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The goal of these notes is to construct a generative method to “sample approximately” from an
unknown distribution p∗(x)dx from which we have observed an i.i.d. n-sample X1, . . . , Xn.

We will present a family of methods often referred to as “diffusion models”. Their popularity have
blown up over the Summer of 2022, with the release of Stable diffusions for images. Although pioneering
works can be found in physics before that, the rise of such methods can be dated back to [SSDK+20],
which catch phrase is:

Creating noise from data is easy; creating data from noise is generative modeling.

The global idea is to add noise to data incrementally while learning to denoise at each step, and then
reverse the whole process (see Figure 1).

 

  

Forward SDE (data → noise) 

Reverse SDE (noise → data) 

score function

Figure 1: Big picture of generative modeling (taken from [SSDK+20]).
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1 Stochastic calculus survival kit

There are two main ways to formalize diffusions generative models for quantitative data. One
uses discrete time increments [HJA20] and requires knowledge on Markov chains only, but it does
not yield a clear mathematical framework. We opt for the other way, which uses continuous time
increments [SSDK+20] and requires tools from stochastic calculus. It will yield a quite unified
functional framework to hold on to.

This section gives a minimal overview of stochastic calculus. To make the presentation
lighter, we purposely leave all the convergence and measurability issues under the carpet. If you
feel scammed, you shall find all the necessary mathematical details in Jean-François Le-Gall’s
book [LG16].

1.1 Brownian motion

1.1.1 Definition

Given a measurable space (E, E) and an arbitrary index set T , a random process indexed by T
with values in E is a collection (Xt)t∈T of random variables with values in E. Among such
processes, we will focus on those with Gaussian marginals.

Definition 1.1 (Gaussian process). A (real-valued) random process is called a (centered) Gaus-
sian process if any finite linear combination of the variables (Xt)t∈T is centered Gaussian.

The distribution of a centered Gaussian process is fully determined by its covariance kernel

K(s, t) := E [XsXt] , for all s, t ∈ T .

The main building block of stochastic calculus is the so-called Brownian motion, which we
first present in dimension d = 1.

Definition 1.2 (Brownian motion). There exists a process (Bt)t≥0 called Brownian motion,
which is a centered Gaussian process over T = R+ with continuous sample paths t 7→ Bt and
such that any of the following equivalent properties holds.

� B0 = 0 a.s., and for all 0 ≤ s < t, the random variable Bt − Bs is independent of the
σ-field Fs := σ (Br, r ≤ s) and distributed according to N (0, t− s).

� B0 = 0 a.s., and for all 0 ≤ t0 < t1 < . . . < tp, the random variables (Btj − Btj−1
)j are

independent and distributed according to N (0, tj − tj−1).

� For all s, t ≥ 0, K(s, t) = s ∧ t.

Proof. See [LG16, Proposition 2.3] for the equivalences, and [LG16, Exercise 1.18] for Lévy’s
construction. A more geometric construction on T = [0, 1] uses Donsker’s invariance principle.
It is based on a iid sequence (Xi)i∈N of centered real random variables with unit variance. Define
the piecewise-linear continuous process

Zn(u) :=

⌈u⌉∑
i=1

Uiψ(u− i), u ∈ [0, 1],

where ψ(v) := min{1,max{0, v}. Then (Bt)t∈[0,1] can be constructed as the limit in distribution

of the sequence of processes
(

1√
n
Zn(nt)

)
t∈[0,1]

.
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Figure 2: Ten trajectories of a Brownian motion.

See Figure 1.1.1 for an illustration of sample paths of (Bt)t. As Definition 1.2 suggests, we
will be dealing with measurability of random variables with respect to σ-fields indexed by (time)
t ∈ T . Hence, some vocabulary is in order.

Definition 1.3 (Filtration, adapted process).

� A filtration over T ⊂ R is an increasing family (Ft)t∈T of σ-fields, i.e. Fs ⊂ Ft for all s ≤ t
with s, t ∈ T .

� A stochastic process (Xt)t∈T is said to be adapted to a filtration (Ft)t∈T if for all s ∈ T , Xt

is Ft-measurable.

1.1.2 Regularity properties of the Brownian motion

Among the many nice properties that the Brownian motion exhibits, let us point out three of
the most important ones.

� (Martingale property) The first characterization of Definition 1.2 yields that the Brownian
motion is a martingale adapted to the filtration

(
Fs := σ(Xr, r ≤ s)

)
s≥0

, since for all 0 ≤ s ≤ t,

E [Bt | Fs] = E [Bs | Fs] + E [Bt −Bs | Fs]

= Bs + E [Bt −Bs]

= Bs.

� (Hölder smoothness) By definition, a Brownian motion has sample paths t 7→ Bt(ω) that
are continuous for almost all ω. In fact, they can be shown to be more regular. They are
locally Hölder continuous with exponent 1/2 − δ for all 0 < δ < 1/2, in the sense that
|Bt−Bs| ≲ |t− s|1/2−δ a.s. (see [LG16, Corollary 2.11]). This essentially comes from the fact
that for all t ≥ s ≥ 0,

E

[(
Bt −Bs√
t− s

)2
]
=

E (Bt −Bs)
2

t− s

=
K(t, t) +K(s, s)− 2K(s, t)

t− s
= 1.
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One can also show that this Hölder exponent is optimal, in the sense that for all δ > 0, (Bt)t
is a.s. not Hölder continuous with exponent 1/2 + δ, even locally.

� (Quadratic variation) Samples paths of (Bt)t being not more than 1/2-Hölder everywhere, they
do not have finite length. In fact, for all sequence of subdivisions 0 = tn0 < tn1 < . . . < tnpn

= t
of [0, t] whose maximal spacing max1≤j≤pn

|tj − tj−1| tends to zero as n→∞, we have

pn∑
j=1

|Btnj
−Btnj−1

| a.s.−−−−→
n→∞

∞.

We say that (Bt)t has infinite first variation. However, we can show that its quadratic variation
is always well defined and deterministic. More precisely, we have

pn∑
j=1

(Btnj
−Btnj−1

)2
L2

−−−−→
n→∞

t.

1.2 Itô stochastic integral

Since (Bt)t exhibits infinite first variation, it is not possible to define the integral
∫ t

s
ϕ(u)dBu

of a (smooth enough) function ϕ : R → R as a special case of the usual Stieltjes integral. For
(Ft)t of finite first variation [LG16, Section 4.1.1], this integral is characterized by the fact that
it satisfies the fundamental theorem of calculus asserting that for all Φ ∈ C1(R,R),

Φ(Ft) = Φ(Fs) +

∫ t

s

Φ′(Fu) dFu︸︷︷︸
F ′

udu

.

Equivalently, it is not straightforward to define a notion of differential dBt, which would satisfy
a similar chain rule as dΦ(Ft) = Φ′(Ft)dFt.

However, we can give this integral a meaning through the fact that its quadratic variation
is finite. This will yield a tweaked fundamental theorem of calculus called Itô’s formula (see
Theorem 1.14). The standard construction of this integral goes through the following elementary
processes, which play the role of simple functions in Lebesgue’s integral.

Definition 1.4 (Elementary stochastic process). A stochastic process (Xt)t∈[a,b) is said to be
elementary if there exist deterministic values a = t0 < t1 < . . . < tp = b and random variables
(Xj)0≤j≤p−1 such that for all t ∈ [a, b),

Xt =

p∑
j=1

Xj−11[tj−1,tj)(t).

Said otherwise, an elementary process is a piecewise constant random process. With the
above convention of notation, we have Xtj = Xj for all j < p. The integral against the Brownian
motion is naturally defined as the weighted increments on each of its constant pieces.

Definition 1.5 (Itô integral of an elementary process). If (Xt)t is an elementary process as in
Definition 1.4, define ∫ b

a

XtdBt :=

p∑
j=1

Xtj−1
(Btj −Btj−1

).
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As a first elementary remark, let us point out that
∫ b

a
dBt = Bb − Ba, which motivates

notation dBt. In fact, the above proto-integral fulfills a few desirable properties that an actual
integral should satisfy.

Proposition 1.6. Let (Xt)t and (Yt)t be elementary processes indexed by [a, b], adapted to the
natural filtration (σ(Br, r ≤ s))s of the Brownian motion.

� (Linearity) For all λ, µ ∈ R,∫ b

a

λXt + µYtdBt = λ

∫ b

a

XtdBt + µ

∫ b

a

YtdBt.

� (Centering) If E[|Xt|] <∞ for all t ∈ [a, b], then E
[∣∣∣∫ b

a
XtdBt

∣∣∣] <∞, and

E

[∫ b

a

XtdBt

]
= 0.

� (Square integrability and isometry) If E[X2
t ] < ∞ for all t ∈ [a, b], then E

[(∫ b

a
XtdBt

)2]
<

∞. If furthermore E[Y 2
t ] <∞ for all t ∈ [a, b], then

E

[(∫ b

a

XtdBt

)(∫ b

a

YtdBt

)]
=

∫ b

a

E [XtYt] dt.

Proof. Left as an exercise.

The last property asserts that the map

L2([0, T ]× Ω) ⊃M2 −→ L2(Ω)

(Xt)0≤t≤T 7−→
∫ T

0

XtdBt

is an isometry. At this point in the construction, this map is only defined on the subspace of
L2([0, T ]×Ω) generated by the adapted elementary processes. Similarly as for Lebesgue’s integral,
the idea is to extend its definition by continuity onto the larger subspace M2 ⊂ L2([0, T ] × Ω)
of adapted processes approximable by elementary processes 1.

Definition 1.7 (Itô integral against the Brownian motion). For all stochastic processes inM2,
define ∫ b

a

XtdBt := lim
n→∞

pn∑
j=1

Xtnj−1
(Btnj

−Btnj−1
),

where the limit is in L2(Ω), and (tni ) is any sequence of subdivisions of [a, b] with maxj |tnj −
tnj−1| −−−−→n→∞

0.

Proposition 1.8. All the properties of Proposition 1.6 are still valid when (Xt)t is a “nice
enough” stochastic process.

1Lots of measurability issues purposely left under the carpet here. See [LG16, Chapter 4].
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Example 1.9 (
∫ T

0
BtdBt). Let us consider the stochastic integral

∫ T

0
BtdBt. This quantity

makes sense, because the stochastic process Xt = Bt is in M2: it is adapted with continuous
trajectories and finite integrated second moment∫ T

0

E[B2
t ]dt =

∫ T

0

tdt = T 2/2.

Let (tni ) be a sequence of subdivisions of [0, T ] with maxi |tni+1 − tnj | −−−−→n→∞
0. Write

B
(n)
t :=

pn∑
j=1

Btnj−1
1[tj−1,tj)(t)

for the associated elementary process approximating (Bt)t. By definition, we have∫ T

0

BtdBt = lim
n→∞

∫ T

0

B
(n)
t dBt

= lim
n→∞

pn∑
j=1

Btnj−1
(Btnj

−Btnj−1
)

= lim
n→∞

1

2

pn∑
j=1

(B2
tnj
−B2

tnj−1
)− 1

2

pn∑
j=1

(Btnj
−Btnj−1

)2


=

1

2
(B2

T −B2
0)− lim

n→∞

1

2

pn∑
j=1

(Btnj
−Btnj−1

)2

=
1

2
(B2

T − T ),

where the last line uses the formula for the quadratic variation of the Brownian motion. At the

end of the day, we recognize a similar structure as for
∫ T

0
FtdFt =

1
2F

2
T when F is C1 and F0 = 0,

but with an extra additive compensator to center the process.

Example 1.10 (Law of
∫ T

0
ftdBt). Let f : [0, T ] → R be a continuous deterministic function,

and consider
∫ T

0
ftdBt. By Definition 1.7, it is the limit in L2 of Gaussian, so it Gaussian.

Furthermore, from Proposition 1.8, it has mean zero and variance

Var

(∫ T

0

ftdBt

)
=

∫ T

0

f2t dt.

Hence,
∫ T

0
ftdBt ∼ N

(
0,
∫ T

0
f2t dt

)
.

1.3 A notion of stochastic differential: Itô stochastic calculus

The above construction of Itô integral extends to more general process than the Brownian motion.
We will limit ourselves to the following class of processes.

Definition 1.11 (Itô process, stochastic differential). An Itô process (or stochastic integral is
a stochastic process (Xt)t adapted to (Ft)t which can be written as

Xt = X0 +

∫ t

0

atdt+

∫ t

0

btdBt,
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where at, bt are continuous stochastic processes in L1 and L2 respectively. If so, the stochastic
differential of (Xt)t is defined as

dXt := atdt+ btdBt.

If so, at is called the drift and bt the diffusion term (or volatility) of (Xt)t.

Here, at and bt may depend (implicitly or explicitly) of the process (Xs)s≤t itself. Let us
emphasize that the stochastic differential is only a shorthand notation for the equality between
stochastic integrals above. However, as we shall expect, one easily checks that if Ft is a C1
process, we recover the classical notion of differential through dFt = F ′

tdt. This case corresponds
to a zero diffusion term bt = 0.

Example 1.12. From Example 1.9, B2
t = t+

∫ t

0
2BsdBs. Therefore, we have dB

2
t = dt+2BtdBt.

In the above example, notice the fundamental difference with the regular differential of a C1
function which yields d(Ft)

2 = 2FtdFt. The extra term comes from the fact that the Brownian
motion has finite quadratic variation. This property naturally transfers to Itô processes

Proposition 1.13 (Quadratic variation of an Itô process). If (Xt)t is an Itô process as in
Definition 1.11, then it has finite quadratic variation

⟨X⟩t := lim
n→∞

pn∑
j=1

(Xtnj
−Xtnj−1

)2.

Because it is a continuous non-decreasing process, (⟨X⟩t)t has finite first variation, and d⟨X⟩t =
b2tdt.

The quadratic variation of an Itô process appears explicitly in the aforementioned tweaked
chain rule called Itô formula.

Theorem 1.14 (Itô formula). Let (Xt)0≤t≤T be a Itô process and Φ ∈ C2,1(R × R+,R) be
a function of space-time variable (x, t). Then

(
Φ(Xt, t)

)
0≤t≤T

is a Itô process with stochastic

differential

dΦ(Xt, t) = ∂tΦ(Xt, t)dt+ ∂xΦ(Xt, t)dXt +
1

2
∂2x,xΦ(Xt, t)d⟨X⟩t.

Note that if dXt = atdt+ btdBt, Itô formula rewrites as

dΦ(Xt, t) =
(
∂tΦ(Xt, t) + at∂xΦ(Xt, t)

)
dt+

(
bt∂xΦ(Xt, t) +

b2t
2
∂2x,xΦ(Xt, t)

)
dBt.

Sketch of proof. Let us consider the simpler case where Φ(x, t) = Φ(x) is homogeneous in time.
In this case, the integral form of Itô formula to be shown is

Φ(Xt) = Φ(X0) +

∫ t

0

Φ′(Xs)dXs +
1

2

∫ t

0

Φ′′(Xs)d⟨X⟩s.

To prove it, come back to Definition 1.7 of the Itô integral. Given an arbitrarily fine partition of
[0, t], consider the telescopic sum

Φ(Xt) = Φ(X0) +

p∑
j=1

Φ(Xtj )− Φ(Xtj−1)

= Φ(X0) +

p∑
j=1

Φ′(Xtj−1
)(Xtj −Xtj−1

) +
1

2

p∑
j=1

Φ′′(Xt∗j−1
)(Xtj −Xtj−1

)2,

7



where the second equality comes from Taylor-Lagrange formula and t∗j−1 ∈ [tj−1, tj ]. Dealing
with each sum separately, we get that

p∑
j=1

Φ′(Xtj−1
)(Xtj −Xtj−1

) −−−→
p→∞

∫ t

0

Φ′(Xs)dXs

by the definition of the stochastic integral, and by uniform continuity of (Xt)t,

p∑
j=1

Φ′′(Xt∗j−1
)(Xtj −Xtj−1

)2 ≃
p∑

j=1

Φ′′(Xtj−1
)(Xtj −Xtj−1

)2

−−−→
p→∞

∫ t

0

Φ′′(Xs)d⟨X⟩s,

which concludes the proof.

Remark 1.15 (Sanity check for C1 processes). The Itô formula does not contradict the classical
fundamental theorem of calculus2. Indeed, replacing Xt by a C1 process Ft, the second term is
zero because in this case, Ft has finite first variation V (F )t, and hence quadratic variation equal
to zero. Indeed, from Hölder inequality,

⟨F ⟩t = lim
p→∞

p∑
j=1

(Ftj − Ftj−1
)2

≤ lim
n→∞

max
1≤j≤p

|Ftj − Ftj−1
)|

pn∑
j=1

|Ftj − Ftj−1
)|︸ ︷︷ ︸

→V (F )t

≤ lim
n→∞

max
1≤j≤p

∥F ′∥∞|tj − tj−1|V (F )t

= 0.

Exercise 1.16. Revisit the proof of Example 1.9 using Itô formula.

1.4 Multidimensional stochastic calculus

All the above can be generalized to random processes with values in Rd. Everything is then
defined component-wise. That is, the Brownian motion (Bt)t≥0 is a Gaussian process with inde-
pendent coordinates being real-valued Brownian motions. The integral and stochastic differential
are defined accordingly. Finally, Itô’s formula writes as follows.

Theorem 1.17 (Multidimensional Itô formula). Let (Xt)0≤t≤T be a Itô process in Rd and
Φ ∈ C2,1(Rd ×R+,Rk) be a function of space-time variable (x, t). Then

(
Φ(Xt, t)

)
0≤t≤T

is a Itô

process in R with stochastic differential

dΦ(Xt, t) = ∂tΦ(Xt, t)dt+

d∑
k=1

∂xk
Φ(Xt, t)dX

(k)
t +

1

2

d∑
k,ℓ=1

∂2xk,xℓ
Φ(Xt, t)d⟨X(k), X(ℓ)⟩t,

where Xt = (X
(1)
t , . . . , X

(d)
t ), and ⟨U, V ⟩t := limn→∞

∑pn

j=1(Utnj
− Utnj−1

)(Vtnj − Vtnj−1
).

2Fortunately, these lecture notes are not completely nonsense.
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Exercise 1.18 (Product rule and value of
∫ T

0
ftdBt). Use the Theorem 1.17 to prove that if

(Xt)t and (Yt)t are independent centered Itô processes, then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs.

If f : [0, T ]→ R is a C1 deterministic function, show that
∫ T

0
ftdBt = fTBT−

∫ T

0
Btdft. Compare

with Example 1.10.

2 Diffusion from a distribution and back

2.1 Ornstein–Uhlenbeck process

Now equipped with a notion of stochastic differential, one may wonder how to solve stochastic
differential equations. Historically, one of the most central one in diffusion-based generative
models is the following.

Definition 2.1 (Ornstein-Uhlenbeck process). An Ornstein-Uhlenbeck process with parameters
λ, σ > 0 starting at x ∈ Rd driven by a d-dimensional Brownian motion is a stochastic process
on T = R+ satisfying {

dXt = −λXtdt+
√
2σdBt,

X0 = x.

To try and solve such a stochastic differential equation (SDE), note that its integral form

Xt = x−
∫ t

0

λXtdt+
√
2σBt,

yields that the mean m(t) := E[Xt] of Xt satisfies m′(t) = −λm(t) with m(0) = x, so that
m(t) = e−λtx. Hence, let us introduce the renormalized process Yt := eλtXt. By applying Itô
formula (Theorem 1.14) to Φ(x, t) := eλtx, we get

dYt = ∂tΦ(Xt, t)︸ ︷︷ ︸
=λYt

dt+ ∂xΦ(Xt, t)︸ ︷︷ ︸
=eλt

dXt +
1

2
∂2x,xΦ(Xt, t)︸ ︷︷ ︸

=0

d(
√
2σ)2dt

= (λYt − λeλtXt)dt+ eλt
√
2σdBt

=
√
2σeλtdBt.

This means that Yt = Y0 +
∫ t

0

√
2σeλsdBs, or equivalently,

Xt = xe−λt +

∫ t

0

√
2σeλ(s−t)dBs.

If x is deterministic, we obtain that (see Example 1.10)

Xt ∼ N
(
xe−λt,

σ2

λ
(1− e−2λt)

)
.

As a result, Xt
t→∞−−−→ N (0, σ2/λ) in distribution. See Figure 3 for an illustration.

All this derivation easily generalizes to parameters λ = λt and σ = σt depending on time.

9



Figure 3: Ten trajectories of an homogeneous Ornstein-Uhlenbeck (Definition 2.1) starting from
X0 = 2 with λ = 5 and σ = 1/2, all stopped at time T = 5 (left). Histogram of XT on N = 5000
draws compared to the limiting normal (right).

Proposition 2.2 (Time-inhomogenous Ornstein-Uhlenbeck process). The generalized Ornstein-
Uhlenbeck equation {

dXt = −λtXtdt+
√
2σtdBt,

X0 = x.

admits for unique solution

Xt = xe−µt +

∫ t

0

√
2σse

µs−µtdBs,

where µt :=
∫ t

0
λsds.

Proof. Left as an exercise.

If now X0 has a non-deterministic distribution, we obtain the distribution of Xt straightfor-
wardly.

Proposition 2.3. If X0 ∼ p0(x)dx and (Xt)t≥0 is given by the generalized Ornstein-Ulhenbeck
process of Proposition 2.2, then Xt ∼ pt(x)dx has the distribution of

X0e
−µt +

√(∫ t

0

2σ2
se

2(µt−µs)ds

)
Z,

where Z ∼ N (0, 1) is independent from X0, and µt :=
∫ t

0
λsds.

See Figure 4 for an illustration of Proposition 2.3. From there, the core idea of diffusion
generative models can be summarized as follows. Starting from an unknown sample distribution
X0 ∼ pdata and gradually adding noise to X0 (i.e. letting an Ornstein-Uhlenbeck process run
from starting point X0), we converge towards a known Gaussian distribution N (0, σ2/λ) at
t = ∞. If we know how to reverse this dynamics, then starting from a (easy to generate) fresh
random variable with distribution N (0, σ2/λ), we will obtain a fresh sample with distribution
(close to) pdata.
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Figure 4: Exemplifying Proposition 2.3 with histograms of Ornstein-Uhlenbeck processes
stopped at T = 1 starting from X0 with mixture distribution pdata = 0.8N (−1, 1/2) +
0.2N (−2, 1/2). Diffusion parameters are as in Figure 3. Histograms are computed over
N = 50000 trajectories.
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Remark 2.4 (Applicability of the above theory). � All the above generalizes to higher dimen-
sions d > 1 (see Section 1.4), making this idea actually applicable for high-dimensional data

� In practice, simulating an Itô process with known and computable drift at and diffusion term
bt can be done approximately by time discretization. The simplest algorithm for this is called
the Euler scheme, used to generate the figures of these notes. It uses the very Definition 1.7
of an Itô integral.

2.2 Fokker-Planck equation

2.2.1 Diffusion processes and PDEs

To formalize how to reverse time in stochastic differential equations properly, one has to turn
towards the theory of Partial Differential Equations (PDEs) [And82]. Given a smooth enough
function f : Rd → R and vector field V : Rd → Rd, we denote by

� ∇f := (∂x1
f, . . . , ∂xd

f) the gradient of f ,

� ∇ · V :=
∑d

k=1 ∂xk
Vk the divergence of V ,

� ∆f := ∇ · ∇f =
∑d

k=1 ∂
2
xk,xk

f the Laplacian of f .

With these operators, integrations by parts write as∫
Rd

f(x)∇ · V (x)dx = −
∫
Rd

⟨∇f(x), V (x)⟩dx,

so that ∫
Rd

f(x)∆g(x)dx = −
∫
Rd

⟨∇f(x),∇g(x)⟩dx =

∫
Rd

∆f(x)g(x)dx,

Proposition 2.5 (Fokker-Planck characterization of the dynamic). Let (Xt)t be the solution of
the SDE

dXt = at(Xt)dt+
√
2σt(Xt)dBt,

with initial condition X0 ∼ p0(x)dx having a smooth density with respect to the Lebesgue measure
in Rd. Then for all t ≥ 0, Xt has a density pt with respect to the Lebesgue measure, and this
density satisfies the Fokker-Planck equation

∂tpt = −∇ ·
(
atpt

)
+∆

(
σ2
t pt
)
.

Proof. Write Φ(x, t) = Φt(x) for an arbitrary test function in C2,1(Rd × [0, T ],R). Then from
Theorem 1.17,

dΦt(Xt) = ∂tΦt(Xt)dt+

d∑
k=1

∂xk
Φt(Xt)dX

(k)
t +

1

2

d∑
k,ℓ=1

∂2xk,xℓ
Φt(Xt)d⟨X(k), X(ℓ)⟩t

= ∂tΦt(Xt)dt+ ⟨∇Φt(Xt),dXt⟩+ σ2
t∆Φt(Xt)dt,

where we used that d⟨B(k), B(ℓ)⟩t = δk,ℓdt by independence of the components of the Brownian
motion. This expression simplifies to

dΦt(Xt) =
(
∂tΦt(Xt) + ⟨∇Φt(Xt), at⟩+ σ2

t∆Φt(Xt)
)
dt+

√
2σt⟨∇Φt(Xt),dBt⟩.

12



From the centering property of Proposition 1.8, we get that E
[√

2σt⟨∇Φt(Xt),dBt⟩
]
= 0. Now

writing the above expression in integral form and taking its expectation with respect to Xt ∼
pt(x)dx, we get

E
[
Φt(Xt)− Φ0(X0)

]
=

∫ t

0

E
[(
∂tΦs(Xs) + ⟨∇Φs(Xs), as⟩+ σ2

s∆Φs(Xs)
)]

ds

=

∫ t

0

∫
Rd

(
∂tΦs(x) + ⟨∇Φs(x), as(x)⟩+ σ2

s(x)∆Φs(x)
)
ps(x)dxds

=

∫ t

0

∫
Rd

(
−∂tps(x)−∇ · (ps(x)as(x)) + ∆(ps(x)σ

2
s(x))

)
Φs(x)dxds,

where we used an integration by parts for each term. Since this integral equation is true for all
smooth enough Φ, we obtain the result.

2.2.2 Diffusion processes and ODEs

The Fokker–Planck equation can be seen as describing the evolution of the probability density
pt(x) of the position of the particle Xt under the influence of a drift force at(Xt)dt and random
forces

√
2σt(Xt)dBt. As such, it is linked with transport of the mass p0 through time.

Proposition 2.6. The Fokker-Planck equation for dXt = at(Xt)dt+
√
2σt(Xt)dBt can be recast

as the non-linear transport equation

∂tpt(x) =−∇ ·
(
vt(x)pt(x)

)
with velocity field vt := at − σ2

t∇ log pt −∇σ2
t .

Proof. Starting from the Fokker-Planck equation

∂tpt = −∇ ·
(
at(x)pt

)
+∆

(
σ2
t pt
)

= −∇ ·
(
at(x)pt −∇

(
σ2
t pt
))

= −∇ ·
(
{at(x)−∇

(
σ2
t pt
)
/pt}pt

)
,

the proof follows by noticing that

∇
(
σ2
t pt
)
/pt = σ2

t∇pt/pt +∇σ2
t

= σ2
t∇ log pt +∇σ2

t .

The above transport equation can be seen as the evolution of marginals of a deterministic
ODE with a random initialization, as the following result shows.

Proposition 2.7. If we consider the solution trajectories of the ordinary differential equation{
dxt = vt(xt)dt,

x0 ∼ p0(x)dx,

then for all t ≥ 0, xt ∼ pt(x)dx where pt is given by the Fokker-Planck equation of Proposi-
tion 2.6.

13



Proof. Writing xt ∼ qt(x)dx, then for all test function Φ,∫
Rd

Φ(x)∂tqt(x)dx = ∂t E [Φ(xt)]

= E [∂tΦ(xt)]

= E [⟨∇Φ(xt), x′t⟩]

=

∫
Rd

⟨∇Φ(x), vt(x)⟩qt(x)dx

= −
∫
Rd

Φ(x)∇ · (vt(x)qt(x)) dx,

and hence qt satisfies Fokker-Planck. Since q0 = p0, we get the result provided that Fokker-Planck
has a unique solution.

At this point, we have constructed two very different continuous random processes, but with
identical marginal probability densities pt:

� (Xt)t is nowhere differentiable. It satisfies a stochastic differential equation (Proposi-
tion 2.5).

� (xt)t is smooth. It satisfies an ordinary differential equation (Proposition 2.7).

In fact, both point of view shall provide generative strategies. Overall, the key ingredients
for a diffusion-like generative model to be operable are

� (Interpolation) The family of distributions (pt)t connects p0 = pdata and pT ≃ N (0, 1);

� (Samplability) The marginals pt are easy to sample starting from X0 ∼ pdata;

� (Reversibility) One can learn a way to reverse the time dynamic of (pt)t.

2.3 Backward process

As above, let us consider the Itô process dXt = at(Xt)dt+
√
2σt(Xt)dBt. For instance, we have

seen that the Ornstein-Ulhenbeck process provides an easy way to generate random variables
XT ∼ xT ∼ pT (x)dx ≃ N (0, σ2/λ) from a seed random variable X0 ∼ pdata and the resolution
of an ODE (for xT ) or a SDE (for XT ), usually done numerically with a Euler scheme. We now
want to reverse time, and try to build a backward process, meaning that for all t ∈ [0, T ],

←−x t ∼ XT−t.

2.3.1 Ordinary time-reversal

A first idea to reverse the dynamic is to use the ODE formulation of Proposition 2.7.

Theorem 2.8 (Backward deterministic dynamic). If the solution to dxt = vt(xt)dt has density
xt ∼ pt(x)dx, then the solution to {

d←−x t = −vt(←−x t)dt
←−x 0 ∼ pT (x)dx

satisfies ←−x t ∼ xT−t for all t ∈ [0, T ].

14



Proof. Straightforward from Proposition 2.7.

Remark 2.9 (Time-reversal is an improper term). Despite the catchy naming, we have not actu-
ally reversed (xt)0≤t≤T as a stochastic process. Indeed, the trajectories of ←−x t have differentiable
trajectories, while XT−t has C1/2− trajectories for σt ̸= 0. In fact, we have only constructed a
process ←−x t that has the same marginals as xT−t

This result explicitly displays the requirements to simulate the backward process:

� Sample
←−
X 0 from pT , (supposedly easy for large T if we chose the forward diffusion well)

� Run a ODE solver with velocity field vt(x) = −at + σ2
t∇ log pt(x).

Note that here, the drift is a priori unknown because it depends on the score ∇ log pT−t.

2.3.2 Stochastic time-reversal(s)

Given user-defined noise schedule (←−σt)0≤t≤T , one can reinterpret the Fokker-Planck equation
driving the dynamic at the level of probability densities.

Theorem 2.10 (Backward stochastic dynamic). If the solution to dXt = at(Xt)dt+
√
2σt(Xt)dBt

has density Xt ∼ pt(x)dx, then the solution to{
d
←−
X t =

←−a t(
←−
X t)dt+

√
2←−σtdBt←−

X 0 ∼ pT (x)dx

with ←−a t := −aT−t +∇(σ2
T−t +

←−σt2) + (σ2
T−t +

←−σt2)∇ log pT−t satisfies

←−
X t ∼ XT−t.

As pointed out in Remark 2.9, let us insist on the fact that this result only states that the

marginals distributions XT−t and
←−
X t are the same. It does not conclude anything about the full

stochastic processes (XT−t)t and (
←−
X t)t.

For the choice ←−σt := 0, we recover exactly the result of Theorem 2.8. Another very common
choice is ←−σt := σT−t, yielding a dynamic of exact same diffusive type as the forward one.

Proof. From Proposition 2.5, the Fokker-Planck equation associated to the forward process is

0 = −∂tpt −∇ ·
(
atpt

)
+∆(σ2

t pt).

In distribution, reversing the dynamic amounts to consider t 7→ pT−t instead of t 7→ pt, which
reverses the sign of the time derivative and leaves the spatial ones unchanged. Therefore,

0 = +∂tpT−t −∇ ·
(
aT−tpT−t

)
+∆(σ2

T−tpT−t).

To recognize an instance of the Fokker-Planck equation with diffusive term ←−σt2, we then write

0 = −∂tpT−t +∇ ·
(
aT−tpT−t

)
−∆(σ2

T−tpT−t)

⇐⇒ 0 = −∂tpT−t +
(
∇ ·
(
aT−tpT−t

)
−∆({σ2

T−t +
←−σt2}pT−t)

)
+∆(←−σ 2

tpT−t).

In the middle term, as in the proof of Proposition 2.6, we use the fact that

∆(σ2p) = ∇ · ∇(σ2p) = ∇ · ({σ2∇ log p+∇σ2}p)
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to get the equivalent equation

0 = −∂tpT−t −∇ ·
(←−a T−tpT−t

)
+←−σt2∆pT−t,

where
←−a t := −aT−t +∇(σ2

T−t +
←−σt2) + (σ2

T−t +
←−σt2)∇ log pT−t.

At the end of the day, we recognize this Fokker-Planck equation as characterizing the announced
backward stochastic dynamic.

This result explicitly displays the requirements to simulate the backward process:

� Sample
←−
X 0 from pT , (supposedly easy for large T if we chose the forward diffusion well)

� Run a SDE solver with

– diffusion coefficient ←−σ t, which we choose;

– drift ←−a t(x) := −aT−t(x) + (σ2
T−t +

←−σt2)∇ log pT−t(x), which unfortunately depends on
the unknown distribution pT−t again.

3 Score-based generative models

Let us present a couple ways to estimate the score function (x, t) 7→ ∇ log pt(x). Score matching
is the standard terminology to refer to this part. As will become clear in Section 4, the loss we
consider is very adapted to generative modeling. It is the so-called Fisher divergence is given by

Fisher(p | p̂) :=
∫
Rd

∥∇ log p(x)−∇ log p̂(x)∥2p(x)dx

= EX∼p[∥∇p(X)−∇p̂(X)∥2],

and for which the L2 structure allows for drastic simplifications when optimizing over s(x) :=
∇ log p̂(x), see below. Indeed, at this point, Fisher(p | p̂) cannot be trivially estimated from
sample because of the dependence in ∇ log p in the expectation.

3.1 Vanilla score matching

The main trick for score matching dates back to [HD05]. It is based on the following simple
result.

Proposition 3.1 (Vanilla score trick). For all smooth density p : Rd → R+, there exists cp ≥ 0
such that the following holds. For all smooth s : Rd → Rd decaying sufficiently fast at infinity,

EX∼p

[
∥∇ log p(X)− s(X)∥2

]
= cp + EX∼p

[
2∇ · s(X) + ∥s(X)∥2

]
.

Proof. We simply develop the left-hand side to get

EX∼p

[
∥∇ log p(X)− s(X)∥2

]
= EX∼p

[
∥∇ log p(X)∥2

]
− EX∼p [2⟨∇ log p(X), s(X)⟩] + EX∼p

[
∥s(X)∥2

]
.

16



The first term does not depend on s and the last one is just as desired. The middle one can be
integrated by parts through∫

Rd

⟨∇ log p(x), s(x)⟩p(x)dx =

∫
Rd

⟨∇p(x), s(x)⟩dx

= −
∫
Rd

p(x)∇ · s(x)dx,

which yields the result.

From there, one can fit a parametric set of functions (sθ)θ∈Θ (typically neural networks) to
learn the score ∇ log pt(x) via the empirical risk minimization

θt ∈ argmin
θ

EXt∼pt

[
2∇ · sθ(Xt) + ∥sθ(Xt)∥2

]
. (1)

Note that an empirical version of the above expectation is indeed available to us, from simulations
of the forward process.

Remark 3.2 (But... In practice?). � Equation (1) needs to be solved globally for t ∈ [0, T ]. We
could discretize 0 = t0 < . . . < tp = T and fit p scores sθt0 , . . . , sθtp in parallel. However,
it appears that learning the whole function (x, t) 7→ ∇ log pt(x) globally in space and time is
more efficient. This fact follows the intuition, since closeby tj should result in closeby sθtj .

Therefore, practitioners tend fit one single space-time neural net with the time-integrated loss

θ ∈ argmin
θ

∫ T

0

w(t)EXt∼pt

[
2∇ · sθ(Xt, t) + ∥sθ(Xt, t)∥2

]
dt,

with w being a weight function chosen by the user (typically decreasing).

� Overall, the loss function to minimize has the form

ℓ(θ) :=

p∑
j=0

w(tj)

n∑
i=1

(
2∇ · sθ(Xtj ,i, tj) + ∥sθ(Xtj ,i, tj)∥2

)
, (2)

where sample batches (Xt0,i)i≤n, . . . , (Xtp,i)i≤n are obtained by SDE simulations starting from
data X1, . . . , Xn ∼ p0. Even with these simulated sample taken as granted, note that performing
gradient descent on (2) requires to evaluate second order gradients ∇θ∇xsθ(x), which is very
costly.

3.2 Denoising score matching

3.2.1 General principle

One way to avoid the general numerical limitations described in Remark 3.2 is to take advantage
of the convolutional structure of the noising process [Vin11]. Writing p∗g(x) :=

∫
Rd p(y)g(x−y)dy

for the convolution of densities p, g : Rd → R+, we can build upon the following result.

Proposition 3.3 (Denoising score trick). If X ∼ p(x)dx and ε ∼ g(x)dx are independent, then
Xε := X + ε ∼ (p ∗ g)(x)dx. Furthermore, there exists c′p,g such that for all smooth s : Rd → Rd,

EXε∼p∗g
[
∥∇ log(p ∗ g)(Xε)− s(Xε)∥2

]
= c′p,g + E(X,ε)∼p⊗g

[
∥∇ log g(ε)− s(X + ε)∥2

]
.
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Proof. By properties of the convolution, pg := p ∗ g is smooth as soon as p or g is smooth. From
Proposition 3.1 applied to Xε ∼ pg, we have

EXε∼p∗g
[
∥∇ log(p ∗ g)(Xε)− s(Xε)∥2

]
= cp∗g + E(X,ε)∼p⊗g

[
2∇ · s(X + ε) + ∥s(X + ε)∥2

]
.

Furthermore, the second term of the last display writes as

2

∫
Rd

(∫
Rd

∇ · s(x+ y)g(y)dy

)
p(x)dx = −2

∫
Rd

(∫
Rd

⟨∇ log g(y), s(x+ y)⟩g(y)dy
)
p(x)dx

= −2E(X,ε)∼p⊗g [⟨∇ log g(ε), s(X + ε)⟩] .

The proof is then complete by recognizing the square

E
[
−2⟨∇ log g(ε), s(X + ε)⟩+ ∥s(X + ε)∥2

]
= E

[
∥∇ log g(ε)− s(X + ε)∥2

]
− E

[
∥∇ log g(ε)∥2

]
,

with E
[
∥∇ log g(ε)∥2

]
depending only on g.

As desired, the expression given by Proposition 3.3 does not involve any derivative of the
candidate score s. Instead, the derivative is undertaken by the score ∇ log g of the chosen noise.

3.2.2 Ornstein-Uhlenbeck denoising trick

To see the denoising trick in action, we now apply Proposition 3.3 to the density p = pt associated
to the Ornstein-Ulhenbeck process Xt ∼ e−λtX0 + εt at time t as defined in Section 2.1. Its
distribution does write as a convolution pt = qt ∗ gt with:

� the scaled distribution qt(x) = eλtp(eλtx) of the drifted signal e−λtX0;

� the noise distribution gt(x) = (2πΣ2
t )

−d/2 exp
(
−∥x∥2/(2Σ2

t )
)
of the Gaussian εt ∼ N (0,Σt)

with

Σt :=
σ2

λ
(1− e−2λt).

Hence, ∇ log gt(x) = −x/Σ2
t .

The time-integrated loss minimization becomes equivalent to

θ ∈ argmin
θ

∫ T

0

w(t)E
[
∥∇ log gt(εt)− sθ(Xt, t)∥2

]
dt

= argmin
θ

∫ T

0

w(t)E
[
∥∇ log gt(εt)− sθ(e−λtX0 + εt, t)∥2

]
dt

= argmin
θ

∫ T

0

w(t)E

[∥∥∥∥− εt
Σ2

t

− sθ(e−λtX0 + εt, t)

∥∥∥∥2
]
dt.

If ξ ∼ N (0, Id×d) is independent from X0, this leads to the concise expresion

θ ∈ argmin
θ

∫ T

0

w(t)E

[∥∥∥∥(−ξΣt

)
− sθ(e−λtX0 +Σtξ, t)

∥∥∥∥2
]
dt.

In practice, the above minimization is discretized over the time interval [0, T ]. The expected
value is approximated via the sample mean for the X0 part. Integration with respect to ξ can
either be approximated by Monte Carlo methods or computed exactly. In the latter case, given

18



data Xn = {X(1), . . . , X(n)} and used-defined time steps 0 ≤ t1 ≤ . . . ≤ tk ≤ T , we end up with
the loss

LXn
(θ) =

k∑
k=1

w(tk)

n∑
i=1

Eξ

[∥∥∥∥( −ξΣtk

)
− sθ(e−λtkX(i) +Σtkξ, tk)

∥∥∥∥2
]
.

Then, the backward process shall be discretized via an Euler-Maruyama method based on the
same time steps (tk)k.

Remark 3.4 (Tweedie’s formula: why score matching is about denoising). The last expression
highlights why we sometimes say that sθ “learns the noise”. In the Gaussian case, a fitted score
sθ(·, t) is actually meant to fit the opposite of rescaled noise −ξ/Σt from observation Xt.

In fact, looking again at Proposition 3.3 in full generality, we see that the minimizer s∗ :
Rd → Rd of

argmin
s:Rd→Rd

EXε∼p∗g
[
∥∇ log(p ∗ g)(Xε)− s(Xε)∥2

]
= argmin

s:Rd→Rd

E(X,ε)∼p⊗g

[
∥∇ log g(ε)− s(X + ε)∥2

]
is unique PX+ε-almost surely, and is characterized by the conditional expectation

s∗(X + ε) := E [∇ log(ε) | X + ε] .

4 Sampling from a learnt score

Given a learnt score function s : Rd × [0, T ] → Rd, meant to approximate ∇ log pT−t, let us
now quantify the error of the output learnt probability distribution. Many natural discrepancies
between probability measures could be considered. This includes information-theoretic ones such
as the total variation distance and the Kullback-Leibler divergence, or transport-based ones such
as Wasserstein distances or Integral Probability Metrics, much more relevant for high-dimensional
data. For sake of simplicity, we will only consider The Kullback-Leibler divergence, defined as

KL(p | q) =
∫
Rd

log

(
p(x)

q(x)

)
p(x)dx.

4.1 Exact Kullback-Leibler dynamics

In the literature of score matching, the first bound to be obtained on the KL-divergence is
attributed to [SSDK+20]. Its proof is based on Girsanov’s theorem, which relies heavily on
advanced stochastic calculus. Let us give an alternative one taken from Simon Coste’s website,
based on Proposition 2.6 and simple integral calculus.

Proposition 4.1. Let (pt)0≤t≤T and (qt)0≤t≤T be two families of smooth probability densities
on Rd, respectively driven by the transport equations

∂tpt(x) = −∇ ·
(
vt(x)pt(x)

)
and ∂tqt(x) = −∇ ·

(
ut(x)qt(x)

)
,

with smooth enough velocity fields vt, ut : Rd → Rd. Then we have

d

dt
KL(pt | qt) =

∫
Rd

〈
vt(x)− ut(x),∇ log

(
pt(x)

qt(x)

)〉
pt(x)dx.
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Proof. Assuming that a time integral derivative inversion is legit, we get

d

dt
KL(pt | qt) =

∫
Rd

∂t {pt log qt − pt log pt}

=

∫
Rd

∂tpt(1 + log pt)− ∂tpt log qt −
pt
qt
∂qt

=

∫
Rd

∂tpt +

∫
Rd

∂tpt log(pt/qt)−
∫
Rd

pt
qt
∂qt.

The first term is zero because
∫
Rd pt = 1 for all t. Because (pt)t follows the transport equation

with velocity vt, the second term rewrites as

−
∫
Rd

∇ · (vt(x)pt(x)) log(pt/qt) =
∫
Rd

⟨vt(x)pt(x),∇ log(pt/qt)⟩ ,

where we use an integration by parts. Similarly, the third one is equal to∫
Rd

pt
qt
∇ · (utqt) = −

∫
Rd

⟨∇(pt/qt), utqt⟩

= −
∫
Rd

⟨∇ log(pt/qt), utpt⟩ ,

where the last equality follows from ∇(pt/qt) = (pt/qt)∇ log(pt/qt). Putting everything together,
we obtain the result.

As a direct consequence, we can integrate this bound to get an explicit formula for the
Kullback-Leibler divergence along the flow.

Corollary 4.2. In the context of Proposition 4.1, we have

KL(pT | qT ) = KL(p0 | q0) +
∫ T

0

∫
Rd

〈
vt(x)− ut(x),∇ log

(
pt(x)

qt(x)

)〉
pt(x)dxdt.

4.2 Application to flow matching

[Forward SDE] Let p0 : Rd → R+ be some probability distribution of interest. Starting from
X0 ∼ p0(x)dx, we run the forward SDE dXt = at(Xt)dt +

√
2σt(Xt)dBt over the time interval

[0, T ]. We denote by (pt)0≤t≤T the associated distribution.
[True backward (S)DE] Given some backwards noise schedule (←−σt)0≤t≤T (possibly zero), Theo-
rem 2.10 asserts that the solution to{

d
←−
X t =

←−a t(
←−
X t)dt+

√
2←−σt(
←−
X t)dBt←−

X 0 ∼ pT (x)dx

with ←−a t := −aT−t + ∇(σ2
T−t +

←−σt2) + (σ2
T−t +

←−σt2)∇ log pT−t satisfies
←−
X t ∼ XT−t, which we

denote by ←−p t = pT−t.
[Approximated backward (S)DE] Given some score function s : Rd × [0, T ] → Rd meant to
approximate ∇ log pT−t, and an easy-to-sample user-defined density p∞ we now run the SDE{

dX̂t = ât(X̂t)dt+
√
2←−σt(X̂t)dBt

X̂0 ∼ p∞(x)dx
(3)

with ât := −aT−t +∇(σ2
T−t +

←−σt2) + (σ2
T−t +

←−σt2)st. We write X̂t ∼ qt(x)dx. After running the

SDE until time T , the new fake sample that is output by the method is X̂T .
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Proposition 4.3. The final time of the stochastic process (3) satisfies

KL(p0 | qT ) ≤ KL(pT | p∞) +

∫ T

0

∫
Rd

(σ2
t (x) +

←−σ 2
T−t(x))

2

4←−σ 2
T−t(x)

∥∇ log pt(x)− sT−t(x)∥2 pt(x)dx

Proof. From Proposition 2.6, its family of densities ←−p t = pT−t satisfy the transport equation

∂t
←−p t =−∇ ·

(
vt
←−p t

)
with velocity field vt :=

←−a t −←−σt2∇ log←−p t −∇←−σt2

=− aT−t + σ2
T−t∇ log pT−t +∇σ2

T−t.

Similarly, the family of densities (qt)0≤t≤T satisfy the transport equation

∂tqt =−∇ ·
(
utqt

)
with velocity field ut := ât −←−σt2∇ log qt −∇←−σt2

=− aT−t + σ2
T−tst −←−σt2(∇ log qt − st) +∇σ2

T−t.

Hence, applying Corollary 4.2 to (←−p t)t = (pT−t)t and (qt)t on the time interval [0, T ] yields

KL(p0 | qT )−KL(pT | p∞)

=

∫ T

0

∫
Rd

〈
σ2
T−t(∇ log pT−t − st) +←−σt2(∇ log qt − st),∇ log

(
pT−t

qt

)〉
pT−t

=

∫ T

0

∫
Rd

〈
(σ2

T−t +
←−σt2)(∇ log pT−t − st)−←−σt2∇ log

(
pT−t

qt

)
,∇ log

(
pT−t

qt

)〉
pT−t

In the integrand, the inner product simplifies to

−←−σt2
∥∥∥∥∇ log

(
pT−t

qt

)∥∥∥∥2 +〈(σ2
T−t +

←−σt2)(∇ log pT−t − st),∇ log

(
pT−t

qt

)〉
≤

(σ2
T−t +

←−σt2)2

4←−σt2
∥∇ log pT−t − st∥2 ,

where the inequality follows from ⟨a, b⟩ ≤ ∥a∥2/(4λ)+λ∥b∥2 with a = (σ2
T−t+

←−σt2)(∇ log pT−t−
st), b = ∇ log (pT−t/qt) and λ = ←−σt2. The final result follows after the change of variable
t′ = T − t.
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