# Math 183 Statistical Methods

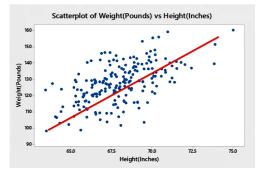
Eddie Aamari S.E.W. Assistant Professor

eaamari@ucsd.edu math.ucsd.edu/~eaamari/ AP&M 5880A

Today: Chapter 7 (end)

- Inference for linear regression
- Sampling distribution of the slope of the regression model
- Make C.I.'s for this slope
- Testing association

# Inference About Regression



#### Recall our setup:

Take a data set where each data point has two values (here, height and weight)

Plot these and have the computer determine a line of best fit (or linear regression)

This line has the form

$$\hat{y} = b_0 + b_1 \cdot x$$

Here,

$$\widetilde{\text{Weight}} = -111 + 3.51 \cdot \text{Height}$$

### When There's A Sample, There's A Population

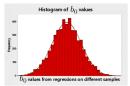
But... Those People are Just a Sample From the Population

Population: Everyone in the U.S. Parameter Model:  $\hat{y} = \beta_0 + \beta_1 \cdot x$ 

From this population, we could virtually get many samples:

Sample: 250 people in the U.S. Statistic-Based Model:  $\hat{y} = b_0 + b_1 \cdot x$ 

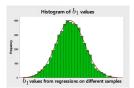
Sample: 250 people in the U.S. Statistic-Based Model:  $\hat{y} = b_0 + b_1 \cdot x$ 



For both of these, we wonder about:

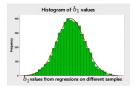
- Center, The SE
- Curve best fitting the histogram

 What conditions for this curve to actually fit the histogram



# Exploring the Regression Slope $b_1$

We're not interested here in the intercept  $b_0$ . The important idea to explore is almost always the slope  $b_1$  (which encodes variations!).



Where is the histogram of all the possible  $b_1$ 's centered?

At the true population value  $\beta_1$ .

What about the spread?

$$SE_{b_1} = \frac{s_e}{s_x\sqrt{n-1}},$$

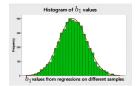
where

- $s_e$ : Standard deviation of the residuals
- $s_x$ : Standard deviation of the x values

# Exploring the Regression Slope $b_1$

What curve best approximates the histogram?

Under the conditions below, the histogram is approximately  $t_{n-2}$ .



What conditions do we need to check to ensure the curve is  $t_{n-2}$ ?

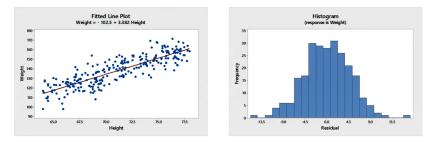
Those four conditions for creating a regression model:

- Roughly linear data
- Independence of observations
- Nearly normal residual histogram
- Constant variability around the regressio line

# Example

You are curious how much an "inch of human being" weighs. To determine this, you plan to collect the data of 250 randomly picked Americans and build a regression model that predicts weight based on height.

You do so and get the below scatterplot and residuals plot.



Discuss if we meet the four conditions for linear regression.

# Example

The scatterplot shows a linear trend, the residuals look roughly normal, we get independence from Randomization and the <10% rule, and the variability looks roughly constant at each value of x.

We get the regression line

$$\widehat{\text{Weight}} = -102.5 + 3.382 \cdot \text{Height}.$$

Why is it inappropriate to conclude that, on average, every inch of height adds 3.382 lbs?

The value  $b_1 = 3.382$  is a statistic built on a sample of 250 Americans. A different sample would give rise to a different regression line and a different value for  $b_1$ .

#### Parameter VS Point Estimate... Again!

We wish to use statistical inference to estimate  $\beta_1$ , which is the weight, on average, for "an inch of American" (if we were to make a regression model based on **everyone** in the U.S.)

 $b_1$  gives an estimate for  $\beta_1$ , and we saw earlier that  $b_1$  is modelled by  $t_{n-2}$  centered at  $\beta_1$  with  $SE_{b_1} = \frac{s_e}{s_x\sqrt{n-1}}$ .

If the conditions for inference are satisfied, we can build a confidence interval as we usually do:

point estimate  $\pm t_{n-2}^* \cdot SE$ .

Here, we would set our Confidence Interval as

$$C.I. = b_1 \pm t_{n-2}^* \cdot \frac{s_e}{s_x \sqrt{n-1}}.$$

**Note:** To find  $s_e$ , you'll need technology. (Or a lot of time to lose doing it by hand!)

### Reading These Values With Technology

You fit the line and notice this output:

Model Summarv S R-sg R-sg(adj) R-sg(pred) 8.19576 72.22% 72.11% 71.78% Coefficients Coef SE Coef T-Value Term P-Value Constant -102.50 9.48 -10.81 0.000 Height 3.382 0.133 25.39

From this we get:

- The estimated values  $b_0 = -102.50$  and  $b_1 = 3.382$
- The SE's for  $b_0$  (9.48) and  $b_1$  (0.133). This means that:

$$SE_{b_1} = \frac{s_e}{s_x\sqrt{n-1}} = 0.133.$$

0.000

**Note:** This output comes from the software Minitab. There are many software packages that focus on statistics/data science (see future slide).

# Building Our Confidence Interval

From previous slides,  $b_1 = 3.382$  and  $SE_{b_1} = 0.133$ .

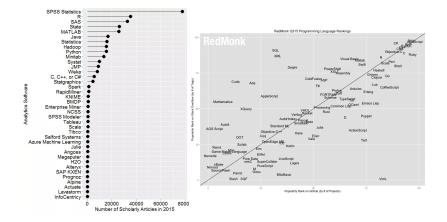
Here, n=250, so for a 95% confidence level, a table gives  $t^*_{248}\simeq 1.969.$ 

Our 95% confidence interval is

 $C.I. = 3.382 \pm 1.969 \cdot 0.133$ = (3.12 lb/inch, 3.64 lb/inch).

We are 95% confident that the weight of an inch of American is between 3.12 lbs and 3.64 lbs.

#### The Data on Statistical Software



(Source 1, Source 2)

# Hypothesis Testing on Slopes of Regression Lines

Typically, a hypothesis test on a slope sets  $H_0$ :  $\beta_1 = 0$ .



When two variables have no association, the slope of the regression line is 0 and the scatterplot looks like noise.

Here, x doesn't help predict y at all!

We tend to use a two-sided alternative  $H_A$ :  $\beta_1 \neq 0$ .

If the slope isn't 0, we have an association (which may be weak or strong, positive or negative).

As usual, we calculate a test-statistic by finding

estimate – null value SE

In this case we find

$$T_{n-2} = \frac{b_1 - 0}{SE_{b_1}} = 25.39$$

Model Summary

S R-sg R-sg(adi) R-sg(pred) (from line "Height") 8,19576 72.22% 71.78% 72.11%

Coefficients

| Term     | Coef    | SE Coef | <b>T-Value</b> | P-Value |
|----------|---------|---------|----------------|---------|
| Constant | -102.50 | 9.48    | -10.81         | 0.000   |
| Height   | 3.382   | 0.133   | 25.39          | 0.000   |

We also a *p*-value p = 0.000.

Since p < 0.05, we'd reject the null: there is an association between Teight and weight.

Indeed, our 95% C.I. for  $\beta_1$  was (3.12, 3.64) (which does not contain the value 0).

Remark: This *p*-value is always computed for a two-sided alternative hypothesis.

# Course and Professor Evaluation (CAPE)

Don't forget to give (official) feedback on the course on  $\label{eq:http://www.cape.ucsd.edu} http://www.cape.ucsd.edu$ 



COURSE AND PROFESSOR EVALUATIONS

Sunny G says...

When in doubt... CAPE it out!

# Teaching and Beauty

Research were curious if the attractiveness of a professor would affect his/her teaching evaluations. (Source)

To test this, researchers collected data of 463 randomly picked professors:

• Average teaching evaluation:

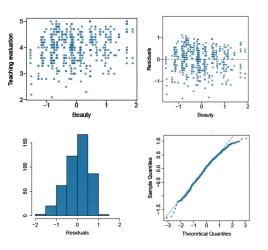
$$1 (worst) - 5 (best)$$

• Standardized attractiveness score:

What are the null and alternative hypotheses for this study?

$$H_0$$
:Beauty and teaching have no association $\beta_1 = 0$  $H_A$ :Beauty and evaluations have some associations $\beta_1 \neq 0$ 

# Given These 4 Plots, Should We Conduct the Study?



- The scatterplot almost looks like noise. Hard to say if it's linear. Note that weak associations will look a little like noise.
- Independence: Okay from randomization and the <10% rule.
- Normal residuals: Okay from the two bottom plots. Some worry about profs near the extremes of the beauty scale though.
- Constant variance: The residuals plot suggests this is true. Some concerns for the upper end of the beauty scale.

You get the below incomplete printout. Try and complete it.

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 4.010    | 0.0255     | 157.21  | 0.0000   |
| Beauty      | 0.133    | 0.0322     | 4.13    | 0.0000   |

Under the null, the  $\beta_1$  sampling distribution is modeled by  $t_{n-2}$ . Also, the test statistic is

$$T_{n-2} = \frac{\text{estimate} - 0}{SE}$$

The output gives us

$$4.13 = \frac{\text{estimate} - 0}{0.0322},$$

thus we get

$$estimate = 4.13 \times 0.0322 \simeq 0.133.$$

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 4.010    | 0.0255     | 157.21  | 0.0000   |
| Beauty      | 0.133    | 0.0322     | 4.13    | 0.0000   |

What is the regression for our particular sample?

$$\widehat{\text{Teach Score}} = 4.01 + 0.133 \cdot (\text{Beauty Score})$$

What does the value 4.010 mean?

It is the *y*-intercept of the regression line. So, it is the Teach Score we expect for professors with Beauty 0 (average).

What conclusion should the researcher draw about this test?

Given that the p-value is about 0, they should reject the null: There does appear to be an association between teaching evaluations and beauty.

## Back to Old Faithful

From our study that predicts (time until eruption) of Old Faithful based on (Time of last eruption) using 270 observations, we get this R printout.

Build a 90% C.I. for how much each second of eruption creates in waiting time for the next eruption. Is there really an association between these two ideas?

#### Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 33.987808 1.181217 28.77 <2e-16 \*\*\* Duration 0.176863 0.005352 33.05 <2e-16 \*\*\* --Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

For inference on the slope of a regression,

$$C.I. = b_1 \pm t_{n-2}^* \cdot SE_{b_1}.$$

Based on the printout, we have

$$C.I. = 0.176 \pm t_{268}^* \cdot 0.00535.$$

| one tail  | 0.100  | 0.050 | 0.025 | 0.010 | 0.005                                                                |
|-----------|--------|-------|-------|-------|----------------------------------------------------------------------|
| two tails | 0.200  | 0.100 | 0.050 | 0.020 | 0.010                                                                |
| df 31     | 1.31   | 1.70  | 2.04  | 2.45  | $\frac{2.74}{2.74}$ Based on the table, $t_{268}^* \simeq 1.65$ .    |
| 32        | 1.31   | 1.69  | 2.04  | 2.45  | $_{2.74}$ based on the table, $t_{268} = 1.05$ .                     |
| 33        | 1.31   | 1.69  | 2.03  | 2.44  | 2.73                                                                 |
| 34        | 1.31   | 1.69  | 2.03  | 2.44  | 2.73                                                                 |
| 35        | 1.31   | 1.69  | 2.03  | 2.44  | 2.72                                                                 |
| 36        | 1.31   | 1.69  | 2.03  | 2.43  | $\overline{2.72}$ We get                                             |
| 37        | 1.30   | 1.69  | 2.03  | 2.43  | 2.72                                                                 |
| 38        | 1.30   | 1.69  | 2.02  | 2.43  | 2.71                                                                 |
| 39        | 1.30   | 1.68  | 2.02  | 2.43  | $C.I. = 0.176 \pm 1.65 \cdot 0.00535$                                |
| 40        | 1.30   | 1.68  | 2.02  | 2.42  | 2.70                                                                 |
| 41        | 1.30   | 1.68  | 2.02  | 2.42  | (0.167, 0.184).                                                      |
| 42        | 1.30   | 1.68  | 2.02  | 2.42  | (0.107, 0.104)                                                       |
| 43        | 1.30   | 1.68  | 2.02  | 2.42  | 2.70                                                                 |
| 44        | 1.30   | 1.68  | 2.02  | 2.41  | $^{2.69}_{2.69}$ We are 90% confident that each second of            |
| 45        | 1.30   | 1.68  | 2.01  | 2.41  |                                                                      |
| 46        | 1.30   | 1.68  | 2.01  | 2.41  | $\frac{2.69}{0.00}$ current eruption leads to between 0.167 to 0.184 |
| 47        | 1.30   | 1.68  | 2.01  | 2.41  | 2.68                                                                 |
| 48        | 1.30   | 1.68  | 2.01  | 2.41  | 2.68 second of waiting for the next eruption.                        |
| 49        | 1.30   | 1.68  | 2.01  | 2.40  | 2.68                                                                 |
| 50        | 1.30   | 1.68  | 2.01  | 2.40  | 2.68                                                                 |
| 60        | 1.30   | 1.67  | 2.00  | 2.39  | 2.66                                                                 |
| 70        | 1.29   | 1.67  | 1.99  | 2.38  | 2.65 Coefficients:                                                   |
| 80        | 1.29   | 1.66  | 1.99  | 2.37  | 2.64 Estimate Std. Error t value Pr(> t )                            |
| 90        | 1.29   | 1.66  | 1.99  | 2.37  | 2.63 (Intercept) 33.987808 1.181217 28.77 <2e-16 ***                 |
| 100       | 1.29   | 1.66  | 1.98  | 2.36  | 2.63 Duration 0.176863 0.005352 33.05 <2e-16 ***                     |
| 150       | 1.29   | 1.66  | 1.98  | 2.35  | 2.61                                                                 |
| 200       | 1.29   | 1.65  | 1.97  | 2.35  | 2.60 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   |
| 300       | 1.28   | 1.65  | 1.97  | 2.34  | 2.59                                                                 |
| 400       | 1.28   | 1.65  | 1.97  | 2.34  | 2.59                                                                 |
| Ċ         | 'i.mon | tho n | roluo | ~ < ? | $10^{-16}$ we also believe that there is an associ                   |

Given the *p*-value  $p < 210^{-16}$ , we also believe that there is an association between the two variables we are studying.

The confidence interval gives a very good sense of how these variables are related.