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Bringing Probability and Statistics Together:
Populations and Samples

Statistical inference is the attempt to say something about the pop-
ulation parameter given a particular sample statistic (i.e. point esti-
mate).
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Why We Need Inference

You draw a SRS of 200 UCSD students and ask if they have a Face-
book account. 130 say they do.

Claim 1: 65% of our sample are Facebook users.
This is true: we found p̂ = 130

200 = 65%.

Claim 2: 65% of UCSD students are Facebook users.
This is false: the population parameter may not match the sample
statistic.

Claim 3: About 65% of UCSD students use Facebook.
This is vague, and we need to learn how to do better. The language
“about” is not precise enough for statisticians.
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The Key To Inference: The Sampling Distribution

From the Central Limit Theorem, the sampling distribution is (al-
most) a Normal distribution.
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But Which Normal Model?

Two facts from statistics:

Centermodel = pLGBT SEmodel =
√
pLGBT qLGBT

n

Notice that the above formulas use the population parameters.
In general, they are NOT known, and this is why you are drawing a
sample in the first place.
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How Could The Sampling Distribution Help When...?

In real life, we don’t know the population parameter. So what good
is the sampling distribution?
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Important Note: Many people do not distinguish between these
two worlds and just use SE to mean “the standard deviation of the
sampling distribution” (for either the theoretical model or the ap-
proximation).
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OK. Now What?

The sampling distribution helps us create a confidence interval
(CI), a range of values around a point estimate that convey our un-
certainty about the population parameter (as well as a range of plau-
sible values for it).

The amount you pad your answer by (i.e., the width of the CI) is de-
termined by how sure you want to be that the interval will contain
the true population parameter.
Metaphors: Fishing net, criminal capture radius.
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Recall that for ANY normal curve (e.g. the sampling distribution),
about 95% of all values fall within 2 standard deviations (SE’s) from
the center.

So 95% of all point estimates (green dots) are within ±2× SE of p.

Said differently, if you stand at a green dot and reach out a distance
of 2× SE, 95% of the time your will include p.
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Our First CI (And a Review of the Main Ideas)

1. You want to know the proportion of some trait in a population.
You draw a random sample and calculate the proportion in the sam-
ple.

130 people in our sample of 200 UCSD students use Facebook.
So p̂ = 65%.

2. You want to infer from the sample back to the population, so you
decide on a confidence level C (C is usually 90%, 95% or 99%).

When I infer back to the population of all UCSD students, I will
have to give a range of possible FB percents. I want to be 95% sure
that my range has the true population value p.
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3. This confidence level dictactes how many SE’s you must reach out
from p̂ to ensure you’ve grabbed the population parameter p (about
C% of the time).

For a Normal curve, 95% of the area in the middle is withing 2 SE’s
of the mean. So we must reach 2 SE’s each way to grab p with 95%
confidence.

4. Build a confidence interval using the decisions from the previous
steps.

In our problem, SE =
√

65× 35
200 ' 3.37%.

For 95% confidence, we find:

p̂± 1.96× SE = 65%± 1.96× 3.37%

Recall that the 68-95-99.7% Rule was only an approximation. From now
on, use 1.96 instead of 2 for 95% confidence (see later slides to see how this
number is precisely found).

Our confidence interval is CI = (58.4%, 71.6%).
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5. Write a sentence that summarizes your findings. Be very careful
with your language.

We are 95% confident that the percentage of Facebook users among
all UCSD students is in CI = (58.26%, 71.74%).

Note: In general, the safest, clearest language to use is:

We are (C%) confident that the (population parameter) is in (CI).
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What Does It Really Mean to Be Confident About An
Interval?

The phrase “95% confident” technically mean this:

If you drew many, many samples, and for each one, you found p̂ and
built a confidence interval by reaching out ±1.96SE, then the true
population parameter would be in about 95% of these intervals.
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Changing the Confidence Level: Finding the “Critical
Value”

New goal:
Construct an 80% CI for the percent of all UCSD on Facebook.

How many SE’s do we need to go in each direction to get 80% of the
area under a Normal curve?

This is like a “reverse” area problem: Instead of calculating the area
under the curve up to some z-score (or between z-scores), we need to
know the z-score that has 0.8 area between −z∗ and z∗.
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Minitab Can Help with This!
Go to Graph » Probability Distribution Plot » View Probability

Use the standard Normal curve (mean 0, SD 1), and select the Shaded
Area tab. Choose the Probability selector and the “Middle” option.
Type in the probabilities (areas under the curve) for the non-shaded
parts on the left and right (here, both are 0.1 to get an area of 0.8 in
the shaded zone).
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In general, the confidence interval formula is p̂± z∗ × SE.

We get 65%± 1.282× 3.37% = (60.08%, 69.32%).

Notice: This is smaller than the 95% CI. Why?
The more confident you want the real population parameter to be in
the CI’s, the wider the CI’s!
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The Final Expression For The Confidence Interval
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Practice

Which things increase the margin of error in a study?
1. Drawing a larger sample
2. Drawing a smaller sample
3. Demanding a higher level of confidence
4. Demanding a lower level of confidence

Answer: 2. and 3.
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Practice
You work for a polling company exploring an upcoming election.
Your boss demands a very, very small confidence interval. Which are
good options for getting a small confidence interval?
1. Switch from a 95% level of confidence to a 20% level of

confidence. This shrinks the confidence interval dramatically
2. Increase your sample size from 1,000 to 100,000. This makes the

SE much smaller, decreases the margin of error, and creates a
small confidence interval

3. Both are good ideas
4. Both are bad ideas

Answer: 3.
Warning: 1. decreasing the confidence level and 2. increasing the
sample size both have the CI shrink, but they also make the whole
process dirty/messy:

• A 20% level of confidence yields a very unreliable CI
• A sample size of 100,000 might be very costly to collect.

In practice, these are actually artificial solutions to the problem.
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Practice
You survey 200 random UCSD students and find that 43% love Twit-
ter. The margin of error for your study is 7% given that you de-
manded a 95% confidence level.
Which of the below statements are correct, responsible ways to report
your findings?
1. The % of Twitter lovers at UCSD is 43%
2. The % of Twitter lovers at UCSD is about 43%
3. The % of Twitter lovers at UCSD is in the interval (36%, 50%)
4. If we drew many, many samples of size 200, 95% of the

confidence intervals would contain the % of UCSD students who
love Twitter

5. I am 95% confident that the true % of students at UCSD who
love Twitter is in (36%, 50%)

6. 95% of the time, the true % of students at UCSD who love
Twitter is in (36%, 50%)

Answer: 4. and 5.
2. is false because it is too vague.
6. is wrong because the true % of Twitter lovers is either in the CI,
or outside the CI. (100% or 0%)

20 / 32
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Always Check Your Conditions!

To be able to approximate the sampling distribution of p̂ by a Nor-
mal Curve, you need:

Independence: The surveyed persons must be picked randomly, and
you must not sample more than 10% of the total population.

10 Successes/10 Failures Conditions: Technically, this means
that you need np̂ ≥ 10 and nq̂ = n(1− p̂) ≥ 10.
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Why Exactly Are Bigger Samples Better?
Whether we are studying the proportion in a sample, or the mean
of a sample, there is some variability in the answer we get. As we
learnt, the amount of variation is given by

SEmodel =
√
pq
√
n

for proportions,

SEmodel = σ√
n

for means.

So, each time you quadruple n, you cut the variability in half (be-
cause the square root on n in the denominator).

This will also cut the width of CI’s by half since CI = p̂± z∗SE.
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Choosing a Sample Size

Your boss thinks sampling 200 students was too few. If she wants to
maintain a 95% level of confidence, how many students must be cho-
sen in a new sample if the goal is to get a 2% margin of error (ME)?

We know that ME = z∗SE(p̂).

Demanding a 95% confidence level requires z∗ = 1.96 (not 2!)

We use p̂ = 65% from our first study to guide our new sampling:

2% = 1.96×
√

65× 35
n

=⇒
√
n = 1.96×

√
65× 35

2 ,

so n ' 2185 students.
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Am I (Really) Different?

Sometimes you draw a sample and calculate a proportion not just to
find the proportion, but to see if it is different than you expected.

You contact 500 random San Diegans to learn if the percentage of
Asian-American is different than the national average.

You wonder if giving 200 random freshmen a “How to Succeed in
College” course will decrease the proportion that dropout as com-
pared to the general student population.

You administer a new drug to 350 heartburn patients and see what
percentage report an improvement in symptoms versus a placebo.
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Hypothesis Testing

Hypothesis: A claim that may or may not be true.

Asian American: pAA in SD 6= pAA in US

Success Course: pDrop out with course < pDrop out without course

Drug: pSymptom relief with drug > pSymptom relief with placebo

Suppose we draw a sample and find p̂new drug = 0.14.
If we are told pplacebo = 0.11, how do we decide if the difference we
see is sampling variability or suggestive evidence of a real difference?
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Sample Variation or True Effect?

Hypothesis testing is the rigorous way statisticians have devised to
sort out how confident we can be that sampling variation is not the
cause.

Step 1: Write down a null hypothesis (H0).
This is a statement that says nothing interesting is happening. It (al-
most) always uses an equal sign. It uses population parameters.

Asian American: H0: pAA in SD = pAA in US

Drug: H0: pSymptom relief with drug = pSymptom relief with placebo
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Step 2: Write down an alternative hypothesis (HA).
This is what you suspect might be true and is what you hope to show.

Asian American: HA: pAA in SD 6= pAA in US

Drug: HA: pSymptom relief with drug > pSymptom relief with placebo

Two types of alternative hypotheses:
• A one-sided alternative hypothesis will use a > or < sign.
You are hoping your percentage is on a certain side of the
comparison percentage.

• A two-sided alternative hypothesis will use a 6=. You are
just wondering if your percentage is different than the
comparison percentage.

The kind of alternative hypothesis you use simply depends on what
you are guessing/hoping might be true (before any data are collected).
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Mimicking real-life

How do we decide between H0 and HA?
Answer: How we often decide between beliefs in real life:

Adopt some belief
for the moment
“SD is usually cold,
let’s wear trousers”

Operating under this assumption,
you collect some data

“Temperature > 23◦C three weeks in a row”

If the data supports your belief,
you continue in this mindset

The data might, instead
support an alternative belief

Discard your old belief
in favor of a new one

“Let’s wear shorts”

Notice that you are comparing the data from your life against some
belief that you hold temporarily (here, wearing trousers). Perhaps the
data support it, perhaps they support movement to an alternative.
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Step 3: Draw a sample and consider it assuming H0 is true.

Say, in a sample of 350 taking the new drug, 14% show improvement.

The universe where our drug is the same
as a placebo (H0) would have a sampling
distribution centered at the placebo’s
healing percentage (11%), with a
standard error we can easily calculate:

µmodel = pplacebo = 0.11

SE =
√
pq

n

=
√
.11× .89

350 ' 0.0167.

Notice: in the universe where our drug is no different than a placebo,
it is possible to get healing percentages around 14% just from ran-
dom chance.
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How Does The Sampling Distribution Help?

Use the normal model to calculate the probability of getting the ob-
served percentage (14%) or anything more extreme.

(We must use the language “14% or more extreme” because P (X = 14%) =
0 since we have a continuous distribution)
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Step 4: Decide what you wish to say about the null hypothesis given
the p-value.

Two Possible Choices:
1) Reject the null hypothesis.You do this when your p-value (here,

0.036) is quite small; many scientific journals suggest you do this
when the p-value is below 0.05 (“cutoff” or “significance level”).
The observed value (14%) seems really out of place in your
universe (here, a drug = placebo 11% universe).

2) Do not reject the null hypothesis. Do this when your p-value
isn’t particularly small.
The observed value isn’t that out of place in your universe.

In our drug example, we get a p-value of 0.036. If the drug really is
no more effective than a placebo, then only 3.6 samples in 100 would
give us this result (or something more extreme). As such, we reject
the null hypothesis:

There is good evidence the drug is more effective than the placebo.
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Hypothesis Testing Framework

Assume H0 is true
Collect data and compute estimate

Compute the p-value

Reject H0 in favor of HA

p-value < α

p-value > α

Note that our data do not prove the null is true, nor that the alter-
native is true.

The data simply suggests which we should adopt moving forward.
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