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Today: Chapter 6 (continued)
• Inference for the difference of two proportions
• Conditions for inferring difference of proportions
• Pooled proportions for hypothesis testing (only!)
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Statistics in the Large
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Two-Sample Proportion Inference

Population 1
Parameters p1

Sample 1 (size n1)
Statistics p̂1

Population 2
Parameters p2

Sample 2 (size n2)
Statistics p̂2

Before, we either had 1 population, or
two, but we knew the parameter for the
second population. Now, we don’t know
anything about either population.

Typically, when we compare p1 and p2 (or µ1 and µ2), we think about
p1 − p2.
For example, if you care about p1 > p2, then explore p1 − p2 > 0.

We might try to infer this using a C.I. for p̂1 − p̂2, or we might run a
hypothesis test with H0: p1 − p2 = 0.

3 / 22



Two-Sample Proportion Inference

Population 1
Parameters p1

Sample 1 (size n1)
Statistics p̂1

Population 2
Parameters p2

Sample 2 (size n2)
Statistics p̂2

Before, we either had 1 population, or
two, but we knew the parameter for the
second population. Now, we don’t know
anything about either population.

Typically, when we compare p1 and p2 (or µ1 and µ2), we think about
p1 − p2.
For example, if you care about p1 > p2, then explore p1 − p2 > 0.

We might try to infer this using a C.I. for p̂1 − p̂2, or we might run a
hypothesis test with H0: p1 − p2 = 0.

3 / 22



Two-Sample Proportion Inference

Population 1
Parameters p1

Sample 1 (size n1)
Statistics p̂1

Population 2
Parameters p2

Sample 2 (size n2)
Statistics p̂2

Before, we either had 1 population, or
two, but we knew the parameter for the
second population. Now, we don’t know
anything about either population.

Typically, when we compare p1 and p2 (or µ1 and µ2), we think about
p1 − p2.
For example, if you care about p1 > p2, then explore p1 − p2 > 0.

We might try to infer this using a C.I. for p̂1 − p̂2, or we might run a
hypothesis test with H0: p1 − p2 = 0.

3 / 22



Unpaired Independent Populations

Population 1
Parameters p1

Sample 1 (size n1)
Statistics p̂1

Population 2
Parameters p2

Sample 2 (size n2)
Statistics p̂2

(Note: the samples may have different sizes)

Normal distribution
E(p̂1) = p1

SE(p̂1) =
√
p1q1

n1
.

What does the
sampling

distribution of
p̂1 − p̂2 look like?

Shape?
Center?
Spread?

Normal distribution
E(p̂2) = p2

SE(p̂2) =
√
p2q2

n2
.
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Unpaired Independent Populations

If X and Y are independent random variables with Normal distri-
butions, then X − Y is also Normal. In addition, E(X − Y ) =
E(X)− E(Y ), and

SD(X − Y ) =
√
V ar(X − Y ) =

√
SD(X)2 + SD(Y )2.

So if p̂1 ' N

(
p1,

√
p1q1

n1

)
and p̂2 ' N

(
p2,

√
p2q2

n2

)
are indepen-

dent, we get

p̂1 − p̂2 ' N
(
p1 − p2,

√
p1q1

n1
+ p2q2

n2

)
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Unpaired Independent Populations

Normal distribution
E(p̂1) = p1

SE(p̂1) =
√
p1q1

n1
.

Normal distribution
E(p̂2) = p2

SE(p̂2) =
√
p2q2

n2
.

For unpaired data, the sampling distribution of p̂1 − p̂2 is:
• Normal
• E(p̂1 − p̂2) = p1 − p2

• SE(p̂1 − p̂2) =
√
p1q1

n1
+ p2q2

n2
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Drill, Baby, Drill

A 2010 survey asked 827 random voters in California how they feel
about drilling for oil off the coast of CA. Of the 438 college graduates
in the sample, 154 approved. Of the 389 who didn’t graduate from
college, 132 we in favor.
Find a 95% C.I. for the difference in the proportions of college
and non-college California grads who support drilling.

Let p1 be the proportion of CA college grads that support drilling.
Let p2 be the proportion of CA non-college grads that support drilling.

We found p̂1 = 154
438 ' 35.16% and p̂2 = 132

389 ' 33.93%. So

p̂1 − p̂2 ' 1.23%.
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Recall that the sampling distribution of the difference p̂1 − p̂2 is

N

(
p1 − p2,

√
p1q1

n1
+ p2q2

n2

)
.

To build a confidence interval, we will need to estimate the SE since
we don’t know p1 or p2.

As usual, we use the point estimate SEp̂1−p̂2 '
√
p̂1q̂1

n1
+ p̂2q̂2

n2
.

As before, we start at our estimate and reach out a certain number of
SE’s:

(p̂1 − p̂2)± z∗ × SEp̂1−p̂2 .
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We found p̂1 ' 35.16% and p̂2 ' 33.93%, so p̂1 − p̂2 ' 1.23%.

We find SE =
√

35.16× 64.84
438 + 33.93× 66.07

389 ' 3.312%.

For a 95% C.I., we must reach z∗ = 1.96 SE’s:

(p̂1 − p̂2)± z∗ × SEp̂1−p̂2 = 1.23± 1.96× 3.312
= (−5.26%, 7.72%).

1 > prop . t e s t ( x = c (154 ,132) , n=c (438 ,389) , conf . l e v e l =0.95 ,
c o r r e c t=F)

2

3 2−sample t e s t f o r e q u a l i t y o f p r o p o r t i o n s without c o n t i n u i t y
c o r r e c t i o n

4

5 data : c (154 , 132) out o f c (438 , 389)
6 X−squared = 0.13703 , df = 1 , p−value = 0.7113
7 a l t e r n a t i v e hypothes i s : two . s ided
8 95 percent c o n f i d e n c e i n t e r v a l :
9 −0.05264371 0.07717682

10 sample e s t i m a t e s :
11 prop 1 prop 2
12 0.3515982 0.3393316
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But Wait! When is the Sampling Distribution What We Claim?

To get each of the individual sampling distributions to be Normal, in
each sample we need:

• Independence (usually shown through Randomization and <10%
Conditions)

• At least 10 successes and failures
To use the V ar(X−Y ) = V ar(X)+V ar(Y ) formula to find SEp̂1−p̂2 ,
we need

• Independence between the two samples
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Below is given two samples (A and B) and a proportion of interest
that you want to compare across the two groups. Which of the fol-
lowing setups will violate the independence required between the two
samples?
1. A: Random Californians,

B: Random Texans;
percent with college degree in CA vs TX residents

2. A: Random married men,
B: The wives of those married men;
percent with college degrees in married men and married women

3. A: Random adults that have kids,
B: Kids of those adults;
percent that believe in God in adults vs kids.

4. A: Random people in Canada,
B: Random people in the U.S.;
percent that enjoy ice hockey in Canada vs U.S.

5. A: Random people not on antidepressants,
B: Those same people after taking antidepressants;
percent of people that are happy off and on antidepressants.

Answer: 2,3 and 5.
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Your Turn!

Suppose X and Y are independent random variables where X =
N(4, 3) and Y = N(2, 1).
What will the distribution of X − Y look like?
1. N(2, 2)
2. N(2, 4)
3. N(2,

√
10)

4. N(−2, 4)
5. N(−2,−2)

Answer: 3. N(4− 2,
√

32 + 12) = N(2,
√

10)
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Your Turn!

You create a 90% C.I. for a difference in the proportion of Democrats
and Republicans that enjoy the TV personality Stephen Colbert. You
find the C.I. for pdem−prep is (1%, 5%). What is the be way to report
this?
1. 90% of the time, Democrats are about 1 to 5% more likely to

enjoy S. Colbert.
2. 90% of the time, the percentage difference in those who enjoy S.

Colbert (Democrats vs Republicans) will be between 1 and 5%.
3. The difference in the percent of Democrats and Republicans who

enjoy S. Colbert is between 1 and 5%.
4. I am 90% confident that the percentage of Democrats who enjoy

S. Colbert is 1 to 5% higher than the percentage of Republicans
who enjoy Colbert.

Answer: 4.
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Does sexual orientation affect how much people prefer a certain color?
In 2001, researchers explored this question with thousands of college
students (source). Suppose the 95% C.I. for

pLGBT male that likes pink − pStraight male that likes pink

was calculated as (−0.03, 0.04). Which of the following statements
are true?
1. There is not a statistically significant difference in the percent of

college-aged straight males and college-aged LGBT males who
like pink.

2. The probability the true parameter difference lies in this interval
is 0.95.

3. The 95% C.I. for difference in the other order

pStraight male that likes pink − pLGBT male that likes pink

is (−0.04, 0.03).
4. We are 95% confident that the difference in the observed

proportions is in the stated interval.

Answer: 1.,3.
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Difference in Proportions: Hypothesis Testing

We are usually interested in whether the proportions are different in
our two populations.
Thus, we set H0: p1 − p2 = 0 (or equivalently p1 = p2).

Common alternative hypotheses are:
HA: p1 − p2 > 0
HA: p1 − p2 6= 0
HA: p1 − p2 < 0

In one-sample hypothesis testing, we calculate Z = p̂− null value
SEp̂

, so

you might expect we would do something similar when we have two
samples:

Z = (p̂1 − p̂2)− (p1 − p2)
SEp̂1−p̂2

= (p̂1 − p̂2)− 0
SEp̂1−p̂2

.
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Pooling Our Data

This is almost correct. But notice that SE =
√
p̂1q̂1

n1
+ p̂2q̂2

n2
.

This formula acts like we have two different populations going on.
But if we assume H0, then our populations are really the same (in
relation to the idea we are measuring) since p1 = p2.

Instead of using p̂1 and p̂2 in this formula, we create a single statistic

p̂pooled = # Sucesses1 + # Sucesses2
n1 + n2

.

Example: If we had done hypothesis testing for the California drilling
example, we would have written

p̂pooled = 154 + 132
438 + 389 ' 34.58%.
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Pooling Our Data

So, we actually use Z = (p̂1 − p̂2)− 0
SEpooled

, where

SEpooled =
√
p̂pooledq̂pooled

n1
+ p̂pooledq̂pooled

n2

Why do we pool?

The simple answer is that when you find the SE, you want to do this
with the best info you have available.
Usually, this involves just using p̂1 and p̂2 in place of p1 and p2. If
you are hypothesis testing, you assume momentarily p1 = p2 and get
better approximations by using p̂pooled in place of both p̂1 and p̂2.
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Back to Drilling
Test the claim that CA college grads (Population 1, sample: 153 of
438 supported) are more interested in drilling than CA non-college
grads (Population 2, sample: 132 of 389 supported).

We set H0: p1 − p2 = 0 and HA: p1 − p2 > 0.

From before, p̂1 − p̂2 = 1.23% and p̂pooled = 34.58%, so that

SEpooled =
√

34.58× 65.42
438 + 34.58× 65.42

389 ' 3.31%.

Our z-score is 1.23− 0
3.31 ' 0.37

1 > pnorm ( 0 . 3 7 , lower . t a i l = F)
2 [ 1 ] 0 .3556912

Our p-value is p = 0.3557.

Standard Normal Distribution N(0, 1)

0.37

Since 0.356 > 0.05, we do not reject the null.
It is possible that both populations support drilling equally.
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Sleep Time

A 2012 study from the National Sleep Foundation explored how much
sleep various professions get. The above data explore sleep times for
the transportation sector.
Do these data suggest that average Americans (control) are less sleep
deprived (< 6 hours/night) than train operators? Do a 95% C.I. and
hypothesis test.

Let pT be the proportion of train operators that get <6 hours of
sleep/night, and pC the same idea in the control group.

p̂T = 29
180 ' 0.161, p̂C = 35

292 ' 0.120, so p̂T − p̂C = 0.041.
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Sleep Time

p̂T = 29
180 ' 0.161, p̂C = 35

292 ' 0.120, so p̂T − p̂C = 0.041.

Confidence Interval: Do not use a pooled estimate for the C.I’s:

SE '
√
p̂T q̂T

nT
+ p̂C q̂C

nC

=
√

0.161× 0.839
180 + 0.12× 0.88

292 ' 0.033.

So,

CI = p̂T − p̂C ± z∗ × SE
= 0.041± 1.96× 0.033
= (−0.024, 0.106).
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Sleep Time

p̂T = 29
180 ' 0.161, p̂C = 35

292 ' 0.120, so p̂T − p̂C = 0.041.

Hypothesis Test: Set H0: pT − pC = 0 and pT − pC > 0.

Under the null, you can (and should!) pool the data and get

p̂pooled = 29 + 35
180 + 292 ' 0.135.

SEpooled '
√
p̂pooledq̂pooled

nT
+ p̂pooledq̂pooled

nC

=
√

0.135× 0.865
180 + 0.135× 0.865

292 ' 0.032.
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Sleep Time

The z-score of data is Z = (p̂T − p̂C)− 0
SEpooled

' 0.041
0.032 ' 1.28.

1 > pnorm ( 1 . 2 8 , lower . t a i l = F)
2 [ 1 ] 0 .1002726

Our p-value is p = 0.10.

Standard Normal Distribution N(0, 1)

1.28

Since p = 0.10 > 0.05, we do not reject the null.
It appears that average Americans are not less sleep deprived than
train operators.
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