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Today: Chapter 7 (continued)
• Interpret the slope and intercept of a linear regression
• Formulas for a linear model
• Conditions required to do regression
• Examples where regression is useful
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Finding Regression Lines

Last class: we introduced
• Correlation coefficient (R or r)
• The idea of regression line
(or “line of best fit, “least square line”, ...)

Notation:
• Regression Line: ŷ = b0 + b1 · x

Interpretation:
• Intercept b0: This is the predicted value for y when x = 0.
• Slope b1: Measures the steepness of the regression line.
It says how much y changes for each 1 unit change of x.
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Our First Regression Equation

Ŵeight = −111 + 3.51×Height

The intercept suggests that a 0 inch tall
person should weigh -111 lbs.
This makes no real-world sense, but is a
theoretical starting point for the model.

The slope suggests that for every inch
increase in height, we expect a person to
be about 3.5 lbs heavier.
Similarly, for every inch decrease in
height we expect a decrease in 3.5 lbs.

Slope = ∆y

∆x

3.5 lbs/inch = 3.5 lbs
1 inch
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Why Build A Model?

– Perhaps y is really hard or expensive to measure, but well associ-
ated with x which is easy to measure.

– Perhaps y can only be measured after the fact (e.g. damage done
by a tornado), but you need a sense for this before the fact.

– A model allows you to move from your data set to the larger uni-
verse of possibilities

– Parts of a model might answer questions you have about an issue
(e.g. slope of height-weight graph gives the “weight of an inch of a
person”)
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U.S. Navy

We see from this chart that every inch of height for a male equals
about 5 or 6 pounds, and every inch for a female weighs about 3 or 4
pounds. This is exactly the slope of the regression line!
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Calculating The Regression Equation

Regression Line: ŷ = b0 + b1 · x

b1 = R · sy

sx

We see that:
• R gets the correct sign on the
slope

• sy/sx gets the correct units
on the slope

After calculating b1 you get

b0 = ȳ − b1x̄

This formula holds because the
regression line always passes
through (x̄, ȳ).
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Using the Regression Model
Ŵeight = −111 + 3.51×Height

Try an example:
Convert your height to inches, see what the model predicts.
What is the residual based on your actual weight?

My data: 190cm converts to 75 inches.
The associated predicted weight is −111 + 3.5 · 75 = 151.5.
My actual weight is 202 lbs, so the residual is 202 − 151.5 = 50.5 lbs.
So my data point lies above the regression line (since residual >0).
The model (strongly) under-predicted.
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Your Turn!

What might each dot represent?
1. A person in the U.S.
2. A small town in the U.S.
3. A metropolitan area in the U.S.
4. One of America’s 20 richest cities

Answer: 3.
Individuals don’t have poverty rates, so 1. is wrong.
Small towns don’t have a million people, so the y axis wouldn’t make
sense in 2.
Rich cities have low poverty rates, so the x axis wouldn’t make sense
in 4. 8 / 23



Your Turn!

Guess the correlation coefficient for this scatterplot.
1. R ' 0
2. R ' 0.25
3. R ' 0.55
4. R ' 0.85
5. R ' 1

Answer: 4. The actual value is R = 0.84.
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Your Turn!

You are told the regression line is

Annual murder rate/million people = −30 + 2.6 · Poverty Rate.

What annual murder rate (per million people) do we expect in a city
with a 20% poverty rate?
1. 4
2. 12
3. 22
4. 31

Answer: 3., since −30 + 2.6 · 20 = 20.
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Your Turn!
Which statements are true? Recall that the prediction is

Annual murder rate/million people = −30 + 2.6 · Poverty Rate.

1. A city with no poverty would have a murder rate of -30
people/million.

2. For every 1 unit increase in poverty, 2.6 more people will be
murdered per year (for each million people in the city).

3. If you want to know the murder rate (per million people) of any
city in the U.S., plug in the poverty rate into this equation.

4. The best values to plug in for the poverty rate are vetween 14
and 26.

5. The only values we may plug in for the poverty rate are between
14 and 26.

1. True. That’s the interpretation of the intercept.
2. True. That’s the interpreation of the slope.
3. False. Our prediction may only be valid for big cities.
4. True. Since most of the data used to build the model are

between 14 and 26, we get the best results in this range.
5. False. Too strong language to be true.
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More on the Slope

b1 = R · sy

sx

= R · sy

1 · sx

= ∆y

∆x

1 · sx

R · sy

In other words:
• If you’re 1·SE above the mean height, you’ll be R·SD’s above the
mean weight.

• If you’re 2·SE above the mean height, you’ll be 2R·SD’s above
the mean weight.
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Regression to the Mean

Recall that

−1 ≤ R ≤ 1.

Hence, moving 1SD form the mean of the x-variable takes us less
than 1·SD (precisely R·SD) from the mean in the y-variable.
So, the world of x-values gets compressed (SD-wise) as the linear
model converts them over to y-predictions.

The phrase “regression to the mean” is used to describe this phe-
nomenon, and is where the term “linear regression” comes from.
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Regression to the Mean: Examples

You give a class of students Test 1 today and Test 2 tomorrow. The
tests cover the same material.
You make a scatterplot of scores and fit a regression model. You
notice that all the high scorers (say 2·SD’s above the Test 1 mean)
didn’t stand out as much on the second test (they will only be 2R·SD’s
above the Test 2 mean). Their excellence seemed to regress some!

You look at the batting averages of all basketball players last year
and this year. You notice the really bad players (3·SD’s below last
year’s mean batting average) seem to do a little better this year (only
3R·SD’s below this year’s mean).

Why this occurs: Being exceptional on one measure (say, the x
measure) requires exceptionalism and luck. If you focus on these peo-
ple, you are focusing on the who had both exceptionalism and luck
(on the x measure).
When you look at them on the other measure (y axis), they are still
exceptional, but probably won’t have the luck this time around.
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Conditions for Creating a Regression Model

Four conditions must be met to create a linear
regression:

• Graph looks roughly linear
• The histogram of residuals is nearly normal
• Constant variability around the regression line
• Independent observations in the scatterplot

Times series data often violate this last condition.

Not linear

Non-constant variability
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The Residual Plot and the Residual Histogram
Below is regression that predicts the number of carbs in a Starbucks
item based on its calorie count.

Residual

Residual plot:
Imagine “substracting away”
the regression line from the

scatterplot to the left

Residual histogram:
Consider all the residuals

and make a histogram of them

• Condition that variability is constant checked in the first 2 plots.
• Condition that residual histogram checked in the third one.

Here, it seems like the variability is not constant!
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Shoud I Run a Regression With an Outlier?
For each graph,

• the orange line is the regression line using all the point
(including the outlier)

• the green line is the regression line when the using outlier is
excluded.

High leverage
Low influence

High leverage
High influence

Low leverage
Moderate influence

Two important ideas:
• A high leverage point is one where x is far from the mean of the

x values.
• A high influence point is one that gives a significantly different
slope for the regression line when it is included, versus excluded,
for an analysis. 17 / 23



Predicting Old Faithful
Can we predict how long it will be until the next eruption of Old
Faithful (a geyser) based on how long the current eruption lasted?

Source: R. Hutchinson, a geologist at Yellowstone.

We definitely meet the conditions for doing linear regression!
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Finding the Regression Line in R
Part of the printout from R is:

• The estimate for the intercept is b0 = 33.98.

• The estimate for the coefficient on the (Duration) is b1 = 0.176.

19 / 23



Statistical Tourism

200

69.18

b0 = 33.98 and b1 = 0.176.

Example: If I just saw an eruption that last 200 seconds, I expect to
have to wait

33.98 + 0.176 · 200 = 69.18 seconds

before the next eruption starts.
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More About Correlation: The R2 Statistic

Recall that the correlation is defined as

R = 1
n− 1

∑
(x,y) pairs

(x− x̄)
sx

(y − ȳ)
sy

.

One can actually show that

R2 =

∑
y

(ŷ − ȳ)2

∑
y

(y − ȳ)2
.

For a given linear model, R2 is the proportion of the variation in the
y-variable that is accounted for (or explained by) the variation of the
x-variable.

R2 is called the Coefficient of determination of the data set.
(or just the “R-squared statistic”)
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More About Correlation: The R2 Statistic

Similarly, one has

R2 = 1−

∑
y

(y − ŷ)2

∑
y

(y − ȳ)2
= 1− s2

e

s2
y

,

where se is the standard deviation of the residuals.

We see that the smaller the residuals, the larger R2.
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The R2 Statistic: Examples

A different portion of the Old Faithful print is:

Hence, 80.29% of how long we must wait is completely determined by
how long the last eruption lasted!

As another example, the R2 in the
height-weight regression is 0.67.
So, 67% of the variability in weights is
simply because of height differences.
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