Math 183 Statistical Methods

Eddie Aamari S.E.W. Assistant Professor

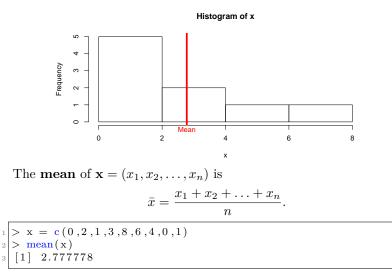
eaamari@ucsd.edu math.ucsd.edu/~eaamari/ AP&M 5880A

Today: Chapter 2 (end)

- Mean, median, quantiles
- Box plots
- Measures of spread
- Data transformations

Summarizing Data

Real life data are complex and hardly understandable at first sight.

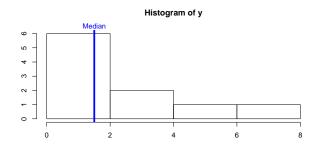

_	email50	×														
	018	1 7 Filter													Q,	
	sparrî	to_multiple	from	cĉ	sent_email	¢ ¢	imagê	attach	dollar	winner	inherit	viagrâ	password	num_char	$line_break\hat{s}$	format
1	0	0	1	0	1	2012-01-04 05:19:16	0	0	0	no	0	0	0	21.705	551	1
2	0	0	1	0	0	2012-02-16 12:10:06	0	0	0	no	0	0	0	7.011	183	1
3	1	0	1	4	0	2012-01-04 07:36:23	0	2	0	no	0	0	0	0.631	28	c
4	0	0	1	0	0	2012-01-04 09:49:52	0	0	0	no	0	0	0	2.454	61	¢
5	0	0	1	0	0	2012-01-27 01:34:45	0	0	9	no	0	0	1	41.623	1088	1
6	0	0	1	0	0	2012-01-17 09:31:57	0	0	0	no	0	0	0	0.057	5	¢
7	0	0	1	0	0	2012-03-17 21:18:55	0	0	0	no	0	0	0	0.809	17	c
8	0	0	1	0	1	2012-03-31 06:58:56	0	0	0	no	0	0	0	5.229	88	1
9	0	0	1	1	1	2012-01-10 17:57:54	0	0	0	no	0	0	0	9.277	242	1
LO	0	0	1	0	0	2012-01-07 11:29:16	0	0	23	no	0	0	0	17.170	578	1
u	0	0	1	0	0	2012-02-22 16:57:02	0	0	4	no	0	0	0	64.401	1167	1
12	0	0	1	0	0	2012-02-04 15:26:09	0	0	0	no	0	0	2	10.368	198	1
L3	1	0	1	0	0	2012-01-24 08:15:56	0	0	3	yes	0	0	0	42.793	712	1
14	1	1	1	0	0	2012-02-08 18:22:46	0	2	2	no	0	0	0	0.451	24	c
																>

Need to summarize them!

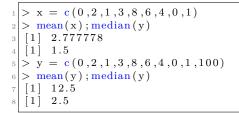
For numerical data, we use their **center** and **spread**.

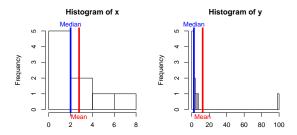
These are called "statistics".

Data Centrality: Mean

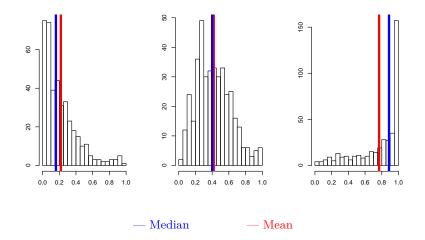

mean(x) is the balance point on the histogram, the value that sets the torque to zero.

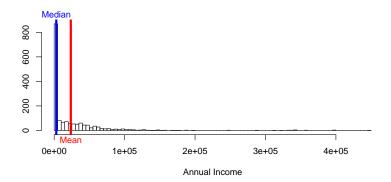
Data Centrality: Median


The **median** of $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is the value that splits the sample into two halves.


Data Centrality: Median

If sample size is even, take the average of the two "middle" points.


Median VS Mean: Outliers


Median VS Mean: Skew

Where are the mean and the median located?

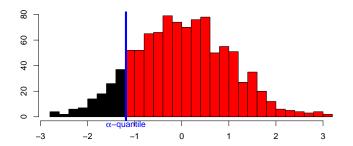
Right/Left skewness inform on the respective positions of the median and the mean?

Median VS Mean: Practice

Median VS Mean

Moral:

- The median is robust to outliers and skew.
- The mean is not.

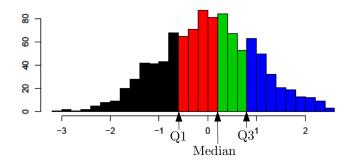

But:

• The mean easier to handle and much more popular.

Data Position: Quantiles

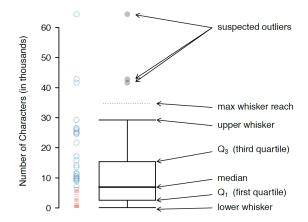
For $0 \le \alpha \le 1$, the α -quantile is the value that splits data into:

- Proportion α on the left
- Proportion (1α) on the right



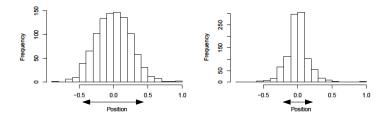
R function: quantile(x,alpha)

Data Position: Quantiles


Some quantiles have special names:

- 25%-quantile: 1st quartile (Q2)
- 50%-quantile: median
- 75%-quantile: 3rd quartile (Q3)

Box Plot


A box plot (or whisker plot) is a visualization of these quantiles.

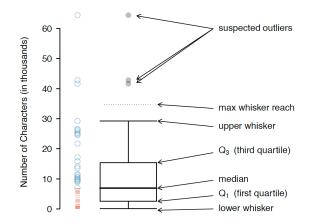
R function: boxplot(x).

Spread of a Distribution


A centrality statistics is not sufficient to describe data fully.

We would like an indicator of where "most of the data" lie.

Spread of a Distribution


- **Range** = $\max(data) \min(data)$
 - Easy to compute
 - Not resistant to outliers; only takes into account two points (extremes)
- Interquartile Range (IQR) = Q3 Q1.

- Resistant to outliers and skew.
- Not very popular; Hard to handle and to compute.

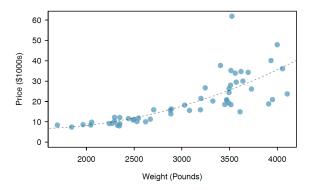
Back to Box Plots

The range and the IQR can be vizualized on a box plot.

Standard Deviation

The sample **standard deviation** of \mathbf{x} is defined as:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

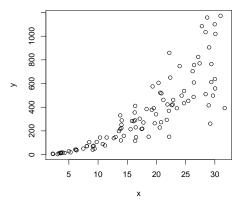

- Sum of squares: to get positive values
- Square root: to undo squaring action and have s with same units as the x_i 's.
- (n-1) instead of n: explained later in the course.

R function: sd(x).

- <u>Very</u> popular notion of spread; easy to handle mathematically
- Sensitive to outliers and skew; hard to explain to non-statisticians.

Two Numerical Variables: Scatter Plots

When we wants to study jointly two numerical variables, we can use a scatter plot. (R function plot(var1,var2))

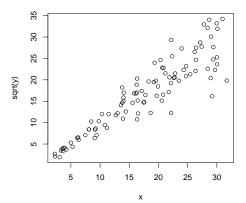


A scatterplot of the price and the weight of 54 cars.

A pair of variables are either related in some way (associated) or not (independent). Caution: Association is NOT Causality!

Scatter Plots

The sense of the association (positive or negative) can usually be visualized...

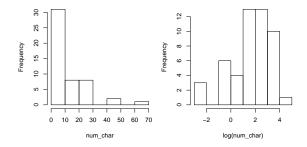


Scatter Plot of Two Variables

... But their precise relation may not be so clear!

Data Transformation: Use 1

Applying a function to either one or the two variables may help catching their precise relation.

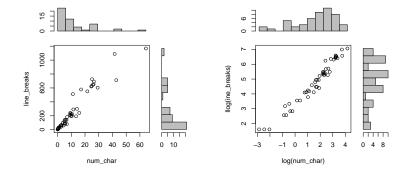


Scatter Plot of Two Variables

Plotting (x, \sqrt{y}) show a linear behavior: $y \simeq (ax + b)^2$ for some *a* and *b* to be estimated. (see Regression, Chapter 7).

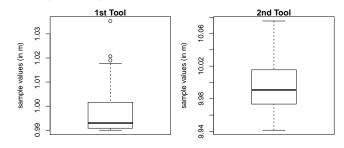
Data Transformation: Use 2

Transformed data are sometimes easier to work with. Indeed, the transformed data are much less skewed and outliers are usually less extreme.



Standard data transformation functions:

- logarithm: when (positive) data skewed right with many values close to 0, and outliers
- arcsine: for data in the interval [-1, 1]. Mostly used in biology and chemistry.


Data Transformation: Use 2

Using the "log" transformation on two variables.

Exercise

Calibrating two measurement tools on a 10 meters benchmark, you collect 50 repeated measures of the same length in vectors \mathbf{x} (1st tool) and \mathbf{y} (2nd tool). Which tool is best? Give arguments.


```
1 > mean(x);sd(x) #First tool
2 [1] 0.9981183
3 [1] 0.01049968
4 > mean(y);sd(y) #Second tool
5 [1] 9.993498
6 [1] 0.02855839
```