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A Probability Question

You flip a coin 300 times. What’s the probability you get 173 or more
heads?

Let X = Binom(300, 0.5). We want P (X ≥ 173).

Well... we could think of doing

P (X ≥ 173) = P (X = 173) + P (X = 174) + · · ·+ P (X = 300),

but that’s hopeless because the sum is too big.

Also, complementary probability

P (X ≥ 173) = 1− P (X ≤ 172)
= 1− P (X = 172)− P (X = 171)− · · · − P (X = 0)

won’t work: doing that is just as difficult as the given problem.
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The Normal Model to the Rescue

Cool observation: As n gets large, the Binomial model begins to
look like the Normal model.

Recall that the mean and standard deviation of X = Binom(n, p) are

E(X) = np and SD(X) = √npq.

Cool idea: we can imitate a Binomial model using a Normal model
Y = N(µ, σ) by setting

µ = E(X) = np and σ = SD(X) = √npq.

3 / 29



The Normal Model to the Rescue

Cool observation: As n gets large, the Binomial model begins to
look like the Normal model.

Recall that the mean and standard deviation of X = Binom(n, p) are

E(X) = np and SD(X) = √npq.

Cool idea: we can imitate a Binomial model using a Normal model
Y = N(µ, σ) by setting

µ = E(X) = np and σ = SD(X) = √npq.

3 / 29



You flip a coin 300 times. What’s the probability you get 173 or more
heads?

Set up a Normal model Y = N(µ, σ) with
• µ = np = 300× 0.5 = 150
• σ = √npq =

√
300× 0.5× 0.5 ' 8.66

P (X ≥ 173) ' P (Y ≥ 173) ' 0.004.
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When is it Safe to Approximate a Binomial via a
Normal?

In general, statisticians use this practice as long as both np ≥ 10 and
nq ≥ 10 (at least 10 successes and 10 failures)

You roll a die 80 times. What are the chances of rolling at most 17
sixes?

Option 1: Let X = Binom(80, 1/6), and you can compute

P (X ≤ 17 = P (X = 0) + P (X = 1) + · · ·+ P (X = 17).

(YOU can compute this... but I personally won’t!)
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You roll a die 80 times. What are the chances of rolling at most 17
sixes?
Option 2: See if we can use a Normal model to approximate this
Binomial situation.

Note that np = 80/6 ' 13.3 ≥ 10 and nq = 80(5/6) ' 66.6 ≥ 10.

Let Y = N(µ = np, σ = √npq) = N(40/3, 10/3).
Since we expect more than 10 Successes/Failures,

So P (X ≤ 17) ' P (Y ≤ 17).

• If you want to use a table and z-scores, note that 17−40/3
10/3 = 1.1.

Thus P (Y ≤ 17) = P (Z ≤ 1.1) ' 0.8643.
• If you want to use Minitab:
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Bringing Probability and Statistics Together:
Populations and Samples

Statistics is really about learning to draw a representative sample,
calculating a statistic, and understanding what inferences can be
drawn about the population parameter.
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Biases: Some Examples

Vocabulary: The term bias is used when the sample is not repre-
sentative of the population in some way. Good sampling is about re-
ducing as much bias as possible

Population: A huge pot of soup
Sample: A small spoonful from the top
Reasons these samples may be biased:

• The soup has heavy ingredients that always sink to the bottom
• You recently added salt but didn’t stir the pot before tasting

Population: All voters in the next election Sample: 1007 people con-
tacted via home phone
Reasons these samples may be biased:

• The person with a home phone may not be a typical voter
• We are trying to build a sample based on a future event!
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Two Powerful Ideas about Samples

1. One of the best ways to avoid bias is by introducing random ele-
ments into the sampling process.

Soup: Stir the pot right before tasting
Voters: Reach out to random phone numbers (cell and/or landline)

2. The sample size does NOT need to be some percentage of the pop-
ulation size! Larger samples are better irrespective of the population
size.

Tasting a small pot of soup gives you the same amount of info as
tasting a big pot of soup.
Tasting 3 spoonfuls of a pot is better than tasting 1 spoonful.
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Types of Sampling
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What’s the Difference: Stratified vs. Cluster Sampling

In stratified sampling, you break the sample frame into pieces be-
cause you believe those pieces are homogeneous in relation to the pa-
rameter you are measuring.
(Undergrads have lower GPAs; grads have higher GPAs.)

In cluster sampling, you break the sample frame into pieces be-
cause it makes life convenient. Your pieces will be heterogeneous in
relation to the parameter you are measuring.
(Gym 1 has undergrads and grads; so do the other gyms.)
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Types of Sampling
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The Horrors of Sampling (AKA Common Sampling
Biases)

Your boss at Facebook says

“We want to know how much Americans love Facebook.”

Here is what happens:
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Practice

You want to know the average number of siblings of UCSD students.
This idea is a
1. Parameter
2. Statistic
3. Population
4. Sample

Answer: 1. The parameter is the idea being studied in the population
Population: All UCSD students
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Practice

You ask some students and calculate the average. You found a:
1. Parameter
2. Statistic
3. Population
4. Sample

Answer: 2.
You drew a sample (“some students”) and calculated the idea of in-
terest in the sample. That is a statistic.
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Practice

You do this study again. This time you ask every 6th student you se
on campus. This is a
1. Simple Random Sample (SRS)
2. Stratified Sample
3. Cluster Sample
4. Systematic Sample
5. Multistage Sample

Answer: 4.
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Practice

You do this study again. You randomly pick 4 dorms from the list of
all dorms and then randomly ask people from those dorms.
1. Simple Random Sample (SRS)
2. Stratified Sample
3. Cluster Sample
4. Systematic Sample
5. Multistage Sample

Answer: 3.
You’ve broken the population into pieces and the thing you want to
study (sibling average) will likely look quite similar for each piece
(dorms).
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Practice

You do this study again. You read that LGBT students tend to have
more siblings because your chance of being LGBT goes up as you get
later in the birth order of your family.
You ask randomly chosen LGBT students and ask about their num-
ber of siblings. You also randomly choose non-LGBT students and
ask.
1. Simple Random Sample (SRS)
2. Stratified Sample
3. Cluster Sample
4. Systematic Sample
5. Multistage Sample

Answer: 2.
The groups here are internally homogeneous with respect to the thing
we are trying to measure (# of siblings) since LGBTers will have
higher totals and non-LGBTers will have lower totals. The group av-
erages will be different from one another.
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Practice

You do this study again. You choose 150 names at random from
UCSD’s complete list of current students
1. Simple Random Sample (SRS)
2. Stratified Sample
3. Cluster Sample
4. Systematic Sample
5. Multistage Sample

Answer: 1.
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Sampling Distributions

Important Idea: Even if you “draw” (i.e. collect) a representative
sample, your statistic may not be equal to the parameter.

Indeed, if we draw multiple samples, you will get different values for
the statistic. How will these values relate to the parameter?
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Sampling Distributions

The two most common parameters we gather on populations are:
• Proportions
Examples:

• % of people that go to college
• % of people who are LGBT

• Means
Examples:

• Average weight of U.S. men
• Mean SAT score of UCSD students

When the populations are big, we must draw a (random) sample and
estimate these parameters using statistics

Because of randomness, there is variation in this statistic.
Example: 3 polls for a political candidate might show 53%, 49%, and
52.1% support.

We want to understand and visually display this variation.
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Exploratory Software for Confidence Intervals

ESCI: Excel spreadsheets (by G. Cummings) to explore sampling and
confidence intervals. (free download, enable Excel macros to use)

Distribution of the idea we’re studying
(e.g. weight of alien)
This is invisible to us!

The individuals in the
particular sample we drew

The mean weight
from the pictured sample

Means from other samples

Making a histogram of all the means
from all the samples
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Some Notation

µ

σ

x̄
sx

center

spread

Population:
Center: µ
Spread: σ

One sample:
Center: x̄
Spread: sx

Sampling distribution:
Center: ?
Spread: ?
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A Major Discovery!

As the picture suggests, the center of the sampling distribution is also
at µ. (no new letter needed!)

An important result from statistics proves that the spread of the
sampling distribution, called the Standard Error (SE), is just σ√

n
.

Finally, the sampling distribution is a Normal Curve.

µ

σ√
n

The green curve is simply N
(
µ,

σ√
n

)
.
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Wait A Second!

Does it matter what the population distribution looks like?

Perhaps its not surprising that if your population is Normal, you end
up with a Normal sampling distribution
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What if we start with a very skewed idea?
Assume the amount of time before a dishwasher breaks down is mod-
elled by Exp(λ = 1/8).
If we take samples of 100 dishwashers and calculate the mean time
for the first breakdown, what does the sampling distribution look
like?

Note: µ = 1/λ = 8 years, and σ = 1/λ = 8 years.

Hence, theory predicts:

Center: µ = 8 Spread: SE = σ/
√

100 = 0.8.
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Do We Always Get a Normal Model for the Sampling
Distribution of a Mean?

We do if two conditions are met:
1. Independence Assumption: The items in each sample

(people, SAT scores, etc.) must be independent of one another.
Typically we cannot easily determine this, so it better to check
these two conditions (which effectively create independence):

• The Randomization Condition: Are the items in your sample
randomly chosen?

• The <10% Condition: Is your sample size less than 10% of the
population size?

2. Nearly Normal Condition (Sample Size Condition): The
population histogram should be nearly normal (usually checked
by looking at the histogram for your sample). If this histogram
shows skew, you are still ok if the sample size is large
(say n > 30 for moderate skew, and n > 60 for large skew)

Check these conditions any time you are using a Normal model to
answer questions about a sampling distribution.

28 / 29



Do We Always Get a Normal Model for the Sampling
Distribution of a Mean?

We do if two conditions are met:
1. Independence Assumption: The items in each sample

(people, SAT scores, etc.) must be independent of one another.
Typically we cannot easily determine this, so it better to check
these two conditions (which effectively create independence):

• The Randomization Condition: Are the items in your sample
randomly chosen?

• The <10% Condition: Is your sample size less than 10% of the
population size?

2. Nearly Normal Condition (Sample Size Condition): The
population histogram should be nearly normal (usually checked
by looking at the histogram for your sample). If this histogram
shows skew, you are still ok if the sample size is large
(say n > 30 for moderate skew, and n > 60 for large skew)

Check these conditions any time you are using a Normal model to
answer questions about a sampling distribution.

28 / 29



Do We Always Get a Normal Model for the Sampling
Distribution of a Mean?

We do if two conditions are met:
1. Independence Assumption: The items in each sample

(people, SAT scores, etc.) must be independent of one another.
Typically we cannot easily determine this, so it better to check
these two conditions (which effectively create independence):

• The Randomization Condition: Are the items in your sample
randomly chosen?

• The <10% Condition: Is your sample size less than 10% of the
population size?

2. Nearly Normal Condition (Sample Size Condition): The
population histogram should be nearly normal (usually checked
by looking at the histogram for your sample). If this histogram
shows skew, you are still ok if the sample size is large
(say n > 30 for moderate skew, and n > 60 for large skew)

Check these conditions any time you are using a Normal model to
answer questions about a sampling distribution.

28 / 29



Do We Always Get a Normal Model for the Sampling
Distribution of a Mean?

We do if two conditions are met:
1. Independence Assumption: The items in each sample

(people, SAT scores, etc.) must be independent of one another.
Typically we cannot easily determine this, so it better to check
these two conditions (which effectively create independence):

• The Randomization Condition: Are the items in your sample
randomly chosen?

• The <10% Condition: Is your sample size less than 10% of the
population size?

2. Nearly Normal Condition (Sample Size Condition): The
population histogram should be nearly normal (usually checked
by looking at the histogram for your sample). If this histogram
shows skew, you are still ok if the sample size is large
(say n > 30 for moderate skew, and n > 60 for large skew)

Check these conditions any time you are using a Normal model to
answer questions about a sampling distribution.
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Central Limit Theorem

distribution
Population

n = 2

n = 5

n = 12

n = 30

Uniform Exponential Log-normal

Skew

As the sample size grows, the
sampling distribution tends to
look more and more normal

The greater the skew in the
population, the higher n must be
to get a normal sampling
distribution

The Central Limit Theorem
(CLT) proves that the sampling
distribution of a proportion
statistic or mean statistic will
roughly be a Normal distribution
regardless of the population
distribution.
(assuming we have the conditions
outlined on the previous slide)
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