kα may also be used when several constants are involved.

IV.2 Minimax Risk and Main Results

IV.2.1 Statistical Model

Let us describe the general statistical setting we will use to define optimality for manifold
reconstruction. A statistical model D is a set of probability distributions on RD. In any
statistical experiment, D is fixed and known. We observe an independent and identically
distributed sample of size n (or i.i.d. n-sample) Xn = {X1, . . . , Xn} drawn according to
some unknown distribution P ∈ D. If no noise is allowed, the problem is to recover the
support of P , that is, the smallest closed set C ⊂ RD such that P (C) = 1. Let us give two
examples of such models D by describing those of interest in this paper.

Let C2
τmin be the set of all compact d-dimensional connected submanifolds M ⊂ RD

without boundary satisfying τM ≥ τmin. The reach assumption is crucial to avoid arbitrarily
curved and pinched shapes [CRC04]. From a reconstruction point of view, τmin gives a
minimal feature size on M , and then a minimal scale for geometric information. Every
M ∈ C2

τmin inherits a measure induced by the d-dimensional Hausdorff measure on RD ⊃M .
We denote this induced measure by vM . Beyond the geometric restrictions induced by
the lower bound τmin on the reach, it also requires the natural measure vM to behave
like a d-dimensional measure, up to uniform constants. Namely, vM satisfies the (a, d)-
standard property of Chapter III, at scale smaller than τmin, and with a = ad. Denote
by UM (fmin, fmax) the set of probability distributions Q having a density f with respect
to vM such that 0 < fmin ≤ f(x) ≤ fmax < ∞ for all x ∈ M . In particular, notice
that such distributions Q ∈ UM (fmin, fmax) all have support M . Roughly speaking,
when Q ∈ UM (fmin, fmax), points are drawn almost uniformly on M . This is to ensure
that the sample visits all the areas of M with high probability. The noise-free model
P2
τmin (fmin, fmax) consists of the set of all these almost uniform measures on submanifolds

of dimension d having reach greater than a fixed value τmin > 0.
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Definition IV.1 (Noise-free model). In what follows, we write

P2
τmin(fmin, fmax) =

⋃
M∈C2

τmin

UM (fmin, fmax).

We do not explicitly impose a bound on the diameter of M . Actually, a bound is
implicitly present in the model according to Lemma III.24. Let us state the bound here for
sake of completeness.

Lemma IV.2. There exists Cd > 0 such that for all Q ∈ P2
τmin (fmin, fmax) with associated

M ,
diam(M) ≤ Cd

τd−1
minfmin

=: Kd,fmin,τmin .

Random variables with distribution belonging to the noise-free model P2
τmin (fmin, fmax)

lie exactly on the submanifold of interest M . A more realistic model should allow some
measurement error, as illustrated by Figure IV.1a. We formalize this idea with the following
additive noise model.

Definition IV.3 (Additive noise model). For σ < τmin, we let P2
τmin,σ (fmin, fmax) denote

the set of distributions of random variables X = Y + Z, where Y has distribution Q ∈
P2
τmin (fmin, fmax), and ‖Z‖ ≤ σ almost surely.

Let us emphasize that we do not require Y and Z to be independent, nor Z to be
orthogonal to TYM , as done for the “perpendicular” noise model of [NSW08, GPPVW12a].
This model is also slightly more general than the one considered in [MMS16]. Notice that
the noise-free model can be thought of as a particular instance of the additive noise model,
since P2

τmin (fmin, fmax) = P2
τmin,σ=0 (fmin, fmax).

Eventually, we may include distributions contaminated with outliers uniformly drawn
in a ball B0 containing M , as illustrated in Figure IV.1b. Up to translation, we can
always assume that M 3 0. To avoid boundary effects, B0 will be taken to contain
M amply, so that the outlier distribution surrounds M everywhere. Since M has at
most diameter Kd,fmin,τmin from Lemma IV.2 we arbitrarily fix B0 = B(0,K0), where
K0 = Kd,fmin,τmin + τmin. Notice that the larger the radius of B0, the easier to label the
outlier points since they should be very far away from each other.

Definition IV.4 (Model with outliers/Clutter noise model). For 0 < fmin ≤ fmax <∞,
0 < β ≤ 1, and τmin > 0, we define P2

τmin,β
(fmin, fmax) to be the set of mixture distributions

P = βQ+ (1− β)UB0 ,

where Q ∈ P2
τmin (fmin, fmax) has support M such that 0 ∈ M , and UB0 is the uniform

distribution on B0 = B(0,K0).

Alternatively, a random variable X with distribution P ∈ P2
τmin,β

(fmin, fmax) can
be represented as X = V X ′ + (1 − V )X ′′ , where V ∈ {0, 1} is a Bernoulli random
variable with parameter β, X ′ has distribution in P2

τmin (fmin, fmax) and X ′′ has a uniform
distribution over B0, and such that V,X ′, X ′′ are independent. In particular for β = 1,
P2
τmin,β=1 (fmin, fmax) = P2

τmin (fmin, fmax).
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(a) Circle with noise: d = 1, D = 2, σ > 0. (b) Torus with outliers: d = 2, D = 3, β < 1.

Figure IV.1 – Point clouds Xn drawn from distributions in P2
τmin,σ (fmin, fmax) (left) and

P2
τmin,β

(fmin, fmax) (right).

IV.2.2 Minimax Risk

For a probability measure P ∈ D, denote by EPn — or simply E — the expectation with
respect to the product measure Pn. The quantity we will be interested in is the minimax
risk associated to the model D. For n ≥ 0,

Rn(D) = inf
M̂

sup
P∈D

EPn
[
dH
(
M,M̂

)]
,

where the infimum is taken over all the estimators M̂ = M̂ (X1, . . . , Xn) computed over an n-
sample. Rn(D) is the best risk that an estimator based on an n-sample can achieve uniformly
over the class D. It is clear from the definition that if D′ ⊂ D then Rn(D′) ≤ Rn(D). It
follows the intuition that the broader the class of considered manifolds, the more difficult
it is to estimate them uniformly well. Studying Rn(D) for a fixed n is a difficult task that
can rarely be carried out. We will focus on the semi-asymptotic behavior of this risk. As
Rn(D) cannot be surpassed, its rate of convergence to 0 as n→∞ may be seen as the best
rate of approximation that an estimator can achieve. We will say that two sequences (an)n
and (bn)n are asymptotically comparable, denoted by an � bn, if there exist c, C > 0 such
that for n large enough, cbn ≤ an ≤ Cbn.
Definition IV.5. An estimator M̂ is said to be (asymptotically) minimax optimal over D
if

sup
P∈D

EPn
[
dH
(
M,M̂

)]
� Rn(D).

In other words, M̂ is (asymptotically) minimax optimal if it achieves, up to constants,
the best possible rate of convergence in the worst case.

Studying a minimax rate of convergence is twofold. On one hand, deriving an upper
bound on Rn boils down to provide an estimator and to study its quality uniformly on D.
On the other hand, bounding Rn from below amounts to study the worst possible case
in D. This part is usually achieved with standard Bayesian techniques [LC73]. For the
models considered in the present paper, the rates were given in [GPPVW12a, KZ15].
Theorem IV.6 (Theorem 3 of [KZ15]). We have,

Rn
(
P2
τmin (fmin, fmax)

)
�
( logn

n

)2/d
, (Noise-free)
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and for 0 < β ≤ 1 fixed,

Rn
(
P2
τmin,β (fmin, fmax)

)
�
( logn
βn

)2/d
. (Clutter noise)

Since the additive noise model P2
τmin,σ (fmin, fmax) has not yet been considered in

the literature, the behavior of the associated minimax risk is not known. Beyond this
theoretical result, an interesting question is to know whether these minimax rates can be
achieved by a tractable algorithm. Indeed, that proposed in [GPPVW12a] especially rely
on a minimization problem over the class of submanifolds C2

τmin , which is computationally
costly. In addition, the proposed estimators are themselves submanifolds, which raises
storage problems. Moreover, no guarantee is given on the topology of the estimators.
Throughout the present paper, we will build estimators that address these issues.

IV.2.3 Main Results

Let us start with the additive noise model P2
τmin,σ (fmin, fmax), that includes in particular

the noise-free case σ = 0. The estimator M̂TDC is based on the Tangential Delaunay Complex
(Section IV.3), with a tangent space estimation using a local PCA (Section IV.5).

Theorem IV.7. M̂TDC = M̂TDC(Xn) is a simplicial complex with vertices included in Xn
such that the following holds. There exists λd,fmin,fmax > 0 such that if σ ≤ λ

(
logn
n

)1/d

with λ ≤ λd,fmin,fmax, then

lim
n→∞

P
(
dH(M,M̂TDC) ≤ Cd,fmin,fmax,τmin

{( logn
n

)2/d
∨ λ2

}
and M ∼= M̂TDC

)
= 1.

Moreover, for n large enough,

sup
Q∈P2

τmin,σ
(fmin,fmax)

EQndH(M,M̂TDC) ≤ C ′d,fmin,fmax,τmin

{( logn
n

)2/d
∨ λ2

}
.

It is interesting to note that the constants appearing in Theorem IV.7 do not depend
on the ambient dimension D. Since Rn

(
P2
τmin,σ (fmin, fmax)

)
≥ Rn

(
P2
τmin (fmin, fmax)

)
,

we obtain immediately from Theorem IV.7 that M̂TDC achieves the minimax optimal rate
(logn/n)2/d over P2

τmin,σ (fmin, fmax) when σ ≤ cd,fmin,fmax (logn/n)2/d. Note that the esti-
mator of [MMS16] achieves the rate (logn/n)2/(d+2) when σ ≤ cd,fmin,fmax (logn/n)2/(d+2),
so does the estimator of [GPPVW12b] for σ < τmin if the noise is centered and perpendicu-
lar to the submanifold. As a consequence, M̂TDC outperforms these two existing procedures
whenever σ � (logn/n)2/(d+2), with the additional feature of exact topology recovery. Still,
for σ � (logn/n)1/d, M̂TDC may perform poorly compared to [GPPVW12b]. This might
be due to the fact that the vertices of M̂TDC are sample points themselves, while for higher
noise levels, a pre-process of the data based on local averaging could be more relevant.

In the model with outliers P2
τmin,β

(fmin, fmax), with the same procedure used to derive
Theorem IV.7 and an additional iterative preprocessing of the data based on local PCA to
remove outliers (Section IV.5), we design an estimator of M that achieves a rate as close
as wanted to the noise-free rate. Namely, for any positive δ < 1/(d(d+ 1)), we build M̂TDCδ
that satisfies the following similar statement.
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Theorem IV.8. M̂TDCδ = M̂TDCδ(Xn) is a simplicial complex with vertices included in Xn
such that

lim
n→∞

P
(
dH(M, M̂TDCδ) ≤ Cd,fmin,fmax,τmin

( logn
βn

)2/d−2δ
and M ∼= M̂TDCδ

)
= 1.

Moreover, for n large enough,

sup
P∈P2

τmin,β
(fmin,fmax)

EPndH(M,M̂TDCδ) ≤ C ′d,fmin,fmax,τmin
( logn
βn

)2/d−2δ
.

M̂TDCδ converges at the rate at least (logn/n)2/d−2δ, which is not the minimax optimal rate
according to Theorem IV.6, but that can be set as close as desired to it. To our knowledge,
M̂TDCδ is the first explicit estimator to provably achieve such a rate in the presence of
outliers. Again, it is worth noting that the constants involved in Theorem IV.8 do not
depend on the ambient dimension D. The construction and computation of M̂TDCδ is the
same as M̂TDC, with an extra pre-processing of the point cloud allowing to remove outliers.
This decluttering procedure leads to compute, at each sample point, at most log(1/δ) local
PCA’s, instead of a single one for M̂TDC.

From a theoretical point of view, there exists a (random) number of iterations of this
decluttering process, from which an estimator M̂TDC+ can be built to satisfy the following.

Theorem IV.9. M̂TDC+ = M̂TDC+(Xn) is a simplicial complex of vertices contained in Xn
such that

lim
n→∞

P
(
dH(M, M̂TDC+) ≤ Cd,fmin,fmax,τmin

( logn
βn

)2/d
and M ∼= M̂TDC+

)
= 1.

Moreover, for n large enough,

sup
P∈P2

τmin,β
(fmin,fmax)

EPndH(M, M̂TDC+) ≤ C ′d,fmin,fmax,τmin
( logn
βn

)2/d
.

M̂TDC+ may be thought of as a limit of M̂TDCδ when δ goes to 0. As it will be proved
in Section IV.5, this limit will be reached for δ close enough to 0. Unfortunately this
convergence threshold is also random, hence unknown.

The statistical analysis of the reconstruction problem is postponed to Section IV.5.
Beforehand, let us describe the Tangential Delaunay Complex in a deterministic and
idealized framework where the tangent spaces are known and no outliers are present.

IV.3 Tangential Delaunay Complex
Let X be a finite subset of RD. In this section, we denote the point cloud X to emphasize
the fact that it is considered nonrandom. For ε, δ > 0, X is said to be ε-dense in M if
supx∈M d(x,X ) ≤ ε, and δ-sparse if d(p,X \ {p}) ≥ δ for all p ∈ X . A (δ, ε)-net (of M) is
a δ-sparse and ε-dense point cloud.
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IV.3.1 Restricted Weighted Delaunay Triangulations

We now assume that X ⊂ M . A weight assignment to X is a function ω : X −→ [0,∞).
The weighted Voronoi diagram is defined to be the Voronoi diagram associated to the
weighted distance d(x, pω)2 = ‖x− p‖2 − ω(p)2. Every p ∈ X is associated to its weighted
Voronoi cell Vorω(p). For τ ⊂ X , let

Vorω(τ) =
⋂
p∈τ

Vorω(p)

be the common face of the weighted Voronoi cells of the points of τ . The weighted Delaunay
triangulation Delω(X ) is the dual triangulation to the decomposition given by the weighted
Voronoi diagram. In other words, for τ ⊂ X , the simplex with vertices τ , also denoted by
τ , satisfies

τ ∈ Delω(X )⇔ Vorω(τ) 6= ∅.

Note that for a constant weight assignment ω(p) ≡ ω0, Delω(X ) is the usual Delaunay
triangulation of X . Under genericity assumptions on X and bounds on ω, Delω(X ) is an
embedded triangulation with vertex set X [BG14]. The reconstruction method proposed
in this paper is based on Delω(X ) for some weights ω to be chosen later. As it is a
triangulation of the whole convex hull of X and fails to recover the geometric structure of
M , we take restrictions of it in the following manner.

Given a family R = {Rp}p∈X of subsets Rp ⊂ RD indexed by X , the weighted Delaunay
complex restricted to R is the sub-complex of Delω(X ) defined by

τ ∈ Delω(X , R)⇔ Vorω(τ) ∩

⋃
p∈τ

Rp

 6= ∅.
In particular, we define the Tangential Delaunay Complex Delω(X , T ) by taking R = T =
{TpM}p∈X , the family of tangent spaces taken at the points of X ⊂M [BG14]. Delω(X , T )
is a pruned version of Delω(X ) where only the simplices with directions close to the tangent
spaces are kept. Indeed, TpM being the best linear approximation of M at p, it is very
unlikely for a reconstruction of M to have components in directions normal to TpM (see
Figure IV.2). As pointed out in [BG14], computing Delω(X , T ) only requires to compute
Delaunay triangulations in the tangent spaces that have dimension d. This reduces the
computational complexity dependency on the ambient dimension D > d. The weight
assignment ω gives degrees of freedom for the reconstruction. The extra degree of freedom
ω permits to stabilize the triangulation and to remove the so-called inconsistencies, the
points remaining fixed. For further details, see [BGO09, BG14].

IV.3.2 Guarantees

The following result sums up the reconstruction properties of the Tangential Delaunay
Complex that we will use. For more details about it, the reader is referred to [BG14].

Theorem IV.10 (Theorem 5.3 in [BG14]). There exists εd > 0 such that for all ε ≤ εdτmin
and all M ∈ C2

τmin , if X ⊂M is an (ε, 2ε)-net, there exists a weight assignment ω∗ = ω∗X ,T
depending on X and T = {TpM}p∈X such that

- dH (M,Delω∗(X , T )) ≤ Cdε2/τmin,

- M and Delω∗(X , T ) are ambient isotopic.
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p

TpM

Figure IV.2 – Construction of Delω(X , T ) at p for ω ≡ 0: p has three incident edges in the
ambient Delaunay triangulation, but only two (bold) have dual Voronoi face
intersecting TpM .

Computing Delω∗(X , T ) requires to determine the weight function ω∗ = ω∗X ,T . In
[BG14], a greedy algorithm is designed for this purpose and has a time complexity
O
(
Dn2 +D2O(d2)n

)
.

Given an (ε, 2ε)-net X for ε small enough, Delω∗(X , T ) recovers M up to ambient
isotopy and approximates it at the scale ε2. The order of magnitude ε2 with an input X
of scale ε is remarkable. Another instance of this phenomenon is present in [Cla06] in
codimension 1. We will show that this ε2 provides the minimax rate of approximation
when dealing with random samples. Therefore, it can be thought of as optimal.

Theorem IV.10 suffers two major imperfections. First, it requires the knowledge of
the tangent spaces at each sample point — since ω∗ = ω∗X ,T — and it is no longer usable
if tangent spaces are only known up to some error. Second, the points are assumed to
lie exactly on the submanifold M , and no noise is allowed. The analysis of Delω∗(X , T )
is sophisticated [BG14]. Rather than redo the whole study with milder assumptions, we
tackle this question with an approximation theory approach (Theorem IV.11). Instead of
studying if Delω∗(X ′, T ′) is stable when X ′ lies close to M and T ′ close to T , we examine
what Delω∗(X ′, T ′) actually reconstructs, as detailed in Section IV.4.

IV.3.3 On the Sparsity Assumption

In Theorem IV.10, X is assumed to be dense enough so that it covers all the areas
of M . It is also supposed to be sparse at the same scale as the density parameter ε.
Indeed, arbitrarily accumulated points would generate non-uniformity and instability for
Delω∗(X , T ) [BGO09, BG14]. At this stage, we emphasize that the construction of a
(ε, 2ε)-net can be carried out given an ε-dense sample. Given an ε-dense sample X , the
farthest point sampling algorithm prunes X and outputs an (ε, 2ε)-net Y ⊂ X of M as
follows. Initialize at Y = {p1} ⊂ X , and while max

p∈X
d(p,Y) > ε, add to Y the farthest

point to Y in X , that is, Y ← Y ∪{argmax
p∈X

d(p,Y)}. The output Y is ε-sparse and satisfies

dH(X ,Y) ≤ ε, so it is a (ε, 2ε)-net of M . Therefore, up to the multiplicative constant 2,
sparsifying X at scale ε will not deteriorate its density property. Then, we can run the
farthest point sampling algorithm to preprocess the data, so that the obtained point cloud
is a net.
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IV.4 Stability Result

IV.4.1 Interpolation Theorem

As mentioned above, if the data do not lie exactly on M and if we do not have the exact
knowledge of the tangent spaces, Theorem IV.10 does not apply. To bypass this issue, we
interpolate the data with another submanifold M ′ satisfying good properties, as stated in
the following result.

Theorem IV.11 (Interpolation). Let M ∈ C2
τmin. Let X = {p1, . . . , pq} ⊂ RD be a finite

point cloud and T̃ =
{
T̃1, . . . , T̃q

}
be a family of d-dimensional linear subspaces of RD. For

θ ≤ π/64 and 18η < δ ≤ τmin, assume that

- X is δ-sparse: min
i 6=j
‖pj − pi‖ ≥ δ,

- the pj’s are η-close to M : max
1≤j≤q

d(pj ,M) ≤ η,

- max
1≤j≤q

∠(TπM (pj)M, T̃j) ≤ sin θ.

Then, there exist a universal constant c0 ≤ 285 and a smooth submanifold M ′ ⊂ RD such
that

1. X ⊂M ′,

2. τM ′ ≥
(
1− c0

(η
δ + θ

) τmin
δ

)
τmin,

3. TpjM ′ = T̃j for all 1 ≤ j ≤ q,

4. dH(M,M ′) ≤ δθ + η,

5. M and M ′ are ambient isotopic.

Tπ(pj)M

pj

M ′

TpjM
′

π(pj)

Figure IV.3 – An instance of the interpolating submanifold M ′. Dashed lines correspond
to the image of vertical lines by the ambient diffeomorphism Φ defining
M ′ = Φ(M).

Theorem IV.11 fits a submanifold M ′ to noisy points and perturbed tangent spaces
with no change of topology and a controlled reach loss. We will use M ′ as a proxy for M .
Indeed, if T̃1, . . . , T̃q are estimated tangent spaces at the noisy base points p1, . . . , pq, M ′
has the virtue of being reconstructed by Delω∗(X , T̃ ) from Theorem IV.10. Since M ′ is
topologically and geometrically close to M , we conclude that M is reconstructed as well
by transitivity. In other words, Theorem IV.11 allows to consider a noisy sample with
estimated tangent spaces as an exact sample with exact tangent spaces. M ′ is built pushing
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and rotating M towards the pj ’s locally along the vector (pj − π(pj)), as illustrated in
Figure IV.3. Since the construction is quite general and may be applied in various settings,
let us provide an outline of the construction.

Let φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1. φ is smooth and satisfies φ(0) = 1, ‖φ‖∞ ≤ 1 and

d0φ = 0.
For j = 1, . . . , q, Proposition III.29 asserts that there exists a rotation Rj of RD

mapping TπM (pj)M onto T̃j that satisfies ‖Rj − ID‖op ≤ 2 sin(θ/2) ≤ θ. For ` > 0 to be
chosen later, and all a ∈ RD, let us define Φ : RD → RD by

Φ(a) = a+
q∑
j=1

φ

(
a− π(pj)

`

) [
(Rj − ID)(a− π(pj)) + (pj − π(pj))︸ ︷︷ ︸

ψj(a)

]
.

Φ is designed to map π(pj) onto pj with dπ(pj)Φ = Rj . Roughly speaking, in balls of
radii ` around each π(pj), Φ shifts the points in the direction pj − π(pj) and rotates it
around π(pj). Off these balls, Φ is the identity map. To guarantee smoothness, the shifting
and the rotation are modulated by the kernel φ, as ‖a− π(pj)‖ increases. Notice that
daψj = (Rj − ID) and ‖ψj(a)‖ ≤ `θ + η whenever φ

(
a−π(pj)

`

)
6= 0. Defining M ′ = Φ(M),

the facts that M ′ fits to X and T̃ and is Hausdorff-close to M follow by construction.
Moreover, Theorem 4.19 of [Fed59] (reproduced as Lemma B.1 in this paper) states that
the reach is stable with respect to C2-diffeomorphisms of the ambient space. The estimate
on τM ′ relies on the following lemma stating differentials estimates on Φ.

Lemma IV.12. There exist universal constants C1 ≤ 7/2 and C2 ≤ 28 such that if
6η < ` ≤ δ/3 and θ ≤ π/64, Φ : RD −→ RD is a global C∞-diffeomorphism. In addition,
for all a in RD,

‖daΦ‖op ≤ 1 + C1

(
η

`
+ θ

)
,
∥∥∥daΦ−1

∥∥∥
op
≤ 1

1− C1
(η
` + θ

) , ∥∥∥d2
aΦ
∥∥∥

op
≤ C2

(
η

`2
+ θ

`

)
.

The ambient isotopy follows easily by considering the weighted version Φ(t)(a) =
a + t (Φ(a)− a) for 0 ≤ t ≤ 1 and the same differential estimates. We then take the
maximum possible value ` = δ/3 and M ′ = Φ(M).

Remark IV.13. Changing slightly the construction of M ′, one can also build it such that
the curvature tensor at each pj corresponds to that of M at π(pj). For this purpose it
suffices to take a localizing function φ identically equal to 1 in a neighborhood of 0. This
additional condition would impact the universal constant c0 appearing in Theorem IV.11.

IV.4.2 Stability of the Tangential Delaunay Complex

Theorem IV.11 shows that even in the presence of noisy sample points at distance η from
M , and with the knowledge of the tangent spaces up to some angle θ, it is still possible to
apply Theorem IV.10 to some virtual submanifold M ′. Denoting M̃ = Delω∗(X , T̃ ), since
dH(M,M̃) ≤ dH(M,M ′) + dH(M ′, M̃) and since the ambient isotopy relation is transitive,
M ∼= M ′ ∼= M̃ . We get the following result as a straightforward combination of Theorem
IV.10 and Theorem IV.11.

Theorem IV.14 (Stability of the Tangential Delaunay Complex). There exists εd > 0
such that for all ε ≤ εdτmin and all M ∈ C2

τmin, the following holds. Let X ⊂ RD finite
point cloud and T̃ =

{
T̃p
}
p∈X

be a family of d-dimensional linear subspaces of RD such
that
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- max
p∈X

d(p,M) ≤ η,

- max
p∈X
∠(TπM (p)M, T̃p) ≤ sin θ,

- X is ε-sparse,

- max
x∈M

d(x,X ) ≤ 2ε.

If θ ≤ ε/(1140τmin) and η ≤ ε2/(1140τmin), then,

- dH
(
M,Delω∗(X , T̃ )

)
≤ Cdε2/τmin,

- M and Delω∗(X , T̃ ) are ambient isotopic.

Indeed, applying the reconstruction algorithm of Theorem IV.10 even in the presence
of noise and uncertainty on the tangent spaces actually recovers the submanifold M ′ built
in Theorem IV.11. M ′ is isotopic to M and the quality of the approximation of M is at
most impacted by the term dH(M,M ′) ≤ εθ + η. The lower bound on τM ′ is crucial, as
constants appearing in Theorem IV.10 are not bounded for arbitrarily small reach.

It is worth noting that no extra analysis of the Tangential Delaunay Complex was
needed to derive its stability. The argument is global, constructive, and may be applied
to other reconstruction methods taking tangent spaces as input. For instance, a stability
result similar to Theorem IV.14 could be derived readily for the so-called cocone complex
[CDR05] using the interpolating submanifold of Theorem IV.11.

IV.5 Tangent Space Estimation and Decluttering Procedure

IV.5.1 Additive Noise Case

We now focus on the estimation of tangent spaces in the model with additive noise
P2
τmin,σ (fmin, fmax). The proposed method is similar to that of [ACLZ17, MMS16]. A

point p ∈M being fixed, TpM is the best local d-dimensional linear approximation of M
at p. Performing a Local Principal Component Analysis (PCA) in a neighborhood of p
is likely to recover the main directions spanned by M at p, and therefore yield a good
approximation of TpM . For j = 1, . . . , n and h > 0 to be chosen later, define the local
covariance matrix at Xj by

Σ̂j(h) = 1
n− 1

∑
i 6=j

(
Xi − X̄j

) (
Xi − X̄j

)t
1B(Xj ,h)(Xi),

where X̄j = 1
Nj

∑
i 6=j Xi1B(Xj ,h)(Xi) is the barycenter of sample points contained in the

ball B(Xj , h), and Nj = |B(Xj , h) ∩Xn|. Let us emphasize the fact that the normalization
1/(n − 1) in the definition of Σ̂j stands for technical convenience. In fact, any other
normalization would yield the same guarantees on tangent spaces since only the principal
directions of Σ̂j play a role. Set T̂j(h) to be the linear space spanned by the d eigenvectors
associated with the d largest eigenvalues of Σ̂j(h). Computing a basis of T̂j(h) can be
performed naively using a singular value decomposition of the full matrix Σ̂j(h), although
fast PCA algorithms [SP07] may lessen the computational dependence on the ambient
dimension. We also denote by TSE(., h) the function that maps any vector of points to the
vector of their estimated tangent spaces, with

T̂j(h) = TSE(Xn, h)j .
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Proposition IV.15. Set h =
(
cd,fmin,fmax

logn
n−1

)1/d
for cd,fmin,fmax large enough. Assume

that σ/h ≤ 1/4. Then for n large enough, for all Q ∈ P2
τmin,σ (fmin, fmax),

max
1≤j≤n

∠
(
TπM (Xj)M, T̂j(h)

)
≤ Cd,fmin,fmax

(
h

τmin
+ σ

h

)
,

with probability larger than 1− 4
(

1
n

) 2
d .

An important feature given by Proposition IV.15 is that the statistical error of our
tangent space estimation procedure does not depend on the ambient dimension D. The
intuition behind Proposition IV.15 is the following: if we assume that the true tangent
space TXjM is spanned by the first d vectors of the canonical basis, we can decompose Σ̂j

as

Σ̂j(h) =
(
Âj(h) 0

0 0

)
+ R̂,

where R̂ comes from the curvature of the submanifold along with the additive noise,
and is of order Nj(h)(h3/(τmin(n − 1)) + hσ) . hd+2(h/τmin + σ/h), provided that h is
roughly smaller than (log(n)/(n− 1))1/d. On the other hand, for a bandwidth h of order
(log(n)/(n − 1))1/d, Âj(h) can be proved (Lemma B.14) to be close to its deterministic
counterpart

Aj(h) = E
((
πTXjM (X)− EπTXjM (X)

) (
πTXjM (X)− EπTXjM (X)

)t
1B(Xj ,h)(X)

)
,

where πTXjM denotes orthogonal projection onto TXjM and expectation is taken condition-
ally on Xj . The bandwidth (log(n)/(n−1))1/d may be thought of as the smallest radius that
allows enough sample points in balls to provide an accurate estimation of the covariance
matrices. Then, since fmin > 0, Lemma B.13 shows that the minimum eigenvalue of A(h)
is of order hd+2. At last, an eigenvalue perturbation result (Proposition B.16) shows that
T̂j(h) must be close to TXjM up to (hd+3/τmin + hd+1σ)/(hd+2) ≈ h/τmin + σ/h. The
complete derivation is provided in Section B.5.1.

Then, it is shown in Lemma B.11, based on the results of [CGLM15], that letting
ε = cd,fmin,fmax(h ∨ τminσ/h) for cd,fmin,fmax large enough, entails Xn is ε-dense in M

with probability larger than 1−
(

1
n

)2/d
. Since Xn may not be sparse at the scale ε, and

for the stability reasons described in Section IV.3, we sparsify it with the farthest point
sampling algorithm (Section IV.3.3) with scale parameter ε. Let Yn denote the output of
the algorithm. If σ ≤ h/4, and cd,fmin,fmax is large enough, we have the following.

Corollary IV.16. With the above notation, for n large enough, with probability at least
1− 5

(
1
n

)2/d
,

- max
Xj∈Yn

d(Xj ,M) ≤ ε2

1140τmin ,

- max
Xj∈Yn

∠(TπM (Xj)M, T̂j(h)) ≤ ε
2280τmin ,

- Yn is ε-sparse,

- max
x∈M

d(x,Yn) ≤ 2ε.

In other words, the previous result shows that Yn satisfies the assumptions of Theorem
IV.14 with high probability. We may then define M̂TDC to be the Tangential Delaunay
Complex computed on Yn and the collection of estimated tangent spaces TSE(Xn, h)Yn ,
that is elements of TSE(Xn, h) corresponding to elements of Yn, where h is the bandwidth
defined in Proposition IV.15.
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Definition IV.17. With the above notation, define M̂TDC = Delω∗ (Yn, TSE(Xn, h)Yn).

Combining Theorem IV.14 and Corollary IV.16, it is clear that M̂TDC satisfies Theorem
IV.7.

IV.5.2 Clutter Noise Case

Let us now focus on the model with outliers P2
τmin,β

(fmin, fmax). We address problem of
decluttering the sample Xn, that is, to remove outliers. We follow ideas from [GPPVW12a].
To distinguish whether Xj is an outlier or belongs to M , we notice again that points
drawn from M approximately lie on a low dimensional structure. On the other hand, the
neighborhood points of an outlier drawn far away from M should typically be distributed
in an isotropic way. Let k1, k2, h > 0, x ∈ RD and T ⊂ RD a d-dimensional linear subspace.
The slab at x in the direction T is the set S(x, T, h) = {x}⊕BT (0, k1h)⊕BT⊥

(
0, k2h

2) ⊂ RD,
where ⊕ denotes the Minkovski sum, and BT ,BT⊥ are the Euclidean balls in T and T⊥
respectively.

M

Xj

h

π(Xj)

T̂j

Tπ(Xj)M

Figure IV.4 – Local PCA at an outlier point Xj ∈ Xn.

Following notation of Section IV.2.1, for P ∈ P2
τmin,β

(fmin, fmax), let us write P =
βQ+ (1− β)UB0 . For h small enough, by definition of the slabs, UB0

(
S(x, Tπ(x)M,h)

)
�

(k1h)d(k2h
2)D−d � h2D−d. Furthermore, Figure IV.5 indicates that for k1 and k2 small

enough, Q
(
S(x, Tπ(x)M,h)

)
� V ol

(
S(x, Tπ(x)M,h) ∩M

)
� hd if d(x,M) ≤ h2, and

Q
(
S(x, Tπ(x)M,h)

)
= 0 if d(x,M) > h2. Coming back to P = βQ + (1 − β)UB0 , we

roughly get

P
(
S(x, Tπ(x)M,h)

)
� βhd +(1− β)h2D−d � hd if d(x,M) ≤ h2,

P
(
S(x, Tπ(x)M,h)

)
� 0 +(1− β)h2D−d � h2D−d if d(x,M) > h2,

as h goes to 0, for k1 and k2 small enough. Since h2D−d � hd, the measure P (S(x, T, h))
of the slabs clearly is discriminatory for decluttering, provided that tangent spaces are
known.

Based on this intuition, we define the elementary step of our decluttering procedure as
the map SDt(., ., h), that sends a vector P = (p1, . . . , pr) ⊂ RD and a corresponding vector
of (estimated) tangent spaces TX = (T1, . . . , Tr) onto a subvector of X according to the
rule

pj ∈ SDt(X , TX , h) ⇔ |S(pj , Tj , h) ∩ X | ≥ t(n− 1)hd,
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where t is a threshold to be fixed. This procedure relies on counting how many sample
points lie in the slabs of direction the estimated tangent spaces (see Figure IV.5).

k1h

k2h
2

Tπ(Xj)M

M

T̂j

π(Xj)

Sj

Xj

Xj′

Sj′

T̂j′

Figure IV.5 – The slab S(Xj , T̂j , h) is centered at Xj and has size k1h in the d directions
spanned by T̂j , and size k2h

2 in the D − d directions normal to T̂j .

Since tangent spaces are unknown, the following result gives some insight on the relation
between the accuracy of the tangent space estimation and the decluttering performance
that can be reached.

Lemma IV.18. Let K > 0 be fixed. There exist constants k1(K) and k2(τmin,K) such
that for every h ≤ 1 and x in RD, S(x, T, h) ⊂ B(x, h/2). Moreover, for every h ≤ h+ ∧ 1
we have

h/
√

2 ≥ d(x,M) ≥ h2/τmin

∠
(
TπM (x)M,T

)
≤ Kh/τmin

}
⇒ S(x, T, h) ⊂ S′(x, TπM (x)M,h),

where S′(x, TπM (x)M,h) is a larger slab with parameters k′1(τmin,K) and k′2(τmin,K), and
satisfies S′(x, TπM (x)M,h) ∩M = ∅. In addition, there exists k3(τmin,K) such that for all
x and y are in M ,

∠ (TxM,T ) ≤ Kh/τmin
‖x− y‖ ≤ k3h

}
⇒ y ∈ S(x, T, h).

Possible values for k1 and k2 are, respectively, 1
16(K∨1) and 1

16(τmin∨K∨1) , and k3 can be
taken as k1 ∧ τmink2

1+2K .

The proof of Lemma IV.18, mentioned in [GPPVW12a], follows from elementary
geometry, combined with the definition of the reach and Proposition B.3.

Roughly, Lemma IV.18 states that the decluttering performance is of order the square
of the tangent space precision, hence will be closely related to the performance of the
tangent space estimation procedure TSE. Unfortunately, a direct application of TSE to the
corrupted sample Xn leads to slightly worse precision bounds, in terms of angle deviation.
Typically, the angle deviation would be of order n−1/(d+1). However, this precision is
enough to remove outliers points which are at distance at least n−2/(d+1) from M . Then
running our TSE on this refined sample SDt(Xn, TSE(Xn), n−1/(d+1)) leads to better angle
deviation rates, hence better decluttering performance, and so on.

Let us introduce an iterative decluttering procedure in a more formal way. We choose
the initial bandwidth h0 =

(
cd,fmin,fmax,τmin

logn
β(n−1)

)γ0 , with γ0 = 1/(d + 1), and define
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the first set X(−1) = Xn as the whole sample. We then proceed recursively, setting
hk+1 =

(
cd,fmin,fmax,τmin

logn
β(n−1)

)γk+1 , with γk+1 satisfying γk+1 = (2γk + 1)/(d+ 2). This
recursion formula is driven by the optimization of a trade-off between imprecision terms in
tangent space estimation, as may be seen from (B.19). An elementary calculation shows
that

γk = 1
d
− 1
d(d+ 1)

( 2
d+ 2

)k
.

With this updated bandwidth we define

X(k+1) = SDt(X(k), TSE(X(k), hk+1), hk+1).

In other words, at step k + 1 we use a smaller bandwidth hk+1 in the tangent space
estimation procedure TSE. Then we use this better estimation of tangent spaces to run the
elementary decluttering step SD. The performance of this procedure is guaranteed by the
following proposition. With a slight abuse of notation, if Xj is in X(k), TSE(X(k), h)j will
denote the corresponding tangent space of TSE(X(k), h).
Proposition IV.19. In the clutter noise model, for t, cd,fmin,fmax,τmin and n large enough,

k1 and k2 small enough, the following properties hold with probability larger than 1−7
(

1
n

)2/d

for all k ≥ 0.
Initialization:
- For all Xj ∈ X(−1) such that d(Xj ,M) ≤ h0/

√
2,

∠
(
TSE(X(−1), h0)j , Tπ(Xj)M

)
≤ Cd,fmin,fmaxh0/τmin.

- For every Xj ∈ M ∩ X(−1), Xj ∈ X(0).

- For every Xj ∈ X(−1), if d(Xj ,M) > h2
0/τmin, then Xj /∈ X(0).

Iterations:
- For all Xj ∈ X(k) such that d(Xj ,M) ≤ hk+1/

√
2,

∠
(
TSE(X(k), hk+1)j , Tπ(Xj)M

)
≤ Cd,fmin,fmaxhk+1/τmin.

- For every Xj ∈ M ∩ X(k), Xj ∈ X(k+1).

- For every Xj ∈ X(k), if d(Xj ,M) > h2
k+1/τmin, then Xj /∈ X(k+1).

This result is threefold. Not only can we distinguish data and outliers within a
decreasing sequence of offsets of radii h2

k/τmin around M , but we can also ensure that no
point of M is removed during the process with high probability. Moreover, it also provides
a convergence rate for the estimated tangent spaces TSE(Xk, hk+1).

Now fix a precision level δ. If k is larger than (log(1/δ)−log(d(d+1))/(log(d+2)−log(2)),
then 1/d > γk ≥ 1/d− δ. Let us define kδ as the smallest integer satisfying γk ≥ 1/d− δ,
and denote by Yδn the output of the farthest point sampling algorithm applied to X(kδ) with
parameter ε = cd,fminfmaxhkδ , for cd,fminfmax large enough. Define also T̂ δ as the restriction
of TSE(X(kδ), hkδ) to the elements of Yδn.

According to Proposition IV.19, the decluttering procedure removes no data point on
M with high probability. In other words, X(kδ) ∩M = Xn ∩M , and as a consequence,
max
x∈M

d(x,X(kδ)) ≤ cd,fmin
(

logn
βn

)1/d
� hkδ with high probability (see Lemma B.11). As a

consequence, we obtain the following.
Corollary IV.20. With the above notation, for n large enough, with probability larger
than 1− 8

(
1
n

)2/d
,
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- max
Xj∈Yδn

d(Xj ,M) ≤ ε2

1140τmin ,

- max
Xj∈Yδn

∠(TπM (Xj)M, T̂ δj ) ≤ ε
2280τmin ,

- Yδn is ε-sparse,

- max
x∈M

d(x,Yδn) ≤ 2ε.

We are now able to define the estimator M̂TDCδ.

Definition IV.21. With the above notation, define M̂TDCδ = Delω∗
(
Yδn, T̂ δ

)
.

Combining Theorem IV.14 and Corollary IV.20, it is clear that M̂TDCδ satisfies Theorem
IV.8.

Finally, we turn to the estimator M̂TDC+. Set h∞ =
(
cd,fmin,fmax,τmin

logn
β(n−1)

)1/d
, and let

k̂ denote the smallest integer such that min{d(Xj ,M)|d(Xj ,M) > h2
∞/τmin} > h2

k̂
/τmin.

Since Xn is a (random) finite set, we can always find such a random integer k̂ that provides
a sufficient number of iterations to obtain the asymptotic decluttering rate. For this
random iteration k̂, we can state the following result.

Proposition IV.22. Under the assumptions of Corollary IV.20, for every Xj ∈ X(k̂+1),
we have

∠(TSE(X(k̂+1), h∞)j , Tπ(Xj)M) ≤ Cd,fmin,fmaxh∞/τmin.

As before, taking Y+
n as the result of the farthest point sampling algorithm based on

X(k̂+1), and T+ the vector of tangent spaces TSE(X(k̂+1), h∞)j such that X(k̂+1)
j ∈ Y+

n , we
can construct our last estimator.

Definition IV.23. With the above notation, define M̂TDC+ = Delω∗
(
Y+
n , T

+) .
In turn, Proposition IV.22 implies that M̂TDC+ satisfies Theorem IV.9.

IV.6 Conclusion
In this work, we gave results on explicit manifold reconstruction with simplicial complexes.
We built estimators M̂TDC, M̂TDCδ and M̂TDC+ in two statistical models. We proved minimax
rates of convergence for the Hausdorff distance and consistency results for ambient isotopic
reconstruction. Since M̂TDC is minimax optimal in the additive noise model for σ small,
and uses the Tangential Delaunay Complex of [BG14], the latter is proved to be optimal.
Moreover, rates of [GPPVW12a] are proved to be achievable with simplicial complexes
that are computable using existing algorithms. To prove the stability of the Tangential
Delaunay Complex, a generic interpolation result was derived. In the process, a tangent
space estimation procedure and a decluttering method both based on local PCA were
studied.

In the model with outliers, the proposed reconstruction method achieves a rate of
convergence that can be as close as desired to the minimax rate of convergence, depending
on the number of iterations of the decluttering procedure. Though this procedure seems to
be well adapted to our reconstuction scheme — which is based on tangent spaces estimation
— we believe that it could be of interest in the context of other applications. Also, further
investigation may be carried out to compare this decluttering procedure to existing ones
[BDWW15, Don95].

As briefly mentioned below Theorem IV.7, our approach is likely to be suboptimal
in cases where noise level σ is large. In such cases, with additional structure on the
noise such as centered and independent from the source, other statistical procedures such
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as deconvolution [GPPVW12a] could be adapted to provide vertices to the Tangential
Delaunay Complex. Tangential properties of deconvolution are still to be studied.

The effective construction of M̂TDCδ can be performed using existing algorithms.
Namely, Tangential Delaunay Complex, farthest point sampling, local PCA and point-to-
linear subspace distance computation for slab counting. A crude upper bound on the time
complexity of a naive step-by-step implementation is

O
(
nD

[
2O(d2) + log(1/δ)D(D + n)

])
,

since the precision δ requires no more than log (1/δ) iterations of the decluttering procedure.
It is likely that better complexity bounds may be obtained using more refined algorithms,
such as fast PCA [SP07], that lessens the dependence on the ambient dimension D. An
interesting development would be to investigate a possible precision/complexity tradeoff,
as done in [ACV14] for community detection in graphs for instance.

Even though Theorem IV.11 is applied to submanifold estimation, we believe it may be
applied in various settings. Beyond its statement, the way that it is used is quite general.
When intermediate objects (here, tangent spaces) are used in a procedure, this kind of
proxy method can provide extensions of existing results to the case where these objects are
only approximated.

As local PCA is performed throughout the paper, the knowledge of the bandwidth h is
needed for actual implementation. In practice its choice is a difficult question and adaptive
selection of h remains to be considered.

In the process, we derived rates of convergence for tangent space estimation. The
optimality of the method will be the object of Chapter VI.
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B.1 Interpolation Theorem
This section is devoted to prove the interpolation results of Section IV.4.1. For sake of
completeness, let us state again Lemma III.17, a stability result for the reach with respect
to C2-diffeomorphisms.

Lemma B.1 (Theorem 4.19 in [Fed59]). Let A ⊂ RD with τA ≥ τmin > 0 and Φ : RD −→
RD is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz with Lipschitz constants
K,N and R respectively, then

τΦ(A) ≥
1

(Kτ−1
min +R)N2 .

Writing φ`(·) = φ(·/`), we recall that ψj(a) = (Rj − ID)(a− π(pj)) + (pj − π(pj)) and

Φ(a) = a+
q∑
j=1

φ` (a− π(pj))ψj(a). (B.2)
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Let us denote b1 = supx ‖dxφ‖, b2 = supx
∥∥d2

xφ
∥∥

op, and write C1 = 1 + b1, C2 = b2 + 2b1.
Straightforward computation yields C1 ≤ 7/2 and C2 ≤ 28.

Proof of Lemma IV.12. First notice that the sum appearing in (B.2) consists of at most
one term. Indeed, since φ ≡ 0 outside B(0, 1), if φ` (a− π(pj)) 6= 0 for some j ∈ {1, . . . , q},
then ‖a− π(pj)‖ ≤ `. Consequently, for all i 6= j,

‖a− π(pi)‖ ≥ ‖pj − pi‖ − ‖pj − π(pj)‖ − ‖π(pj)− a‖ − ‖π(pi)− pi‖
≥ δ − η − `− η
≥ δ − 2` ≥ `,

where we used that 6η ≤ ` ≤ δ/3. Therefore, φ` (a− π(pi)) = 0 for all i 6= j. In other
words, if a pj actually appears in Φ(a) then the others do not.

Global diffeomorphism: As the sum in (B.2) is at most composed of one term, chain
rule yields

‖daΦ− ID‖op = max
1≤j≤q

‖da [φ` (a− π(pj))ψj(a)]‖op

= max
1≤j≤q

∥∥∥∥∥ψj(a) dbφ
`

∣∣∣∣
b=

a−π(pj)
`

+ φ` (a− π(pj)) (Rj − ID)
∥∥∥∥∥

op

≤
(
b1 + 1

)
θ + b1

η

`
< 1,

where the last line follows from b1 ≤ 5/2, 6η ≤ ` and θ ≤ π/64. Therefore, daΦ is invertible
for all a ∈ RD, and (daΦ)−1 =

∑∞
i=0 (ID − daΦ)i. Φ is a local diffeomorphism according to

the local inverse function theorem. Moreover, ‖Φ(a)‖ → ∞ as ‖a‖ → ∞, so that Φ is a
global C∞-diffeomorphism by Hadamard-Cacciopoli theorem [DMGZ94].

Differentials estimates: (i) First order: From the estimates above,

‖daΦ‖op ≤ ‖ID‖op + ‖daΦ− ID‖op ≤ 1 +
(
b1 + 1

)
θ + b1

η

`
.

(ii) Inverse: Write for all a ∈ RD,

∥∥∥dΦ(a)Φ−1
∥∥∥

op
=
∥∥∥(daΦ)−1

∥∥∥
op

=
∥∥∥∥∥
∞∑
i=0

(ID − daΦ)i
∥∥∥∥∥

op

≤ 1
1− ‖ID − daΦ‖op

≤ 1
1−

(
b1 + 1

)
θ − b1 η`

,

where the first inequality holds since ‖daΦ− ID‖op < 1, and ‖·‖op is sub-multiplicative.
(iii) Second order: Again, since the sum (B.2) includes at most one term,∥∥∥d2

aΦ
∥∥∥

op
= max

1≤j≤q

∥∥∥d2
a [φ` (a− π(pj))ψj(a)]

∥∥∥
op

≤ max
1≤j≤q

{∥∥d2φ
∥∥

op
`2

‖ψj(a)‖+ 2
‖dφ‖op
`
‖Rj − ID‖op

}

≤ b2
η

`2
+ (b2 + 2b1) θ

`
.

Proof of Theorem IV.11. Set ` = δ/3 and M ′ = Φ(M).
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- Interpolation: For all j, pj = Φ(π(pj)) ∈M ′ by construction since φ`(0) = 1.

- Tangent spaces: Since dxφl|x=0 = 0, for all j ∈
{
1, . . . , q

}
, daΦ|a=π(pj) = Rj . Thus,

TpjM
′ = TΦ(π(pj))Φ(M)

= daΦ|a=π(pj)

(
Tπ(pj)M

)
= Rj

(
Tπ(pj)M

)
= Tj ,

by definition of Rj .

- Proximity to M : The bound on dH(M,M ′) = dH
(
M,Φ(M)

)
follows from the

correspondence

‖Φ(a)− a‖ ≤ sup
a∈RD

max
1≤j≤q

φ` (a− π(pj)) ‖ψj(a)‖

≤ `θ + η ≤ δθ + η.

- Isotopy: Consider the continuous family of maps

Φ(t)(a) = a+ t

 q∑
j=1

φ` (a− π(pj))ψj(a)

 ,
for 0 ≤ t ≤ 1. Since Φ(t) − ID = t

(
Φ− ID

)
, the arguments above show that Φ(t) is

a global diffeomorphism of RD for all t ∈ [0, 1]. Moreover Φ(0) = ID, and Φ(1) = Φ.
Thus, M = Φ(0)(M) and M ′ = Φ(1)(M) are ambient isotopic.

- Reach lower bound: The differentials estimates of order 1 and 2 of Φ translate into
estimates on Lipschitz constants of Φ,Φ−1 and dΦ. Applying Lemma B.1 leads to

τM ′ ≥
(
1− C1

(η
` + θ

))2
1 + C1

(η
` + θ

)
τmin

+ C2
(
η
`2 + θ

`

) = τmin ·
(
1− C1

(η
` + θ

))2
1 + C1

(η
` + θ

)
+ C2

(
η
`2 + θ

`

)
τmin

.

Now, replace ` by its value δ/3, and write c1 = 3C1 ≤ 21/2 ≤ 11 and c2 = 32C2 ≤ 252.
We derive

τM ′ ≥
(

1− 2c1

(
η

δ
+ θ

))(
1− c1

(
η

δ
+ θ

)
− c2

(
η

δ2 + θ

δ

)
τmin

)
τmin

≥
(

1− 3c1

(
η

δ
+ θ

)
− c2

(
η

δ2 + θ

δ

)
τmin

)
τmin

≥
(

1− (3c1 + c2)
(
η

δ2 + θ

δ

)
τmin

)
τmin,

where for the last line we used that δ/τmin ≤ 1. The desired lower bound follows
taking c0 = 3c1 + c2 ≤ 285.
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B.2 Some Geometric Properties under Reach Regularity
Condition

B.2.1 Reach and Projection on the Submanifold

In this section we state intermediate results that connect the reach condition to orthogonal
projections onto the tangent spaces. Let us start by restating (III.19) the precise way we
will us it.

Proposition B.3 (Theorem 4.18 in [Fed59]). For all x and y in M ,

‖(y − x)⊥‖ ≤
‖y − x‖2

2τmin
,

where (y − x)⊥ denotes the projection of y − x onto TxM⊥.

From Proposition B.3 we may deduce the following property about trace of Euclidean
balls on M .

Proposition B.4. Let x ∈ RD be such that d(x,M) = ∆ ≤ h ≤ τmin
8 , and let y denote

π(x). Then,

B
(
y, r−h

)
∩M ⊂ B(x, h) ∩M ⊂ B

(
y, r+

h

)
∩M,

where r2
h + ∆2 = h2, (r−h )2 =

(
1− ∆

τmin

)
r2
h, and (r+

h )2 =
(
1 + 2∆

τmin

)
r2
h.

Proof of Proposition B.4. Let z be in M ∩ B(x, h), and denote by δ the quantity ‖z − y‖.
We may write

‖z − x‖2 = δ2 + ∆2 + 2 〈z − y, y − x〉 , (B.5)

hence δ2 ≤ h2 − ∆2 − 2 〈z − y, y − x〉. Denote, for u in RD, by u⊥ its projection onto
TyM

⊥. Since 〈z − y, y − x〉 = 〈(z − y)⊥, y − x〉, Proposition B.3 ensures that

δ2
(

1− ∆
τmin

)
≤ r2

h.

Since ∆ ≤ h ≤ τmin/8, it comes δ2 ≤ (1 + 2 ∆
τmin

)r2
h. On the other hand, (B.5) and

Proposition B.3 also yield

‖z − x‖2 ≤ δ2
(

1 + ∆
τmin

)
+ ∆2.

Hence, if δ2 ≤
(
1− ∆

τmin

)
r2
h, we have

‖z − x‖2 ≤ r2
h + ∆2 = h2.

Also, the following consequence of Proposition B.3 will be of particular use in the
decluttering procedure.

Proposition B.6. Let h and hk be bandwidths satisfying h2
k/τmin ≤ h ≤ hk. Let x be

such that d(x,M) ≤ h/
√

2 and πM (x) = 0, and let z be such that ‖z − x‖ ≤ h and
d(z,M) ≤ h2

k/τmin. Then

‖z⊥‖ ≤
6h2

k

τmin
,

where z⊥ denotes the projection of z onto T0M
⊥.
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Proof of Proposition B.6. Let y denote πM (z). A triangle inequality yields ‖y‖ ≤ ‖y −
z‖+ ‖z − x‖+ ‖x‖ ≤ h2

k/τmin + (1 + 1/
√

2)h ≤ 3hk. Proposition B.3 ensures that ‖y⊥‖ ≤
‖y‖2/(2τmin) ≤ (9h2

k)/(2τmin). Since ‖z⊥‖ ≤ ‖y⊥‖+ h2
k/τmin, we have ‖z⊥‖ ≤ 6h2

k/τmin
.

At last, let us prove Lemma IV.18, that gives properties of intersections of ambient
slabs with M .

Proof. (Proof of Lemma IV.18) Set k1 = 1
16(K∨1) , k2 = 1

16(K∨τmin∨1) , and k3 = k1 ∧
τmink2
1+2K ∧ 1. For all h > 0, and z ∈ S(x, T, h), triangle inequality yields ‖z − x‖ ≤
‖πT (z − x)‖ + ‖πT⊥(z − x)‖ ≤ (k1 + k2h)h. Since h ≤ 1 and k1 + k2 ≤ 1/2, we get
z ∈ B(x, h/2).

Now, suppose that h/
√

2 ≥ d(x,M) ≥ h2/τmin and ∠
(
Tπ(x)M,T

)
≤ Kh/τmin. For

short we write T0 = Tπ(x)M . Let z ∈ S(x, T, h), since h ≤ 1, it comes

‖πT0(z − x)‖ ≤ ‖z − x‖ ≤ (k1 + k2)h = k′1h,

with k′1 = k1 + k2. On the other hand

‖πT⊥0 (z − x)‖ ≤ ‖πT⊥0 πT (z − x)‖+ ‖πT⊥0 πT⊥(z − x)‖ ≤ (Kh/τmin)(k1h) + k2h
2 = k′2h

2,

with k′2 = k1K/τmin + k2. Hence S(x, T, h) ⊂ S′(x, T0, h), for the constants k′1 and k′2
defined above. It remains to prove that S′(x, T0, h)∩M = ∅. To see this, let z ∈ S′(x, T0, h),
and y = π(x). Since k′1 + k′2 ≤ 1/4, we have ‖y− z‖ ≤ ‖y− x‖+ ‖x− z‖ ≤ h(1/

√
2 + 1/4).

For the normal part, we may write

‖πT⊥0 (z − y)‖ ≥ ‖πT⊥0 (y − x)‖ − ‖πT⊥0 (x− z)‖ ≥ h2(1/τmin − k′2).

Since k′2 ≤ 1/(8τmin), we have ‖πT⊥0 (z − y)‖ > ‖y − z‖2/(2τmin), hence Proposition B.3
ensures that z /∈M .

At last, suppose that x ∈ M and y ∈ B(x, k3h) ∩ M . Since k3 ≤ k1, we have
‖πT (y − x)‖ ≤ k1h. Next, we may write

‖πT⊥(y − x)‖ ≤ ‖πT⊥πT0(y − x)‖+ ‖πT⊥πT⊥0 (y − x)‖.

Since y ∈M , Proposition B.3 entails ‖πT⊥0 (y− x)‖ ≤ ‖y− x‖2/(2τmin) ≤ k2
3h

2/(2τmin). It
comes

‖πT⊥(y − x)‖ ≤ h2

τmin

(
k3K + k2

3
2

)
≤ k2h

2.

Hence y ∈ S(x, T, h).

B.2.2 Reach and Exponential Map

In this section we state results that connect Euclidean and geodesic quantities under reach
regularity condition. See also Chapter III for further details. We start with a result linking
reach and principal curvatures.

Proposition B.7 (Proposition 6.1 in [NSW08]). For all x ∈M , writing IIx for the second
fundamental form of M at x, for all unitary w ∈ TxM , we have ‖IIx(w,w)‖ ≤ 1/τmin.

For all x ∈ M and v ∈ TxM , let us denote by expx(v) the exponential map at x of
direction v. According to the following proposition, this exponential map turns out to be a
diffeomorphism on balls of radius at most πτmin.
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Proposition B.8 (Corollary 1.4 in [AB06a]). The injectivity radius of M is at least πτmin.

Denoting by dM (·, ·) the geodesic distance on M , we are in position to connect geodesic
and Euclidean distance. In what follows, we fix the constant α = 1 + 1

4
√

2 .

Proposition B.9. For all x, y ∈M such that ‖x− y‖ ≤ τmin/4,

‖x− y‖ ≤ dM (x, y) ≤ α ‖x− y‖ .

Moreover, writing y = expx(rv) for v ∈ TxM with ‖v‖ = 1 and r ≤ τmin/4,

y = x+ rv +R(r, v)

with ‖R(r, v)‖ ≤ r2

2τmin .

Proof of Proposition B.9. The first statement is a direct consequence of Proposition 6.3 in
[NSW08]. Let us define u(t) = expx(tv)−expx(0)−tv and w(t) = expx(tv) for all 0 ≤ t ≤ r.
It is clear that u(0) = 0 and u′(0) = 0. Moreover, ‖u′′(t)‖ =

∥∥∥IIw(t) (w′(t), w′(t))
∥∥∥ ≤ 1/τmin.

Therefore, a Taylor expansion at order two gives ‖R(r, v)‖ = u(r) ≤ r2/(2τmin). Applying
the first statement of the proposition gives r ≤ α ‖x− y‖.

The next proposition gives bounds on the volume form expressed in polar coordinates
in a neighborhood of points of M .

Proposition B.10. Let x ∈ M be fixed. Denote by J(r, v) the Jacobian of the volume
form expressed in polar coordinates around x, for r ≤ τmin

4 and v a unit vector in TxM . In
other words, if y = expx(rv), dyV = J(r, v)drdv. Then

cdr
d−1 ≤ J(r, v) ≤ Cdrd−1,

where cd = 2−d and Cd = 2d. As a consequence, if BM (x, r) denotes the geodesic ball of
radius r centered at x, then, if r ≤ τmin

4 ,

c′dr
d ≤ V ol(BM (x, r)) ≤ C ′drd,

with c′d = cdVd and C ′d = CdVd, where Vd denotes the volume of the unit d-dimensional
Euclidean ball.

Proof of Proposition B.10. Denoting Ar,v = drv expx, the Area Formula [Fed69, Section

3.2.5] asserts that J(r, v) = rd−1
√

det
(
Atr,vAr,v

)
. Note that from Proposition 6.1 in

[NSW08] together with the Gauss equation [dC92, p. 130], the sectional curvatures in M
are bounded by |κ| ≤ 2/τ2

min. Therefore, the Rauch theorem [DVW15, Lemma 5] states
that (

1− r2

3τ2
min

)
‖w‖ ≤ ‖Ar,vw‖ ≤

(
1 + r2

τ2
min

)
‖w‖ ,

for all w ∈ TxM . As a consequence,

2−d ≤
(

1− r2

3τ2
min

)d
≤
√

det
(
Atr,vAr,v

)
≤
(

1 + r2

τ2
min

)d
≤ 2d.

Since V ol(BM (x, r)) =
∫ r
s=0

∫
v∈Sd−1

J(s, v)dsdv, where Sd−1 denotes the unit (d − 1)-
dimensional sphere, the bounds on the volume easily follows.
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B.3 Some Technical Properties of the Statistical Model

B.3.1 Covering and Mass

Lemma B.11. Let Q0 ∈ UM (fmin, fmax). Then for all p ∈M and r ≤ τmin/4,

Q0
(
B(p, r)

)
≥ adfminrd,

where ad > 0. As a consequence, for n large enough and for all Q ∈ P2
τmin,σ (fmin, fmax),

with probability larger that 1−
(

1
n

)2/d
,

dH(M,Xn) ≤ Cd,fmin
( logn

n

)1/d
+ σ.

Similarly, for n large enough and for all P ∈ P2
τmin,β

(fmin, fmax), with probability larger

that 1−
(

1
n

)2/d
,

dH(M,Xn ∩M) ≤ Cd,fmin
( logn
βn

)1/d
.

Proof of Lemma B.11. The first statement is a direct corollary of Lemma III.23. Let us
now prove the second statement. By definition, sample Xi ∈ Xn, that has distribution
Q ∈ P2

τmin,σ (fmin, fmax) can be written as Xi = Yi + Zi, with Yi having distribution Q0 ∈
P2
τmin (fmin, fmax), and ‖Zi‖ ≤ σ. From Lemma III.23 again, writing Yn = {Y1, . . . , Yn},

for r ≤ τmin/8 we obtain

PQ0 (dH(M,Yn) > r) ≤ 4d

ard
exp

(
−n a2d r

d
)
.

The statement then follows using that dH(Xn,Yn) ≤ σ, and setting r = Cd,fmin

(
logn
n

)1/d

with Cdd,fmin
a

2d+1 ≥ 1 + 2/d.
To prove the last point, notice that for all k = 0, . . . , n, conditionally on the event

{|Xn ∩M | = k}, Xn ∩M has the distribution of a k-sample of Q0. Therefore,

PP (dH(M,Xn ∩M) > r| |Xn ∩M | = k) = PQ0 (dH(M,Xk ∩M) > r)

≤ 4d

ard
exp

(
−k a2d r

d
)
.

Hence,

PP (dH(M,Xn ∩M) > r) =
n∑
k=0

PP (dH(M,Xn ∩M) > r| |Xn ∩M | = k)PP (|Xn ∩M | = k)

≤
n∑
k=0

4d

ard
exp

(
−k a2d r

d
)(

n

k

)
βk(1− β)n−k

= 4d

ard

[
1− β

(
1− exp

(
− a

2d r
d
))]n

≤ 4d

ard
exp

[
−nβ

(
1− exp

(
− a

2d r
d
))]

≤ 4d

ard
exp

[
−nβ a

2d+1 r
d
]
,

whenever r ≤ τmin/8 and ard ≤ 2d. Taking r = C ′d,fmin

(
logn
βn

)1/d
with C ′dd,fmin

βa
2d+1 ≥ 1+2/d

yields the result.

69



APPENDIX B. PROOFS FOR CHAPTER IV

Now we allow for some outliers. We consider a random variable X with distribution P ,
that can be written as X = V (Y + Z) + (1− V )X ′′, with ‖Z‖ ≤ sh, s ≤ 1/4, such that
P(V = 1) = β and V is independent from (Y,Z,X ′′), Y has law Q in P2

τmin (fmin, fmax),
and X ′′ has uniform distribution on B(0,K0) (recall that K0 is defined below Lemma IV.2).
Note that s = 0 corresponds to the clutter noise case, whereas β = 1 corresponds to the
additive noise case.

For a fixed point x, let p (x, h) denote P (B (x, h)). We have P (V Y ∈ B (x, (1− s)h)) ≤
P (V X ∈ B (x, h)) ≤ P (V Y ∈ B (x, 2h)). Hence we may write

βq (x, 3/4h) + (1− β) q′ (x, h) ≤ p (x, h) ≤ βq (x, 2h) + (1− β) q′ (x, h) ,

where q (x, h) = Q (B (x, h)), and q′ (x, h) = (h/K0)D. Bounds on the quantities above are
to be found in the following lemma.

Lemma B.12. There exists h+ (τmin, β, fmin, fmax, d) ≤ τmin/
√

12d such that, if h ≤ h+,
for every x such that d (x,M) ≤ h, we have

- B (x, 2h) ∩M ⊂ B (πM (x) , 4h) ∩M,

- q (x, 2h) ≤ Cdfmaxhd.

Moreover, if d (x,M) ≤ h/
√

2, we have

- B (πM (x) , h/8) ∩M ⊂ B (x, 3h/4),

- cdfminhd ≤ q (x, 3h/4),

- p (x, h) ≤ 2βq (x, 2h).

Proof of Lemma B.12. Set h1 (τmin) = τmin/ (16α), and let x be such that d (x,M) ≤ h,
and h ≤ h1. According to Proposition B.4, B (x, 2h)∩M ⊂ B

(
πM (x) , r+

2h

)
∩M , with r+

2h =√
(1 + 2∆/τmin)r2h ≤ 2r2h ≤ 4h. According to Proposition B.9, if y ∈ B (πM (x) , 4h)∩M ,

then dM (πM (x) , y) ≤ 4αh ≤ τmin/4. Proposition B.10 then yields q (x, 2h) ≤ Cdfmaxhd.
Now if d (x,M) ≤ h/

√
2, B

(
πM (x) , r−3h/4

)
∩M ⊂ B (x, 3h/4)∩M according to Propo-

sition B.4, with r−3h/4 =
√

(1−∆/τmin)r3h/4 ≥ r3h/4/2 ≥ h/8. Since BM (πM (x) , h/8) ⊂
B (πM (x) , h/8)∩M , a direct application of Proposition B.10 entails cdfminhd ≤ q (x, 3h/4).

Applying Proposition B.10 again, there exists h2 (fmin, d,D, β, τmin) such that if h ≤
h1 ∧ h2, then for any x such that d (x,M) ≤ h/

√
2 we have (1− β) q′ (x, h) ≤ βcd,fminh

d,
along with q (x, 2h) ≥ q (x, 3h/4) ≥ cd,fminh

d. We deduce that p (x, h) ≤ 2βq (x, 2h).
Taking h+ = h1 ∧ h2 ∧ τmin/

√
12d leads to the result.

B.3.2 Local Covariance Matrices

In this section we describe the shape of the local covariance matrices involved in tangent
space estimation. Without loss of generality, the analysis will be conducted for Σ̂1 (at sample
point X1), abbreviated as Σ̂. We further assume that d(X1,M) ≤ h/

√
2, πM (X1) = 0, and

that T0M is spanned by the d first vectors of the canonical basis of RD.
The two models (additive noise and clutter noise) will be treated jointly, by considering

a random variable X of the form

X = V (Y + Z) + (1− V )X ′′,

where P(V = 1) = β and V is independent from (Y,Z,X ′′), Y has distribution in
P2
τmin,σ (fmin, fmax), ‖Z‖ ≤ σ, and X ′′ has uniform law on B(0,K0) (recall that K0

70



APPENDIX B. PROOFS FOR CHAPTER IV

is defined above Definition IV.4). For short we denote by s the quantity σ/h, and recall
that we take s ≤ 1/4, along with h ≤ h+ (defined in Lemma B.12).

Let U(Xi, h), i = 2, . . . , n, denote 1B(X1,h)(Xi), let Yi ∈M and Zi such thatXi = Yi+Zi,
with ‖Zi‖ ≤ sh, and let V2, . . . Vn denote random variables such that Vi = 1 if Xi is drawn
from the signal distribution (see page 47). It is immediate that the (U(Xi, h), Vi)’s are
independent and identically distributed, with distribution (U(X,h), V ).

With a slight abuse of notation, we will denote by P and E conditional probability and
expectation with respect to X1. The following expectations will be of particular interest.

m(h) = E(XU(X,h)V )/E(V U(X,h)),
Σ(h) = E(X −m(h))>(X −m(h))t>U(X,h)V,

where for any x in RD x> and x⊥ denote respectively the projection of x onto T0M and
T0M

⊥.
The following lemma gives useful results on both m(h) and Σ(h), provided that X1 is

close enough to M .
Lemma B.13. If d(X1,M) ≤ h/

√
2, for h ≤ h+, then

Σ(h) =
(
A(h) 0

0 0

)
,

with
µmin(A(h)) ≥ βcd,fmin,fmaxhd+2.

Furthermore,

‖m>(h)‖ ≤ 2h,

‖m⊥(h)‖ ≤ 2h2

τmin
+ sh.

Proof of Lemma B.13. Let x = y + z be in B(X1, h), with y ∈ M and ‖z‖ ≤ sh. Since
s ≤ 1/4, ‖y‖ ≤ 2h. According to Proposition B.4 combined with Proposition B.9, we may
write, for h ≤ h+ and y in B(X1, 2h) ∩M ,

y = rv +R(r, v),

in local polar coordinates. Moreover, if y ∈ B(X1, (1 − s)h), then x ∈ B(X1, h). Then,
according to Proposition B.4, we have B(πM (X1), r−3h/4) ∩ M ⊂ B(X1, (1 − s)h) ∩ M .
Let u be a unit vector in T0M . Then 〈u, x−m>(h)〉2 = 〈u, rv +R(r, v) + z −m>(h)〉2 ≥
〈u, rv −m>(h)〉2 /2−3(R(r, v)+z)2 ≥ 〈u, rv −m>(h)〉2 /2−6r4/(4τ2

min)−6s2h2 according
to Proposition B.9. Hence we may write

〈Au, u〉 = β

∫
B(X1,h)∩M

〈u, rv +R(r, v)−m>(h)〉2 J(r, v)f(r, v)drdv

≥ βfmincd
∫ r−3h/4

r=0

∫
Sd−1

rd−1
[
〈u, rv −m>(h)〉2 /2− 3r4/(2τ2

min)− 6s2h2
]
drdv,

according to Proposition B.10 (bound on J(r, v)) and Proposition B.4 (the geodesic ball
BM (πM (X1), r−3h/4) is included in the Euclidean ball B(πM (X1), r−3h/4) ⊂ B(X1, (1− s)h)∩
M). Then∫ r−3h/4

r=0

∫
Sd−1

rd−1 〈u, rv −m>(h)〉2

2 drdv ≥
∫ r−3h/4

r=0

∫
Sd−1

rd−1 〈u, rv〉2

2 drdv

= σd−1
2d

∫ r−3h/4

r=0
rd+1dr =

σd−1(r−3h/4)d+2

2d(d+ 2) ,
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where σd−1 denotes the surface of the d− 1-dimensional unit sphere. On the other hand,

∫ r−3h/4

r=0

∫
Sd−1

3rd+3

2τ2
min

+ 6s2h2rd−1drdv = σd−1(r−3h/4)d+2

 3(r−3h/4)2

2(d+ 4)τ2
min

+ 6s2h2

d

 .
Since r−3h/4 ≤ h ≤ h+ ≤ τmin/

√
12d, we conclude that

〈Au, u〉 ≥ βcdfmin(r−3h/4)d+2 ≥ βcdfminhd+2,

since, for d(X1,M) ≤ h/
√

2 and h ≤ h+, r−3h/4 ≥ r3h/4/2 ≥ h/8, according to Proposition
B.4.

Now, since for any x = y + z ∈ B(X1, h), y ∈ M ∩ B(0, 2h) and ‖z‖ ≤ sh, we
have ‖y⊥‖ ≤ 2h2/τmin, according to Proposition B.3. Jensen’s inequality yields that
‖m(h)⊥‖ ≤ 2h2/τmin + sh and ‖m(h)>‖ ≤ ‖m(h)‖ ≤ 2h.

The following Lemma B.14 is devoted to quantify the deviations of empirical quantities
such as local covariance matrices, means and number of points within balls from their
deterministic counterparts. To this aim we define N0(h) and N1(h) as the number of points
drawn from respectively noise and signal in B(X1, h) ∩M , namely

N0(h) =
∑
i≥2

U(Xi, h)(1− Vi),

N1(h) =
∑
i≥2

U(Xi, h)Vi.

Lemma B.14. Recall that h0 =
(
κ logn
β(n−1)

)1/(d+1)
(as defined page 58), and h∞ = h

(d+1)/d
0 ,

for κ to be fixed later.
If h0 ≤ h+ and d(X1,M) ≤ h+/

√
2, then, with probability larger than 1− 4

(
1
n

)2/d+1
,

the following inequalities hold, for all h ≤ h0.

N0(h)
n−1 ≤ 2(1− β)q′(h) + 10(2+2/d) logn

n−1 ,
N1(h)
n−1 ≤ 2βq(2h) + 10(2+2/d) logn

n−1 .

Moreover, for all (h∞ ∨
√

2d(X1,M)) ≤ h ≤ h0, and n large enough,∥∥∥∥∥∥ 1
n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h)Vi − Σ(h)

∥∥∥∥∥∥
F

≤ Cd
fmax
fmin
√
κ
βq(2h)h2,

1
n− 1

∥∥∥∥∥∥
∑
i≥2

(Xi −m(h))>U(Xi, h)Vi

∥∥∥∥∥∥
F

≤ Cd
fmax
fmin
√
κ
βq(2h)h.

Proof of Lemma B.14. The first two inequalities are straightforward applications of Theo-
rem 5.1 in [BBL05]. The proofs of the two last results are detailed below. They are based
on Talagrand-Bousquet’s inequality (see, e.g., Theorem 2.3 in [Bou02]) combined with the
so-called peeling device.

Define h− = (h∞ ∨
√

2d(X1,M)), where we recall that in this analysis X1 is fixed, and
let fT,h denote the function

fT,h(x, v) =
〈
T, (x−m(h))>(x−m(h))t>U(x, h)v

〉
,
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for h− ≤ h ≤ h0, T a d × d matrix such that ‖T‖F = 1, x in RD, v in {0, 1}, and
〈T,B〉 = trace(T tA), for any square matrices T and A. Now we define the weighted
empirical process

Z = sup
T,h

∑
i≥2

fT,h(Xi, Vi)− EfT,h(X,V )
r(h) ,

with r(h) = βq(2h)h2, along with the constrained empirical processes

Z(u) = sup
T,h≤u

∑
i≥2

fT,h(Xi, Vi)− EfT,h(X,V ),

for h− ≤ u ≤ h0. Since ‖fT,h‖∞ ≤ supx∈M‖x−m(h)‖2U(x, h) ≤ 4h2, and

V ar(fT,h(X,V )) ≤ E
(
‖X −m(h)‖2U(X,h)V

)
≤ 16βh4P(V X ∈ B(X1, h)

≤ 16βh4P(V Y ∈ B(X1, 2h),

for s ≤ 1/4, a direct application of Theorem 2.3 in [Bou02] yields, with probability larger
than 1− e−x,

Z(u) ≤ 3EZ(u) +

√
32βq(2u)u4x

n− 1 + 20u2x

3(n− 1) .

To get a bound on EZ(u), we introduce some independent Rademacher random variables
σ2, . . . , σn, i.e. P(σj = 1) = P(σj = −1) = 1/2. With a slight abuse of notation,
expectations with respect to the (Xi, Vi)’s and σi’s, i = 2, . . . , n, will be denoted by E(X,V )
and Eσ in what follows. According to the symmetrization principle (see, e.g., Lemma 11.4
in [BLM13]), we have

(n− 1)EZ(u) ≤ 2E(X,V )Eσi sup
h≤u,T

∑
i≥2

〈
T, σiViU(Xi, h)((Xi −m(h))>(Xi −m(h))t>)

〉
≤ 2E(X,V )Eσ sup

h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)XiX

t
i , T

〉
+ 2E(X,V )Eσ sup

h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)Xim(h)t, T

〉
+ 2E(X,V )Eσ sup

h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)m(h)Xt

i , T
〉

+ 2E(X,V )Eσ sup
h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)m(h)m(h)t, T

〉
:= 2E(X,V )(E1 + E2 + E3 + E4).

For a fixed sequence (Xi, Vi), i = 2, . . . , n, we may write

E1 ≤ Eσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F

− Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F


+ sup
h≤u

Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F

:= E11 + E12.

Jensen’s inequality ensures that

E12 ≤ sup
h≤u

√√√√√Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiXt
i

∥∥∥∥∥∥
2

F

≤ 4u2
√
N1(u),
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hence
E(X,V )E12 ≤ 4u2

√
β(n− 1)q(2u).

For the term E11, note that, when (Xi, Vi)i=2,...,n is fixed,

sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F

− Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F


is in fact a supremum of at most N1(u) processes. According to the bounded difference
inequality (see, e.g., Theorem 6.2 of [BLM13]), each of these processes is subGaussian
with variance bounded by 16h4N1(u) (see Theorem 2.1 of [BLM13]). Hence a maximal
inequality for subGaussian random variables (see Section 2.5, p.31, of [BLM13]) ensures
that

E11 ≤ 4h2
√

2N1(u) log(N1(u)) ≤ 4h2
√

2N1(u) log(n− 1).

Hence E(X,V )E11 ≤ 4h2√2β(n− 1)q(2u) log(n− 1). E2 may also be decomposed as

E2 = Eσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

m(h)t
∥∥∥∥∥∥
F

≤ 2uEσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥
≤ 2u

Eσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥− Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥


+ sup
h≤u

Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥


:= 2u(E21 + E22).

Jensen’s inequality yields that E22 ≤ 2u
√
N1(u), and the same argument as for E11

(expectation of a supremum of n − 1 subGaussian processes with variance bounded by
4u2N1(u)) gives E22 ≤ 2u

√
2N1(u) log(n− 1). Hence

E(X,V )E2 ≤ 4u2
√
β(n− 1)q(2u)

(√
2 log(n− 1) + 1

)
.

Similarly, we may write

E(X,V )E3 ≤ 4u2
√
β(n− 1)q(u)

(√
2 log(n− 1) + 1

)
.

At last, we may decompose E4 as

E4 ≤ Eσ4u2 sup
h≤u

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣
≤ 4u2

Eσ sup
h≤u

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣− Eσ

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣
+ sup

h≤u
Eσ

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣


≤ 4u2
√
N1(u)

(√
2 log(n− 1) + 1

)
,
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using the same argument. Combining all these terms leads to

EZ(u) ≤ 32
√
βq(2u)√
n− 1

(√
2 log(n− 1) + 1

)
,

hence we get

P
(
Z(u) ≥ 192

√
2u2√βq(2u) log(n− 1)√

n− 1

(
1 + 1

48

√
x

log(n− 1)

)
+ 20u2x

n− 1

)
≤ e−x.

To derive a bound on the weighted process Z, we make use of the so-called peeling device
(see, e.g., Section 13.7, p.387, of [BLM13]). Set p = dlog(h0/h∞)e ≤ 1+log(h0/h∞), so that
e−ph0 ≤ h−. According to Lemma B.12, if Ij denotes the slice [e−jh0, e

−(j−1)h0]∩ [h−, h0],
then, for every h in Ij , we have

r(h) ≥ r(hj−1)cd
fmin
fmax

,

where cd depends only on the dimension, provided that h0 ≤ h+. Now we may write

P

Z ≥ 192fmax
√

2
fmincd

√
βq(2h−)(n− 1)

1 + 1
48

√
x+ log(p)
n− 1

+ 20fmax(x+ log(p))
(n− 1)βcdfminq(2h−)


≤

p∑
j=1

P
(

sup
T,h∈Ij

∑
i≥2 fT,h(Xi, Vi)− EfT,h(X,V )

r(h)

≥ 192fmax
√

2
fmincd

√
βq(2h−)(n− 1)

1 + 1
48

√
x+ log(p)
n− 1

+ 20fmax(x+ log(p))
(n− 1)fmincdβq(2h−)


≤

p∑
j=1

P

Z(hj−1) ≥ 192
√

2r(hj−1)√
βq(2h−)(n− 1)

1 + 1
48

√
x+ log(p)
n− 1

+ 20r(hj−1)(x+ log(p))
(n− 1)βq(2h−)

.
Since q(2hj−1) ≥ q(2h−), we deduce that

P

Z ≥ 192fmax
√

2
fmincd

√
βq(2h−)(n− 1)

1 + 1
48

√
x+ log(p)
n− 1

+ 20fmax(x+ log(p))
(n− 1)cdfminβq(2h−)


≤ pe−(x+log(p)) = e−x.

Now, according to Lemma B.12, βq(2h−) ≥ cdκ logn/(n − 1). On the other hand, p ≤
1 + log(h0/h∞) ≤ log(β(n − 1)/κ)/d ≤ logn/d, for κ ≥ 1. For n large enough, taking
x = (1 + 2/d) logn in the previous inequality, we get

P
(
Z ≥ Cd

fmax
fmin
√
κ

)
≤
( 1
n

)1+2/d
.

The last concentration inequality of Lemma B.14 may be derived the same way, considering
the functions

gT,h(x, v) = 〈(x−m(h))U(x, h)v, T 〉 ,

where T is an element of Rd satisfying ‖T‖ ≤ 1.

75



APPENDIX B. PROOFS FOR CHAPTER IV

B.3.3 Decluttering Rate

In this section we prove that, if the angle between tangent spaces is of order h, then we
can distinguish between outliers and signal at order h2. We recall that the slab S(x, T, h)
is the set of points y such that ‖πT (y − x)‖ ≤ k1h and ‖πT⊥(y − x)‖ ≤ k2h

2, k1 and k2
defined in Lemma IV.18, and where πT denotes the orthogonal projection onto T .

Lemma B.15. Recall that h0 =
(
κ logn
β(n−1)

)1/(d+1)
, and h∞ = h

(d+1)/d
0 . Let K be fixed, and

k1, k2 defined accordingly from Lemma IV.18. If h0 ≤ h+, for κ large enough (depending
on d, τmin and fmin) and n large enough, there exists a threshold t such that, for all
h∞ ≤ h ≤ h0, we have, with probability larger than 1− 3

(
1
n

)2/d+1
,

X1 ∈M
∠ (T, TX1M) ≤ Kh/τmin

}
⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| ≥ t(n− 1)hd,

d(X1,M) ≥ h2/τmin

∠
(
T, Tπ(X1)M

)
≤ Kh/τmin

}
⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| < t(n− 1)hd,

d(X1,M) ≥ h/
√

2 ⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| < t(n− 1)hd.

Proof of Lemma B.15. Suppose that d(X1,M) ≥ h/
√

2. Then, according to Lemma
IV.18, S(X1, T, h) ⊂ B(X1, h/2), with B(X1, h/2) ∩ M = ∅, hence Pn(S(X1, T, h)) ≤
Pn(B(X1, h/2)). Theorem 5.1 in [BBL05] yields that, for all h∞ ≤ h ≤ h0, with probability
larger than 1−

(
1
n

)2/d+1
,

Pn(B(X1, h/2)) ≤ 2P (B(X1, h/2)) + 4 (2/d+ 1) log(8n)
n− 1 .

Since log(n)/(n− 1) ≤ βhd/κ, we may write

Pn(S(X1, T, h)) ≤ 2Q′(B(X1, h/2)) + 4 (2/d+ 1) log(8n)
n− 1

≤ 2(1− β) hD

(2K0)D + 4 (2/d+ 1) log(8n)
n− 1

≤ (1− β)Cd,D,τmin,fminhd+1 + 4 (2/d+ 1) log(8n)
n− 1

≤ hd
(

(1− β)Cd,D,τmin,fminh+ Cdβ

κ

)
,

for n large enough so that h ≤ 1.
If h/

√
2 ≥ d(X1,M) ≥ h2/τmin and ∠

(
Tπ(X1)M,T

)
≤ Kh/τmin, then Lemma

IV.18 provides a big slab S′(x, Tπ(x)M,h) so that S(x, T, h) ⊂ S′(x, Tπ(x)M,h) and
S′(x, Tπ(x)M,h) ∩ M = ∅. Thus, Pn(S(x, T, h)) ≤ Pn(S′(x, Tπ(x)M,h)). An other ap-
plication of Theorem 5.1 in [BBL05] yields that, for all h∞ ≤ h ≤ h0, with probability
larger than 1−

(
1
n

)2/d+1
,

Pn(S′(x, Tπ(x)M,h)) ≤ 2P (S′(x, Tπ(x)M,h)) + 4 (2/d+ 1) log(8n)
n− 1 ,
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hence, denoting by ωr the volume of the r-dimensional unit ball, we get

Pn(S(X1, T, h)) ≤ 2Q′(B(X1, h/2)) + 4 (2/d+ 1) log(8n)
n− 1

≤ 2(1− β)ωdωD−d
KD

0 ωD
(k′1h)d(k′2h2)D−d + 4 (2/d+ 1) log(8n)

n− 1

≤ (1− β)Cd,D,fmin,τminhd+1 + 4 (2/d+ 1) log(8n)
n− 1

≤ hd
(

(1− β)Cd,D,τmin,fminh+ Cdβ

κ

)
,

when n is large enough.
Now, ifX1 ∈M and ∠

(
Tπ(X1)M,T

)
≤ Kh/τmin, Lemma IV.18 entails that B(X1, k3h)∩

M ⊂ S(X1, T, h), hence Pn(S(X1, T, h)) ≥ Pn(B(X1, k3h)∩M). A last application of The-
orem 5.1 in [BBL05] yields that, for all h∞ ≤ h ≤ h0, with probability larger than
1−

(
1
n

)2/d+1
,

Pn(B(X1, k3h) ∩M) ≥ 1
2P (B(X1, k3h))− 2 (2/d+ 1) log(8n)

n− 1 .

Thus we deduce that

Pn(S(X1, T, h)) ≥ β

2Q(B(X1, k3h))− 2 (2/d+ 1) log(8n)
n− 1 ≥ β

2 q(k3h)− Cd
βhd

κ

≥ hd
(
βcd,fmin,τmin − Cd

β

κ

)
,

according to Lemma B.12 (since k3 ≤ 1). Choosing κ large enough (depending on d, τmin
and fmin) and then n large enough leads to the result.

B.4 Matrix Decomposition and Principal Angles
In this section we expose a standard matrix perturbation result, adapted to our framework.
For real symmetric matrices, we let µi(·) denote their i-th largest eigenvalue and µmin(·)
the smallest one.

Theorem B.16 (Sin θ theorem [DK70], this version from Lemma 19 in [ACLZ17]). Let
O ∈ RD×D, B ∈ Rd×d be positive semi-definite symmetric matrices such that

O =
(
B 0
0 0

)
+ E.

Let T0 (resp. T ) be the vector space spanned by the first d vectors of the canonical basis
(resp. by the first d eigenvectors of O). Then

∠ (T0, T ) ≤
√

2‖E‖op
µmin(B) .

B.5 Local PCA for Tangent Space Estimation and Declut-
tering

This section is dedicated to the proofs of Section IV.5. We begin with the case of additive
noise (and no outliers), that is Proposition IV.15.
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B.5.1 Proof of Proposition IV.15

Without loss of generality, the local PCA analysis will be conducted at base point X1, the
results on the whole sample then follow from a standard union bound. For convenience, we
assume that πM (X1) = 0 and that T0M is spanned by the d first vectors of the canonical
basis of RD. We recall that Xi = Yi + Zi, with Yi ∈ M and ‖Zi‖ ≤ sh, for s ≤ 1/4. In
particular, ‖X1‖ ≤ ‖Z1‖ ≤ sh ≤ h/4.

We adopt the following notation for the local covariance matrix based on the whole
sample Xn.

Σ̂(h) = 1
n−1

∑
j≥2(Xj − X̄(h))(Xj − X̄(h))tU(Xi, h),

X̄(h) = 1
N(h)

∑
i≥2XiU(Xi, h),

N(h) =
∑
i≥2 U(Xi, h).

Note that the tangent space estimator TSE(Xn, h)1 is the space spanned by the first d
eigenvectors of Σ̂(h). From now on we suppose that all the inequalities of Lemma B.14 are
satisfied, defining then a global event of probability larger than 1− 4

(
1
n

)2/d+1
.

We consider h = h0 ≤ h+, so that Lemma B.12 and B.13 hold. We may then decompose
the local covariance matrix as follows.

Σ̂(h) = 1
n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)− N(h)
n− 1(X̄(h)−m(h))(X̄(h)−m(h))t

:= Σ̂1 + Σ̂2. (B.17)

The first term may be written as

Σ̂1 = 1
n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)

= 1
n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h) +R1

= Σ(h) +R1 +R2,

where
Σ(h) =

(
A(h) 0

0 0

)
.

According to Lemma B.13 (with β = 1), µmin(A(h)) ≥ cdfminh
d+2. On the other hand,

using Proposition B.3 and Lemma B.13 we may write

(n− 1)‖R1‖F/N(h) ≤ 2 sup
y+z∈B(X1,h)

‖(y + z −m(h))>‖‖(y + z −m(h))⊥‖

+ sup
y+z∈B(X1,h)

‖(y + z −m(h))⊥‖2

≤ 2 sup
y+z∈B(X1,h)

‖(y + z −m(h))‖ (‖(y −m(h))⊥‖+ sh)

+ sup
y∈B(0,2h)∩M

(‖(y −m(h))⊥‖+ sh)2

≤ 8h
(

4h2

τmin
+ 2sh

)
+
(

4h2

τmin
+ 2sh

)2

≤ 34h3

τmin
+ 20sh2,
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since h ≤ h+ and s ≤ 1/4. In addition, we can write

R2 =
(
R2 0
0 0

)
,

with ‖R2‖F ≤ Cd fmax
fmin

√
κ
q(2h)h2 according to Lemma B.14 (with β = 1).

In turn, the term Σ̂2 may be decomposed as

Σ̂2 =
(
R4 0
0 0

)
+R3,

with

‖R4‖F ≤
N(h)
n− 1‖(X̄(h)−m(h))>‖‖(X̄(h)−m(h))‖

≤ 2h
n− 1

∥∥∥∥∥∥
∑
i≥2

(Xi −m(h))>U(Xi, h)

∥∥∥∥∥∥
≤ 2Cdq(2h)h2fmax

fmin
√
κ

,

according to Lemma B.14. A similar bound on R3 may be derived,

‖R3‖F ≤
N(h)
n− 1‖(X̄(h)−m(h))⊥‖(X̄(h)−m(h))‖

≤ 4h
n− 1

∥∥∥∥∥∥
∑
i≥2

(Yi + Zi −m(h))⊥U(Xi, h)

∥∥∥∥∥∥
≤ 8hN(h)

(
2h2/τmin + sh

)
n− 1

≤ N(h)h2

n− 1

( 16h
τmin

+ 8s
)
,

according to Proposition B.3 and Lemma B.13. If we choose h =
(
κ logn
n−1

)1/d
, for κ large

enough (depending on d, fmin and fmax), we have

‖R2 +R4‖F
µmin(A(h)) ≤ 1/4.

Now, provided that κ ≥ 1, according to Lemma B.14, we may write

‖R1 +R3‖F
µmin(A(h)) ≤ Kfmax,fmin,d (h/τmin + s) ,

which, for n large enough, leads to

∠(T0M, T̂X1M) ≤
√

2Kfmax,fmin,d (h/τmin + s) ,

according to Proposition B.16.
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B.5.2 Proof of Proposition IV.19

The proof of Proposition IV.19 follows the same path as the derivation of Proposition IV.15,
with some technical difficulties due to the outliers (β < 1). We emphasize that in this
framework, there is no additive noise (σ = 0). As in the previous section, the analysis will
be conducted for X1 ∈ X(k), for some fixed k ≥ −1, k = −1 referring to the initialization
step. Results on the whole sample then follow from a standard union bound. As before, we
assume that πM (X1) = 0 and that T0M is spanned by the d first vectors of the canonical
basis of RD. In what follows, denote by t̂ the map from RD to {0, 1} such that t̂(Xi) = 1
if and only if Xi is in X(k).

We adopt the following notation for the local covariance matrix based on X(k) (after
k + 1 iterations of the outlier filtering procedure).

Σ̂(k)(h) = 1
n−1

∑
j≥2(Xj − X̄(h)(k))(Xj − X̄(h)(k))tU(Xi, h)t̂(Xi),

X̄(k)(h) = 1
N(k)(h)

∑
i≥2XiU(Xi, h)t̂(Xi),

N (k)(h) =
∑
i≥2 U(Xi, h)t̂(Xi).

Also recall that we define N0(h) and N1(h) as the number of points drawn from respectively
clutter and signal in B(X1, h) ∩M (based on the whole sample Xn). At last, we suppose
that all the inequalities of Lemma B.14 and Lemma B.15 are satisfied, defining then a
global event of probability larger than 1− 7

(
1
n

)2/d+1
.

We recall that we consider h∞ ≤ h ≤ hk, k ≥ −1 (with h−1 = h0), and X1 in X(k) such
that d(X1,M) ≤ h/

√
2. We may then decompose the local covariance matrix as

Σ̂(k)(h) = 1
n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)t̂(Xi)

− N (k)(h)
n− 1 (X̄(k)(h)−m(h))(X̄(h)(k) −m(h))t

= 1
n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)t̂(Xi)Vi(Xi)

+ 1
n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)(1− Vi)t̂(Xi)

− N (k)(h)
n− 1 (X̄(h)(k) −m(h))(X̄(h)(k) −m(h))t,

:= Σ̂(k)
1 + Σ̂(k)

2 + Σ̂(k)
3 . (B.18)

The proof of Proposition IV.19 will follow by induction.
Initialization step (k = −1):

In this case X(k) = Xn, h = h0, d(X1,M) ≤ h0/
√

2, and t̂ is always equal to 1. Then
the first term Σ̂(k)

1 of (B.18) may be written as
1

n− 1
∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)Vi

= 1
n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h)Vi +R1

= Σ(h) +R1 +R2,

where
Σ(h) =

(
A(h) 0

0 0

)
.
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According to Lemma B.13, µmin(A(h)) ≥ cdfminβhd+2, and ‖R1‖F ≤ 34 N1(h)h3

τmin(n−1) according
to Proposition B.3. Moreover, we can write

R2 =
(
R2 0
0 0

)
,

with ‖R2‖F ≤ Cd fmax
fmin

√
κ
βq(2h)h2 according to Lemma B.14.

Term Σ̂(k)
2 in inequality (B.18) may be bounded by

‖Σ̂(k)
2 ‖F ≤

16h2N0(h)
n− 1 .

In turn, term Σ̂(k)
3 may be decomposed as

N (k)(h)
n− 1 (X̄(h)(k) −m(h))(X̄(h)(k) −m(h))t =

(
R6 0
0 0

)
+R5,

with

‖R6‖F ≤
N(h)(k)

n− 1 ‖(X̄(h)(k) −m(h))>‖‖(X̄(h)(k) −m(h))‖

≤ 4h
n− 1

‖∑
i≥2

(Xi −m(h))>U(Xi, h)Vi‖+ ‖
∑
i≥2

(Xi −m(h))>U(Xi, h)(1− Vi)‖


≤ 4Cdβq(2h)h2fmax

fmin
√
κ

+ 16h2N0(h)
n− 1 ,

according to Lemma B.14. We may also write

‖R5‖F ≤
N(h)(k)

n− 1 ‖(X̄(h)(k) −m(h))⊥‖‖(X̄(h)(k) −m(h))‖

≤ 4h
n− 1

‖∑
i≥2

(Xi −m(h))⊥U(Xi, h)Vi‖+ ‖
∑
i≥2

(Xi −m(h))⊥U(Xi, h)(1− Vi)‖


≤ 16N1(h)h3

(n− 1)τmin
+ 16N0(h)h2

(n− 1) ,

according to Proposition B.3 and Lemma B.13. As in the additive noise case (see proof of
Proposition IV.15), provided that κ is large enough (depending on d, fmin, and fmax), we
have

‖R2 +R6‖F
µmin(A(h)) ≤ 1/4.

Since (n− 1)hd0 = κ logn
βh , if we ask κ ≥ τmin, then for n large enough we eventually get

‖Σ̂(k)
2 +R1 +R5‖F
µmin(A(h)) ≤ Kd,fmin,fmax,β

h0
τmin

,

according to Lemma B.14. Then, Proposition B.16 can be applied to obtain

∠(TSE(X(−1), h0)1, Tπ(X1)M) ≤
√

2K(0)
d,fmin,fmax,β

h0/τmin.

According to Lemma B.15, we may choose κ large enough (with respect to K =
√

2K(0),
d, fmin and τmin) and then a threshold t so that, if X1 ∈ M , then X1 ∈ X(0), and if
d(X1,M) ≥ h2

0/τmin, then X1 /∈ X(0).
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Iteration step Now we assume that k ≥ 0, and that d(Xi,M) ≥ h2
k/τmin implies t̂(Xi) = 0,

with hk =
(
κ logn
β(n−1)

)γk , γk being between 1/(d+1) and 1/d. Let h∞ ≤ h ≤ hk, and suppose

that d(X1,M) ≤ hk/
√

2. As in the initialization step, Σ̂(k)
1 may be written as(

A(h) 0
0 0

)
+R1 +R2,

with µmin(A(h)) ≥ cdfminβhd+2, ‖R1‖F ≤ 34 N1(h)h3

τmin(n−1) , and ‖R2‖F ≤ Cd fmax
fmin

√
κ
βq(2h)h2.

We can decompose Σ̂2 as

1
n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)(1− Vi)t̂(Xi)

= 1
n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h)(1− Vi)t̂(Xi) +R3

=
(
R4 0
0 0

)
+R3,

with ‖R4‖F ≤ 16N0(h)h2

n−1 and ‖R3‖ ≤
128N0(h)hh2

k
(n−1)τmin , according to Proposition B.6, for n large

enough so that h2
0/τmin ≤ h∞. Term Σ̂(k)

3 may also be written as

N(h)(k)

n− 1 (X̄(h)(k) −m(h))(X̄(h)(k) −m(h))t =
(
R6 0
0 0

)
+R5,

with

‖R6‖F ≤
N(h)(k)

n− 1 ‖(X̄(h)(k) −m(h))>‖‖(X̄(h)(k) −m(h))‖

≤ 4h
n− 1

‖∑
i≥2

(Xi −m(h))>U(Xi, h)Vi‖+ ‖
∑
i≥2

(Xi −m(h))>U(Xi, h)(1− Vi)t̂(Xi)‖


≤ 4Cdβq(2h)h2fmax

fmin
√
κ

+ 16h2N0(h)
(n− 1) ,

according to Lemma B.14. We may also write

‖R5‖F ≤
N(h)(k)

n− 1 ‖(X̄(h)(k) −m(h))⊥‖‖(X̄(h)(k) −m(h))‖

≤ 4h
n− 1

‖∑
i≥2

(Xi −m(h))⊥U(Xi, h)Vi‖+ ‖
∑
i≥2

(Xi −m(h))⊥U(Xi, h)(1− Vi)t̂(Xi)‖


≤ 16N1(h)h3

(n− 1)τmin
+ 32N0(h)hh2

k

τmin(n− 1) ,

according to Proposition B.3, Proposition B.6 and Lemma B.13. As done before, we may
choose κ large enough (depending on d, fmin and fmax, but not on k) such that

‖R2 +R4 +R6‖F
µmin(A(h)) ≤ 1/4.
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Now choose h = hk+1 =
(
κ logn
β(n−1)

)(2γk+1)/(d+2)
, with κ ≥ 1. This choice is made to optimize

residual terms of the form h/τmin+h2
kN0(h)/h coming from ‖R1 +R3 +R5‖F/µmin(A(hk+1)).

Then we get, according to Lemma B.14,

‖R1 +R3 +R5‖F
µmin(A(hk+1)) ≤ Cd

fmaxhk+1
τminfmin

+ C ′d
βτminfmin

(
κ

logn
β(n− 1)

)γk+1+2γk−(2γk+1)+1
(B.19)

≤ Kd,fmin,fmax,β
hk+1
τmin

,

where again, Kd,fmin,fmax,β does not depend on k. At last, we may apply Proposition B.16
to get

∠(TSE(X(k), hk+1)1, Tπ(X1)M) ≤
√

2Kd,fmin,fmax,βhk+1/τmin

≤
√

2
(
Kd,fmin,fmax,β ∨K

(0)
d,fmin,fmax,β

)
hk+1/τmin

:= Cd,β,fmax,fminhk+1/τmin.

Then, according to Lemma B.15, we may choose κ large enough (not depending on k)
and t (not depending on k either) so that if X1 ∈M , then X1 ∈ X(k+1), and if d(X1,M) ≥
h2
k/τmin, then X1 /∈ X(k+1). Proposition IV.19 then follows from a straightforward union

bound on the sample {X1, . . . , Xn}.

B.5.3 Proof of Proposition IV.22

In this case, we have d(Xj ,M) ≤ h2
∞/τmin, for every Xj in X(k̂). The proof of Proposition

IV.22 follows from the same calculation as in the proof of Proposition IV.19, replacing
h2
k/τmin by its upper bound h2

∞/τmin and taking hk+1 = h∞ in the iteration step.

B.6 Proof of the Main Reconstruction Results
We now prove main results Theorem IV.7 (additive noise model), and Theorems IV.8 and
IV.9 (clutter noise model).

B.6.1 Additive Noise Model

Proof of Corollary IV.16. LetQ ∈ P2
τmin,σ (fmin, fmax). Write ε = cd,fmin,fmax(h∨τminσ/h)

for cd,fmin,fmax large enough, an consider the event A defined by

A =
{

max
Xj∈Xn

∠(TπM (Xj)M, T̂j(h)) ≤ Cd,fmin,fmax
(

h

τmin
+ σ

h

)}
∩
{

sup
x∈M

d(x,Xn) ≤ σ
}

∩
{

sup
Xj∈Xn

d(Xj ,M) ≤ Cd,fmin
( logn

n

)1/d
}
.
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Then from Proposition IV.15 and Lemma B.11, PQ(A) ≥ 1 − 5
(

1
n

)2/d
, and from the

definition of ε and the construction of Yn, for n large enough,

A ⊂
{

max
Xj∈Xn

∠(TπM (Xj)M, T̂j(h)) ≤ ε

2280τmin

}
∩
{

sup
x∈M

d(x,Xn) ≤ ε
}

∩
{

sup
Xj∈Xn

d(Xj ,M) ≤ ε2

1140τmin

}

⊂
{

max
Xj∈Yn

∠(TπM (Xj)M, T̂j(h)) ≤ ε

2280τmin

}
∩
{

sup
x∈M

d(x,Yn) ≤ 2ε
}

∩ {Yn is ε-sparse} ∩
{

sup
Xj∈Yn

d(Xj ,M) ≤ ε2

1140τmin

}
,

which yields the result.

Proof of Theorem IV.7. Following the above notation, we observe that on the event A,
Theorem IV.14 holds for ε = cd,fmin,fmax(h ∨ τminσ/h), θ = ε/(1140τmin) (where we used
that θ ≤ 2 sin θ) and η = ε2/(1140τmin) with high probability, so that the first part of
Theorem IV.7 is proved. Furthermore, for n large enough,

EQn
[
dH
(
M, M̂TDC

)]
= EQ

[
dH
(
M, M̂TDC

)
1A

]
+ EQ

[
dH
(
M,M̂TDC

)
1Ac

]
≤ Cd

ε2

τmin
+ (1− PQ(A)) (diam(M) + σ)

≤ C ′d,fmin,fmax,τminε
2,

where for the last line we used the diameter bound of Lemma IV.2.

B.6.2 Clutter Noise Model

Proof of Corollary IV.20. Let P ∈ P2
τmin,β

(fmin, fmax). For n large enough, write ε =
cd,fminfmaxhkδ for cd,fminfmax large enough, and consider the event

Aδ =
{

max
Xj∈X(kδ)

∠(TπM (Xj)M, T̂ δj ) ≤ Cd,fmin,fmax
hkδ
τmin

}
∩
{

sup
x∈M

d(x,X(kδ)) ≤
h2
kδ

τmin

}

∩

 sup
Xj∈X(kδ)

d(Xj ,M) ≤ Cd,fmin
( logn

n

)1/d
 .

From Proposition IV.19 and Lemma B.11, PP
(
Aδ
)
≥ 1− 8

(
1
n

)2/d
and from the definition

of ε and the construction of Yδn, for n large enough,
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Aδ ⊂
{

max
Xj∈X(kδ)

∠(TπM (Xj)M, T̂ δj ) ≤ ε

2280τmin

}
∩
{

sup
x∈M

d(x,X(kδ)) ≤ ε
}

∩

 sup
Xj∈X(kδ)

d(Xj ,M) ≤ ε2

1140τmin


⊂
{

max
Xj∈Yδn

∠(TπM (Xj)M, T̂ δj ) ≤ ε

2280τmin

}
∩
{

sup
x∈M

d(x,Yδn) ≤ 2ε
}

∩ {Yn is ε-sparse} ∩
{

sup
Xj∈Yδn

d(Xj ,M) ≤ ε2

1140τmin

}
,

which yields the result.

Proof of Theorem IV.8. Following the above notation, we observe that on the event Aδ,
Theorem IV.14 holds for ε = cd,fminfmaxhkδ , θ = ε/(1140τmin) and η = ε2/(1140τmin), so
that the first part of Theorem IV.8 is proved. As a consequence, for n large enough,

EPn
[
dH
(
M,M̂TDCδ

)]
= EP

[
dH
(
M,M̂TDCδ

)
1Aδ

]
+ EP

[
dH
(
M,M̂TDCδ

)
1(Aδ)c

]
≤ Cd

ε2

τmin
+
(
1− PP

(
Aδ
))
× 2K0

≤ C ′d,fmin,fmax,τminε
2,

where for the second line we used the fact that M ∪ M̂TDCδ ⊂ B0, a ball of radius K0 =
K0(d, fmin, τmin).

Finally, Theorem IV.9 is obtained similarly using Proposition IV.22.
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Chapter V

Approximation and Geometry of
the Reach

Abstract

As illustrated in Chapter IV, various problems in manifold estimation make use of the
reach, denoted by τM , which is a measure of the regularity of the submanifold. This chapter
is the first investigation into the problem of how to estimate the reach. First, we study the
geometry of the reach through an approximation perspective. We derive new geometric
results on the reach for submanifolds without boundary. An estimator τ̂ of τM is proposed
in a framework where tangent spaces are known, and bounds assessing its efficiency are
derived. In the case of i.i.d. random point cloud Xn, τ̂(Xn) is showed to achieve uniform
expected loss bounds over a C3-like model. Finally, we obtain upper and lower bounds on
the minimax rate for estimating the reach.
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CHAPTER V. APPROXIMATION AND GEOMETRY OF THE REACH

V.1 Introduction
Manifold estimation has become an increasingly important problem in statistics and
machine learning. There is now a large literature on methods and theory for estimating
manifolds. See, for example, [KZ15, GPPVW12a, FMN16, BG14, NSW08, BNS06, GK06].
Estimating a manifold, or functionals of a manifold, requires regularity conditions. In
nonparametric function estimation, regularity conditions often take the form of smoothness
constraints. In manifold estimation problems, as illustrated in Chapter IV, a common
assumption is that the reach τM of the manifold M is bounded away from zero.

First introduced by Federer [Fed59], the reach τM of a set M ⊂ RD is the largest
number such that any point at distance less than τM from M has a unique nearest point on
M . If a set has its reach greater than τmin > 0, then one can roll freely a ball of radius τmin
around it [CFPL12]. The reach is affected by two factors: the curvature of the manifold
and the width of the narrowest bottleneck-like structure of M , which quantifies how close
M is from being self-intersecting.

Positive reach is the minimal regularity assumption on sets in geometric measure theory
and integral geometry [Fed69, Thä08]. Sets with positive reach exhibit a structure that
is close to being differential — the so-called tangent and normal cones. The value of the
reach itself quantifies the degree of regularity of a set, with larger values associated to
more regular sets. The positive reach assumption is routinely imposed in the statistical
analysis of geometric structures in order to ensure good statistical properties [CFPL12] and
to derive theoretical guarantees. For example, in manifold reconstruction, the reach helps
formalize minimax rates [GPPVW12a, KZ15]. The optimal manifold estimators of Chapter
IV implicitly use reach as a scale parameter in their construction. In homology inference
[NSW08, BRSW13], the reach drives the minimal sample size required to consistently
estimate topological invariants. The reach is used in [CFRC07] as a regularity parameter in
the estimation of the Minkowski boundary lengths and surface areas. The reach has been
explicitly used as a regularity parameter in geometric inference, such as in volume estimation
[APR16] and manifold clustering [ACLZ17]. The reach is also used as a scale parameter
in dimension reduction techniques such as vector diffusions maps [SW12]. Problems in
computational geometry such as manifold reconstruction also rely on assumptions on the
reach [BG14].

In this chapter we study the problem of estimating reach. To do so, we first provide
new geometric results on the reach. We also give the first bounds on the minimax rate for
estimating reach.

There are very few papers on this problem. When the embedding dimension is 3, the
estimation of the local feature size (a localized version of the reach) was tackled in a
deterministic way in [DS06]. To some extent, the estimation of the medial axis (the set
of points that have strictly more than one nearest point on M) and its generalizations
[CLPL14, ABE09] can be viewed as an indirect way to estimate the reach. A test procedure
designed to validate whether data actually comes from a smooth manifold satisfying a
condition on the reach was developed in [FMN16]. The authors derived a consistent test
procedure, but the results do not permit any inference bound on the reach.

Outline

In Section V.2 we provide some differential geometric background and define the statistical
problem at hand. New geometric properties of the reach are derived in Section V.3, and
their consequences for its inference follow Section V.4 in a setting where tangent spaces are
known. We study minimax rates in Section V.5. An extension to a model where tangent
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spaces are unknown is discussed Section V.6, and we conclude with some open questions in
Section V.7.

V.2 Framework

V.2.1 Notation

In what follows, D ≥ 2 and RD is endowed with the Euclidean scalar product 〈·, ·〉 and
the associated norm ‖·‖. The associated closed ball of radius r and center x is denoted by
B(x, r). We will consider compact connected submanifolds M of RD of fixed dimension
1 ≤ d < D and without boundary [dC92]. For every point p in M , the tangent space
of M at p is denoted by TpM . It is the d-dimensional vector subspace of RD composed
of the directions locally spanned by M at p. Besides the Euclidean structure given by
RD ⊃ M , a submanifold is endowed with an intrinsic metric structure induced by the
ambient Euclidean one, called the geodesic distance. Given a smooth path c : [a, b]→M ,
the length of c is defined as Length(c) =

∫ b
a ‖c′(t)‖ dt. One can show [dC92] that there

exists a path γ of minimal length joining p and q. Such an arc is called geodesic, and the
geodesic distance between p and q is given by dM (p, q) = infc(0)=a,c(1)=b Length(c). We let
BM (p, s) denote the closed geodesic ball of center p ∈ M and of radius s. A geodesic γ
such that ‖γ′(t)‖ = 1 for all t is called arc-length parametrized. Unless stated otherwise,
a geodesic will always be considered in its arc-length version. For all p ∈M and all unit
vectors v ∈ TpM , we denote by γp,v the unique arc-length parametrized geodesic of M such
that γp,v(0) = p and γ′p,v(0) = v. The exponential map is defined as expp(vt) = γp,v(t).
Note that from the compactness of M , expp : TpM →M is defined globally on TpM . For
any two nonzero vectors u, v ∈ RD, we let ∠(u, v) = dSD−1( u

‖u‖ ,
v
‖v‖) be the angle between

u and v.

V.2.2 Reach

First introduced by Federer [Fed59], the reach regularity parameter is defined as follows.
Given a closed subset A ⊂ RD, the medial axis Med(A) of A is the subset of RD consisting
of the points that have at least two nearest neighbors on A. Namely, denoting by d(z,A) =
infp∈A ‖p− z‖ the distance function to A,

Med(A) =
{
z ∈ RD|∃p 6= q ∈ A, ‖p− z‖ = ‖q − z‖ = d(z,A)

}
. (V.1)

The reach of A is then defined as the minimal distance from A to Med(A).

Definition V.2. The reach of a closed subset A ⊂ RD is defined as

τA = inf
p∈A

d (p,Med(A)) = inf
z∈Med(A)

d (z,A) . (V.3)

Some authors refer to τ−1
A as the condition number [NSW08, SW12]. From the definition

of the medial axis in (V.1), the projection πA(x) = arg minp∈A ‖p− x‖ onto A is well defined
outside Med(A). The reach is the largest distance ρ ≥ 0 such that πA is well defined on the
ρ-offset {x ∈ RD|d(x,A) ≤ ρ}. Hence, the reach condition can be seen as a generalization
of convexity, since a set A ⊂ RD is convex if and only if τA =∞.

In the case of submanifolds, one can reformulate the definition of the reach in the
following manner.
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Theorem V.4 (Theorem 4.18 in [Fed59]). For all submanifolds M ⊂ RD,

τM = inf
q 6=p∈M

‖q − p‖2

2d(q − p, TpM) . (V.5)

M

TpM

d (q − p, TpM)
‖q − p‖‖q−p‖2

2d(q−p,TpM)

C

q

p

Figure V.1 – Geometric interpretation of quantities involved in (V.5).

This formulation has the advantage of involving only points on M and its tangents
spaces, while (V.3) uses the distance to the medial axisMed(M), which is a global quantity.
The formula (V.5) will be the starting point of the estimator proposed in this chapter (see
Section V.4).

The ratio appearing in (V.5) can be interpreted geometrically, as suggested in Figure
V.1. This ratio is the radius of an ambient ball, tangent to M at p and passing through q.
Hence, at a differential level, the reach gives a lower bound on the radii of curvature of
M . Equivalently, τ−1

M is an upper bound on the curvature of M . The following result was
already reproduce in Proposition III.20, though we state it here for sake of completeness.

Proposition V.6 (Proposition 6.1 in [NSW08]). Let M ⊂ RD be a submanifold, and γp,v
an arc-length parametrized geodesic of M . Then for all t,∥∥∥γ′′p,v(t)∥∥∥ ≤ 1/τM .

In analogy with function spaces, the class
{
M ⊂ RD|τM ≥ τmin > 0

}
can be interpreted

as the Hölder space C2(1/τmin). In addition, as illustrated in Figure V.2, the condition
τM ≥ τmin > 0 also prevents bottleneck structures where M is nearly self-intersecting.
This idea will be made rigorous in Section V.3.

V.2.3 Statistical Model and Loss

Let us now describe the regularity assumptions we will use throughout. To avoid arbitrarily
irregular shapes, we consider submanifolds M with their reach lower bounded by τmin > 0.
Since the parameter of interest τM is a C2-like quantity, it is natural — and actually

τM

M

Med(M)

Figure V.2 – A narrow bottleneck structure yields a small reach τM .
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necessary from Proposition V.13 — to require an extra degree of smoothness. For example,
by imposing an upper bound on the third order derivatives of geodesics.

Definition V.7. We let C(3)
τmin,L

denote the set of compact connected d-dimensional sub-
manifolds M ⊂ RD without boundary such that τM ≥ τmin, and for which every arc-length
parametrized geodesic γp,v is C3 and satisfies∥∥∥γ′′′p,v(0)

∥∥∥ ≤ L.
Note that since the third order condition

∥∥∥γ′′′p,v(0)
∥∥∥ ≤ L needs to hold for all (p, v),

we have in particular that
∥∥∥γ′′′p,v(t)∥∥∥ ≤ L for all t ∈ R. To our knowledge, such a C3

quantitative assumption on the geodesics has not been considered in the computational
geometry literature. Here, we chose the notation with “(3)” in parentheses to emphasize
the fact that the C3 assumption we do deals with geodesic trajectories, and not with
parametrizations of the manifold. Additionally, we will consider another C3 assumption in
Chapter VI with this notation.

Any submanifold M ⊂ RD of dimension d inherits a natural measure volM from the
d-dimensional Hausdorff measure Hd on RD [Fed69, p. 171]. We will consider distributions
P that have densities with respect to volM that are bounded away from zero.

Definition V.8. We let P(3)
τmin,L

(fmin) denote the set of distributions P having support
M ∈ C(3)

τmin,L
and with a Hausdorff density f = dP

dvolM
satisfying infx∈M f(x) ≥ fmin > 0 on

M .
Notice that, with the notation of Chapter IV, we have

P(3)
τmin,L=∞(fmin) = P2

τmin(fmin, fmax =∞).

That is, setting L =∞ boils down to consider a C2 model.
In order to focus on the geometric aspects of the reach, we will first consider the

case where tangent spaces are observed at all the sample points. We let Gd,D denote the
Grassmanian of dimension d of RD, that is the set of all d-dimensional vector subspaces of
RD.
Definition V.9. For any distribution P ∈ P(3)

τmin,L
(fmin) with support M we associate the

distribution P̃ of the random variable (X,TXM) on RD ×Gd,D, where X has distribution
P . We let P̃(3)

τmin,L
(fmin) denote the set of all such distributions.

Formally, one can write P̃ (dx dT ) = δTxM (dT )P (dx), where δ· denotes the Dirac
measure. An i.i.d. n-sample of P is of the form (X1, T1), . . . , (Xn, Tn) ∈ RD × Gd,D,
where X1, . . . , Xn is an i.i.d. n-sample of P and Ti = TXiM with M = Supp(P ). For a
distribution P with support M and associated distribution P̃ on RD ×Gd,D, we will write
τP̃ = τP = τM , with a slight abuse of notation.

Note that the model does not explicitly impose an upper bound on τM . Such an upper
bound would be redundant, since the lower bound on fmin does impose such an upper
bound, as stated in Proposition III.26, that we reproduce here for sake of completeness.
Proposition V.10 (Proposition III.26). Let M ⊂ RD be a connected closed d-dimensional
manifold, and let P be a probability distribution with support M . Assume that P has a
density f with respect to the Hausdorff measure on M such that infx∈M f(x) ≥ fmin > 0.
Then,

τdM ≤
Cd
fmin

,

for some constant Cd > 0 depending only on d.
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To simplify the statements and the proofs, we focus on a loss involving the condition
number. Namely, we measure the error with the loss

`(τ, τ ′) =
∣∣∣∣1τ − 1

τ ′

∣∣∣∣p , p ≥ 1. (V.11)

In other words, we will consider the estimation of the condition number τ−1
M instead of

the reach τM .

Remark V.12. For a distribution P ∈ P(3)
τmin,L

(fmin), Proposition V.10 asserts that τmin ≤
τP ≤ τmax := (Cd/fmin)1/d. Therefore, in an inference set-up, we can always restrict to
estimators τ̂ within the bounds τmin ≤ τ̂ ≤ τmax. Consequently,

1
τ2p
max

|τP − τ̂ |p ≤
∣∣∣∣ 1
τP
− 1
τ̂

∣∣∣∣p ≤ 1
τ2p
min

|τP − τ̂ |p ,

so that the estimation of the reach τP is equivalent to the estimation of the condition
number τ−1

P , up to constants.

With the statistical framework developed above, we can now see explicitly why the third
order condition ‖γ′′′‖ ≤ L < ∞ is necessary. Indeed, the next result demonstrates how
relaxing this constraint — i.e. setting L =∞ — renders the problem of reach estimation
intractable. Below, σd stands for the volume of the d-dimensional unit sphere Sd.

Proposition V.13. For all τmin > 0, provided that fmin ≥ 1
2d+1τdminσd

, for all n ≥ 1,

inf
τ̂n

sup
P̃∈P̃(3)

τmin,L=∞(fmin)
EP̃n

∣∣∣∣∣ 1
τP̃
− 1
τ̂n

∣∣∣∣∣
p

≥ cp
τpmin

> 0,

where the infimum is taken over the estimators τ̂n = τ̂n (X1, T1, . . . , Xn, Tn).

Thus, one cannot expect to derive uniformly good approximation bounds solely under
the condition τM ≥ τmin. This result is natural, since the problem at stake is to estimate
a differential quantity of order two. Therefore, some notion of uniform C3 regularity is
needed.

V.3 Geometry of the Reach
In this section, we give a precise geometric description of how the reach arises. In particular,
below we will show that the reach is determined either by a bottleneck structure or an
area of high curvature (Theorem V.17). These two cases are referred to as global reach
and local reach, respectively.

Consider the formulation (V.3) of the reach as the infimum of the distance between
M and its medial axis Med(M). By definition of the medial axis (V.1), if the infimum is
attained it corresponds to a point z0 in Med(M) at distance τM from M , which we call an
axis point. Since z0 belongs to the medial axis of M , it has at least two nearest neighbors
q1, q2 on M , which we call a reach attaining pair (see Figure V.3(b)). By definition, q1
and q2 belong to B(z0, τM ) and cannot be farther than 2τM from each other. We say that
(q1, q2) is a bottleneck of M in the extremal case ‖q2 − q1‖ = 2τM of antipodal points of
B(z0, τM ) (see Figure V.3(a)). Note that the ball B(z0, τM ) meets M only on its boundary
∂B(z0, τM ).

Definition V.14. Let M ⊂ RD be a submanifold with reach τM > 0.
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- A pair of points (q1, q2) in M is called reach attaining if there exists z0 ∈Med(M)
such that q1, q2 ∈ B(z0, τM ). We call z0 the axis point of (q1, q2), and ‖q1 − q2‖ ∈
(0, 2τM ] its size.

- A reach attaining pair (q1, q2) ∈M2 is said to be a bottleneck of M if its size is 2τM ,
that is ‖q1 − q2‖ = 2τM .

As stated in the following Lemma V.15, if a reach attaining pair is not a bottleneck —
that is ‖q1 − q2‖ < 2τM —, then M contains an arc of a circle of radius τM . In this sense,
this “semi-local” case — when ‖q1 − q2‖ can be arbitrarily small — is not generic. Though,
we do not exclude this case in the analysis.

Lemma V.15. Let M ⊂ RD be a compact submanifold with reach τM > 0. Assume that
M has a reach attaining pair (q1, q2) ∈M2 with size ‖q1 − q2‖ < 2τM . Let z0 ∈Med(M)
be their associated axis point, and write cz0(q1, q2) for the arc of the circle with center z0
and endpoints as q1 and q2.

Then cz0(q1, q2) ⊂M , and this arc (which has constant curvature 1/τM ) is the geodesic
joining q1 and q2.

In particular, in this “semi-local” situation, since τ−1
M is the norm of the second derivative

of a geodesic of M (the exhibited arc of the circle of radius τM ), the reach can be viewed
as arising from directional curvature.

Now consider the case where the infimum (V.3) is not attained. In this case, the
following Lemma V.16 asserts that τM is created by curvature.

Lemma V.16. Let M ⊂ RD be a compact submanifold with reach τM > 0. Assume that
for all z ∈Med(M), d(z,M) > τM . Then there exists q0 ∈M and a geodesic γ0 such that
γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.

To summarize, there are three distinct geometric instances in which the reach may be
realized:

- M has a bottleneck: by definition, τM originates from a structure having scale 2τM
(see Figure V.3(a)).

- M has a reach attaining pair but no bottleneck: then M contains an arc of a circle of
radius τM (Lemma V.15), so thatM actually contains a zone with radius of curvature
τM (see Figure V.3(b)).

- M does not have a reach attaining pair: then τM originates from curvature (Lemma
V.16), also yielding a point with radius of curvature τM . (see Figure V.3(c)).

From now on, we will treat the first case separately from the other two. We are now in
a position to state the main result of this section. It is a straightforward consequence of
Lemma V.15 and Lemma V.16.

Theorem V.17. Let M ⊂ RD be a compact submanifold with reach τM > 0. At least one
of the following two assertions holds.

- (Global case) M has a bottleneck (q1, q2) ∈ M2, that is, there exists z0 ∈ Med(M)
such that q1, q2 ∈ ∂B(z0, τM ) and ‖q1 − q2‖ = 2τM .

- (Local case) There exists q0 ∈ M and an arc-length parametrized geodesic γ0 such
that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.
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q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

(a) A bottleneck.

q1 q2

z0

τM

B(z0, τM )

‖q1 − q2‖ < 2τM

Med(M)M

(b) A reach attaining pair but no bottleneck.

q0

z0

τM

B(z0, τM )

Med(M)M

(c) No reach attaining pair.

Figure V.3 – The different ways for the reach to be attained.
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Theorem V.17 provides a description of the reach as arising from global and local
geometric structures that, to the best of our knowledge, is new. Such a distinction is
especially important in our problem. Indeed, the global and local cases may yield different
approximation properties and require different statistical analyses. However, since one does
not know a priori whether the reach arises from a global or a local structure, an estimator
of τM should be able to handle both cases simultaneously.

V.4 Reach Estimator and its Analysis
In this section, we propose an estimator τ̂(·) for the reach and demonstrate its properties
and rate of consistency under the loss (V.11). We rely on the formulation of the reach
given in (V.5) (see also Figure V.1), and define τ̂ as a plugin estimator as follows. Given a
point cloud X = {x1, . . . , xn} ⊂M , we let

τ̂(X ) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, TxM) . (V.18)

In particular, we have τ̂(M) = τM . Since the infimum (V.18) is taken over a set X smaller
than M , τ̂(X ) always overestimates τM . In fact, τ̂(X ) is decreasing in the number of
distinct points in X , a useful property that we formalize in the following result, whose
proof is immediate.

Corollary V.19. Let M be a submanifold with reach τM and Y ⊂ X ⊂M be two nested
subsets. Then τ̂(Y) ≥ τ̂(X ) ≥ τM .

We now derive the rate of consistency of τ̂ . We analyze the global case (Section
V.4.1) and the local case (Section V.4.2) separately. In both cases, we first determine the
performance of the estimator in a deterministic framework, and then derive an expected
loss bounds when τ̂ is applied to a random sample.

V.4.1 Global Case

Consider the global case, that is, M has a bottleneck structure (Theorem V.17). Then the
infimum (V.5) is achieved at a bottleneck pair (q1, q2) ∈M2. When X contains points that
are close to q1 and q2, one may expect that the infimum over the sample points should
also be close to (V.5): that is, that τ̂(X ) should be close to τM .

Proposition V.20. Let M ⊂ RD be a submanifold with reach τM > 0 that has a bottleneck
(q1, q2) ∈M2 (Definition V.14), and X ⊂M . If there exist x, y ∈ X with ‖q1 − x‖ < τM
and ‖q2 − y‖ < τM , then

0 ≤ 1
τM
− 1
τ̂(X ) ≤

1
τM
− 1
τ̂({x, y}) ≤

9
2τ2
M

max {dM (q1, x), dM (q2, y)} .

The error made by τ̂(X ) decreases linearly in the maximum of the distances to the
critical points q1 and q2. In other words, the radius of the tangent sphere in Figure V.1
grows at most linearly in t when we perturb by t < τM its basis point p = q1 and the point
q = q2 it passes through.

Based on the deterministic bound of Proposition V.20, we can now give an upper bound
on the expected loss under the model P(3)

τmin,L
(fmin). We recall that, here and in what

follows, Xn = {X1, . . . , Xn} is an i.i.d. sample with common distribution P .
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Proposition V.21. Let P ∈ P(3)
τmin,L

(fmin) and M = Supp(P ). Assume that M has a
bottleneck (q1, q2) ∈M2 (see Definition V.14). Then,

EPn
[∣∣∣∣ 1
τM
− 1
τ̂(Xn)

∣∣∣∣p] ≤ Cp,d,τM ,fminn
− p
d ,

where Cp,d,τmin,fmin depends only on p,d,τM and fmin, and is a decreasing function of τM .

Let us emphasize the fact that although not explicit in the notation, τ̂(Xn) depends on
the tangent spaces of M at the points of Xn. Proposition V.21 follows straightforwardly
from Proposition V.20 combined with the fact that with high probability, the balls centered
at the bottleneck points q1 and q2 with radii O(n−1/d) both contain a sample point of Xn.

V.4.2 Local Case

Consider now the local case, that is, there exists q0 ∈ M and v0 ∈ Tq0M such that the
geodesic γ0 = γq0,v0 has second derivative ‖γ′′0 (0)‖ = 1/τM (Theorem V.17). Estimating
τM boils down to estimating the curvature of M at q0 in the direction v0.

We first relate directional curvature to the increment ‖y−x‖2
2d(y−x,TxM) involved in the

estimator τ̂ (V.18). Indeed, since the latter quantity is the radius of a sphere tangent
at x and passing through y (Figure V.1), it approximates the radius of curvature in the
direction y − x when x and y are close. For x, y ∈M , we let γx→y denote the arc-length
parametrized geodesic joining x and y, with the convention γx→y(0) = x.

Lemma V.22. Let M ∈ C(3)
τmin,L

with reach τM and X ⊂M be a subset. Let x, y ∈ X with
dM (x, y) < πτM . Then,

0 ≤ 1
τM
− 1
τ̂(X ) ≤

1
τM
− 1
τ̂({x, y}) ≤

1
τM
−
∥∥∥γ′′x→y(0)

∥∥∥+ 2
3LdM (x, y).

Let us now state how directional curvatures are stable with respect to perturbations of
the base point and the direction. We let κp denote the maximal directional curvature of
M at p ∈M , that is,

κp = sup
v∈BTpM (0,1)

∥∥∥γ′′p,v(0)
∥∥∥ .

Lemma V.23. Let M ∈ C(3)
τmin,L

with reach τM and q0, x, y ∈ M be such that x, y ∈
BM

(
q0,

πτM
2
)
. Let γ0 be a geodesic such that γ0(0) = q0 and ‖γ′′0 (0)‖ = κq0. Write

θx := ∠(γ′0(0), γ′q0→x(0)), θy := ∠(γ′0(0), γ′q0→y(0)),

and suppose that |θx − θy| ≥ π
2 . Then,∥∥∥γ′′x→y(0)

∥∥∥
≥ κq0 −

1√
2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2LdM (q0, x)

)
.

In particular, geodesics in a neighborhood of q0 with directions close to v0 have curvature
close to 1

τM
. A point cloud X sampled densely enough in M would contain points in this

neighborhood. Hence combining Lemma V.22 and Lemma V.23 yields the following
deterministic bound in the local case.
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Proposition V.24. Let M ∈ C(3)
τmin,L

be such that there exist q0 ∈ M and a geodesic
γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
. Let X ⊂ M and x, y ∈ X be such that

x, y ∈ BM
(
q0,

πτM
2
)
. Let

θx := ∠(γ′0(0), γ′q0→x(0)), θy := ∠(γ′0(0), γ′q0→y(0)),

and suppose that |θx − θy| ≥ π
2 . Then,

0 ≤ 1
τM
− 1
τ̂(X ) ≤

1
τM
− 1
τ̂({x, y})

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2
3dM (x, y) +

√
2√

2− 1
dM (q0, x)

)
.

In other words, since the reach boils down to directional curvature in the local case, τ̂
performs well if it is given as input a pair of points x, y which are close to the point q0
realizing the reach, and almost aligned with the direction of interest v0.

Similarly to the analysis of the global case, the deterministic bound of Proposition V.24
yields a bound on the risk of τ̂(Xn) when Xn = {X1, . . . , Xn} is random.

Proposition V.25. Let P ∈ P(3)
τmin,L

(fmin) and M = Supp(P ). Suppose there exists
q0 ∈M and a geodesic γ0 with γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
. Then,

EPn
[∣∣∣∣ 1
τM
− 1
τ̂(Xn)

∣∣∣∣p] ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

where Cτmin,d,L,fmin,p depends only on τmin, d, L, fmin and p.

This statement follows from Proposition V.24 together with the estimate of the prob-
ability of two points being drawn in a neighborhood of q0 and subject to an alignment
constraint.

Proposition V.21 and V.25 yield a convergence rate of τ̂(Xn) which is slower in the
local case than in the global case. Recall that from Theorem V.17, the reach pertains to
the size of a bottleneck structure in the global case, and to maximum directional curvature
in the local case. To estimate the size of a bottleneck, observing two points close to each
point in the bottleneck gives a good approximation. However, for approximating maximal
directional curvature, observing two points close to the curvature attaining point is not
enough, but they should also be aligned with the highly curved direction. Hence, estimating
the reach may be more difficult in the local case, and the difference in the convergence
rates of Proposition V.21 and V.25 matches this intuition.

V.5 Minimax Estimates
In this section we derive bounds on the minimax risk Rn of the estimation of the reach
over the class P̃(3)

τmin,L
(fmin), that is

Rn = inf
τ̂n

sup
P̃∈P̃(3)

τmin,L
(fmin)

EP̃n

∣∣∣∣∣ 1
τP̃
− 1
τ̂n

∣∣∣∣∣
p

, (V.26)

where the infimum ranges over all estimators τ̂n
(
(X1, TX1), . . . , (Xn, TXn)

)
based on an

i.i.d. sample of size n with the knowledge of the tangent spaces at sample points.
The rate of consistency of the plugin estimator τ̂(Xn) studied in the previous section

leads to an upper bound on Rn, which we state here for completeness.
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Theorem V.27. For all n ≥ 1,

Rn ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

for some constant Cτmin,d,L,fmin,p depending only on τmin, d, L, fmin and p.

We now focus on deriving a lower bound on the minimax risk Rn. The method relies
on an application of Le Cam’s Lemma [Yu97]. In what follows, let

TV
(
Q,Q′

)
= 1

2

∫
|dQ− dQ′|

denote the total variation distance between Q and Q′, where dQ, dQ′ denote the respective
densities of Q,Q′ with respect to any dominating measure. Since |x − z|p + |z − y|p ≥
21−p|x− y|p , the following version of Le Cam’s lemma results from Lemma 1 in [Yu97]
and (1− TV (Qn, Q′n)) ≥ (1− TV (Q,Q′))n.

Lemma V.28 (Le Cam’s Lemma). Let P̃, P̃ ′ ∈ P̃(3)
τmin,L

(fmin) with respective supports M
and M ′. Then for all n ≥ 1,

Rn ≥
1
2p

∣∣∣∣ 1
τM
− 1
τM ′

∣∣∣∣p (1− TV (P̃, P̃ ′)
)n
.

Lemma V.28 implies that in order to derive a lower bound on Rn one needs to consider
distributions (hypotheses) in the model that are stochastically close to each other — i.e.
with small total variation distance — but for which the associated reaches are as different
as possible. A lower bound on the minimax risk over P̃(3)

τmin,L
(fmin) requires the hypotheses

to belong to the class. Luckily, in our problem it will be enough to construct hypotheses
from the simpler class P(3)

τmin,L
(fmin). Indeed, we have the following isometry result between

P(3)
τmin,L

(fmin) and P̃(3)
τmin,L

(fmin) for the total variation distance.

Lemma V.29. In accordance with the notation of Definition V.9, let P, P ′ ∈ P(3)
τmin,L

(fmin)
be distributions on RD with associated distributions P̃, P̃ ′ ∈ P̃(3)

τmin,L
(fmin) on RD ×Gd,D.

Then,
TV

(
P̃, P̃ ′

)
= TV

(
P, P ′

)
.

In order to construct hypotheses in P(3)
τmin,L

(fmin) we take advantage of the fact that the
class C(3)

τmin,L
has good stability properties, which we now describe. Here, since submanifolds

do not have natural parametrizations, the notion of perturbation can be well formalized
using diffeomorphisms of the ambient space RD ⊃M . Given a smooth map Φ : RD → RD,
we denote by dixΦ its differential of order i at x. Given a tensor field A between Euclidean
spaces, let ‖A‖op = supx ‖Ax‖op, where ‖Ax‖op is the operator norm induced by the
Euclidean norm. The next result states, informally, that the reach and geodesics third
derivatives of a submanifold that is perturbed by a diffeomorphism that is C3-close to the
identity map do not change much.

Proposition V.30. Let M ∈ C(3)
τminL

be fixed, and let Φ : RD → RD be a global C3-
diffeomorphism. If ‖ID − dΦ‖op,

∥∥d2Φ
∥∥
op and

∥∥d3Φ
∥∥
op are small enough, then M ′ =

Φ(M) ∈ C(3)
τmin

2 ,2L.

Now we construct the two hypotheses P, P ′ as follows (see Figure V.4). Take M to be
a d-dimensional sphere and P to be the uniform distribution on it. Let M ′ = Φ(M), where
Φ is a bump-like diffeomorphism having the curvature of M ′ to be different of that of M
in some small neighborhood. Finally, let P ′ be the uniform distribution on M ′.

98



CHAPTER V. APPROXIMATION AND GEOMETRY OF THE REACH

M ′

M

Figure V.4 – Hypotheses of Proposition V.31

Proposition V.31. Assume that L ≥ 1
2τ2
min

and fmin ≥ 1
2d+1τdminσd

. Then for ` > 0 small

enough, there exist P, P ′ ∈ P(3)
τmin,L

(fmin) with respective supports M and M ′ such that∣∣∣∣ 1
τM
− 1
τM ′

∣∣∣∣ ≥ cd `

τ2
min

and TV
(
P, P ′

)
≤ 12

(
`

2τmin

)d
.

Hence, applying Lemma V.28 with the hypotheses P̃, P̃ ′ associated to P, P ′ of Proposi-
tion V.31, and taking 12 (`/2τmin)d = 1/n, together with Lemma V.29, yields the following
lower bound.

Proposition V.32. Assume that L ≥ 1
2τ2
min

and fmin ≥ 1
2d+1τdminσd

. Then for n large
enough,

Rn ≥
cd,p
τpmin

n−p/d,

where cd,p depends only on d and p.

Here, the assumptions on the parameters L and fmin are necessary for the model to be
rich enough. Roughly speaking, they ensure at least that a sphere of radius 2τmin belongs
to the model. From Proposition V.32, the plugin estimation τ̂(Xn) provably achieves the
optimal rate in the global case (Theorem V.21) up to numerical constants. In the local
case (Theorem V.25) the rate obtained presents a gap, yielding a gap in the overall rate.

V.6 Towards Unknown Tangent Spaces
So far, in our analysis we have used the key assumption that both the point cloud and
the tangent spaces were jointly observed. We now focus on the more realistic framework
where only points are observed. We once again rely on the formulation of the reach
given in Theorem V.5 and consider a new plug-in estimator in which the true tangent
spaces are replaced by estimated ones. Namely, given a point cloud X ⊂ RD and a family
T = {Tx}x∈X of linear subspaces of RD indexed by X , the estimator is defined as

τ̂(X , T ) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, Tx) . (V.33)

In particular, τ̂(X ) = τ̂(X , TXM), where TXM = {TxM}x∈X . Adding uncertainty on
tangent spaces in (V.33) does not change drastically the estimator, as the formula is stable
with respect to T . In what follows, the distance between two vector subspaces U, V ∈ Gd,D

is measured with the sine of their principal angle ‖πU − πV ‖op.

Proposition V.34. Let X ⊂ RD and T = {Tx}x∈X , T ′ = {T ′x}x∈X be two families of
linear subspaces of RD indexed by X . Assume X to be δ-sparse, T and T ′ to be θ-close, in
the sense that

inf
x 6=y∈X

‖y − x‖ ≥ δ and sup
x∈X
‖Tx − T ′x‖op ≤ sin θ.
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Then, ∣∣∣∣ 1
τ̂(X , T ) −

1
τ̂(X , T ′)

∣∣∣∣ ≤ 2 sin θ
δ

.

In other words, the map T 7→ τ̂(X , T )−1 is smooth, provided that the basis point cloud
X contains no zone of accumulation at a too small scale δ > 0. As a consequence, under
the assumptions of Proposition V.34, the bounds on

∣∣τ̂(X )−1 − τM−1∣∣ of Proposition V.20
and Proposition V.24 still hold with an extra error term 2 sin θ/δ if we replace τ̂(X ) by
τ̂(X , T ).

For an i.i.d. point cloud Xn asymptotic rates of tangent space estimation derived in
C3-like models can be found in [CC16, SW12], yielding bounds on sin θ. In that case, the
typical scale of minimum interpoint distance is δ � n−2/d, as stated in the asymptotic
result Theorem 2.1 in [KMT92] for the flat case of Rd. However, the typical covering scale
of M used in the global case (Theorem V.21) is ε � (1/n)1/d. It appears that we can
sparsify the point cloud Xn — that is, removing accumulation points — while preserving
the covering property at scale ε = 2δ � (logn/n)1/d. This can be performed using the
farthest point sampling algorithm (see Section IV.3.3). Such a sparsification pre-processing
allows to lessen the possible instability of τ̂(Xn, ·)−1. Though, whether the alignment
property used in the local case (Theorem V.25) is preserved under sparsification remains
to be investigated.

V.7 Conclusion and Open Questions
In this chapter, we gave new insights on the geometry of the reach. Inference results were
derived in both deterministic and random frameworks. For i.i.d. samples, non-asymptotic
minimax upper and lower bounds were derived under assumptions on the third order
derivative of geodesic trajectories. Let us conclude with some open questions.

- The minimax upper and lower bounds given in Theorem V.27 and Theorem V.32 do
not match. They are yet to be sharpened.

- In practice, since large reach ensures regularity, one may be interested with having a
lower bound on the reach τM . Giving the limiting distribution of the statistic τ̂(Xn)
would allow to derive asymptotic confidence intervals for τM .

- Other regularity parameters such as local feature size [BG14] and λ-reach [CL05]
could be relevant to estimate, as they are used as tuning parameters in computational
geometry techniques.
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C.1 Some Technical Results on the Model
This section garners geometric lemmas on embedded manifolds in the Euclidean space that
are related to the reach, and that will be used several times in the proofs. For most of
them, the following results were already stated in Chapter III.

Proposition C.1. Let M ⊂ RD be a submanifold with reach τM > 0.

(i) For all p ∈M , we let IIMp denote the second fundamental form of M at p. Then for
all unit v ∈ TpM ,

∥∥∥IIMp (v, v)
∥∥∥ ≤ 1

τM
.

(ii) The injectivity radius of M is at least πτM .

(iii) The sectional curvatures κ of M satisfy − 2
τ2
M
≤ κ ≤ 1

τ2
M
.

(iv) For all p ∈ M , the map expp :
◦
BTpM (0, πτM ) →

◦
BM (0, πτM ) is a diffeomorphism.

Moreover, for all ‖v‖ < πτM
2
√

2 and w ∈ TpM ,(
1− ‖v‖

2

6τ2
M

)
‖w‖ ≤

∥∥∥dv expp ·w
∥∥∥ ≤ (1 + ‖v‖

2

τ2
M

)
‖w‖
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(v) For all p ∈M , r ≤ πτM
2
√

2 , and a Borel set A ⊂ BTqM (0, r) ⊂ TqM ,

(
1− r2

6τ2
M

)d
Hd(A) ≤ Hd(expq(A)) ≤

(
1 + r2

τ2
M

)d
Hd(A).

(vi) Let q ∈ M , γ be a geodesic at q, and denote by Pt the parallel transport operator
along γ. Then for all t < πτM and for all v ∈ TqM ,

∠(Pt(v), v) ≤ t

τM
.

Proof of Proposition C.1. For (i),(ii),(iii),(iv), and (v), see Proposition III.22. All that
remain to be showed is (vi). For this, assume without loss of generality that ‖v‖ = 1. Let
g : [0, t]→ Sd−1 be defined by g(s) = Ps(v). Let u ∈ RD be a unit vector and denoting by
∇̄ the ambient derivative. We may write〈

g′(s), u
〉

=
〈
∇̄γ′(s)Ps(w), u

〉
=
〈
IIMγ(s)(γ

′(s), Ps(w)), u
〉
.

Hence ‖g′(s)‖ ≤ 1
τM

for all s ∈ [0, t]. Since g is a curve on Sd−1, this implies

∠(Pt(v), v) = dSd−1(γ(t), γ(0)) ≤
∫ t

0

∥∥g′(s)∥∥ ds ≤ t

τM
.

C.2 Geometry of the Reach
For M ⊂ RD, a ∈M , and v ∈ RD a non-zero vector, we define the local directional reach
by

reach(M,a, v) = inf
{
d(x,M)|x ∈Med(M) with x = a+ tv for some t ≥ 0

}
,

with the convention reach(M,a, v) =∞ if Med(M) ∩ {a+ tv|t ≥ 0} = ∅.

Lemma C.2. (i) For x /∈Med(M) ∪M , writing a = πM (x), we have reach(M,a, x−
a) > 0, and for all b ∈M ,

〈x− a, a− b〉 ≥ − ‖a− b‖2 ‖x− a‖
2reach(M,a, x− a) .

(ii) Let 0 < r < q <∞ be fixed. Let x, y /∈Med(M)∪M be such that d(x,M), d(y,M) ≤ r
and

reach (M,πM (x), x− πM (x)) ≥ q , reach (M,πM (y), y − πM (y)) ≥ q.

Then,
‖πM (x)− πM (y)‖ ≤ q

q − r
‖x− y‖ .

Proof of Lemma C.2. (i) The proof follows that of Theorem 4.8 (7) in [Fed59]. Let
v = x−a

‖x−a‖ and S = {t|πM (a+ tv) = a}. As ‖x− a‖ > 0 belongs to S, supS > 0 and
from [Fed59, Theorem 4.8 (6)] we get

supS ≥ reach(M,a, v).
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Moreover, for 0 < t ∈ S,

‖a+ tv − b‖ ≥ d(a+ tv,M) = t.

Developing and rearranging the square of previous inequality yields

‖a− b‖2 + 2t 〈v, a− b〉+ t2 ≥ t2,
2t 〈v, a− b〉 ≥ −‖a− b‖2 ,

〈x− a, a− b〉 ≥ −‖a− b‖
2 ‖x− a‖
2t .

(ii) The proof follows that of Theorem 4.8 (8) in [Fed59]. Writing a = πM (x) and
b = πM (y), the previous point yields,

〈x− a, a− b〉 ≥ −‖a− b‖
2 r

2q and 〈y − b, b− a〉 ≥ ‖a− b‖
2 r

2q .

As a consequence,

‖x− y‖ ‖a− b‖ ≥ 〈x− y, a− b〉
= 〈(x− a) + (a− b) + (b− y), a− b〉

≥ ‖a− b‖2
(

1− r

q

)
,

hence the result.

Lemma C.3. Let M ⊂ RD be a submanifold with reach τM > 0 having a reach attaining
pair (q1, q2) ∈M2 such that ‖q1 − q2‖ < 2τM . Write z0 ∈Med(M) for the associated axis
point. Then there exists a sequence of curves {γn}n∈N of M joining q1 and q2 with

lim
n
Length(γn) = τM∠(q1 − z0, q2 − z0).

q1 q2

z0

τM

< 2τM

cz0(q1, q2)

hn(t)

γn(t)

r0
n

γ̃(t)

Figure C.1 – Layout of Lemma C.3.

Proof of Lemma C.3. Without loss of generality, assume that z0 coincides with the origin.
Let cz0(q1, q2) be the circle arc of center z0 with endpoints q1 and q2, and let γ : [−t0, t0]→
cz0(q1, q2) be its arc length parametrization with γ(−t0) = q1 and γ(t0) = q2. Let
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θ := ∠(q1 − z0, q2 − z0). Since ‖q1 − z0‖ = ‖q2 − z0‖ = τM , we have t0 = 1
2τMθ. For all

t ∈ [−t0, t0], let rt :=
√
τ2
M −

‖q1−q2‖2
4 csc

(
t
τM

)
, and let γ̃ : [−t0, t0]→ RD be γ̃(t) = rt

τM
γ(t).

Let us show that for all r ∈ (0, r0] and t ∈ [−t0, t0], following holds:
◦
B
(
r

τM
γ(t), r

)
⊂

◦
B (γ̃(t), rt) ⊂

◦
B (q1, τM ) ∪

◦
B (q2, τM ) , (C.4)

The left-hand side inclusion of (C.4) being trivial, we turn to the second inclusion. First,
note that by definition,

γ̃(t) =

1
2 −

tan
(

t
τM

)
2 tan

(
t0
τM

)
 q1 +

1
2 +

tan
(

t
τM

)
2 tan

(
t0
τM

)
 q2

for all t ∈ [−t0, t0]. Hence,

γ̃(t)− γ̃(0) =
tan

(
t
τM

)
2 tan

(
t0
τM

)(q2 − q1), (C.5)

and from tan
(
t0
τM

)
= ‖q1−q2‖

2r0 , we get ‖γ̃(t)− γ̃(0)‖ = r0 tan
(

t
τM

)
. Now suppose x ∈

◦
B (γ̃(t), rt), then

‖x− γ̃(t)‖2 < r2
t . (C.6)

Then,

‖x− γ̃(t)‖2 = ‖x− γ̃(0)‖2 − 2 〈x− γ̃(0), γ̃(t)− γ̃(0)〉+ ‖γ̃(t)− γ̃(0)‖2 ,

and r2
t = r2

0 + r2
0 tan2

(
t
τM

)
= r2

0 + ‖γ̃(t)− γ̃(0)‖2, hence applying these and (C.5) to (C.6)
implies

‖x− γ̃(0)‖2 −
tan

(
t
τM

)
tan

(
t0
τM

) 〈x− γ̃(0), q2 − q1〉 < r2
0. (C.7)

Now applying γ̃(−t0) = q1 to (C.5) gives q1 − γ̃(0) = −1
2(q2 − q1), so

‖x− q1‖2 = ‖x− γ̃(0)‖2 + 2 〈x− γ̃(0), q1 − γ̃(0)〉+ ‖q1 − γ̃(0)‖2

= ‖x− γ̃(0)‖2 − 〈x− γ̃(0), q2 − q1〉+ 1
4 ‖q1 − q2‖2 .

Similarly,
‖x− q2‖2 = ‖x− γ̃(0)‖2 + 〈x− γ̃(0), q2 − q1〉+ 1

4 ‖q1 − q2‖2 ,

and hence

min
{
‖x− q1‖2 , ‖x− q2‖2

}
= ‖x− γ̃(0)‖2 − |〈x− γ̃(0), q2 − q1〉|+

1
4 ‖q1 − q2‖2 . (C.8)

Since
∣∣∣tan

(
t0
τM

)∣∣∣ ≤ ∣∣∣tan
(

t
τM

)∣∣∣, applying (C.7) to (C.8) gives

min
{
‖x− q1‖2 , ‖x− q2‖2

}
≤ ‖x− γ̃(0)‖2 −

tan
(

t
τM

)
tan

(
t0
τM

) 〈x− γ̃(0), q2 − q1〉+ 1
4 ‖q1 − q2‖2

< r2
0 + 1

4 ‖q1 − q2‖2 = τ2
M ,
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which asserts the second inclusion in (C.4).
Now, by definition of the reach in (V.3),

( ◦
B(q1, τM ) ∪

◦
B(q2, τM )

)
∩Med(M) = ∅, hence

(C.4) implies
◦
B
(
r

τM
γ(t), r

)
∩Med(M) = ∅.

For all n ∈ N, let us now define hn, γn : [−t0, t0]→M by (See Figure C.1),

hn(t) = r0
nτM

γ (t) and γn(t) = πM (hn(t)) .

Then for any fixed n ∈ N and t1, t2 ∈ [−t0, t0] such that |t1− t2| < τM , from
◦
B
(
hn(ti), r0n

)
∩

Med(M) = ∅, we get

reach (M,γn(ti), hn(ti)− γn(ti)) ≥ d (hn(ti),M) + r0
n

≥ d(hn(t1),M) ∧ d(hn(t2),M) + r0
n
,

and since d(hn(ti),M) ≤ d(hn(t1),M) ∨ d(hn(t2),M), Lemma C.2 (ii) yields

‖γn(t1)− γn(t2)‖ = ‖πM (hn(t1))− πM (hn(t2))‖

≤
(
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n

)
‖hn(t1)− hn(t2)‖

d (hn(t1),M) ∧ d (hn(t2),M) + r0
n − d (hn(t1),M) ∨ d (hn(t2),M)

=
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n
r0
n − |d(hn(t1),M)− d(hn(t2),M)| ‖hn(t1)− hn(t2)‖ .

Noticing furthermore that

|d(hn(t1),M)− d(hn(t2),M)| ≤ ‖hn(t1)− hn(t2)‖ ≤ r0
nτM

|t1 − t2| ,

and
d(hn(ti),M) ≤ d(z0,M) + ‖hn(ti)− z0‖ ≤ τM + r0

n
,

we get

‖γn(t1)− γn(t2)‖ ≤
τM + 2 r0n

r0
n −

r0
nτM
|t1 − t2|

r0
nτM

|t1 − t2|

=
τM + 2 r0n

τM − |t1 − t2|
|t1 − t2|.

For any fixed k and 0 ≤ ∀j ≤ k, set tk,j = 2j−k
k t0. The inequality above yields,

k∑
j=1
‖γn(tk,j)− γn(tk,j−1)‖ ≤

τM + 2 r0n
τM − 2t0

k

2t0,

so

Length(γn) = lim sup
k

k∑
j=1
‖γn(tk,j)− γn(tk,j−1)‖ ≤

(
1 + 2r0

τMn

)
2t0.

Moreover, the γn’s are curves joining q1 to q2 with images γn([−t0, t0]) ⊂ RD \
◦
B(z0, τM ),

so that their lengths are at most that of the arc of great circle cz0(q1, q2):

Length (γn) ≥ Length (cz0(q1, q2)) = 2t0.

Hence,
lim
n→∞

Length(γn) = 2t0 = τMθ.
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Lemma C.9. Let M be a compact manifold, and q1, q2 ∈M with q1 6= q2. Let {γn}n∈N be
a sequence of curves on M joining q1 and q2 such that supn Length(γn) <∞ Then there
exists a curve γ on M joining q1 and q2 such that

lim inf
n

Length(γn) ≤ Length(γ) ≤ lim sup
n

Length(γn).

Proof of Lemma C.9. Without loss of generality, take the γn’s to be arc length parametrized.
For all n ∈ N, we let gn : [0, 1]→M be the reparametrization gn(t) = γn (Length(γn)t) .
Notice that for all t ∈ [0, 1], the set {gn(t)}n∈N is contained in the compact set M , so that
it is bounded uniformly in t. Moreover, writing K = supn Length(γn) <∞, we have that
for all t1, t2 ∈ [0, 1],

‖gn(t1)− gn(t2)‖ = ‖γn (Length(γn)t1)− γn (Length(γn)t2)‖
≤ Length(γn)|t1 − t2|
≤ K|t1 − t2|.

Hence, the sequence {gn}n∈N is pointwise bounded and equicontinuous. From Arzelà-Ascoli
theorem [Mun75, Theorem 45.4], there exists a curve γ : [0, 1] → M and subsequence
{gni}i∈N converging uniformly to γ.

For any fixed k and 1 ≤ ∀j ≤ k, set tk,j = j
k t0. The uniform convergence ensures that

k∑
j=0
‖γ(tk,j+1)− γ(tk,j)‖ = lim

i→∞

k∑
j=0
‖gni(tk,j+1)− gni(tk,j)‖ .

As a consequence,

Length(γ) = lim
k→∞

k∑
j=0
‖γ(tk,j+1)− γ(tk,j)‖

= lim
k→∞

lim
i→∞

k∑
j=0
‖γni(tk,j+1)− γni(tk,j)‖

= lim
i→∞

Length(γni).

Hence the result.

Proof of Lemma V.15. Combining Lemma C.3 and Lemma C.9 provides the existence
of a curve γ ⊂ M joining q1 and q2 such that Length(γ) = Length(cz0(q1, q2)). But
M ⊂ RD \

◦
B(z0, τM ), and since ‖q1 − q2‖ < 2τM , cz0(q1, q2) is the unique minimizing

geodesic of ∂B(z0, τM ) ⊂ RD \
◦
B(z0, τM ) joining q1 and q2. Therefore, γ = cz0(q1, q2) ⊂M ,

hence the result.

Lemma C.10. Let M ∈ C(3)
τmin,L

be a submanifold with reach τM . For all p ∈ M , let us
denote

Lp := sup
q∈BM (p, τM2 ),v∈BTpM (0,1)

∥∥∥γ′′′q,v(0)
∥∥∥ .

Then for all r ≤ τM/2,∣∣∣∣∣ sup
v∈TpM,‖v‖=1

∥∥∥γ′′p,v(0)
∥∥∥− sup

q∈B(p,r)∩M

2d(q − p, TpM)
‖q − p‖2

∣∣∣∣∣ ≤ 3
(

1
τ2
M

+ Lp

)
r.
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To prove Lemma C.10 we need the following straightforward result.

Lemma C.11. Let U be a vector space and u ∈ U , n ∈ U⊥. If v = u+ n+ e, then

|d(v, U)− ‖v − u‖ | ≤ ‖e‖ .

Proof of Lemma C.10. First note that for all unit vector v ∈ TpM , qv,r = γp,v(r) belongs
to B(p, r)∩M , and r ≤ τM

2 with Proposition C.1 (ii) implies qv,r 6= p. Therefore, it suffices
to show that for all q ∈ B(p, r) ∩M , there exists v = vq ∈ TpM such that∣∣∣∣∣∥∥∥γ′′p,v(0)

∥∥∥− 2d(q − p, TpM)
‖q − p‖2

∣∣∣∣∣ ≤ 3
(

1
τ2
M

+ Lp

)
r.

Let q ∈ B(p, r) ∩M be different from p. Denoting t = dM (p, q) > 0, we call γ = γp,v
the arc-length parametrized geodesic of minimal length such that γ(0) = p and γ(t) = q. γ
exists from Proposition C.1 (ii), since r ≤ τM

2 . A Taylor expansion at zero of γ yields,∥∥∥∥q − pt − γ′(0)− t

2γ
′′(0)

∥∥∥∥ ≤ Lp t26 .
Since γ′′(0) ∈ TpM⊥, Lemma C.11 shows that∣∣∣∣d(q − p

t
, TpM)−

∥∥∥∥q − pt − γ′(0)
∥∥∥∥∣∣∣∣ ≤ Lp t26 .

Therefore,∣∣∣∣2t d(q − p
t

, TpM)−
∥∥γ′′(0)

∥∥∣∣∣∣
≤ 2
t

(∣∣∣∣d(q − p
t

, TpM)−
∥∥∥∥q − pt − γ′(0)

∥∥∥∥∣∣∣∣+ ∥∥∥∥q − pt − γ′(0)− t

2γ
′′(0)

∥∥∥∥)
≤ 2

3Lpt.

This yields,∣∣∣∣∣2d(q − p, TpM)
‖q − p‖2

−
∥∥γ′′(0)

∥∥∣∣∣∣∣ ≤ 2d(q − p, TpM)
∣∣∣∣∣ 1
dM (p, q)2 −

1
‖q − p‖2

∣∣∣∣∣+ 2
3Lpt.

Moreover, from ‖q − p‖ ≤ dM (p, q) and Lemma III.21, we derive

‖q − p‖2 ≤ dM (p, q)2 ≤ τ2
M

1−
√

1− 2 ‖q − p‖
τM

2

≤ τ2
M

(
‖q−p‖
τM

)2

(
1− 2‖q−p‖

τM

)3/2

≤ ‖q − p‖2

1− 3‖q−p‖τM

,

where the last two inequalities follow from elementary real analysis arguments. Therefore,
we get t ≤ 2 ‖q − p‖ and ∣∣∣∣∣ 1

dM (p, q)2 −
1

‖q − p‖2

∣∣∣∣∣ ≤ 3
τM ‖q − p‖

.
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Using moreover that 2d(q − p, TpM) ≤ ‖q − p‖2 /τM we derive,∣∣∣∣∣∥∥γ′′(0)
∥∥− 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣∣ ≤ 2d(q − p, TpM) 3
τM ‖q − p‖

+ 4
3Lp ‖q − p‖

≤ 3
τ2
M

‖q − p‖+ 4
3Lp ‖q − p‖

≤ 3
(

1
τ2
M

+ Lp

)
r.

Proof of Lemma V.16. For r > 0, let ∆r :=
{
(p, q) ∈M2| ‖p− q‖ < r

}
, and ∆̄ = ∩r>0∆r

denote the diagonal of M2. Consider the map ϕ : M2 \ ∆̄ → R defined by ϕ(p, q) =
‖q−p‖2

2d(q−p,TpM) . From (V.5), if there exists p 6= q ∈ M such that τM = ϕ(p, q), then there
exists z ∈Med(M) with d(z,M) = τM . Hence, for all p 6= q ∈ TpM , ϕ(p, q) < τM , and by
compactness of M2\∆r, we have supM2\∆r

ϕ < τ−1
M . Since we have the decomposition

1
τM

= sup
(p,q)∈M2\∆̄

ϕ(p, q)

= sup
(p,q)∈M2\∆r

ϕ(p, q) ∨ sup
(p,q)∈∆r\∆̄

ϕ(p, q),

we get sup∆r\∆̄ ϕ = τ−1
M . Moreover, Lemma C.10 implies that∣∣∣∣∣∣ sup

p∈M,v∈BTpM (0,1)

∥∥∥γ′′p,v(0)
∥∥∥− sup

(p,q)∈∆r\∆̄
ϕ(p, q)

∣∣∣∣∣∣ ≤ 3
(

1
τ2
M

+ L

)
r

for r > 0 small enough. Letting r go to zero yields

sup
p∈M,v∈BTpM (0,1)

∥∥∥γ′′p,v(0)
∥∥∥ = 1

τM
.

Finally, the unit tangent bundle T≤1M =
{
(p, v), p ∈M, v ∈ BTpM (0, 1)

}
being compact,

there exists (q0, v0) such that γ0 = γp0,v0 satisfies ‖γ′′0 (0)‖ = τ−1
M , which concludes the

proof.

C.3 Analysis of the Estimator

C.3.1 Global Case

To show Proposition V.20, we show a stronger result (Proposition C.12) that applies to
a reach attaining pair with any size 2λ, meaning that it is not necessarily a bottleneck.
Proposition V.20 follows straightforwardly by setting λ equal to τM .

Proposition C.12. Let M ⊂ RD be a submanifold, and 0 < λ ≤ τM . Assume that M
has a reach attaining pair (q1, q2) ∈ M2 (see Definition V.14) with ‖q1 − q2‖ ≥ 2λ. Let
X ⊂M . If there exists x, y ∈ X with ‖q1 − x‖ < λ and ‖q2 − y‖ < λ, then

0 ≤ 1
τM
− 1
τ̂(X ) ≤

1
τM
− 1
τ̂({x, y}) ≤ CτM ,λ max {dM (q1, x), dM (q2, y)} ,

where CτM ,λ = 2τ2
M+6τMλ+λ2

2τ2
Mλ

2 depends only on the parameters τM , λ, and is a decreasing
function of τM and λ when the other parameter is fixed.
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Proof of Proposition C.12. The two left hand inequalities are a direct consequence of
Corollary V.19, let us then focus on the third one.

Without loss of generality, assume that ‖q1 − q2‖ = 2λ. We set t := max {dM (q1, x), dM (q2, y)}
and z1 := x + (q2 − q1). We have ‖z1 − x‖ = ‖q2 − q1‖ = 2λ and ‖y − q2‖ , ‖q1 − x‖ ≤ t.
Therefore, from the definition of τ̂ in (V.18) and the fact that the distance function to a
linear space is 1-Lipschitz, we get

1
τ̂({x, y}) ≥

2d(y − x, TxM)
‖y − x‖2

= 2d ((y − q2) + (z1 − x) + (q1 − x), TxM)
‖(y − q2) + (z1 − x) + (q1 − x)‖2

≥ d(z1 − x, TxM)− 2t
2(λ+ t)2 .

Let now θ := ∠(q2 − q1, Tq1M) = minv∈Tq1M ∠(q2 − q1, v). Since z0 ∈ Med(M), with
q1, q2 ∈ B(z0, τM ) and ‖q1 − q2‖ = 2λ, for any v′ such that v′ ⊥ z0 − q1, we have
∠(q2 − q1, v

′) ≥ π
2 − ∠(q2 − q1, z0 − q1). Hence, sin θ ≥ λ

τM
and cos θ ≤

√
τ2
M−λ2

τM
. Let

v1 ∈ Tq1M be any point in Tq1M realizing this angle, in the sense that ∠(q2 − q1, v1) =
∠(q2 − q1, Tq1M). Then we have

∠(z1 − x, v1) = ∠(q2 − q1, v1) = θ.

Let v̄1 ∈ TxM be the parallel transport of v1 along the geodesic between q1 and x. Since
M has reach τM , Proposition C.1 (vi) gives

∠(v1, v̄1) ≤ dM (x, q1)
τM

≤ t

τM
.

Hence the angle ∠(z1 − x, TxM) can be lower bounded as

∠(z1 − x, TxM) ≥ ∠(z1 − x, v̄1)
≥ ∠(z1 − x, v)− ∠(v, v̄1)

≥ θ − t

τM
.

And 0 ≤ λ
τM
− t

τM
≤ θ − t

τM
≤ ∠(z1 − x, TxM) ≤ π

2 , so the inequality is preserved by the
sine function, i.e.

d(z1 − x, TxM) = ‖z1 − x‖ sin(∠(z1 − x, TxM))

≥ 2λ sin
(
θ − t

τM

)
= 2λ

(
sin θ cos t

τM
− cos θ sin t

τM

)

= 2λ2

τM
cos t

τM
−

2λ
√
τ2
M − λ2

τM
sin t

τM
.

Combining the previous bounds yields,

1
τM
− 1
τ̂({x, y}) ≤

1
τM
− d(z1 − x, TxM)− 2t

2(λ+ t)2

≤ 1
τM
−

1
τM

cos t
τM
−
√
τ2
M−λ2

τMλ
sin t

τM
− t

λ2(
1 + t

λ

)2 .
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Using again that t < λ ≤ τM , the latter right-hand side term is itself upper bounded by,

1
τM
−

 1
τM

(
1− t2

2τ2
M

)
−

√
τ2
M − λ2

τMλ

t

τM
− t

λ2

(1− 2t
λ

)

≤

 λ

2τ3
M

+

√
τ2
M − λ2

τ2
Mλ

+ 1
λ2 + 2

λτM

 t
=

2τ3
M + 2λτM

√
τ2
M − λ2 + 4τ2

Mλ+ λ3

2τ3
Mλ

2 t

≤ 2τ2
M + 6τMλ+ λ2

2τ2
Mλ

2 t := CτM ,λt,

which is the announced result.

As for Proposition V.20, we tackle the proof of Proposition V.21 by showing the
following stronger one, Proposition C.13. Proposition V.21 follows straightforwardly by
setting λ equal to τM .

Proposition C.13. Let P ∈ P(3)
τmin,L

(fmin), M = Supp(P ) and 0 < λ ≤ τM . Assume that
M has a reach attaining pair (q1, q2) ∈ M2 (see Definition V.14) with ‖q1 − q2‖ ≥ 2λ.
Then

EPn
[∣∣∣∣ 1
τM
− 1
τ̂(Xn)

∣∣∣∣p] ≤ CτM ,λ,fmin,d,pn− pd .
where CτM ,λ,fmin,d,p depends only on τM , λ, fmin d, p, and is a decreasing function of τM
and λ when other parameters are fixed.

Proof of Proposition C.13. Let s < 1
τM

, CτM ,λ = 2τ2
M+6τMλ+λ2

2τ2
Mλ

2 , and t = 1
CτM ,λ

s ≤ 2τM/9.
Let ωd := Hd(BRd(0, 1)) be the volume of the d-dimensional unit ball. Then note that from
Proposition C.1 (v), for all q ∈M ,

P (BM (p, t)) ≥ fminHd (BM (p, t))

≥ ωdfmin

(
1−

(
t

6τM

)2
)d

td

≥ ωdfmin
(728

729

)d
td.

Moreover, Proposition V.20 asserts that
∣∣∣ 1
τM
− 1

τ̂(Xn)

∣∣∣ > s implies that either BM (q1, t) ∩
Xn = ∅ or BM (q2, t) ∩ Xn = ∅. Hence,

P
(∣∣∣∣ 1
τM
− 1
τ̂(Xn)

∣∣∣∣ > s

)
≤ P (BM (q1, t) ∩ Xn = ∅) + P (BM (q2, t) ∩ Xn = ∅)

≤ 2
(

1− ωdfmin
(728

729

)d
td
)n

≤ 2 exp
(
−nωdfmin

(728
729

)d
C−dτM ,λs

d

)
.
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Letting Γ(·) denote the Gamma function, the integration of the above bound gives

EPn
[∣∣∣∣ 1
τM
− 1
τ̂(Xn)

∣∣∣∣p] =
∫ 1

τ
p
M

0
P
(∣∣∣∣ 1
τM
− 1
τ̂(Xn)

∣∣∣∣p > s

)
ds

≤ 2
∫ ∞

0
exp

(
−nωdfmin

(728
729

)d
C−dτM ,λs

d
p

)
ds

=
2
(

729
728

) p
d CpτM ,λ

(nωdfmin)
p
d

∫ ∞
0

x
p
d
−1e−xdx

=
2
(

729
728

) p
d Γ

(p
d

)
(ωdfmin)

p
d

CτM ,λn
− p
d

:= CτM ,λ,fmin,d,pn
− p
d .

where CτM ,λ,fmin,d,p depends only on τM , λ, fmin, d, p, and is a decreasing function of τM
and λ when other parameters are fixed.

C.3.2 Local Case

Lemma C.14. Let M be a submanifold and p ∈M . Let v0, v1 ∈ TpM be a unit tangent
vector, and let θ = ∠(v0, v1). Let γp,v be the arc length parametrized geodesic starting
from p with velocity v, and write γi = γp,vi for i = 0, 1. Let κp = maxv∈BTpM (0,1)

∥∥∥γ′′q0,v(0)
∥∥∥.

Then,∥∥γ′′1 (0)
∥∥ ≥ ∥∥γ′′0 (0)

∥∥− √
2√

2− 1
sin2 θ

(
κp +

∥∥γ′′0 (0)
∥∥)− 1√

2− 1
(
κp −

∥∥γ′′0 (0)
∥∥) . (C.15)

and ∥∥γ′′1 (0)
∥∥ ≥ ∥∥γ′′0 (0)

∥∥− sin2 θ
(
κp +

∥∥γ′′0 (0)
∥∥)

−
|cos θ sin θ|κp

√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

( 2κp
‖γ′′0 (0)‖ + 1

)
. (C.16)

Proof of Lemma C.14. Let w ∈ TpM be a unit vector satisfying w ⊥ v0 and v1 = cos θv0 +
sin θw. For t ∈ R, let v(t) := (cos t)v0 + (sin t)w ∈ TpM , so that v1 = v(θ). Then∥∥∥d2

0 expp(v(t), v(t))
∥∥∥ =

∥∥∥cos2 td2
0 expp(v0, v0) + 2 cos t sin td2

0 expp(v0, w)

+ sin2 td2
0 expp(w,w)

∥∥∥
≥ |cos t|

∥∥∥cos td2
0 expp(v0, v0) + 2 sin td2

0 expp(v0, w)
∥∥∥

− sin2 t
∥∥∥d2

0 expp(w,w)
∥∥∥ . (C.17)

Now, note that when x ∈ [−1, 1],
√

1 + x ≥ 1 + f(x), where f(x) = min{x, (
√

2 − 1)x}.
Hence for any v′, v′′ ∈ TpM ,

∥∥v′ + v′′
∥∥ =

√
‖v′‖2 + ‖v′′‖2

√
1 + 2 〈v′, v′′〉
‖v′‖2 + ‖v′′‖2

≥
√
‖v′‖2 + ‖v′′‖2

(
1 + f

(
2 〈v′, v′′〉

‖v′‖2 + ‖v′′‖2

))

≥
∥∥v′∥∥+ f

 2 〈v′, v′′〉√
‖v′‖2 + ‖v′′‖2

 .
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Applying the latter inequality to (C.17) and using d2
0 expp(v0, v0) = γ′′0 (0) and d2

0 expp(w,w) ≤
κp gives ∥∥∥d2

0 expp(v(t), v(t))
∥∥∥

≥ cos2 t
∥∥∥d2

0 expp(v0, v0)
∥∥∥− sin2 t

∥∥∥d2
0 expp(w,w)

∥∥∥
+ | cos t|f

 4 cos t sin t
〈
d0 expp(v0, v0), d0 expp(v0, w)

〉
√

cos2 t
∥∥∥d2

0 expp(v0, v0)
∥∥∥2

+ 4 sin2 t
∥∥∥d2

0 expp(v0, w)
∥∥∥2


≥ cos2 t

∥∥γ′′0 (0)
∥∥− κp sin2 t

+ | cos t|f

 4 cos t sin t
〈
γ′′0 (0), d0 expp(v0, w)

〉
√

cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t
∥∥∥d2

0 expp(v0, w)
∥∥∥2

 .
Now, note that f(x) ≥ −|x| for x ∈ [−1, 1], so applying this with t = θ gives∥∥γ′′1 (0)

∥∥ =
∥∥∥d2

0 expp(v1, v1)
∥∥∥

≥ cos2 θ
∥∥γ′′0 (0)

∥∥− sin2 θκp

−
4
∣∣∣cos2 θ sin θ

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣∣√
cos2 θ ‖γ′′0 (0)‖2 + 4 sin2 θ

∥∥∥d2
0 expp(v0, w)

∥∥∥2
. (C.18)

We now focus on the third term of the right-hand side. For this, note that either

t sin t〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

or

cos(−t) sin(−t)〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

so that

κp ≥ max
{∥∥∥d2

0 expp(v(−t), v(−t))
∥∥∥ , ∥∥∥d2

0 expp(v(t), v(t))
∥∥∥}

≥ cos2 t
∥∥γ′′0 (0)

∥∥+
4(
√

2− 1)
∣∣∣cos2 t sin t

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣∣√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥∥d2
0 expp(v0, w)

∥∥∥2

− sin2 tκp.

As a consequence, ∣∣∣cos2 t sin t
〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣∣√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥∥d2
0 expp(v0, w)

∥∥∥2

≤ 1
4(
√

2− 1)

(
(1 + sin2 t)κp − cos2 t

∥∥γ′′0 (0)
∥∥)

= 1
4(
√

2− 1)

(
cos2 t

(
κp −

∥∥γ′′0 (0)
∥∥)+ 2 sin2 tκp

)
.
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First, setting t = θ, we derive∥∥γ′′1 (0)
∥∥

≥ cos2 θ
∥∥γ′′0 (0)

∥∥− (1 + 2√
2− 1

)
sin2 θκp −

1√
2− 1

cos2 θ
(
κp −

∥∥γ′′0 (0)
∥∥)

=
∥∥γ′′0 (0)

∥∥− √
2√

2− 1
sin2 θ

(
κp +

∥∥γ′′0 (0)
∥∥)− 1√

2− 1
(
κp −

∥∥γ′′0 (0)
∥∥) .

Furthermore, let t0 be defined by sin2 t0 = 1− ‖γ
′′
0 (0)‖
κp

+ ε for ε > 0 small enough. Then√
cos2 t0 ‖γ′′0 (0)‖2 + 4 sin2 t0

∥∥∥d2
0 expp(v0, w)

∥∥∥2
≤ κp, yielding∣∣∣〈γ′′0 (0), d0 expp(v0, w)

〉∣∣∣
≤

√
κp

4(
√

2− 1) cos2 t0| sin t0|

(
cos2 t0

(
κp −

∥∥γ′′0 (0)
∥∥)+ 2 sin2 t0κp

)

= κ
3
2
p

4(
√

2− 1)

 1− ‖γ
′′
0 (0)‖
κp√

1− ‖γ
′′
0 (0)‖
κp

+ ε

+
2
√

1− ‖γ
′′
0 (0)‖
κp

+ ε

‖γ′′0 (0)‖
κp

− ε

 .
Sending ε→ 0, we obtain

∣∣∣〈γ′′0 (0), d0 expp(v0, w)
〉∣∣∣ ≤ κp

√
κp − ‖γ′′0 (0)‖

4(
√

2− 1)

( 2κp
‖γ′′0 (0)‖ + 1

)
.

Using the previous bound together with

cos2 θ
∥∥γ′′0 (0)

∥∥2 + 4 sin2 θ
∥∥∥d2

0 expp(v0, w)
∥∥∥2
≥ |cos θ|

∥∥γ′′0 (0)
∥∥ ,

we finally obtain∥∥γ′′1 (0)
∥∥ ≥ ∥∥γ′′0 (0)

∥∥− sin2 θ
(
κp +

∥∥γ′′0 (0)
∥∥)

−
|cos θ sin θ|κp

√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

( 2κp
‖γ′′0 (0)‖ + 1

)
.

Proof of Lemma V.22. Note first from Proposition C.1 (ii), dM (x, y) < πτM ensures the
existence and uniqueness of the geodesic γx→y. The two left hand inequalities are a direct
consequence of Corollary V.19. Let us then focus on the third one. Let t0 := dM (x, y), and
write γ = γx→y for short. By definition of τ̂ in (V.18),

1
τ̂({x, y}) ≥

2d(y − x, TxM)
‖y − x‖2

≥ 2d(y − x, TxM)
t20

. (C.19)

Let Hγ′′(0) := {x+u ∈ RD|
〈
u, γ′′x→y(0)

〉
= 0} denote the affine hyperplane passing though

x with the normal vector γ′′(0). Since γ′′(0) ∈ TxM⊥, TxM ⊂ Hγ′′(0). As a consequence,

d (y − x, TxM) ≥ d
(
y − x,Hγ′′(0)

)
= |〈γ

′′(0), y − x〉|
‖γ′′(0)‖ . (C.20)
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Using the Taylor expansion of γ at order two, we get

y − x = γ(t0)− γ(0) = t0γ
′(0) +

∫ t0

0

∫ t

0
γ′′(s)dsdt. (C.21)

Since γ is parametrized by arc length, 〈γ′(t), γ′(t)〉 = 1. Differentiating this identity at 0
yields 〈γ′′(0), γ′(0)〉 = 0. In addition, by definition of C(3)

τmin,L
3 M (Definition V.7), the

geodesic γ satisfies ‖γ′′(s)− γ′′(0)‖ ≤ L|s|. Therefore,∣∣〈γ′′(0), γ′′(s)
〉∣∣ =

∣∣〈γ′′(0), γ′′(0)
〉
−
〈
γ′′(0), γ′′(s)− γ′′(0)

〉∣∣
≥ ||γ′′(0)||2 − L||γ′′(0)|||s|.

Combining the above bound together with (C.19), (C.20) and (C.21), we derive

1
τ̂({x, y}) ≥

∥∥γ′′(0)
∥∥− 2

3Lt0,

which is the announced inequality.

Proof of Lemma V.23. For short, in what follows, we let tx := dM (q0, x), ty := dM (q0, y),
and θ := ∠(γ′x→y(0), γ′q0→x(tx)). From Lemma C.14,

∥∥∥γ′′x→y(0)
∥∥∥ ≥ ∥∥∥γ′′q0→x(tx)

∥∥∥− √
2√

2− 1
sin2 θ

(
κx +

∥∥∥γ′′q0→x(tx)
∥∥∥)

− 1√
2− 1

(
κx −

∥∥∥γ′′q0→x(tx)
∥∥∥)

=
√

2√
2− 1

cos2 θ
∥∥∥γ′′q0→x(tx)

∥∥∥− ( 1√
2− 1

+
√

2√
2− 1

sin2 θ

)
κx. (C.22)

We now focus on the term
∥∥∥γ′′q0→x(tx)

∥∥∥. Applying again Lemma C.14 yields∥∥∥γ′′q0→x(0)
∥∥∥ ≥ (1− 2 sin2 θx)κq0 ,

and since γ′′q0→x is L-Lipschitz,∥∥∥γ′′q0→x(tx)
∥∥∥ ≥ ∥∥∥γ′′q0→x(0)

∥∥∥− ∥∥∥γ′′q0→x(tx)− γ′′q0→x(0)
∥∥∥

≥ (1− 2 sin2 θx)κq0 − Ltx. (C.23)

Now we focus on bounding the terms sin2 θ and cos2 θ. Let S2
τM

be a d-dimensional
sphere of radius τM . In what follows, for short, ∠abc stands for ∠(γ′b→a(0), γ′b→c(0)).
First, let q̃0, x̃, ỹ ∈ S2

τM
be such that dS2

τM
(q̃0, x̃) = dM (q0, x), dS2

τM
(q̃0, ỹ) = dM (q0, y),

and ∠x̃q̃0ỹ = ∠xq0y. Then from Toponogov’s comparison Theorem [Mey89], we have
dS2

τM
(x̃, ỹ) ≤ dM (x, y). Moreover, the spherical law of cosines [Tod79] writes as

cos
(
dS2

τM
(x̃, ỹ)
τM

)
= cos

(
tx
τM

)
cos

(
ty
τM

)
+ sin

(
tx
τM

)
sin
(
ty
τM

)
cos (∠x̃q̃0ỹ) ,

and since tx, ty ≤ π
2 and cos(·) is decreasing on [0, π], we get

ty ≤ dS2
τM

(x̃, ỹ) ≤ dM (x, y).
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Now, let q̄0, x̄, ȳ ∈ S2
τM

be such that dS2
τM

(q̄0, x̄) = dM (q0, x), dS2
τM

(q̄0, ȳ) = dM (q0, y), and
dS2

τM
(x̄, ȳ) = dM (x, y). Applying Toponogov’s comparison Theorem [Mey89], we have

∠q0xy ≤ ∠q̄0x̄ȳ and ∠xq0y ≤ ∠x̄q̄0ȳ, and from the spherical law of cosines [Tod79],

cos (∠q̄0x̄ȳ) =
cos

(
ty
τM

)
− cos

(
tx
τM

)
cos

(
dM (x,y)
τM

)
sin
(
tx
τM

)
sin
(
dM (x,y)
τM

) ≥ 0,

so that ∠q0xy ≤ ∠q̄0x̄ȳ ≤ π
2 . Also, ∠xq0y ≥ |θx − θy| ≥ π

2 yields π
2 ≤ ∠xq0y ≤ ∠x̄q̄0ȳ, and

θ = ∠(γ′x→y(0), γ′q0→x(tx)) = π − ∠q0xy. Hence applying the spherical law of sines and
cosines [Tod79] implies

sin θ = sin(∠q0xy) ≤ sin(∠q̄0x̄ȳ)

=
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

1−
(
cos

(
tx
τM

)
cos

(
ty
τM

)
+ sin

(
tx
τM

)
sin
(
ty
τM

)
cos(∠x̄q̄0ȳ)

)2

≤
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

1− cos2
(
tx
τM

)
cos2

(
ty
τM

)
=

sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

sin2
(
ty
τM

)
+ sin2

(
tx
τM

)
cos2

(
ty
τM

)
≤ sin(∠x̄q̄0ȳ) ≤ sin(∠xq0y) ≤ sin(|θx − θy|). (C.24)

And accordingly,

| cos θ| =
√

1− sin2 θ ≥
√

1− sin2(|θx − θy|) = | cos(|θx − θy|)|. (C.25)

Hence applying (C.23), (C.24), and (C.25) to (C.22) gives∥∥∥γ′′x→y(0)
∥∥∥

≥
√

2√
2− 1

cos2(|θx − θy|)
(
(1− 2 sin2 θx)κq0 − Ltx

)
−
(

1√
2− 1

+
√

2√
2− 1

sin2(|θx − θy|)
)
κx

= (
√

2κq0 − κx)√
2− 1

−
√

2√
2− 1

(
(κq0 + κx) sin2(|θx − θy|) + 2κq0 sin2 θx cos2(|θx − θy|)

)
−
√

2√
2− 1

Ltx cos2(θx + θy)

≥ κq0 −
1√

2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2Ltx

)
.
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S1

exp−1q0 (B1)

γ′0(0)
√

t0
τmin

t0

exp−1q0 (B2)

v0

Figure C.2 – Layout of Proposition V.25.

Proof of Proposition V.25. In what follows, we let t0 ≤ τmin
10 ,

B1 := expq0
({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≤

√
t0
τmin

})
,

B2 := expq0
({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≥ π −

√
t0
τmin

})
,

and B0 := B1∪B2, as in Figure C.2. Let X ⊂M , and x, y ∈ X be such that x ∈ B1, y ∈ B2.
Writing θx := ∠(γ′0(0), γ′q0→x(0)) and θy := ∠(γ′0(0), γ′q0→y(0)), then θx ≤

√
t0
τmin
≤ π

4 and

θy ≥ π −
√

t0
τmin
≥ 3π

4 . Also, dM (q0, x) ≤ t0 and dM (x, y) ≤ 2t0, so that

0 ≤ 1
τM
− 1
τ̂(X )

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2
3dM (x, y) +

√
2√

2− 1
dM (q0, x)

)

≤
(

16
√

2
(
√

2− 1)τminτM
+ (7
√

2− 4)L
3(
√

2− 1)

)
t0.

A symmetric argument also applies when x ∈ B2 and y ∈ B1. Now, for any s < 1
τM

,

let t0(s) :=
(

16
√

2
(
√

2−1)τminτM
+ (7

√
2−4)L

3(
√

2−1)

)−1
s < τmin

10 . The above argument implies that if
1

τ̂(X ) <
1
τM
− s, then for any x, y ∈ X ∩B0, one has either x, y ∈ B1 or x, y ∈ B2. Hence

P
( 1
τM
− 1
τ̂(X) > s

)
≤

n∑
m=0

(
n

m

)(
P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B1)

+ P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B2)
)

=
n∑

m=0

(
n

m

)(
(1− P (B0))mP (B1)n−m + (1− P (B0))mP (B2)n−m

)
= (1− P (B2))n + (1− P (B1))n. (C.26)
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Now we consider lower bounds for P (B1) and P (B2). Let S1 := exp−1
q0 (B1)∩∂BTq0M (0, t0),

and as in Figure C.2, exp−1
q0 (B1) ⊂ BTq0M (0, t0) is a cone satisfying

Hd
(
exp−1

q0 (B1)
)

Hd
(
BTq0M (0, t0)

) = Hd−1 (S1)
Hd−1

(
∂BTq0M (0, t0)

) .
Let ωd := Hd(BRd(0, 1)) and σd := Hd(∂BRd+1(0, 1)) be the volumes of the d-dimensional
unit ball and the unit sphere respectively. Then by homogeneity, Hd

(
BTq0M (0, t0)

)
= ωdt

d
0

and Hd−1
(
∂BTq0M (0, t0)

)
= σd−1t

d−1
0 . For lower bounding Hd−1 (S1), let v0 := t0γ′0(0)

‖γ′0(0)‖ ∈

S1, and consider expv0 : Tv0S1 → S1. Then τS1 = t0 and exp−1
v0 (S1) ⊂ BTv0S1

(
0, τ−

1
2

mint
3
2
0

)
,

hence applying Proposition C.1 (v) yields

Hd−1 (S1) ≥
(

1− t0
6τmin

)d−1
Hd−1

(
BTv0S1

(
0, τ−

1
2

mint
3
2
0

))
≥
(59

60

)d−1
ωd−1τ

− d−1
2

min t
3d−3

2
0 ,

and hence

Hd−1
(
exp−1

q0 (B1)
)

=
Hd

(
BTq0M (0, t0)

)
Hd−1 (S1)

Hd−1
(
∂BTq0M (0, t0)

)
≥
(59

60

)d−1
1ωd−1

d
τ
− d−1

2
min t

3d−1
2

0 .

Furthermore, since exp−1
q0 (B1) ⊂ BTq0M (q0,

τM
10 ), Proposition C.1 (v) yields

Hd (B1) ≥
(599

600

)d
Hd

(
exp−1

q0 (B1)
)
≥
(35341

36000

)d 1
d
τ
− d−1

2
min t

3d−1
2

0 ,

and hence,

P (B1) ≥
(35341

36000

)d fmin
d
τ
− d−1

2
min t

3d−1
2

0 ≥ Cτmin,d,L,fmins
3d−1

2 ,

where Cτmin,d,L,fmin =
(

35341
36000

)d fmin
d τ

− d−1
2

min

(
16
√

2
(
√

2−1)τ2
min

+ (7
√

2−4)L
3(
√

2−1)

)−1
. By symmetry, the

same bound holds for P (B2). Hence applying these to (C.26) gives

P
( 1
τM
− 1
τ̂(X) > s

)
≤ 2

(
1− Cτmin,d,L,fmins

3d−1
2
)n

≤ 2 exp
(
−Cτmin,d,L,fminns

3d−1
2
)
.

As a consequence, by integration,

EPn
[∣∣∣∣ 1
τ̂(X) −

1
τM

∣∣∣∣p] =
∫ 1

τ
p
M

0
P
(∣∣∣∣ 1
τ̂(X) −

1
τM

∣∣∣∣p > s

)
ds

≤ 2
∫ ∞

0
exp

(
−Cτmin,d,L,fminns

3d−1
2p

)
ds

= 2 (Cτmin,d,L,fminn)−
2p

3d−1

∫ ∞
0

x
2p

3d−1 e−xdx

= 2Γ
( 2p

3d− 1

)
C
− 2p

3d−1
τmin,d,L,fmin

n−
2p

3d−1

:= Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

where Γ(·) is the Gamma function.
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C.4 Minimax Lower Bounds

C.4.1 Stability of the Model With Respect to Diffeomorphisms

To prove Proposition V.30, we will use the following result (already reproduced in Lemma
III.17), stating that the reach is a stable quantity with respect to C2-perturbations.

Lemma C.27 (Theorem 4.19 in [Fed59]). Let A ⊂ RD with τA ≥ τmin > 0 and Φ : RD −→
RD is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz with Lipschitz constants
K,N and R respectively, then

τΦ(A) ≥
τmin

(K +Rτmin)N2 .

Proof of Proposition V.30. Let M ′ = Φ (M) be the image of M by the mapping Φ. Since
Φ is a global diffeomorphism, M ′ is a closed submanifold of dimension one. Moreover, Φ is
‖dΦ‖op ≤ (1 + ‖dΦ− ID‖op)-Lipschitz, Φ−1 is

∥∥dΦ−1∥∥
op ≤ (1− ‖dΦ− ID‖op)−1-Lipschitz,

and dΦ is
∥∥d2Φ

∥∥
op-Lipschitz. From Lemma B.1,

τM ′ ≥
τmin(1− ‖dΦ− ID‖op)2

‖d2Φ‖op τmin + (1 + ‖dΦ− ID‖op)
≥ τmin/2,

where we used that
∥∥d2Φ

∥∥
op τmin ≤ 1/2 and ‖dΦ− ID‖op ≤ 0.1. All that remains to be

proved now is the bound on the third order derivative of the geodesics of M ′. We denote
by γ and γ̃ the geodesics of M and M ′ respectively.

Let p′ = Φ(p) ∈M ′ and v′ = dpΦ.v ∈ Tp′M ′ be fixed. Since M ∈ C(3)
τmin,L

is a compact
C3-submanifold with geodesics ‖γ′′′(0)‖ ≤ L, M can be parametrized locally by a C3

bijective map Ψp : BRd(0, ε)→M with Ψp(0) = p. For a smooth curve γ on M nearby p,
we let c = (c1, . . . , cd)t denote its lift in the coordinates x = Ψ−1

p , that is γ(t) = Ψp ◦ c(t).
γ = γp,v is the geodesic of M with initial conditions p and v if and only if c satisfies
the geodesic equations (see [dC92] p.62). That is, the second order ordinary differential
equation c′′` (t) +

〈
Γ` (c(t)) · c′(t), c′(t)

〉
= 0, (1 ≤ ` ≤ d)

c(0) = 0 and c′(0) = dpx.v,
(C.28)

where Γ` =
(
Γ`i,j

)
1≤i,j≤d are the Christoffel’s symbols of the C3 chart x, which depends only

on x and its differentials of order 1 and 2. By construction, M ′ is parametrized locally by
Ψ′p′ = Φ ◦Ψp yielding local coordinates y = Ψ′−1

p′ = Ψ−1
p ◦Φ−1 nearby p′ ∈M ′. Writing Γ̃`

for the Christoffel’s symbols of M ′, γ̃ is a geodesic of M ′ at p′ if its lift c̃ = Ψ′−1
p′ (γ̃) satisfies

(C.28) with Γ` replaced by Γ̃`, and initial conditions c̃(0) = c and c̃′(0) = dp′y.v′ = dpx.v.
From chain rule, the Γ̃`’s depend on Γ, dΦ, and d2Φ.

Considering c′′′(0)− c̃′′′(0) by differentiating (C.28), since c(0) = c̃(0) = 0 and c′′(0) =
c̃′′(0), we have that for ‖ID − dΦ‖op,

∥∥d2Φ
∥∥
op and

∥∥d3Φ
∥∥
op small enough, this difference

can be made arbitrarily small. In particular, γ̃′′′(0) is arbitrarily close to γ′′′(0) so that
‖γ̃′′′(0)‖ ≤ ‖γ′′′(0)‖+ L ≤ 2L, which concludes the proof.

C.4.2 Some Lemmas on the Total Variation Distance

Prior to any actual construction, we show this straighforward lemma bounding the total
variation between uniform distribution on manifolds that are perturbations of each other.
For a d-submanifoldM ⊂ RD, write λM = 1M

Hd(M)H
d for the uniform probability distribution

on M .
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Lemma C.29. Let M ⊂ RD be a d-dimensional submanifold and B ⊂ RD be a Borel
set. Let Φ : RD → RD be a global diffeomorphism such that Φ|Bc is the identity map and
‖dΦ− ID‖op ≤ 21/d − 1. Then Hd(Φ(M)) ≤ 2Hd(M) and TV

(
λM , λΦ(M)

)
≤ 12λM (B).

Proof of Lemma C.29. Since Φ is (1 + ‖dΦ− ID‖op)-Lipschitz, Lemma 4 of [ACLZ17]
asserts that

Hd (Φ(M ∩B)) ≤ (1 + ‖dΦ− ID‖op)
dHd(M ∩B) ≤ 2Hd(M ∩B).

Therefore,

Hd (Φ(M))−Hd(M) = Hd (Φ(M ∩B))−Hd (M ∩B)
≤ Hd(M ∩B) ≤ Hd(M).

Now, writing 4 for the symmetric difference of sets, we have M4Φ(M) = (B ∩M)4(B ∩
Φ(M)) ⊂ (B ∩M) ∪ (B ∩ Φ(M)). Therefore, Lemma 5 in [ACLZ17] yields,

TV
(
λM , λΦ(M)

)
≤ 4H

d (M4Φ(M))
Hd(M ∪ Φ(M))

≤ 4H
d (M ∩B) +Hd (Φ(M) ∩B)

Hd(M)

= 4H
d (M ∩B) +Hd (Φ(M ∩B))

Hd(M)

≤ 12H
d(M ∩B)
Hd(M) = 12λM (B).

Let us now tackle the proof of Lemma V.29. For this, we will need the following
elementary differential geometry results Lemma C.30 and Corollary C.31.

Lemma C.30. Let g : Rd → Rk be C1 and x ∈ Rd be such that g(x) = 0 and dxg 6= 0.
Then there exists r > 0 such that Hd

(
g−1(0) ∩ B(x, r)

)
= 0.

Proof of Lemma C.30. Let us prove that for r > 0 small enough, the intersection g−1(0) ∩
B(x, r) is contained in a submanifold of codimension one of Rd. Writing g = (g1, . . . , gk),
assume without loss of generality that ∂x1g1 6= 0. Since g1 : Rd → R is nonsingular at x,
the implicit function theorem asserts that g−1

1 (0) is a submanifold of dimension d− 1 of
Rd in a neighborhood of x ∈ Rd. Therefore, for r > 0 small enough, g−1

1 (0) ∩ B(x, r) has
d-Hausdorff measure zero. The result hence follows, noticing that g−1(0) ⊂ g−1

1 (0).

Corollary C.31. Let M,M ′ ⊂ RD be two compact d-dimensional submanifolds, and
x ∈M ∩M ′. If TxM 6= TxM

′, there exists r > 0 such that A = M ∩M ′ ∩ B(x, r) satisfies
λM (A) = λM ′(A) = 0.

Proof of Corollary C.31. Writing k = D − d, we see that up to ambient diffeomorphism
— which preserves the nullity of measure — we can assume that locally around x, M ′
coincides with Rd × {0}k and that M is the graph of a C∞ function g : BRd(0, r′) → Rk
for r′ > 0 small enough. The assumption TxM 6= TxM

′ translates to d0g 6= 0, and the
previous transformation maps smoothly M ∩M ′ ∩ B(x, r′′) to g−1(0) ∩ B(0, r′) for r′′ > 0
small enough. We conclude by applying Lemma C.30.

We are now in position to prove Lemma V.29.
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Proof of Lemma V.29. Notice that P and P ′ are dominated by the measure µ = 1M∪M ′Hd,
with dP (x) = f(x)dµ(x) and dP ′(x) = f ′(x)dµ(x), where f, f ′ : RD → R+ have support
M and M ′ respectively. On the other hand, P̃ and P̃ ′ are dominated by ν(dx dT ) =
δ{TxM,TxM ′} (dT )µ (dx) with respective densities f̃(x, T ) = 1T=TxMf(x) and f̃ ′(x, T ) =
1T=TxM ′f

′(x), where we set arbitrarily TxM = T0 for x /∈M , and TxM ′ = T0 for x /∈M ′.
Recalling that f vanishes outside M , and f ′ outside M ′,

TV (P̃, P̃ ′) = 1
2

∫
RD×Gd,D

|f̄ − f̄ ′|dν

= 1
2

∫
RD

1TxM=TxM ′ |f(x)− f ′(x)|+ 1TxM 6=TxM ′(f(x) + f ′(x))Hd(dx).

From Corollary C.31 and a straightforward compactness argument, we derive that

Hd
(
M ∩M ′ ∩

{
x|TxM 6= TxM

′}) = 0.

As a consequence, the above integral expression becomes

TV (P̃, P̃ ′) = 1
2

∫
RD
|f − f ′|dHd = TV (P, P ′),

which concludes the proof.

C.4.3 Construction of the Hypotheses

This section is devoted to the construction of hypotheses that will be used in Le Cam’s
lemma (Lemma V.28), to derive Theorem V.13 and Theorem V.32.

Lemma C.32. Let R, `, η > 0 be such that ` ≤ R
2 ∧

(
21/d − 1

)
and η ≤ `2

2R . Then there

exists a d-dimensional sphere of radius R that we call M , such that M ∈ C(3)
R, 1

R2
and a

global C∞-diffeomorphism Φ : RD → RD such that,

‖dΦ− I2‖op ≤
3η
`
,

∥∥∥d2Φ
∥∥∥
op
≤ 23η

`2
,

∥∥∥d3Φ
∥∥∥
op
≤ 573η

`3
,

and so that writing M ′ = Φ(M), we have Hd(M ′) ≤ 2Hd(M) = 2σdRd∣∣∣∣ 1
τM
− 1
τM ′

∣∣∣∣ ≥ η

`2
, and TV (λM , λM ′) ≤ 12

(
`

R

)d
.

Proof of Lemma V.31. Let M ⊂ Rd+1 × {0}D−d−1 ⊂ RD be the sphere of radius R with
center (0,−R, 0, . . . , 0). The reach of M is τM = R, and its arc-length parametrized
geodesics are arcs of great circles, which have third derivatives of constant norm ‖γ′′′(t)‖ =
1
R2 . Hence we see thatM ∈ C(3)

R, 1
R2

. Let φ be the map defined by φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1.

φ is a symmetric C∞ map with support equal to B(0, 1) and elementary real analysis yields
φ(0) = 1, ‖dφ‖op ≤ 3,

∥∥d2φ
∥∥
op ≤ 23 and

∥∥d3φ
∥∥
op ≤ 573. Let Φ : RD → RD be defined by

Φ(x) = x+ ηφ (x/`) · v,

where v = (0, 1, 0, . . . , 0) is the unit vertical vector. Φ is the identity map on B (0, `)c, and in
B (0, `), Φ translates points on the vertical axis with a magnitude modulated by the weight
function φ(x/`). From chain rule, ‖dΦ− ID‖op = η ‖dφ‖∞ /` ≤ 3η/` < 1. Therefore, dxΦ
is invertible for all x ∈ RD, so that Φ is a local C∞-diffeomorphism according to the local
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η

R

` x

M ′

x0

O

b

b′

(Oy)

θ

Figure C.3 – The bumped sphere circle M ′.

inverse function theorem. Moreover, ‖Φ(x)‖ → ∞ as ‖x‖ → ∞, so that Φ is a global
C∞-diffeomorphism by Hadamard-Cacciopoli theorem [DMGZ94]. Similarly, from bounds
on differentials of φ we get∥∥∥d2Φ

∥∥∥
op
≤ 23 η

`2
and

∥∥∥d3Φ
∥∥∥
op
≤ 573 η

`3
.

Let us now write M ′ = Φ (M) for the image of M by the map Φ. Denote by (Oy) the
vertical axis span(v), and notice that since φ is symmetric, M ′ is symmetric with respect
to the vertical axis (Oy). We now bound from above the reach τM ′ of M ′ by showing that
the point x0 =

(
0, (R+ η/2)/(1 + `2

2Rη ), 0, . . . , 0
)
belongs to its medial axis Med(M ′). For

this, write

b = (0, η, 0, . . . , 0), b′ = (0,−2R, 0, . . . , 0),

together with θ = arccos(1− `2/(2R2)), and

x = (R sin θ,R cos θ −R, 0, . . . , 0).

By construction, b, b′ and x belong to M ′. One easily checks that ‖x0 − x‖ < ‖x0 − b‖ and
‖x0 − x‖ < ‖x0 − b′‖, so that neither b nor b′ is the nearest neighbor of x0 on M ′. But
x0 ∈ (Oy) which is an axis of symmetry of M ′, and (Oy)∩M ′ = {b, b′}. As a consequence,
x0 has strictly more than one nearest neighbor on M ′. That is, x0 belongs to the medial
axis Med(M ′) of M ′. Therefore,

1
τM ′
≥ 1
d (x0,M ′)

≥ 1
‖x0 − x‖

≥ 1

R

∣∣∣∣∣1− `2

2R2 −
1+ η

2R
1+ `2

2Rη

∣∣∣∣∣
≥ 1

R

(
1− 1+ η

2R
1+ `2

2Rη

) ≥ 1
R

1 +
1 + η

2R
1 + `2

2Rη

 ≥ 1
R

+ η

`2
,
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which yields the bound
∣∣∣ 1
τM
− 1

τM′

∣∣∣ ≥ η
`2 .

Finally, since M ′ = Φ(M) with ‖dΦ− ID‖op ≤ 21/d − 1 with Φ|B(0,`)c coinciding with
the identity map, Lemma C.29 yields Hd(M ′) ≤ 2Hd(M) = 2σdRd and

TV (λM , λM ′) ≤ 12λM (B(0, `))

= 12
Hd

(
BSd

(
0, 2 arcsin

(
`

2R

)))
Hd (Sd)

≤ 12
(
`

R

)d
,

which concludes the proof.

Proof of Proposition V.31. Apply Lemma V.31 with R = 2τmin. Then the sphere M of
radius 2τmin belongs to C(3)

2τmin,1/(4τ2
min). Furthermore, taking η = cd`

3/τ2
min for cd > 0

and ` > 0 small enough, Proposition V.30 (applied to the unit sphere, yielding cd, and
reasoning by homogeneity for the sphere of radius 2τmin) asserts that M ′ = Φ(M) belongs
to C(3)

τmin,1/(2τ2
min) ⊂ C

(3)
τmin,L

, since L ≥ 1/(2τ2
min). Moreover,

Hd(M ′)−1,Hd(M)−1 ≥
(
2d+1σdτ

d
min

)
≥ fmin,

so that λM , λM ′ ∈ P
(3)
τmin,L

(fmin), which gives the result.

Let us now prove the minimax inconsistency of the reach estimation for L =∞, using
the same technique as above.

Proof of Proposition V.13. LetM andM ′ be given by Lemma C.32 with ` ≤ R
2 ∧(21/d−1),

η = `2/(23R) and R = 2τmin. We have ‖dΦ− ID‖op ≤ 3η/` ≤ 0.1 and
∥∥d2Φ

∥∥
op ≤ 23η/`2 ≤

1/(2τmin). Since τM ≥ 2τmin, Lemma B.1 yields

τM ′ ≥
τM (1− ‖dΦ− ID‖op)2

‖d2Φ‖op τM + (1 + ‖dΦ− ID‖op)
≥ τmin.

As a consequence, M and M ′ belong to C(3)
τmin,L=∞. Furthermore, from fmin ≥ 1

2d+1τdminσd
≥

Hd(M)−1,Hd(M ′)−1 we see that the uniform distributions λM , λM ′ belong to P
(3)
τmin,L=∞(fmin).

Let now P̃, P̃ ′ denote the distributions of P̃(3)
τmin,L=∞(fmin) associated to λM , λM ′ (Defini-

tion V.9). Lemma V.29 asserts that TV (P̃, P̃ ′) = TV (λM , λM ′). Applying Lemma V.28 to
P̃, P̃ ′, we get that for all n ≥ 1, for ` small enough,

inf
τ̂n

sup
P̃∈P̃(3)

τmin,L=∞(fmin)
EP̃n

∣∣∣∣∣ 1
τP̃
− 1
τ̂n

∣∣∣∣∣
p

≥ 1
2p

∣∣∣∣ 1
τM
− 1
τM ′

∣∣∣∣p (1− TV (λM , λM ′))n

≥ 1
2p
(
η

`2

)p(
1− 12

(
`

2τmin

)d)n

= 1
2p
( 1

46τmin

)p(
1− 12

(
`

2τmin

)d)n
.

Sending `→ 0 with n ≥ 1 fixed yields the announced result.
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C.5 Stability with Respect to Tangent Spaces
Proof of Proposition V.34. To get the bound on the suprema, we show the (stronger)
pointwise bound. For all x, y ∈ X with x 6= y,∣∣∣∣∣2d(y − x, Tx)

‖y − x‖2
− 2d(y − x, T ′x)

‖y − x‖2

∣∣∣∣∣ ≤ 2
‖y − x‖2

‖πTx(y − x)− πT ′x(y − x)‖

≤
2‖πTx − πT ′x‖op

‖y − x‖
≤ 2 sin θ

δ
.
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Chapter VI

Non-Asymptotic Rates for
Manifold, Tangent Space and
Curvature Estimation

Abstract

Given an n-sample drawn on a submanifold M ⊂ RD, we derive optimal rates for the
estimation of the submanifold M , the tangent space TXM and the second fundamental
form IIMX for X ∈ M both deterministic and random. After motivating their study, we
introduce a quantitative class of Ck-submanifolds in analogy with Hölder classes. We
propose estimators based on local polynomials that allow to deal simultaneously with the
three problems at stake. Minimax lower bounds are derived using a conditional version of
Assouad’s lemma when the base point X is random.
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CHAPTER VI. MANIFOLD, TANGENT SPACE & CURVATURE ESTIMATION

VI.1 Introduction
In Chapter IV, we built manifold estimators achieving optimal rates of approximation over
a class of C2 submanifolds. In the process, we studied tangent space estimators based on
local PCA. This raises several new questions among which the optimality of the tangent
space estimation procedure, as well as rates of convergence for smoother submanifolds. In
addition, we tackled in Chapter V the estimation of the reach in a C3 model, yielding an
estimation of maximum curvature in some cases. One can further ask about the estimation
of curvature at all sample points, together with possibly better rates when the submanifold
is smoother.

The present chapter focuses on optimal rates for estimation of quantities up to order
two: (0) the submanifold itself, (1) tangent spaces, and (2) second fundamental forms.

Among these three questions, a special attention has been paid to the estimation of the
submanifold. In particular, it is a central problem in manifold learning. Indeed, there exists
a wide bunch of algorithms intended to reconstruct submanifolds from point clouds (Isomap
[TdSL00], LLE [RS00], and restricted Delaunay Complexes [BG14, CDR05] for instance),
but a few come with theoretical guarantees [GPPVW12a]. Up to our knowledge, a minimax
lower bound has proved optimality of a reconstruction scheme in only one case [GPPVW12a].
Some of these reconstruction procedures are based on tangent space estimation, such as in
Chapter IV and [BG14, CDR05]. Tangent space estimation itself also yields interesting
applications in manifold clustering [GM11, ACLZ17]. Estimation of curvature-related
quantities naturally arises in shape reconstruction, since curvature can drive the size of a
meshing. As a consequence, most of the associated results deal with the case d = 2 and
D = 3, though some of them may be extended to higher dimensions [MOG11, GWM01].
Several algorithms have been proposed in that case [Rus04, CP05, MOG11, GWM01], but
with no analysis of their performances from a statistical point of view.

To assess the quality of such a geometric estimator, the class of submanifolds over
which the procedure is evaluated has to be specified. Up to now, the most commonly
used model for submanifolds relied on the reach τM , a generalized convexity parameter.
Assuming τM ≥ τmin > 0 involves both local regularity — a bound on curvature —
and global regularity — no arbitrarily pinched area. This C2-like assumption has been
extensively used in the computational geometry and geometric inference fields [NSW08,
FLR+14, APR16, GPPVW12a]. One attempt of a specific investigation for higher orders
of regularity k ≥ 3 has been proposed in [CP05].

However, many works suggest that the regularity of the submanifold has an important
impact on convergence rates. This is pretty clear for tangent space estimation, where
convergence rates of PCA-based estimators range from (1/n)1/d in the C2 case (Chapter
IV) to (1/n)α with 1/d < α < 2/d in more regular settings [SW12, TVF13]. In addition,
it seems that PCA-based estimators are outperformed by estimators taking into account
higher orders of smoothness [CC16, CP05], for regularities at least C3. For instance fitting
quadratic terms lead to a convergence rate of order (1/n)2/d in [CC16]. These remarks
naturally led us to investigate the properties of local polynomial approximation for regular
submanifolds, where “regular" has to be properly defined. Local polynomial fitting for
geometric inference was studied in several frameworks such as [CP05]. In some sense, a
part of our work extends these results, by investigating the dependency of convergence
rates on the sample size n, but also on the order of regularity k and the ambient and
intrinsic dimensions d and D.
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Outline

In this chapter, we build a collection of models for Ck-submanifolds (k ≥ 3) that naturally
generalize the commonly used one for k = 2 (Section VI.2). We emphasize the necessity
of both local and global constraints for estimation. On these models, we study the non-
asymptotic rates of estimation for tangent space, second fundamental form, and submanifold
estimation (Section VI.3). These results shed light on the influence of k, d, D and n on
these estimation problems, showing for instance that the ambient dimension D plays no
role. The estimators proposed all rely on the analysis of local polynomials, and allow
to deal with the three estimation problems in a unified way (Section VI.4.1). Minimax
lower bounds are derived using standard Bayesian techniques, although a new version of
Assouad’s Lemma is used for tangent spaces and second fundamental forms when the base
point is random (Section VI.4.2). For the sake of completeness, geometric background and
proofs of technical lemmas are given in the Appendix.

VI.2 Ck Models for Submanifolds

VI.2.1 Notation

Throughout this chapter, we consider d-dimensional compact submanifolds M ⊂ RD
without boundary. The submanifolds will always be assumed to be at least C2. For
all p ∈ M , TpM stands for the tangent space of M at p [dC92, Chapter 0]. We let
IIMp : TpM × TpM → TpM

⊥ denote the second fundamental form of M at p [dC92, p.
125]. IIMp characterizes the curvature of M at p. The standard inner product in RD is
denoted by 〈·, ·〉 and the Euclidean distance by ‖·‖. Given a linear subspace T ⊂ RD,
write T⊥ for its orthogonal space. We write B(p, r) for the closed Euclidean ball of radius
r > 0 centered at p ∈ RD, and for short BT (p, r) = B(p, r) ∩ T . For a smooth function
Φ : RD → RD and i ≥ 1, we let dixΦ denote the ith order differential of Φ at x ∈ RD.
For a linear map A defined on T ⊂ RD, ‖A‖op = supv∈T

‖Av‖
‖v‖ stands for the operator

norm. We adopt the same notation ‖·‖op for tensors, i.e. multilinear maps. Similarly,
if {Ax}x∈T ′ is a family of linear maps, for short, its L∞ operator norm is denoted by
‖A‖op = supx∈T ′ ‖Ax‖op. When it is well defined, we will write πB(z) for the projection
of z ∈ RD onto the closed subset B ⊂ RD, that is the nearest neighbor of z in B. The
distance between two linear subspaces U, V ⊂ RD of the same dimension is measured by
the principal angle ∠(U, V ) = ‖πU − πV ‖op . The Hausdorff distance [GPPVW12a] in RD
is denoted by dH . For a probability distribution P , EP stands for the expectation with
respect to P . We write P⊗n for the n-times tensor product of P .

Throughout this chapter, Cα will denote a generic constant depending on the parameter
α. For clarity’s sake, C ′α, cα, or c′α may also be used when several constants are involved.

VI.2.2 Reach and Regularity of Submanifolds

As introduced in [Fed59], the reach τM of a subset M ⊂ RD is the maximal neighborhood
radius for which the projection πM onto M is well defined. More precisely, denoting by
d(·,M) the distance to M , the medial axis of M is defined to be the set of points which
have at least two nearest neighbors on M , that is

Med(M) =
{
z ∈ RD|∃p 6= q ∈M, ‖z − p‖ = ‖z − q‖ = d(z,M)

}
.
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The reach is then defined by

τM = inf
p∈M

d (p,Med(M)) = inf
z∈Med(M)

d (z,M) .

It gives a minimal scale of geometric and topological features of M . As a generalized con-
vexity parameter, τM is a key parameter in reconstruction [GPPVW12a] and in topological
inference [NSW08]. Having τM ≥ τmin > 0 prevents M from almost auto-intersecting,
and bounds its curvature in the sense that

∥∥∥IIMp ∥∥∥
op
≤ τ−1

M ≤ τ−1
min for all p ∈M [NSW08,

Proposition 6.1].
For τmin > 0, we let C2

τmin denote the set of d-dimensional compact connected submani-
folds M of RD such that τM ≥ τmin > 0. A key property of submanifolds M ∈ C2

τmin is
the existence of a parametrization closely related to the projection onto tangent spaces.
We let expp : TpM → M denote the geodesic map [dC92, Chapter 3], that is defined by
expp(v) = γp,v(1), where γp,v is the unique constant speed geodesic path of M with initial
value p and velocity v.

Lemma VI.1. If M ∈ C2
τmin, expp : BTpM (0, τmin/4) → M is one-to-one. Moreover, it

can be written as

expp : BTpM (0, τmin/4) −→M

v 7−→ p+ v + Np(v)

with Np such that for all v ∈ BTpM (0, τmin/4),

Np(0) = 0, d0Np = 0, ‖dvNp‖op ≤ L⊥ ‖v‖ ,

where L⊥ = 5/(4τmin). Furthermore, for all p, y ∈M ,

y − p = πTpM (y − p) +R2(y − p),

where ‖R2(y − p)‖ ≤ ‖y−p‖
2

2τmin .

In other words, elements of C2
τmin have local parametrizations on top of their tangent

spaces that are defined on neighborhoods with a minimal radius, and these parametrizations
differ from the identity map by at most a quadratic term. In addition, the reach condition
provides an order 2 Taylor expansion of the submanifold on top of its tangent spaces. A
natural extension to Ck-submanifolds should ensure that such an expansion exists at order
k and satisfies some regularity constraints. To this aim, we introduce the following class of
regularity Ckτmin,L.

Definition VI.2. For k ≥ 3, τmin > 0, and L = (L⊥, L3, . . . , Lk), we let Ckτmin,L denote
the set of d-dimensional compact connected submanifolds M of RD with τM ≥ τmin and
such that, for all p ∈M , there exists a local one-to-one parametrization Ψp of the form:

Ψp : BTpM (0, r) −→M

v 7−→ p+ v + Np(v)

for some r ≥ 1
8L⊥ , with Np ∈ Ck

(
BTpM (0, r) ,RD

)
such that

Np(0) = 0, d0Np = 0,
∥∥∥d2

vNp

∥∥∥
op
≤ L⊥,

for all ‖v‖ ≤ 1
8L⊥ . Furthermore, we require that∥∥∥divNp

∥∥∥
op
≤ Li for all 3 ≤ i ≤ k.

128



CHAPTER VI. MANIFOLD, TANGENT SPACE & CURVATURE ESTIMATION

Let us precise that the radius 1/(8L⊥) has been chosen for convenience. Other smaller
scales would do and we could even parametrize this constant, but without substantial
benefits in the results.

The Ψp’s can be seen as unit parametrizations of M . The conditions on Np(0), d0Np,
and d2

vNp ensure that Ψ−1
p is close to the projection πTpM . The bounds on divNp (3 ≤ i ≤ k)

allow to control the coefficients of the polynomial expansion we seek. Indeed, whenever
M ∈ Ckτmin,L, Lemma VI.14 shows that for every p in M , and y in B

(
p,

τmin∧L−1
⊥

4
)
∩M ,

y − p = π∗(y − p) +
k−1∑
i=2

T ∗i (π∗(y − p)⊗i) +Rk(y − p), (VI.3)

where π∗ denotes the orthogonal projection onto TpM , the T ∗i are i-linear maps from TpM
to RD with ‖T ∗i ‖op ≤ L′i and Rk satisfies ‖Rk(y− p)‖ ≤ C‖y− p‖k, where the constants C
and the L′i’s depend on the parameters τmin, d, k, L⊥, . . . , Lk.

Such Ψp’s exist for any compact Ck-submanifold, if one allows τ−1
min, L⊥, L3,. . .,Lk to

be large enough. Note that for k ≥ 3 the exponential map can happen to be only Ck−2

for a Ck-submanifold [Har51]. Hence, it may not be a good choice of Ψp. However, for
k = 2, taking Ψp = expp is sufficient for our purpose. For ease of notation, we may write
C2
τmin,L although the specification of L is useless. In this case, we implicitly set by default

Ψp = expp and L⊥ = 5/(4τmin).
As will be shown in Theorem VI.6, the global assumption τM ≥ τmin > 0 cannot be

dropped, even when higher order regularity bounds Li’s are fixed.
Let us now describe the statistical model. Every d-dimensional submanifold M ⊂ RD

inherits a natural uniform volume measure by restriction of the ambient d-dimensional
Hausdorff measure Hd. In what follows, we will consider probability distributions that are
almost uniform on some M in Ckτmin,L, as stated below.

Definition VI.4. For k ≥ 2, τmin > 0, L = (L⊥, L3, . . . , Lk) and fmin ≤ fmax, we let
Pkτmin,L (fmin, fmax) denote the set of distributions P with support M ∈ Ckτmin,L that have
a density f with respect to the volume measure on M , and such that for all x ∈M ,

0 < fmin ≤ f(x) ≤ fmax <∞.

For short, we write Pk when there is no ambiguity. We denote by Xn an i.i.d. n-sample
{X1, . . . , Xn}, that is, a sample with distribution P⊗n for some P ∈ Pk. In what follows,
though M is unknown, all the parameters of the model will be assumed to be known,
including the intrinsic dimension d and the order of regularity k. We will also denote by
Pk(x) the subset of elements in Pk whose support contains a prescribed x ∈ RD.

In view of our minimax study on Pk, it is important to ensure by now that Pk is
stable with respect to deformations and dilations. Here, since we deal with submanifolds,
a natural way to model deformations is through ambient diffeomorphisms.

Proposition VI.5. Let Φ : RD → RD be a global Ck-diffeomorphism. If ‖dΦ− ID‖op
,
∥∥d2Φ

∥∥
op , . . . ,

∥∥∥dkΦ∥∥∥
op

are small enough, then for all P in Pkτmin,L (fmin, fmax), the
pushforward distribution P ′ = Φ∗P belongs to Pkτmin/2,2L (fmin/2, 2fmax). Moreover, if
Φ = λID (λ > 0) is an homogeneous dilation, then P ′ ∈ Pkλτmin,L(λ)

(fmin/λd, fmax/λd),
where L(λ) = (L⊥/λ, L3/λ

2, . . . , Lk/λ
k−1).

Proposition VI.5 follows from a geometric reparametrization argument (Proposition
D.2) and a change of variable result for the Hausdorff measure (Lemma D.3).
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Figure VI.1 – Inconsistency of tangent space estimation for τmin = 0.

VI.2.3 Necessity of a Global Assumption

In the previous Section VI.2.2, we generalized C2-like models — stated in terms of reach —
to Ck for k ≥ 3 by imposing higher order differentiability bounds on parametrizations Ψp’s.
Though, we did not drop the global assumption τM ≥ τmin > 0. Indeed, it appears that
such an assumption is necessary for estimation purpose.

Theorem VI.6. Assume that τmin = 0. If D ≥ d + 3, then for all k ≥ 3 and L⊥ > 0,
provided that L3/L

2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are large enough (depending

only on d and k), for all n ≥ 1,

inf
T̂

sup
P∈Pk(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2 > 0,

where the infimum is taken over all the estimators T̂ = T̂
(
X1, . . . , Xn

)
.

Moreover, for any D ≥ d+1, provided that L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/Ld⊥

are large enough (depending only on d and k), for all n ≥ 1,

inf
ÎI

sup
P∈Pk(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op
≥ L⊥

4 > 0,

where the infimum is taken over all the estimators ÎI = ÎI
(
X1, . . . , Xn

)
.

In other words, if the class of submanifolds is allowed to have arbitrarily small reach,
no estimator can perform uniformly well to estimate neither TxM nor IIMx . And this,
even though each of the underlying submanifolds have arbitrarily smooth parametrizations.
Indeed, if two parts of M can nearly intersect around x at an arbitrarily small scale Λ→ 0,
no estimator can decide whether the direction (resp. curvature) of M at x is that of the
first part or the second part (see Figures VI.1 and VI.2).

VI.3 Main Results
Let us now move to the description of the main results, that consist of minimax upper and
lower bounds for each object of interest. Given an i.i.d. n-sample Xn = {X1, . . . , Xn} with
unknown common distribution P ∈ Pk having support M , we detail non-asymptotic rates
for the estimation of tangent spaces TXjM , second fundamental forms IIMXj , and M itself.

For this, we need one more piece of notation. For 1 ≤ j ≤ n, P (j)
n denotes integration

with respect to 1/(n − 1)
∑
i 6=j δ(Xi−Xj), and y⊗i denotes the D × i-dimensional vector
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Figure VI.2 – Inconsistency of curvature estimation for τmin = 0.

(y, . . . , y). For a constant t > 0 and a bandwidth h > 0 to be chosen later, we define the
local polynomial estimator (π̂j , T̂2,j , . . . , T̂k−1,j) at Xj to be any element of

arg min
π,sup2≤i≤k ‖Ti‖op≤t

P (j)
n

∥∥∥∥∥x− π(x)−
k−1∑
i=2

Ti(π(x)⊗i)
∥∥∥∥∥

2

1B(0,h)(x)

 , (VI.7)

where π ranges among all the orthogonal projectors on d-dimensional subspaces, and Ti :(
RD
)i
→ RD among the symmetric tensors of order i such that ‖Ti‖op ≤ t. For k = 2, the

sum over the tensors Ti is empty, and the integrated term reduces to ‖x− π(x)‖2 1B(0,h)(x).
By compactness of the domain of minimization, such a minimizer exists almost surely. In
what follows, we will work with a maximum scale h ≤ h0, with

h0 = τmin ∧ L−1
⊥

8 .

Note that the set of d-dimensional orthogonal projectors is not convex, leading to a
more involved optimization problem than usual least squares. In practice, this problem may
be solved using tools from optimization on Grassman manifolds [UM14], or adopting a two-
stage procedure such as in [CP05]: from local PCA, a first d-dimensional space is estimated
at each sample point, along with an orthonormal basis of it. Then, the optimization
problem (VI.7) is expressed as a minimization problem in terms of the coefficients of
(πj , T2,j , . . . , Tk,j) in this basis under orthogonality constraints. It is worth mentioning
that a similar problem is explicitly solved in [CC16], leading to an optimal tangent space
estimation procedure in the case k = 3.

The constraint ‖Ti‖op ≤ t involves a parameter t to be calibrated. As will be shown in
the following section, it is enough to choose t roughly smaller than 1/h, but still larger
than the unknown norm of the optimal tensors ‖T ∗i ‖op. Hence, for h → 0, the choice
t = h−1 works to guarantee optimal convergence rates. Such a constraint on the higher
order tensors might have been stated under the form of a ‖.‖op-penalized least squares
minimization — as in ridge regression — leading to the same results.

VI.3.1 Tangent Spaces

By definition, the tangent space TXjM is the best linear approximation of M nearby Xj .
Therefore, it is natural to take the range of the first order term minimizing (VI.7) and
write T̂j = im π̂j . The T̂j ’s approximate simultaneously the TXjM ’s with high probability,
as stated below.
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Theorem VI.8. Assume that t ≥ Ck,d,τmin,L ≥ sup2≤i≤k ‖T ∗i ‖op. Set h =
(
Cd,k

log(n)f2
max

(n−1)f3
min

)1/d
,

for Cd,k large enough. If n is large enough so that h ≤ h0, then with probability at least

1−
(

1
n

)k/d
,

max
1≤j≤n

∠
(
TXjM, T̂j

)
≤ Cd,k,τmin,L

√
fmax
fmin

hk−1(1 + th).

As a consequence, taking t = h−1, for n large enough,

sup
P∈Pk

EP⊗n max
1≤j≤n

∠
(
TXjM, T̂j

)
≤ C

( log(n)
n− 1

) k−1
d

,

where C = Cd,k,τmin,L,fmin,fmax.

The same bound holds for the estimation of TxM at a prescribed x ∈ M . For that,
simply take P (x)

n = 1/n
∑
i δ(Xi−x) as integration in (VI.7).

This result is in line with those of [CP05] in terms of the sample size dependency
(1/n)(k−1)/d. Besides, it shows that the convergence rate of our estimator does not depend
on the ambient dimension D, even in codimension greater than 2. When k = 2, we
recover the same rate as in Chapter IV, where we used local PCA for estimation, that is a
reformulation of (VI.7). When k ≥ 3, this procedure outperforms PCA-based estimators
of [SW12] and [TVF13], where convergence rates of the form (1/n)α is obtained for
1/d < α < 2/d. This bound also recovers the result of [CC16] in the case k = 3, where
a similar procedure is used. Moreover, Theorem VI.8 nearly matches the following lower
bound.

Theorem VI.9. If τminL⊥, . . . , τk−1
minLk, (τdminfmin)−1 and τdminfmax are large enough (de-

pending only on d and k), then

inf
T̂

sup
P∈Pk

EP⊗n∠
(
TX1M, T̂

)
≥ cd,k,τmin

( 1
n− 1

) k−1
d

,

where the infimum is taken over all the estimators T̂ = T̂ (X1, . . . , Xn).

Hence, up to a logn factor, the rate n−(k−1)/d is optimal for tangent space estimation
on the model Pk. The rate (logn/n)1/d obtained in Chapter IV for k = 2 is therefore
optimal, as well as the rate (logn/n)2/d given in [CC16] for k = 3. The rate n−(k−1)/d

naturally appears on the the model Pk, since it consists of Ck-submanifolds, and tangent
spaces are differential objects of order 1, yielding the shift k − 1. Again, the same lower
bound holds for the estimation of TxM at a fixed point x in the model Pk(x). Interestingly,
the tools used to derive the lower bound for TxM (x fixed) is much less involved than for
TX1M (X1 random and depending on the distribution P ). In the latter case, a conditional
Assouad’s Lemma (Lemma VI.24) is used. We will detail these differences in Section VI.4.2.

VI.3.2 Curvature

The second fundamental form IIMXj : TXjM × TXjM → TXjM
⊥ ⊂ RD is a symmetric

bilinear map that encodes completely the curvature ofM at Xj [dC92, Chap. 6, Proposition
3.1]. Estimating it only from a point cloud Xn does not trivially make sense, since IIMXj
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has domain TXjM which is unknown. To bypass this issue we extend IIMXj to RD. That is,
we consider the estimation of IIMXj ◦ πTXjM which has full domain RD. Following the same
ideas as in the previous Section VI.3.1, we use the second order tensor T̂2,j ◦ π̂j obtained in
(VI.7) to estimate IIMXj ◦ πTXjM .

Theorem VI.10. Let k ≥ 3. Take h as in Theorem VI.8 and t = 1/h. If n is large enough
so that h ≤ h0 and h−1 ≥ C−1

k,d,τmin,L ≥ (sup2≤i≤k ‖T ∗i ‖op)−1, then with probability at least

1−
(

1
n

)k/d
,

max
1≤j≤n

∥∥∥IIMXj ◦ πTXjM − T̂2,j ◦ π̂j
∥∥∥
op
≤ Cd,k,τmin,L

√
fmax
fmin

hk−2.

In particular, for n large enough,

sup
P∈Pk

EP⊗n max
1≤j≤n

∥∥∥IIMXj ◦ πTXjM − T̂2,j ◦ π̂j
∥∥∥
op
≤ C

( log(n)
n− 1

) k−2
d

,

where C = Cd,k,τmin,L,fmin,fmax.

Interestingly, Theorems VI.8 and VI.10 are enough to provide estimators of various
notions of curvature. For instance, consider the scalar curvature [dC92, Section 4.4] at a
point Xj , defined by

ScMXj = 1
d(d− 1)

∑
r 6=s

[〈
IIMXj (er, er), II

M
Xj (es, es)

〉
− ‖IIMXj (er, es)‖

2
]
,

where (er)1≤r≤d is an orthonormal basis of TXjM . A plugin estimator of ScMXj is

Ŝcj = 1
d(d− 1)

∑
r 6=s

[〈
T̂2,j(êr, êr), T̂2,j(ês, ês)

〉
− ‖T̂2,j(êr, ês)‖2

]
,

where (êr)1≤r≤d is an orthonormal basis of T̂XjM . Theorems VI.8 and VI.10 yield

EP⊗n max
1≤j≤n

∣∣∣Ŝcj − ScMXj ∣∣∣ ≤ Cd,k,τmin,L,fmin,fmax ( log(n)
n− 1

) k−2
d

.

The (near-)optimality of the bound stated in Theorem VI.10 is assessed by the following
lower bound.

Theorem VI.11. If τminL⊥, . . . , τk−1
minLk, (τdminfmin)−1 and τdminfmax are large enough

(depending only on d and k), then

inf
ÎI

sup
P∈Pk

EP⊗n
∥∥∥IIMX1 ◦ πTX1M

− ÎI
∥∥∥
op
≥ cd,k,τmin

( 1
n− 1

) k−2
d

,

where the infimum is taken over all the estimators ÎI = ÎI(X1, . . . , Xn).

The same remarks as in Section VI.3.1 hold. If the estimation problem consists in
approximating IIMx at a fixed point x known to belong to M beforehand, we obtain the
same rate. The ambient dimension D still plays no role. The shift k − 2 in the rate of
convergence on a Ck-model can be interpreted as the order of derivation of the object of
interest, that is 2 for curvature.

Notice that the lower bound (Theorem VI.11) does not require k ≥ 3. Hence, we get
that for k = 2, curvature cannot be estimated uniformly consistently on the C2-model
P2. This seems natural, since the estimation of a second order quantity should require an
additional degree of smoothness.
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M̂

Figure VI.3 – M̂POLY is a union of polynomial patches at sample points.

VI.3.3 Support Estimation

For each 1 ≤ j ≤ n, the minimization (VI.7) outputs a series of tensors (π̂j , T̂2,j , . . . , T̂k−1,j).
This collection of multidimensional monomials can be further exploited as follows. By
construction, they fit M at scale h around Xj , so that

Ψ̂j(v) = Xj + v +
k−1∑
i=2

T̂i,j
(
v⊗i
)

is a good candidate for an approximate parametrization in a neighborhood of Xj . We
do not know the domain TXjM of the initial parametrization, though we have at hand
an approximation T̂j = im π̂j which was proved to be consistent in Section VI.3.1. As a
consequence, we let the support estimator based on local polynomials M̂POLY be

M̂POLY =
n⋃
j=1

Ψ̂j

(
BT̂j (0, 7h/8)

)
.

The set M̂POLY has no reason to be globally smooth, since it consists of a union of polynomial
patches that are not linked together (Figure VI.3). However, M̂POLY is provably close to M
for the Hausdorff distance.

Theorem VI.12. With the same assumptions as Theorem VI.10, with probability at least

1− 2
(

1
n

) k
d , we have

dH
(
M,M̂POLY

)
≤ Cd,k,τmin,L,fmin,fmaxh

k.

In particular, for n large enough,

sup
P∈Pk

EP⊗ndH
(
M,M̂POLY

)
≤ C

( log(n)
n− 1

) k
d

,

where C = Cd,k,τmin,L,fmin,fmax.

For k = 2, we recover the rate (logn/n)2/d obtained in [GPPVW12a, KZ15] and
Chapter IV. However, our estimator M̂POLY is an unstructured union of d-dimensional balls
in RD. Consequently, M̂POLY does not recover the topology of M as the estimators M̂TDC,
M̂TDCδ and M̂TDC+ of IV do.

When k ≥ 3, M̂POLY outperforms reconstruction procedures based on a somewhat
piecewise linear interpolation (for instance in [GPPVW12a] and Chapter IV), and achieves
the faster rate (logn/n)k/d for the Hausdorff loss. This seems quite natural, since our
procedure fits higher order terms. This is done at the price of a probably worse dependency
on the dimension d than in [GPPVW12a] and Chapter IV. Theorem VI.12 is now proved
to be (almost) minimax optimal.
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Theorem VI.13. If τminL⊥, . . . , τk−1
minLk, (τdminfmin)−1 and τdminfmax are large enough

(depending only on d and k), then for n large enough,

inf
M̂

sup
P∈Pk

EP⊗ndH
(
M, M̂

)
≥ cd,k,τmin

( 1
n

) k
d

,

where the infimum is taken over all the estimators M̂ = M̂(X1, . . . , Xn).

Theorem VI.13 is obtained from Le Cam’s Lemma (Theorem VI.22). Let us note that it
is likely for the extra logn term appearing in Theorem VI.12 to actually be present in the
minimax rate. Roughly, it is due to the fact that the Hausdorff distance dH is similar to a
L∞ loss. The logn term may be obtained in Theorem VI.13 with the same combinatorial
analysis as in [KZ15] for k = 2.

VI.4 Main Ideas of the Proofs

VI.4.1 Local Polynomials

We now turn to the proof of the upper bounds of Section VI.3. First, to relate the existence
of parametrizations Ψp’s to a local polynomial decomposition, the following lemma is
needed.

Lemma VI.14. For any M ∈ Ckτmin,L and x ∈M , the following holds.

(i) For all v1, v2 ∈ BTxM
(
0, 1

4L⊥

)
,

3
4 ‖v2 − v1‖ ≤ ‖Ψx(v2)−Ψx(v1)‖ ≤ 5

4 ‖v2 − v1‖ .

(ii) For all h ≤ 1
4L⊥ ∧

2τmin
5 ,

M ∩ B
(
x,

3h
5

)
⊂ Ψx (BTxM (x, h)) ⊂M ∩ B

(
x,

5h
4

)
.

(iii) For all h ≤ τmin
2 ,

BTxM
(

0, 7h
8

)
⊂ πTxM (B(x, h) ∩M) .

(iv) Denoting by π∗ = πTxM the orthogonal projection onto TxM , for all x ∈ M , there
exist multilinear maps T ∗2 , . . . , T ∗k−1 from TxM to RD, and Rk such that for all

y ∈ B
(
x,

τmin∧L−1
⊥

4

)
∩M ,

y − x = π∗(y − x) + T ∗2 (π∗(y − x)⊗2) + . . .+ T ∗k−1(π∗(y − x)⊗k−1)
+Rk(y − x),

with

‖Rk(y − x)‖ ≤ C ‖y − x‖k and ‖T ∗i ‖op ≤ L
′
i for 2 ≤ i ≤ k − 1,

where L′i depends on d, k, τmin, L⊥, . . . , Li, and C on d, k, τmin, L⊥,. . ., Lk. Moreover,
for k ≥ 3, T ∗2 = IIMx .
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(v) For all x ∈ M ,
∥∥∥IIMx ∥∥∥

op
≤ 1/τmin. In particular, the sectional curvatures of M

satisfy

−2
τ2
min

≤ κ ≤ 1
τ2
min

.

The proof of Lemma VI.14 can be found in Section D.1.2. We are now in position
to analyze local polynomial estimators. For clarity’s sake, the bounds are given for
j = 1, where we denote by π̂, T̂i (2 ≤ i ≤ k − 1) the fitted polynomials of (VI.7),
and Pn−1 = P

(1)
n−1. The results of Theorems VI.8, VI.10, and VI.12 then follow from a

straightforward union bound. We also set k ≥ 3, the case k = 2 proceeding from the same
derivation, omitting the higher order tensors. Without loss of generality, we can assume
that X1 = 0 and that T0M is spanned by the first d vectors of the canonical basis, so that
π∗(x) = (x1, . . . , xd, 0, . . . , 0) = (x1:d, 0, . . . , 0).

Recall that h0 = (τmin ∧ L−1
⊥ )/8. According to Lemma VI.14, if M ∈ Ckτmin,L, for any

x ∈M such that ‖x‖ ≤ h0, we may write

x = π∗(x) + T ∗2 (π∗(x)⊗2) + . . .+ T ∗k−1(π∗(x)⊗k−1) +Rk(x),

where ‖Rk(x)‖ ≤ Cτmin,L‖x‖k. Every coordinate of (T̂i − T ∗i )(π∗(x)) may be thought of as
a polynomial map in the variable x1:d. Thus, proximity between T̂i and T ∗i will be first
stated in terms of polynomial norm.

Let Rk[x1:d] denote the set of real-valued polynomial functions in d variables with degree
less than k. For Q ∈ Rk[x1:d], we denote by ‖Q‖2 the Euclidean norm of its coefficients,
and by Qh the polynomial defined by Qh(x1:d) = Q(hx1:d). The following result relates
the L2(Pn−1) norm involved in (VI.7) to polynomial norms.

Proposition VI.15. Set h =
(
K log(n)

n−1

) 1
d . There exist constants κk,d, ck,d and Cd such

that, if K ≥ (κk,df2
max/f

3
min) and n is large enough so that h ≤ h0 ≤ τmin/4, then with

probability at least 1−
(

1
n

) k
d

+1
, we have

Pn−1[Q2(π∗(x))1B(h)(x)] ≥ ck,dh
dfmin‖Qh‖22,

N(h) ≤ Cdfmax(n− 1)hd,

for every Q ∈ Rk[x1:d], where N(h) =
∑n
j=2 1B(0,h)(Xj).

The proof of Proposition VI.15 is deferred to Section D.2.2. From now on we assume that
the probability event defined in Proposition VI.15 occurs. For short, with a slight abuse of
notation, we denote by Tp:q(x) the sum Tp(x⊗p)+. . .+Tq(x⊗q), and byRn−1(π, T2, . . . , Tk−1)
the empirical criterion defined by (VI.7). Since for t ≥ maxi=2,...,k−1 ‖T ∗i ‖op,

Rn−1(π̂, T̂1, . . . , T̂k−1) ≤ Rn−1(π∗, T ∗2 , . . . , T ∗k−1) ≤ Cτmin,Lh2kN(h)/(n− 1)

according to (VI.3), we may write

Cτmin,Lh
2kN(h)
n− 1 ≥ Rn−1(π̂, T̂2, . . . , T̂k−1)

= Pn−1
(∥∥∥(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)

+Rk(x)
∥∥∥2
1B(0,h)(x)

)
,
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with ‖Rk(x)‖ ≤ Cτmin,Lh2k. It follows that

Pn−1

(∥∥∥(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)
∥∥∥2
1B(0,h)(x)

)
≤ Cτmin,Lh2kN(h)

n− 1
≤ Cτmin,L,dfmaxh

d+2k.

On the other hand, using (VI.3) again yields, for x ∈ B(0, h) ∩M ,

(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)
= T ′1(π∗(x)) + T ′2(π∗(x)⊗2) + T ′3:k(π∗(x)) + π̂(Rk(x)) +R′k(x),

with ‖Rk(x)‖ ≤ Cτmin,Lh
k, ‖R′k(x)‖ ≤ tCτmin,k,Lh

k+1 since only tensors of order greater
than 2 are involved in R′k, and

T ′1(π∗(x)) = (π∗ − π̂)π∗(x)
T ′2(π∗(x)⊗2) = (π∗ − π̂)(T ∗2 (π∗(x)⊗2)) + (T ∗2 ◦ π∗ − T̂2 ◦ π̂)

(
π∗(x)⊗2).

Hence,

Pn−1

(∥∥∥T ′1(π∗(x)) + T ′2(π∗(x)⊗2) + T ′3:k(π∗(x))
∥∥∥2
1B(0,h)(x)

)
≤ Cτmin,L,dfmaxh

d+2k (1 + ht) . (VI.16)

The left-hand side of (VI.16) may be decomposed coordinate-wise as

Pn−1

(∥∥∥T ′1(π∗(x)) + T ′2(π∗(x)⊗2) + T ′3:k(π∗(x))
∥∥∥2
1B(0,h)(x)

)

=
D∑
j=1

Pn−1

((
T ′

(j)
1 (π∗x) + T ′

(j)
2 (π∗(x)⊗2) + T ′

(j)
3:k(π

∗(x))
)2
1B(0,h)(x)

)
,

where for any tensor T , T (j) denotes the j-th coordinate of T and is considered as a real
valued j-order polynomial. Then, for every j, Proposition VI.15 leads to

Pn−1

((
T ′

(j)
1 (π∗(x)) + T ′

(j)
2 (π∗(x)⊗2) + T ′

(j)
3:k(π

∗(x))
)2
1B(0,h)(x)

)
≥ cd,kfminhd

∥∥∥(T ′(j)1 (π∗(x)) + T ′
(j)
2 (π∗(x)⊗2) + T ′

(j)
3:k(π

∗(x))
)
h

∥∥∥2

2

= cd,kfminh
d

k∑
i=1

∥∥∥(T ′(j)i (π∗(x)⊗i)
)
h

∥∥∥2

2
.

Summing all contributions leads to

cd,kfmin

D∑
j=1

k∑
i=1

∥∥∥(T ′(j)i (π∗(x)⊗i)
)
h

∥∥∥2

2
≤ Ck,L,d,τminfmaxh

2k(1 + t2h2).

This entails

‖T ′i‖2op ≤ Cd,k,L,τmin
fmax
fmin

h2(k−i)(1 + t2h2), (VI.17)

for 1 ≤ i ≤ k, as well as∥∥∥(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)
∥∥∥ ≤ Cd,k,L,τmin

√
fmax
fmin

hk(1 + th), (VI.18)

for x ∈ B(0, h) ∩M , according to (VI.3).

137



CHAPTER VI. MANIFOLD, TANGENT SPACE & CURVATURE ESTIMATION

Bounds for Tangent Space Estimation

Noting that
‖T ′1‖op = ‖(π∗ − π̂)π∗‖op = ‖πT̂⊥1 ◦ π

∗‖ = ∠(T0M, T̂1)

from Proposition III.29, and using (VI.17) for i = 1 yields Theorem VI.8.

Bounds for Curvature Estimation

In accordance with assumptions of Theorem VI.10, we assume that max2≤i≤k ‖T ∗i ‖op ≤
t ≤ 1/h. Since

T ′2(π∗(x)⊗2) = (π∗ − π̂)(T ∗2 (π∗(x)⊗2)) + (T ∗2 ◦ π∗ − T̂2 ◦ π̂)(π∗(x)⊗2),

we deduce that

‖T ∗2 ◦ π∗ − T̂2 ◦ π̂‖op ≤ ‖T ′2‖op + ‖π̂ − π∗‖op + ‖T̂2 ◦ π̂ ◦ π∗ − T̂2 ◦ π̂ ◦ π̂‖op.

Using (VI.17) with i = 1, 2 and th ≤ 1 leads to

‖T ∗2 ◦ π∗ − T̂2 ◦ π̂‖op ≤ Cd,k,L,τmin

√
fmax
fmin

hk−2.

Finally, Lemma VI.14 states that IIMX1
= T ∗2 , hence Theorem VI.10 is proved.

Bounds for Reconstruction

Let v ∈ BT̂0M
(0, 7h/8) be fixed. Notice that π∗(v) ∈ BT0M (0, 7h/8). Hence, according to

Lemma VI.14, there exists x ∈ B(0, h) ∩M such that π∗(v) = π∗(x). We may write

Ψ̂(v) = v +
k−1∑
i=2

T̂i(v⊗i) = π∗(v) +
k−1∑
i=2

T̂i(π∗(v)⊗i) +Rk(v),

where, since ‖T̂i‖op ≤ 1/h, ‖Rk(v)‖ ≤ Ck,d,τmin,L
√
fmax/fminh

k according to (VI.17).
Then, according to (VI.18),

π∗(v) +
k−1∑
i=2

T̂i(π∗(v)⊗i) = π∗(v) +
k−1∑
i=2

T ∗i (π∗(v)⊗i) +R′(π∗(v))

= π∗(x) +
k−1∑
i=2

T ∗i (π∗(x)⊗i) +R′(π∗(x)),

where ‖R′(π∗(x))‖ ≤ Ck,d,τmin,L
√
fmax/fminh

k+1. According to Lemma VI.14, we deduce
that ‖Ψ̂(v)− x‖ ≤ Ck,d,τmin,L

√
fmax/fminh

k, hence

sup
u∈M̂POLY

d(u,M) ≤ Ck,d,τmin,L

√
fmax
fmin

hk. (VI.19)

Now we focus on supx∈M d(x, M̂POLY). For this, we need a lemma ensuring that Xn =
{X1, . . . , Xn} covers M with high probability.

Lemma VI.20 (Lemma III.23). Let h =
(
C′dk
fmin

logn
n

)1/d
with C ′d large enough. Then for n

large enough so that h ≤ τmin/2, with probability at least 1−
(

1
n

)k/d
,

dH (M,Xn) ≤ h.
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Now we choose h satisfying the conditions of Proposition VI.15 and Lemma VI.20. Let
x be in M and assume that ‖x−Xj0‖ ≤ h. According to (VI.18) and (VI.3), we deduce
that ‖Ψ̂j0(π̂j0(x))− x‖ ≤ Ck,d,τmin,L

√
fmax/fminh

k. Hence, from Lemma VI.20,

sup
x∈M

d(x, M̂POLY) ≤ Ck,d,τM ,L

√
fmax
fmin

hk (VI.21)

with probability at least 1 − 2
(

1
n

)k/d
. Combining (VI.19) and (VI.21) gives Theorem

VI.12.

VI.4.2 Minimax Lower Bounds

This section is devoted to describe the main ideas of the proofs of the minimax lower bounds,
Theorems VI.9, VI.11 and VI.13. The methods we use rely on hypothesis comparison
[Yu97]. We recall that for two distributions Q and Q′ defined on the same space, the total
variation distance TV (Q,Q′) and the L1 test affinity ‖Q ∧Q′‖1 are given by

TV (Q,Q′) = 1
2

∫
|dQ− dQ′|,

∥∥Q ∧Q′∥∥1 =
∫
dQ ∧ dQ′,

where dQ and dQ′ denote densities of Q and Q′ with respect to any dominating measure.

Le Cam’s Lemma and Consequences

The first technique we use, involving only two hypotheses, is usually referred to as Le
Cam’s Lemma. Let P be a model and θ(P ) be the parameter of interest. Assume that
θ(P ) belongs to a pseudo-metric space (D, d), that is d(·, ·) is symmetric and satisfies the
triangle inequality. Le Cam’s Lemma can be adapted to our framework as follows.

Theorem VI.22 (Le Cam’s Lemma [Yu97]). For all P, P ′ in the model P,

inf
θ̂

sup
P∈P

EP⊗nd(θ(P ), θ̂) ≥ 1
2d
(
θ(P ), θ(P ′)

) ∥∥P⊗n ∧ P ′⊗n∥∥1 ,

where the infimum is taken over all the estimators θ̂ = θ̂(X1, . . . , Xn).
Moreover, ‖P⊗n ∧ P ′⊗n‖1 ≥ ‖P ∧ P ′‖

n
1 = (1− TV (P, P ′))n .

We derive Theorem VI.13, as well as Theorems VI.9 and VI.11 with fixed base point x,
θ(P ) being supp(P ) = M , TxM and IIMx ◦ πTxM respectively. The hypotheses P, P ′ are
built in Section VI.4.2. Such constructions are not substantially new in minimax geometric
inference [GPPVW12a]. Therefore, we do not detail it further.

Conditional Assouad’s Lemma

Now, consider the estimation of the differential quantities TX1M and IIMX1
with random

base point X1. In both cases, the loss can be cast as

EP⊗n d(θX1(P ), θ̂) = EP⊗n−1

[
EP d(θX1(P ), θ̂)

]
= EP⊗n−1

[∥∥∥d(θ·(P ), θ̂
)∥∥∥
L1(P )

]
,

where θ̂ = θ̂(X,X ′), withX = X1 driving the parameter of interest, andX ′ = (X2, . . . , Xn) =
X2:n. Since ‖.‖L1(P ) obviously depends on P , the technique exposed in the previous section
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does not apply anymore. However, a slight adaptation of Assouad’s Lemma [Yu97] with
an extra conditioning on X = X1 carries out for our purpose. Let us now detail a general
framework where the method applies.

We let X ,X ′ denote measured spaces. For a probability distribution Q on X × X ′, we
let (X,X ′) be a random variable with distribution Q. The marginals of Q on X and X ′
are denoted by µ and ν respectively. Let (D, d) be a pseudo-metric space. For Q ∈ Q, we
let θ·(Q) : X → D be defined µ-almost surely, where µ is the marginal distribution of Q on
X . The parameter of interest is θX(Q), and the associated minimax risk over Q is

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
, (VI.23)

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.
Given a set of probability distributions Q on X × X ′, write Conv(Q) for the set of

mixture probability distributions with components in Q. For all τ = (τ1, . . . , τm) ∈ {0, 1}m,
τk denotes the m-tuple that differs from τ only at the kth position. We are now in
position to state the conditional version of Assouad’s Lemma that allows to lower bound
the minimax risk (VI.23).

Lemma VI.24 (Conditional Assouad). Let m ≥ 1 be an integer and let {Qτ}τ∈{0,1}m be
a family of 2m submodels Qτ ⊂ Q. Let {Uk × U ′k}1≤k≤m be a family of pairwise disjoint
subsets of X×X ′, and Dτ,k be subsets of D. Assume that for all τ ∈ {0, 1}m and 1 ≤ k ≤ m,

- for all Qτ ∈ Qτ , θX(Qτ ) ∈ Dτ,k on the event {X ∈ Uk};

- for all θ ∈ Dτ,k and θ′ ∈ Dτk,k, d(θ, θ′) ≥ ∆.

For all τ ∈ {0, 1}m, let Qτ ∈ Conv(Qτ ), and write µ̄τ and ν̄τ for the marginal distributions
of Qτ on X and X ′ respectively. Assume that if (X,X ′) has distribution Qτ , X and X ′
are independent conditionally on the event {(X,X ′) ∈ Uk × U ′k}, and that

min
τ∈{0,1}m
1≤k≤m

{(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′
k

dν̄τ ∧ dν̄τk
)}
≥ 1− α.

Then,

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ m∆

2 (1− α),

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.

Notice that for a model of the form Q = {δx0 ⊗ P, P ∈ P} with fixed x0 ∈ X , one
recovers the classical Assouad’s Lemma [Yu97] taking Uk = X and U ′k = X ′. Indeed, when
X = x a.s, the parameter of interest θX(Q) = θ(Q) can be seen as non-random.

Construction of Hypotheses

In order to apply Le Cam’s Lemma (Theorem VI.22) or the conditional Assouad’s Lemma
(Lemma VI.24), we describe in this section the construction of the hypotheses involved in
the different contexts of estimation. For this, the strategy consists in building distributions
that are stochastically close — i.e. with a large test affinity — for which the associated
parameters of interest are as different as possible. Before continuing to the precise
construction, let us make two remarks about the lower bounds with random point X1.
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First, the associated minimax risks (Theorems VI.9 and Theorem VI.11) involve the
integration with respect to X1. Hence, as for regression with Lp loss, multiple locations
of bumps are required to yield the right rate. Second, building manifolds with different
tangent spaces (resp curvature) would lead to locally singular distributions. Therefore it is
natural to consider mixture distributions to get non-trivial bounds.

Let M (0)
0 be a d-dimensional C∞-submanifold of RD with reach greater than 1 and such

that it contains BRd×{0}D−d(0, 1/2). M (0)
0 can be built for example by flattening smoothly a

unit d-sphere. Since M (0)
0 is C∞, the uniform probability distribution P (0)

0 on M (0)
0 belongs

to Pk1,L(0)(1/V
(0)

0 , 1/V (0)
0 ), for some L(0) and V (0)

0 = V ol(M (0)
0 ).

Let now M0 = (2τmin)M (0)
0 be the submanifold obtained from M

(0)
0 by homothecy. By

construction, from Proposition VI.5, we have τM0 ≥ 2τmin, BRd×{0}D−d(0, τmin) ⊂M0, and
the uniform probability distribution P0 on M0 belongs to the model Pk2τmin,L(fmin, fmax)
whenever L⊥ ≥ L

(0)
⊥ /(2τmin), . . ., Lk ≥ L

(0)
k /(2τmin)k−1, and provided that fmin ≤(

(2τmin)dV (0)
0
)−1 ≤ fmax. Note that L(0)

⊥ , . . . , L
(0)
k , V ol(M (0)

0 ) depend only on d and
k. For this reason, all the lower bounds will be valid for τminL⊥, . . . , τk−1

minLk, (τdminfmin)−1

and τdminfmax large enough to exceed the thresholds L(0)
⊥ /2, . . . , L(0)

k /2k−1, 2dV (0)
0 and

(2dV (0)
0 )−1 respectively.
For 0 < δ ≤ τmin/2, let x1, . . . , xm ∈ M0 ∩ B(0, τmin) be such that for all k 6= k′,

‖xk − xk′‖ ≥ δ. A classical packing argument (see [Mas07] p. 71) shows that one can take
up to m = dcd/δde for some cd > 0. We let e ∈ RD denote any unit vector orthogonal to
Rd × {0}D−d.

Let φ : RD → [0, 1] be a smooth scalar map such that φ|B(0, 12) = 1 and φ|B(0,1)c = 0.
Let Λ+ > 0 and 1 ≥ A+ > A− > 0 be real numbers to be chosen later. Let Λ = (Λ1, . . . ,Λm)
with entries −Λ+ ≤ Λk ≤ Λ+, and A = (A1, . . . , Am) with entries A− ≤ Ak ≤ A+. For
z ∈ RD, we write z = (z1, . . . , zD) for its coordinates in the canonical basis. For all
τ = (τ1, . . . , τm) ∈ {0, 1}m, define the bump map as

ΦΛ,A,i
τ (x) = x+

m∑
k=1

φ

(
x− xk
δ

){
τkAk(x− xk)i1 + (1− τk)Λk

}
e. (VI.25)

An analogous deformation map was considered in Section IV.4.1 to prove te interpolation
Theorem IV.11. We let PΛ,A,(i)

τ denote the pushforward distribution of P0 by ΦΛ,A,(i)
τ , and

write MΛ,A,(i)
τ for its support. Roughly speaking, MΛ,A,i

τ consists of m bumps at the xk’s
having different shapes (Figure VI.4). If τk = 0, the bump at xk is a symmetric plateau
function and has height Λk. If τk = 1, it fits the graph of the polynomial Ak(x − xk)i1
locally. The following Lemma VI.26 gives differential bounds and geometric properties of
ΦΛ,A,i
τ . It follows straightforwardly from chain rule, similarly to Lemma IV.12.

Lemma VI.26. There exists cφ,i < 1 such that if A+ ≤ cφ,iδ
i−1 and Λ+ ≤ cφ,iδ, then

ΦΛ,A,i
τ is a global C∞-diffeomorphism of RD such that for all 1 ≤ k ≤ m, ΦΛ,A,i

τ (B(xk, δ)) =
B(xk, δ). Moreover, ∥∥∥ID − dΦΛ,A,i

τ

∥∥∥
op
≤ Cφ,i

{
A+
δ1−i

}
∨
{Λ+
δ

}
,

and for j ≥ 2, ∥∥∥djΦΛ,A,i
τ

∥∥∥
op
≤ Cφ,i,j

{
A+
δj−i

}
∨
{Λ+
δj

}
.
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Λk

Λ+

δ

xk

(a) Flat bump: τk = 0.

δ

xkA−x1
A+x1

Akx1

(b) Linear bump: τk = 1, i = 1.

δ

xk

Akx
2
1A−x

2
1

A+x
2
1

(c) Quadratic bump: τk = 1, i = 2.

Figure VI.4 – The three shapes of the bump map ΦΛ,A,i
τ around a xk.

Finally, we define the mixture distribution Q̄(i)
τ,n on (RD)n by

Q̄(i)
τ,n =

∫
[−Λ+,Λ+]m

∫
[A−,A+]m

(
PΛ,A,(i)
τ

)⊗n dA
(A+ −A−)m

dΛ
(2Λ+)m . (VI.27)

Although the probability distribution Q̄
(i)
τ,n depends on A−, A+ and Λ+, we omit this

dependency for the sake of compactness. Another way to define Q̄(i)
τ,n is the following:

draw uniformly Λ in [−Λ+,Λ+]m and A in [A−, A+]m, and given (Λ,A), take Zi =
ΦΛ,A,i
τ (Yi), where Y1, . . . , Yn is an i.i.d. n-sample with common distribution P0 on M0.

Then (Z1, . . . , Zn) has distribution Q̄(i)
τ,n.

We now state useful probabilistic and geometric properties of Q̄(i)
τ,n, in view of using

Theorem VI.24. For this, let us denote by P(i)
τ the set composed of all the distributions

P
Λ,A,(i)
τ for A− ≤ A1, . . . , Am ≤ A+ and −Λ+ ≤ Λ1, . . . ,Λm ≤ Λ+. Again, we omit the

dependency on A−, A+ and Λ+.

Lemma VI.28. Assume that the conditions of Lemma VI.26 hold, and let

Uk = BRd×{0}D−d (xk, δ/2) + Bspan(e)(0, τmin/2),

where for B,B′ ⊂ RD, B +B′ denotes their Minkovski sum, and

U ′k =
(
RD \

{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

})n−1
.

Then the sets Uk × U ′k are pairwise disjoint, Q̄(i)
τ,n ∈ Conv

((
P(i)
τ
)⊗n), and if (Z1, . . . , Zn) =

(Z1, Z2:n) has distribution Q̄
(i)
τ,n, Z1 and Z2:n are independent conditionally on the event

{(Z1, Z2:n) ∈ Uk × U ′k}.
Moreover, if (X1, . . . , Xn) has distribution

(
P

Λ,A,(i)
τ

)⊗n (with fixed A and Λ), then on
the event {X1 ∈ Uk}, we have:
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- if τk = 0,

TX1M
Λ,A,(i)
τ = Rd × {0}D−d ,

∥∥∥∥IIMΛ,A,(i)
τ

X1
◦ π

TX1M
Λ,A,(i)
τ

∥∥∥∥
op

= 0,

and dH
(
M0,M

Λ,A,(i)
τ

)
≥ |Λk|.

- if τk = 1,

- for i = 1: ∠
(
TX1M

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥ A−/2;

- for i = 2:
∥∥∥∥IIMΛ,A,(2)

τ
X1

◦ π
TX1M

Λ,A,(2)
τ

∥∥∥∥
op
≥ A−/2.

To apply Theorem VI.24 to the Q̄(i)
τ,n’s with X = RD, X ′ =

(
RD
)n−1

, it remains to
bound the test affinities between their marginals on X and X ′. By construction (VI.27),
these are respectively Q̄(i)

τ,1 and Q̄(i)
τ,n−1.

Lemma VI.29. Assume that the conditions of Lemma VI.26 and Lemma VI.28 hold. If
in addition, cA+(δ/4)i ≤ Λ+ ≤ CA+(δ/4)i for some absolute constants C ≥ c > 3/4, and
A− = A+/2, then,

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)
τk,1 ≥

cd,i
C

(
δ

τmin

)d
,

and ∫
U ′
k

dQ̄
(i)
τ,n−1 ∧ dQ̄

(i)
τk,n−1 =

(
1− c′d

(
δ

τmin

)d)n−1

.

Now, to derive Theorem VI.9, set i = 1, take A+ = 2A− = εδk−1, and Λ+ = δA+/4 for
ε = εφ,k,d,τmin small enough so that P(1)

τ ⊂ Pkτmin,L(fmin, fmax), according to Lemma VI.26
and Proposition VI.5. Hence, applying Lemma VI.24 together with Lemma VI.28 and
Lemma VI.29, recalling that m can be taken of order cd/δd, we get, for all estimators T̂ ,

sup
P∈Pk

EP⊗n∠
(
TX1M, T̂

)
≥ cd,kεm

A−
4

(
δ

τmin

)d(
1− c′d

(
δ

τmin

)d)n−1

≥ c′d,k,τmin
δk−1

δd

(
δ

τmin

)d(
1− c′d

(
δ

τmin

)d)n−1

.

Taking (δ/τmin)d = 1/(n− 1) yields the result.
Similarly, to derive Theorem VI.11, set i = 2, take A+ = 2A− = ε′δk−2, and Λ+ =

δ2A+/42 with ε′ = ε′φ,k,d,τmin small enough so that P(2)
τ ⊂ Pkτmin,L(fmin, fmax). With

(δ/τmin)d = 1/(n− 1), the same derivation as above leads to the result.
Finally, for Theorem VI.13, simply take m = 1, τ = 0 and Λ1 = δA1/4 = εδk for

ε = εφ,k,d,τmin as above. We may conclude using Theorem VI.22 with P0 and PΛ1,A1,(i)
0 .

Indeed, using dH
(
M0,M

Λ1,A1,(i)
0

)
≥ |Λ1| = εδk from Lemma VI.28, and noticing that the

total variation distance between the two distributions is P0(B(x1, δ)) = cd(δ/τmin)d, since
they differ only outside B(x1, δ), we get the result.
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VI.5 Conclusion, Prospects
In this chapter, we derived non-asymptotic bounds for inference of geometric objects
associated with smooth submanifolds M ⊂ RD. We focused on tangent spaces, second
fundamental forms, and the submanifold itself. We introduced new regularity classes
Ckτmin,L for submanifolds that extend naturally the case k = 2. For each object of interest,
the proposed estimator relies on local polynomials that can be computed through a least
square minimization. Minimax lower bounds were presented, matching the upper bounds
up to logn factors.

The implementation of (VI.7) needs to be investigated. The non-convexity of the
criterion comes from that we minimize over the space of orthogonal projectors, which
is non-convex. However, that space is pretty well understood, and it seems possible to
implement gradient descents on it [UM14]. Another way to improve our procedure could
be to fit orthogonal polynomials instead of monomials. Such a modification may also lead
to improved dependency on the dimension d and the regularity k in the bounds for both
tangent space and support estimation.

As a first attempt to a minimax study over models of higher order regularity Ck (k ≥ 3)
for submanifolds, we chose not to include noise. This is a limitation of the model Pk, and
one could argue that the methods described are not robust. However, with outliers in the
model C2, we proposed in Chapter IV an iterative denoising procedure based on tangent
space estimation. It exploits the fact that tangent space estimation allows to remove a
part of outliers, and removing outliers enhances tangent space estimation. An interesting
question would be to study how this method can apply with local polynomials.

Another open question is that of exact topology recovering with fast rates for k ≥ 3.
Indeed, M̂POLY converges at rate (logn/n)k/d but is unstructured. It would be nice to glue
the patches of M̂POLY together, for example using interpolation techniques, following the
ideas of [FIK+15].
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D.1 Properties and Stability of the Models

D.1.1 Property of the Exponential Map in C2
τmin

Here we show the Lemma VI.1. From Proposition III.22 (ii) and (iii), we have that sectional
curvatures of M satisfy −2/τ2

min ≤ κ ≤ 1/τ2
min, and that the injectivity radius of M is at

least πτmin ≥ τmin/4. Therefore, expp : BTpM (0, τmin/4)→M is one-to-one.
Let us write Np(v) = expp(v)− p− v. We clearly have Np(0) = 0 and d0Np = 0. Let

now v ∈ BTpM (0, τmin/4) be fixed. We have dvNp = dv expp−IdTpM . For 0 ≤ t ≤ ‖v‖, we
write γ(t) = expp(tv/ ‖v‖) for the arc-length parametrized geodesic from p to expp(v), and
Pt for the parallel translation along γ. From Lemma 18 of [DVW15],∥∥∥dt v

‖v‖
expp−Pt

∥∥∥
op
≤ 2
τ2
min

t2

2 ≤
t

4τmin
.

We now derive an upper bound for
∥∥Pt − IdTpM∥∥op. For this, fix two unit vectors u ∈ RD

and w ∈ TpM , and write g(t) = 〈Pt(w)− w, u〉. Letting ∇̄ denote the ambient derivative
in RD, by definition of parallel translation,∣∣g′(t)∣∣ =

∣∣∣〈∇̄γ′(t)Pt(w)− w, u〉
∣∣∣

=
∣∣∣〈IIMγ(t)

(
γ′(t), Pt(w)

)
, u〉
∣∣∣

≤ 1/τmin.
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Since g(0) = 0, we get
∥∥Pt − IdTpM∥∥op ≤ t/τmin. Finally, the triangle inequality leads to

‖dvNp‖op =
∥∥dv exp−IdTpM

∥∥
op

≤
∥∥∥dv exp−P‖v‖

∥∥∥
op

+
∥∥∥P‖v‖ − IdTpM∥∥∥

op

≤ 5 ‖v‖
4τmin

.

We conclude with the property of the projection π∗ = πTpM . Indeed, defining R2(y − p) =
(y − p)− π∗(y − p), Lemma 4.7 in [Fed59] gives

‖R2(y − p)‖ = d(y − p, TpM)

≤ ‖y − p‖
2

2τmin
.

D.1.2 Geometric Properties of the Ck Models

We now move to the proof of Lemma VI.14.

Proof of Lemma VI.14. (i) Simply notice that from the reverse triangle inequality,∣∣∣∣‖Ψx(v2)−Ψx(v1)‖
‖v2 − v1‖

− 1
∣∣∣∣ ≤ ‖Nx(v2)−Nx(v1)‖

‖v2 − v1‖
≤ L⊥(‖v1‖ ∨ ‖v2‖) ≤

1
4 .

(ii) The right-hand side inclusion follows straightforwardly from (i). Let us focus on the
left-hand side inclusion. For this, consider the map defined by G = πTxM ◦Ψx on the
domain BTxM (0, h). For all v ∈ BTxM (0, h), we have

‖dvG− IdTxM‖op = ‖πTxM ◦ dvNx‖op ≤ ‖dvNx‖op ≤ L⊥ ‖v‖ ≤
1
4 < 1.

Hence, G is a diffeomorphism onto its image and it satisfies ‖G(v)‖ ≥ 3 ‖v‖/4. It
follows that

BTxM
(

0, 3h
4

)
⊂ G (BTxM (0, h)) = πTxM (Ψx (BTxM (0, h))) .

Now, according to Lemma VI.1, for all y ∈ B
(
x, 3h

5

)
∩M ,

‖πTxM (y − x)‖ ≤ ‖y − x‖+ ‖y − x‖
2

2τmin
≤
(

1 + 1
4

)
‖y − x‖ ≤ 3h

4 ,

from what we deduce πTxM
(
B
(
x, 3h

5

)
∩M

)
⊂ BTxM

(
0, 3h

4

)
. As a consequence,

πTxM

(
B
(
x,

3h
5

)
∩M

)
⊂ πTxM (Ψx (BTxM (0, h))) ,

which yields the announced inclusion since πTxM is one to one on B
(
x, 5h

4

)
∩M from

Lemma 5 in [ACLZ17], and(
B
(
x,

3h
5

)
∩M

)
⊂ Ψx (BTxM (0, h)) ⊂ B

(
x,

5h
4

)
∩M.

(iii) Straightforward application of Lemma 5 in [ACLZ17].
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(iv) Notice that Lemma VI.1 gives the existence of such an expansion for k = 2. Hence, we
can assume k ≥ 3. Taking h = τmin∧L−1

⊥
4 , we showed in the proof of (ii) that the map

G is a diffeomorphism onto its image, with ‖dvG− IdTxM‖op ≤
1
4 < 1. Additionally,

the chain rule yields
∥∥divG∥∥op ≤ ∥∥divΨx

∥∥
op ≤ Li for all 2 ≤ i ≤ k. Therefore, from

Lemma D.1, the differentials of G−1 up to order k are uniformly bounded. As a
consequence, we get the announced expansion writing

y − x = Ψx ◦G−1 (π∗(y − x)) ,

and using the Taylor expansions of order k of Ψx and G−1.
Let us now check that T ∗2 = IIMx . First, since by construction, T ∗2 is the second order
term of the Taylor expansion of Ψx ◦ G−1 at zero, a straightforward computation
yields

T ∗2 = (ID − πTxM ) ◦ d2
0Ψx

= πTxM⊥ ◦ d
2
0Ψx.

Let v ∈ TxM be fixed. Letting γ(t) = Ψx(tv) for |t| small enough, it is clear that
γ′′(0) = d2

0Ψ(v⊗2). Moreover, by definition of the second fundamental form [dC92,
Proposition 2.1, p.127], since γ(0) = x and γ′(0) = v, we have

IIMx (v⊗2) = πTxM⊥(γ′′(0)).

Hence

T ∗2 (v⊗2) = πTxM⊥ ◦ d
2
0Ψx(v⊗2)

= πTxM⊥(γ′′(0))
= IIMx (v⊗2),

which concludes the proof.

(v) The first statement is a rephrasing of Proposition III.22 (i) and (ii).

In the proof of Lemma VI.14 (iv), we used a technical lemma of differential calculus
that we now prove. It states quantitatively that if G is Ck-close to the identity map, then
it is a diffeomorphism onto its image and the differentials of its inverse G−1 are controlled.

Lemma D.1. Let k ≥ 2 and U be an open subset of Rd. Let G : U → Rd be Ck. Assume
that ‖Id − dG‖op ≤ ε < 1, and that for all 2 ≤ i ≤ k,

∥∥diG∥∥op ≤ Li for some Li > 0. Then
G is a Ck-diffeomorphism onto its image, and for all 2 ≤ i ≤ k,∥∥∥Id − dG−1

∥∥∥
op
≤ ε

1− ε and
∥∥∥diG−1

∥∥∥
op
≤ L′i,ε,L2,...,Li <∞ for 2 ≤ i ≤ k.

Proof of Lemma D.1. For all x ∈ U , ‖dxG− Id‖op < 1, so G is one to one, and for all
y = G(x) ∈ G(U), ∥∥∥Id − dyG−1

∥∥∥
op

=
∥∥∥Id − (dxG)−1

∥∥∥
op

≤
∥∥∥(dxG)−1

∥∥∥
op
‖Id − dxG‖op

≤
‖Id − dxG‖op

1− ‖Id − dxG‖op
≤ ε

1− ε.
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For 2 ≤ i ≤ k and 1 ≤ j ≤ i, write Π(j)
i for the set of partitions of {1, . . . , i} with j blocks.

Differentiating i times the identity G ◦G−1 = IdG(U), Faa di Bruno’s formula yields that,
for all y = G(x) ∈ G(U) and all unit vectors h1, . . . , hi ∈ RD,

0 = dy
(
G ◦G−1

)
.(hα)1≤α≤i =

i∑
j=1

∑
π∈Π(j)

i

djxG.

((
d|I|y G

−1. (hα)α∈I
)
I∈π

)
.

Isolating the term for j = 1 entails∥∥∥dxΦ.
(
diyG

−1. (hα)1≤α≤i

)∥∥∥
op

=

∥∥∥∥∥∥∥−
i∑

j=2

∑
π∈Π(j)

i

djxG.

((
d|I|y G

−1. (hα)α∈I
)
I∈π

)∥∥∥∥∥∥∥
op

≤
i∑

j=2

∑
π∈Π(j)

i

∥∥∥djG∥∥∥
op

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

Using the first order Lipschitz bound on G−1, we get∥∥∥diG−1
∥∥∥
op
≤ 1 + ε

1− ε

i∑
j=2

Lj
∑

π∈Π(j)
i

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

The result follows by induction on i.

D.1.3 Stability of the Models

This section is devoted to prove the stability of the model with respect to ambient
diffeomorphisms (Proposition VI.5).

The second part is pretty straightforward since the dilation λM has reach τλM = λτM ,
and can be parametrized locally by Ψ̃λp(v) = λΨp(v/λ) = λp + v + λNp(v/λ), yielding
the differential bounds L(λ). Bounds on the density follow from homogeneity of the
d-dimensional Hausdorff measure.

For the first part, we split the proof into two intermediate results. Proposition D.2
deals with the stability of the geometric model, that is, the reach bound and the existence
of a smooth parametrization when a submanifold is perturbed. Lemma D.3 deals with
the condition on the density in the models Pk. It gives a change of variable formula for
pushforward of measure on submanifolds, ensuring a control on densities with respect to
intrinsic volume measure.

Proposition D.2. Let Φ : RD → RD be a global Ck-diffeomorphism. If ‖dΦ− ID‖op ,∥∥d2Φ
∥∥
op , . . . ,

∥∥∥dkΦ∥∥∥
op

are small enough, then for all M in Ckτmin,L, the image M ′ = Φ (M)
belongs to Ckτmin/2,2L⊥,2L3,...,2Lk .

Proof of Proposition D.2. To bound τM ′ from below, we use the stability of the reach with
respect to C2 diffeomorphisms. Namely, from Theorem 4.19 in [Fed59] (see Lemma III.17),

τM ′ = τΦ(M) ≥
(1− ‖ID − dΦ‖op)2

1+‖ID−dΦ‖op
τM

+ ‖d2Φ‖op

≥ τmin
(1− ‖ID − dΦ‖op)2

1 + ‖ID − dΦ‖op + τmin ‖d2Φ‖op
≥ τmin

2
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for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op small enough. This shows the stability for k = 2, as well as

that of the reach assumption for k ≥ 3.
By now, take k ≥ 3. We focus on the existence of a good parametrization of M ′ around

a fixed point p′ = Φ(p) ∈M ′. For v′ ∈ Tp′M ′ = dpΦ (TpM), let us define

Ψ′p′(v′) = Φ
(
Ψp

(
dp′Φ−1.v′

))
= p′ + v′ + N′p′(v′),

where N′p′(v′) =
{
Φ
(
Ψp
(
dp′Φ−1.v′

))
− p′ − v′

}
.

M M ′

TpM Tp′M
′

Φ

Ψp

dpΦ

Ψ′
p′

The maps Ψ′p′(v′) and N′p′(v′) are well defined whenever
∥∥dp′Φ−1.v′

∥∥ ≤ 1
8L⊥ , so in particular

if ‖v′‖ ≤ 1
8(2L⊥) ≤

1−‖ID−dΦ‖op
8L⊥ and ‖ID − dΦ‖op ≤

1
2 . One easily checks that N′p′(0) = 0,

d0N′p′ = 0 and writing c(v′) = p+dp′Φ−1.v′+Np′
(
dp′Φ−1.v′

)
, for all unit vector w′ ∈ Tp′M ′,

∥∥∥d2
v′N′p′(w′⊗2)

∥∥∥ =
∥∥∥d2

c(v′)Φ
({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+ dc(v′)Φ ◦ d2
dp′Φ−1.v′Ψp

({
dp′Φ−1.w′

}⊗2
)∥∥∥

=
∥∥∥d2

c(v′)Φ
({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+
(
dc(v′)Φ− Id

)
◦ d2

dp′Φ−1.v′Ψp

({
dp′Φ−1.w′

}⊗2
)

+ d2
dp′Φ−1.v′Ψp

({
dp′Φ−1.w′

}⊗2
)∥∥∥

≤
∥∥∥d2Φ

∥∥∥
op

(
1 + L⊥

∥∥∥dp′Φ−1.v′
∥∥∥)2 ∥∥∥dp′Φ−1.w′

∥∥∥2

+ ‖ID − dΦ‖op L⊥
∥∥∥dp′Φ−1.w′

∥∥∥2

+ L⊥
∥∥∥dp′Φ−1.w′

∥∥∥2

≤
∥∥∥d2Φ

∥∥∥
op

(1 + 1/8)2
∥∥∥dp′Φ−1

∥∥∥2

op

+ ‖ID − dΦ‖op L⊥
∥∥∥dΦ−1

∥∥∥2

op

+ L⊥
∥∥∥dp′Φ−1

∥∥∥2

op
.

Writing further
∥∥dΦ−1∥∥

op ≤ (1−‖ID − dΦ‖op)−1 ≤ 1+2 ‖ID − Φ‖op for ‖ID − dΦ‖op small
enough depending only on L⊥, it is clear that the right-hand side of the latter inequality
goes below 2L⊥ for ‖ID − dΦ‖op and

∥∥d2Φ
∥∥
op small enough. Hence, for ‖ID − dΦ‖op and∥∥d2Φ

∥∥
op small enough depending only on L⊥, ‖d2

v′N′p′‖op ≤ 2L⊥ for all ‖v′‖ ≤ 1
8(2L⊥) .

From the chain rule, the same argument applies for the order 3 ≤ i ≤ k differential of
N′p′ .

Lemma D.3 (Change of variable for the Hausdorff measure). Let P be a probability
distribution on M ⊂ RD with density f with respect to the d-dimensional Hausdorff
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measure Hd. Let Φ : RD → RD be a global diffeomorphism such that ‖ID − dΦ‖op < 1/3.
Let P ′ = Φ∗P be the pushforward of P by Φ. Then P ′ has a density g with respect to Hd.
This density can be chosen to be, for all z ∈ Φ(M),

g(z) = f
(
Φ−1 (z)

)√
det

(
πTΦ−1(z)M

◦ dΦ−1(z)ΦT ◦ � dΦ−1(z)ΦTΦ−1(z)M
) .

In particular, if fmin ≤ f ≤ fmax on M , then for all z ∈ Φ(M),(
1− 3d/2 ‖ID − dΦ‖op

)
fmin ≤ g(z) ≤ fmax

(
1 + 3(2d/2 − 1) ‖ID − dΦ‖op

)
.

Proof of Lemma D.3. Let p ∈M be fixed and A ⊂ B(p, r) ∩M for r small enough. For a
differentiable map h : Rd → RD and for all x ∈ Rd, we let Jh(x) denote the d-dimensional
Jacobian Jh(x) =

√
det (dxhT dxh). The area formula ([Fed69, Theorem 3.2.5]) states that

if h is one-to-one, ∫
A
u (h(x)) Jh(x)λd(dx) =

∫
h(A)

u(y)Hd(dy),

whenever u : RD → R is Borel, where λd is the Lebesgue measure on Rd. By definition of
the pushforward, and since dP = fdHd,∫

Φ(A)
dP ′(z) =

∫
A
f(y)Hd(dy).

Writing Ψp = expp : TpM → RD for the exponential map of M at p, we have∫
A
f(y)Hd(dy) =

∫
Ψp−1(A)

f(Ψp(x))JΨp(x)λd(dx).

Rewriting the right hand term, we apply the area formula again with h = Φ ◦Ψp,∫
Ψp−1(A)

f(Ψp(x))JΨp(x)λd(dy)

=
∫

Ψp−1(A)
f
(
Φ−1 (h(x))

) JΨp(h−1 (h(x)))
JΦ◦Ψp(h−1 (h(x)))JΦ◦Ψp(x)λd(dx)

=
∫

Φ(A)
f
(
Φ−1 (z)

) JΨp(h−1 (z))
JΦ◦Ψp(h−1 (z))H

d(dz).

Since this is true for all A ⊂ B(p, r) ∩M , P ′ has a density g with respect to Hd, with

g(z) = f
(
Φ−1 (z)

) JΨΦ−1(z)
(Ψ−1

Φ−1(z) ◦ Φ−1 (z))
JΦ◦ΨΦ−1(z)

(Ψ−1
Φ−1(z) ◦ Φ−1 (z))

.

Writing p = Φ−1(z), it is clear that Ψ−1
Φ−1(z) ◦ Φ−1 (z) = Ψ−1

p (p) = 0 ∈ TpM . Since
d0 expp : TpM → RD is the inclusion map, we get the first statement.

We now let B and πT denote dpΦ and πTpM respectively. For any unit vector v ∈ TpM ,∣∣∣∥∥∥πTBTBv
∥∥∥− ‖v‖∣∣∣ ≤ ∥∥∥πT (BTB − ID

)
v
∥∥∥

≤
∥∥∥BTB − ID

∥∥∥
op

≤
(
2 + ‖ID −B‖op

)
‖ID −B‖op

≤ 3 ‖ID −B‖op .

150



APPENDIX D. PROOFS FOR CHAPTER VI

Therefore, 1− 3 ‖ID −B‖op ≤
∥∥∥πTBT � BTpM

∥∥∥
op
≤ 1 + 3 ‖ID −B‖op. Hence,

√
det (πTBT � BTpM) ≤

(
1 + 3 ‖ID −B‖op

)d/2
≤ 1

1− 3d
2 ‖ID −B‖op

,

and √
det (πTBT � BTpM) ≥

(
1− 3 ‖ID −B‖op

)d/2
≥ 1

1 + 3(2d/2 − 1) ‖ID −B‖op
,

which yields the result.

D.2 Some Probabilistic Tools

D.2.1 Volume and Covering Rate

The first lemma of this section gives some details about the covering rate of a manifold
with bounded reach.

Lemma D.4 (Lemma III.23). Let P ∈ Pk have support M ⊂ RD. Then for all r ≤ τmin/4
and x in M ,

cdfminr
d ≤ px(r) ≤ Cdfmaxrd,

for some cd, Cd > 0, with px(r) = P
(
B(x, r)

)
. Moreover, letting h =

(
C′dk
fmin

logn
n

)1/d
with C ′d

large enough, the following holds. For n large enough so that h ≤ τmin/2, with probability
at least 1−

(
1
n

)k/d
,

dH (M,Xn) ≤ h.

D.2.2 Concentration Bounds for Local Polynomials

This section is devoted to the proof of Proposition VI.15. A first step is to ensure that
empirical expectations order k polynomials are close to their deterministic counterparts.

Proposition D.5. For any x ∈ M , we have

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P − Pn−1)
p∏
j=1

(〈uj , y〉
h

)εj
1B(x,h)(y)

∣∣∣∣∣∣
≥ px(h)

(
4k
√

2π√
(n− 1)px(h)

+
√

2t
(n− 1)px(h) + 2

3(n− 1)px(h)

) ≤ e−t,
where Pn−1 denotes the empirical distribution of n− 1 i.i.d. random variables Xi drawn
from P .

Proof of Proposition D.5. Without loss of generality we choose x = 0 and shorten notation
to B(h) and p(h). Let Z denote the empirical process on the left-hand side of Proposition
D.5. Denote also by fu,ε the map

∏k
j=1

(
〈uj ,y〉
h

)εj
1B(h)(y), and let F denote the set of such

maps, for uj in B(1) and ε in {0, 1}k.
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Since ‖fu,ε‖∞ ≤ 1 and Pf2
u,ε ≤ p(h), the Talagrand-Bousquet inequality ([Bou02,

Theorem 2.3]) yields

Z ≤ 4EZ +

√
2p(h)t
n− 1 + 2t

3(n− 1) ,

with probability larger than 1− e−t. It remains to bound EZ from above.

Lemma D.6. We may write

EZ ≤
√

2πp(h)√
n− 1

k.

Proof of Lemma D.6. Let σi and gi denote some independent Rademacher and Gaussian
variables. For convenience, we denote by EA the expectation with respect to the random
variable A. Using symmetrization inequalities we may write

EZ = EX sup
u,ε

∣∣∣∣∣∣(P − Pn−1)
k∏
j=1

(〈uj , y〉
h

)εj
1B(h)(y)

∣∣∣∣∣∣
≤ 2
n− 1EXEσ sup

u,ε

n−1∑
i=1

σi

k∏
j=1

(〈uj , Xi〉
h

)εj
1B(h)(Xi)

≤
√

2π
n− 1EXEg sup

u,ε

n−1∑
i=1

gi

k∏
j=1

(〈uj , Xi〉
h

)εj
1B(h)(Xi).

Now let Yg denote the Gaussian process
∑n−1
i=1 gi

∏k
j=1

(
〈uj ,Xi〉

h

)εj
1B(h)(Xi). Since, for

any x in B(h), u,v in B(1)k, and ε, ε′ in {0, 1}k, we have∣∣∣∣∣∣
k∏
j=1

(〈x, uj〉
h

)εj
−

k∏
j=1

(〈x, vj〉
h

)ε′j ∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑
r=1

k+1−r∏
j=1

(〈x, uj〉
h

)εj k∏
j=k+2−r

(〈x, vj〉
h

)ε′j

−
k−r∏
j=1

(〈x, uj〉
h

)εj k∏
j=k+1−r

(〈x, vj〉
h

)ε′j∣∣∣∣∣∣
≤

k∑
r=1

∣∣∣∣∣∣
k−r∏
j=1

(〈x, uj〉
h

)εj k∏
j=k+2−r

(〈x, vj〉
h

)ε′j [(〈uk+1−r, x〉
h

)εk+1−r

−
(〈vk+1−r, x〉

h

)ε′k+1−r
]∣∣∣∣∣

≤
k∑
r=1

∣∣∣∣〈εrur − ε′rvr, x〉h

∣∣∣∣ .
We deduce that

Eg(Yu,ε − Yv,ε′)2 ≤ k
n−1∑
i=1

k∑
r=1

(〈εrur, Xi〉
h

− 〈ε
′
rvr, Xi〉
h

)2
1B(h)(Xi)

≤ Eg(Θu,ε −Θv,ε′)2,
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where Θu,ε =
√
k
∑n−1
i=1

∑k
r=1 gi,r

〈εrur,Xi〉
h 1B(h)(Xi). According to Slepian’s Lemma [BLM13,

Theorem 13.3], it follows that

Eg sup
u,ε

Yg ≤ Eg sup
u,ε

Θg

≤
√
kEg sup

u,ε

k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(h)(Xi)Xi

〉
h

≤
√
kEg sup

u,ε

√√√√√k k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(h)(Xi)Xi

〉2

h2 .

We deduce that

Eg sup
u,ε

Yg ≤ Eg sup
u,ε

Θg

≤ k

√√√√√Eg sup
‖u‖=1,ε∈{0,1}

〈
εu,

∑n−1
i=1 gi1B(h)(Xi)Xi

〉2

h2

≤ k

√√√√√Eg

∥∥∥∥∥
n−1∑
i=1

giXi

h
1B(h)(Xi)

∥∥∥∥∥
2

≤ k
√
N(h).

Then we can deduce that EXEg supu,ε Yg ≤ k
√
p(h), hence the result.

Combining Lemma D.6 with Talagrand-Bousquet’s inequality gives the result of Propo-
sition D.5.

We are now in position to prove Proposition VI.15.

Proof of Proposition VI.15. If h ≤ τmin/8, then, according to Lemma D.4, p(h) ≥ cdfminhd,

hence, if h =
(
K log(n)

n−1

) 1
d , (n− 1)p(h) ≥ Kcdfmin log(n). Choosing t = (k/d+ 1) log(n) in

Proposition D.5 and K = K ′/fmin, with K ′ > 1 leads to

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P − Pn−1)
k∏
j=1

(〈uj , y〉
h

)εj
1B(x,h)(y)

∣∣∣∣∣∣ ≥ cd,kfmax√
K ′

hd

 ≤ ( 1
n

) k
d

+1
.

On the complement of the probability event mentioned just above, for a polynomial
Q =

∑
α∈[0,k]d||α|≤k aαx

α
1:d, we have

(Pn−1 − P )Q2(x1:d)1B(h)(x) ≥ −
∑
α,β

cd,kfmax√
K ′

|aαaβ|hd+|α|+|β|

≥ −cd,kfmax√
K ′

hd‖Qh‖22.

On the other hand, we may write, for all r > 0 ,∫
B(0,r)

Q2(x1:d)dx1 . . . dxd ≥ Cd,krd‖Qr‖22,
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for some constant Cd,k. It follows that

PQ2(x1:d)1B(h)(x) ≥ PQ2(x1:d)1B(7h/8)(x1:d) ≥ ck,dhdfmin‖Qh‖22,

according to Lemma VI.14. Then we may choose K ′ = κk,d(fmax/fmin)2, with κk,d large
enough so that

Pn−1Q
2(x1:d)1B(h)(x) ≥ ck,dfminhd‖Qh‖22.

D.3 Minimax Lower Bounds

D.3.1 Proof of the Conditional Assouad’s Lemma

This section is dedicated to the proof of Lemma VI.24. The proof follows that of Lemma 2
in [Yu97]. Let θ̂ = θ̂(X,X ′) be fixed. For any family of 2m distributions {Qτ}τ ∈ {Qτ}τ ,
since the Uk × U ′k’s are pairwise disjoint,

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ max

τ
EQτd(θ̂, θX(Qτ ))

≥ max
τ

EQτ
m∑
k=1

d
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτd
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτd
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

=
m∑
k=1

2−(m+1)∑
τ

(
EQτd

(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

)
.

Since the previous inequality holds for all Qτ ∈ Qτ , it extends to Qτ ∈ Conv(Qτ ) by
linearity. Let us now lower bound each of the terms of the sum for fixed τ ∈ {0, 1}m
and 1 ≤ k ≤ m. By assumption, if (X,X ′) has distribution Qτ , then conditionally on
{(X,X ′) ∈ Uk × U ′k}, X and X ′ are independent. Therefore,

EQτd
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

≥ EQτd
(
θ̂,Dτ,k

)
1Uk(X)1U ′

k
(X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk(X)1U ′

k
(X ′)

= Eν̄τ
[
Eµ̄τ

(
d
(
θ̂,Dτ,k

)
1Uk(X)

)
1U ′

k
(X ′)

]
+ Eν̄

τk

[
Eµ̄

τk

(
d
(
θ̂,Dτk,k

)
1Uk(X)

)
1U ′

k
(X ′)

]
=
∫
Uk

∫
U ′
k

d(θ̂,Dτ,k)dµ̄τ (x)dν̄τ (x′) +
∫
Uk

∫
U ′
k

d(θ̂,Dτk,k)dµ̄τk(x)dν̄τk(x′)

≥
∫
Uk

∫
U ′
k

(
d(θ̂,Dτ,k) + d(θ̂,Dτk,k)

)
dµ̄τ ∧ dµ̄τk(x)dν̄τ ∧ dν̄τk(x′)

≥ ∆
(∫

Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′
k

dν̄τ ∧ dν̄τk
)

≥ ∆(1− α),

where we used that d(θ̂,Dτ,k) + d(θ̂,Dτk,k) ≥ ∆. The result follows by summing the bound
above |{1, . . . ,m} × {0, 1}m| = m2m times.
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D.3.2 Construction of Generic Hypotheses

In this section we prove Lemma VI.28 and Lemma VI.29.

Proof of Lemma VI.28. It is clear from the definition (VI.27) that Q̄(i)
τ,n ∈ Conv

((
P(i)
τ
)⊗n).

By construction of the ΦΛ,A,i
τ ’s, these maps leave the sets

BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

unchanged for all Λ,L. Therefore, on the event {(Z1, Z2:n) ∈ Uk × U ′k}, one can write Z1
only as a function of X1,Λk, Ak, and Z2:n as a function of the rest of the Xj ’s,Λk’s and
Ak’s. Therefore, Z1 and Z2:n are independent.

We now focus on the geometric statements. For this, we fix a deterministic point
z = ΦΛ,A,(i)

τ (x0) ∈ Uk∩M
Λ,A,(i)
τ . By construction, one necessarily has x0 ∈M0∩B(xk, δ/2).

- If τk = 0, locally around x0, ΦΛ,A,(1)
τ is the translation of vector Λke. Therefore,

since M0 satisfies Tx0M0 = Rd × {0}D−d and IIM0
x0 = 0, we have

TzM
Λ,A,(i)
τ = Rd × {0}D−d and

∥∥∥∥IIMΛ,A,(i)
τ

z ◦ π
TzM

Λ,A,(i)
τ

∥∥∥∥
op

= 0.

Furthermore, by construction, zk = xk+Λke belongs toM
Λ,A,(i)
τ . Since e is orthogonal

to M0, d(z0,M0) ≥ |Λk|. Thus

dH
(
M0,M

Λ,A,(i)
τ

)
≥ |Λk|.

- if τk = 1,

- for i = 1: locally around x0, ΦΛ,A,(1)
τ can be written as x 7→ x+Ak(x− xk)1e.

Hence, TzMΛ,A,(i)
τ contains the direction (1, Ak) in the plane span(e1, e) spanned

by the first vector of the canonical basis and e. As a consequence, since e is
orthogonal to Rd × {0}D−d,

∠
(
TzM

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥
(
1 + 1/A2

k

)−1/2
≥ Ak/2 ≥ A−/2.

- for i = 2: locally around x0, ΦΛ,A,(2)
τ can be written as x 7→ x+Ak(x− xk)2

1e.
Hence, MΛ,A,(2)

τ contains an arc of parabola of equation y = Ak(x− xk)2
1 in the

plane span(e1, e). As a consequence,∥∥∥∥IIMΛ,A,(2)
τ

z ◦ π
TzM

Λ,A,(2)
τ

∥∥∥∥
op
≥ Ak/2 ≥ A−/2.

Proof of Lemma VI.29. First note that all the distributions involved have support in Rd×
span(e)× {0}D−(d+1). Therefore, we use the canonical coordinate system of Rd × span(e),
centered at xk, and we denote the components by (x1, x2, . . . , xd, y) = (x1, x2:d, y). Without
loss of generality, assume that τk = 0 (if not, flip τ and τk). Recall that φ has been chosen
to be constant and equal to 1 on the ball B(0, 1/2).

By definition (VI.27), on the event {Z ∈ Uk}, a random variable Z having distribution
Q̄

(i)
τ,1 can be represented as Z = X + φ

(
X−xk
δ

)
Λke = X + Λke where X and Λk are

independent and have respective distributions P0 (the uniform distribution on M0) and
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the uniform distribution on [−Λ+,Λ+]. Therefore, on Uk, Q̄
(i)
τ,1 has a density with respect

to the Lebesgue measure λd+1 on Rd × span(e) that can be written as

q̄
(i)
τ,1(x1, x2:d, y) =

1[−Λ+,Λ+](y)
2V ol(M0)Λ+

.

Analogously, nearby xk a random variable Z having distribution Q̄(i)
τk,1 can be represented

as Z = X +Ak(X − xk)i1e where Ak has uniform distribution on [A−, A+]. Therefore, a
straightforward change of variable yields the density

q̄
(i)
τk,1(x1, x2:d, y) =

1[A−xi1,A+xi1](y)
V ol(M0) (A+ −A−)xi1

.

We recall that V ol(M0) = (2τmin)dV ol
(
M

(0)
0
)

= c′dτ
d
min. Let us now tackle the right-hand

side inequality, writing

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)
τk,1

=
∫
B(xk,δ/2)

(
1[−Λ+,Λ+](y)
2V ol(M0)Λ+

)
∧
(

1[A−xi1,A+xi1](y)
V ol(M0) (A+ −A−)xi1

)
dydx1dx2:d

≥
∫
BRd−1 (0, δ4 )

∫ δ/4

−δ/4

∫
R

(
1[−Λ+,Λ+](y)

2Λ+

)
∧
(
1[A−xi1,A+xi1](y)

A+xi1/2

)
dydx1dx2:d
V ol(M0) .

It follows that ∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)
τk,1

≥ cd
τdmin

δd−1
∫ δ/4

0

∫ Λ+∧(A+xi1)

A+xi1/2

1
2Λ+

∧ 2
A+xi1

dydx1

≥ cd
τdmin

δd−1
∫ δ/4

0

∫ (c∧1)(A+xi1)

A+xi1/2

(2c ∧ 1/2)
2Λ+

dydx1

= cd
τdmin

δd−1(2c ∧ 1/2) (c ∧ 1− 1/2) A+
Λ+

(δ/4)i+1

i+ 1

≥ cd,i
C

(
δ

τmin

)d
.

For the integral on U ′k, notice that by definition, Q̄(i)
τ,n−1 and Q̄(i)

τk,n−1 coincide on U ′k since
they are respectively the image distributions of P0 by functions that are equal on that
set. Moreover, these two functions leave RD \

{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

}
unchanged. Therefore,∫

U ′
k

dQ̄
(i)
τ,n−1∧dQ̄

(i)
τk,n−1

= P⊗n−1
0

(
U ′k
)

=
(
1− P0

(
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

))n−1

=
(
1− ωdδd/V ol(M0)

)n−1
,

hence the result.
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D.3.3 Minimax Inconsistency Results

This section is devoted to the proof of lower bound for tangent space estimation (Theorem
VI.6): we build hypotheses P, P ′ and apply Theorem VI.22. For δ ≥ Λ > 0, let C′, C′ ⊂ R3

be closed curves of the Euclidean space as in Figure VI.1, and such that outside the
figure, C′ and C′ coincide and are C∞. The bumped parts are obtained with a smooth
diffeomorphism similar to (VI.25), centered at x. Here, δ and Λ can be chosen arbitrarily
small.

Let Sd−1 ⊂ Rd be a d − 1-sphere of radius 1/L⊥. Consider the Cartesian products
M1 = C × Sd−1 and M ′1 = C′ × Sd−1. M1 and M ′1 are subsets of Rd+3 ⊂ RD. Finally,
let P1 and P ′1 denote the uniform distributions on M and M ′. Note that M , M ′ can be
built by homothecy of ratio λ = 1/L⊥ from some unitary scaled M (0)

1 ,M ′
(0)
1 , similarly to

Section VI.4.2, yielding, from Proposition VI.5, that P1, P
′
1 belong to Pk(x) provided that

L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/Ld⊥ are large enough (depending only on d and

k), and that Λ, δ and Λk/δ are small enough. From Le Cam’s Lemma VI.22, we have for
all n ≥ 1,

inf
T̂

sup
P∈Pk(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2∠
(
TxM1, TxM

′
1
) (

1− TV (P1, P
′
1)
)n
.

By construction, ∠
(
TxM1, TxM

′
1
)

= 1, and since C and C′ coincide outside BR3(0, δ),

TV
(
P1, P

′
1
)

= V ol
(
(BR3(0, δ) ∩ C)× Sd−1

)
/V ol

(
C × Sd−1

)
= Length (BR3(0, δ) ∩ C) /Length(C)
≤ cL⊥δ.

Hence, letting Λ, δ go to 0 with Λk/δ small enough, we get the announced bound.
We now tackle the lower bound on second fundamental form estimation with the

same strategy. Let M2,M
′
2 ⊂ RD be d-dimensional submanifolds as in Figure VI.2: they

both contain x, the part on the top of M2 is a half d-sphere of radius 2/L⊥, the bottom
part of M ′2 is a piece of a d-plane, and the bumped parts are obtained with a smooth
diffeomorphism similar to (VI.25) centered at x. Outside B(x, δ), M2,M

′
2 coincide and

connect smoothly the upper and lower parts. Let P2, P
′
2 be the probability distributions

obtained by the pushforward given by the bump maps. Under the same conditions on the
parameters as previously, P2 and P ′2 belong to Pk(x) according to Proposition VI.5. From
Le Cam’s Lemma VI.22 we deduce

inf
ÎI

sup
P∈Pk(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op

≥ 1
2

∥∥∥IIM2
x ◦ πTxM2 − II

M ′2
x ◦ πTxM ′2

∥∥∥
op

(
1− TV (P2, P

′
2)
)n
.

By construction,
∥∥∥IIM2

x ◦ πTxM2

∥∥∥
op

= 0, and since M ′2 is a part of a sphere of radius 2/L⊥

nearby x,
∥∥∥IIM ′2x ◦ πTxM ′2

∥∥∥
op

= L⊥/2. Hence,∥∥∥IIM2
x ◦ πTxM2 − II

M ′2
x ◦ πTxM ′2

∥∥∥
op
≥ L⊥/2.

Moreover, since P2 and P ′2 coincide on RD \ B(x, δ),

TV (P2, P
′
2) = Pc2(B(x, δ)) ≤ cd,L⊥δ

d.

Letting Λ, δ go to 0 with Λk/δ small enough, we have the desired result.
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Titre : Vitesses de convergence en inférence géométrique

Mots clefs : Statistiques non-asymptotiques, inférence géométrique, vitesses minimax,
apprentissage de variétés.

Résumé : Certains jeux de données présentent des caractéristiques géométriques et
topologiques non triviales qu’il peut être intéressant d’inférer. Cette thèse traite des
vitesses non-asymptotiques d’estimation de différentes quantités géométriques associées à
des sous-variétés M ⊂ RD. Dans chaque cas, on dispose d’un n-échantillon i.i.d. de loi
commune P ayant pour support M . On étudie le problème d’estimation de la sous-variété
M pour la perte donnée par la distance de Hausdorff, du reach τM , de l’espace tangent
TXM et de la seconde forme fondamentale IIMX , pour X ∈ M à la fois déterministe et
aléatoire. Les vitesses sont données en fonction la taille n de l’échantillon, de la dimension
intrinsèque de M ainsi que de sa régularité. Dans l’analyse, on obtient des résultats de
stabilité pour des techniques de reconstruction existantes, une procédure de débruitage
ainsi que des résultats sur la géométrie du reach τM . Une extension du lemme d’Assouad est
exposée, permettant l’obtention de bornes inférieures minimax dans des cadres singuliers.

Title: Rates of Convergence for Geometric Inference

Keys words: Non-asymptotic statistics, geometric inference, minimax rates, manifold
learning

Abstract: Some datasets exhibit non-trivial geometric or topological features that can
be interesting to infer. This thesis deals with non-asymptotic rates for various geometric
quantities associated with submanifolds M ⊂ RD. In all the settings, we are given an i.i.d.
n-sample with common distribution P having support M . We study the optimal rates of
estimation of the submanifold M for the loss given by the Hausdorff metric, of the reach
τM , of the tangent space TXM and the second fundamental form IIMX , for X ∈M both
deterministic and random. The rates are given in terms of the sample size n, the instrinsic
dimension of M and of its regularity. In the process, we obtain stability results for existing
reconstruction techniques, a denoising procedure and results on the geometry of the reach
τM . An extension of Assouad’s lemma is presented, allowing to derive minimax lower
bounds in singular frameworks.
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