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Inference for Means
We want to do all the same inference for means that we did with pro-
portions: understanding the sampling distribution, hypothesis testing,
and confidence intervals

In a previous class, we learned that the sampling distribution is ap-
proximately Normal with

µmodel = µpopulation and σmode = σmodel√
n

.
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Time for the Truth...

With smaller sample sizes (often n < 30) or populations where you
don’t know σ (and must approximate it using sx), there is a better
approximation of the sampling distribution than the Normal model.

Like the Normal distribution, the
t-distribution is unimodal and
symmetric.
Note, however, that the tails of
the t-distribution are thicker, and
this can change the area under the
curve, and hence, the p-values that
are based on it.

When Should I Use Z vs. T?
• If you know σ (almost never true): Use a z-distribution.
• In all other cases: Use a t-distribution.
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From z to t

In practice, we tend not to use the Normal curve as the approxima-
tion of the sampling distribution because the t-distribution gives us
more precise results.

There are many curves in the t-distribution family. You choose the
appropriate one based on the size of your sample.
With n data points in the sample, you use the t-distribution with

df = n− 1.
df stands for “degrees of freedom” and as it gets bigger, the t-distribution
morphs into a standard normal distribution.
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Welcome to the New World

How much area is to the right of
−0.6 on t4?

What percent of the t6
distribution is more than 2 unites
from 0?

2× 0.046 = 0.092.
(On N(0, 1), this answer would be

about 1− 0.95 = 0.05)
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Using Tables with t-Distributions

Since they don’t want to print a new table for every possible df value,
they print one table, but it is not as good as a z-table (standard Nor-
mal).
Also, a t-table is usually reversed (areas on outside, critical values in
the table).
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New, Improved CIs for Means!

For means, our CIs will use the same setup as before, but we live on
a t-distribution, not a z-distribution:
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First C.I. With the t-Distribution
On average, how much do U.S. baby girls weigh? To find out, you
sneak into random hospitals and collect illegally the weight of 12 ran-
dom newborn babies. If x̄ = 7.3 lbs and sx = 2, find a 90% C.I. for µ,
the average weight of all U.S. female babies.

1) Decide on the model and find the critical value for your confidence
level.
Since n = 12, our sampling distribution is modeled by tn−1 = t11.

−t∗n−1 t∗n−1

90%

We read t∗ = 1.80.
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2) Break out the C.I. formula.

x̄± t∗n−1 × SEx̄ ' 7.3± 1.8× 2√
12

= (6.26, 8.34).

3) Interpret in plain English.

We are 90% confident that µ is between 6.26 and 8.34 pounds.

Remark: The actual value for µ is 7.5 pounds. Our C.I. was one of
the lucky 90%.

9 / 38



2) Break out the C.I. formula.

x̄± t∗n−1 × SEx̄ ' 7.3± 1.8× 2√
12

= (6.26, 8.34).

3) Interpret in plain English.

We are 90% confident that µ is between 6.26 and 8.34 pounds.

Remark: The actual value for µ is 7.5 pounds. Our C.I. was one of
the lucky 90%.

9 / 38



2) Break out the C.I. formula.

x̄± t∗n−1 × SEx̄ ' 7.3± 1.8× 2√
12

= (6.26, 8.34).

3) Interpret in plain English.

We are 90% confident that µ is between 6.26 and 8.34 pounds.

Remark: The actual value for µ is 7.5 pounds. Our C.I. was one of
the lucky 90%.

9 / 38



Your Turn!
You decide to build an 80% C.I. for some mean you are estimating.
What is the critical value if your sample has size 15?

• 1.34
• 1.35
• 1.75
• 1.76

Answer: t∗n−1 = t∗14 = 1.35.
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Your Turn!
About how much area is to the left of -2 on t15?

• Between 0.1 and 0.2
• Between 0.05 and 0.1
• Between 0.025 and
0.05

• Between 0.001 and
0.025

Answer: Between 0.025 and
0.05
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Your Turn!

Suppose we want to do inference on a mean using a t-distribution.
When does a t-distribution actually model the sample distribution?
1. It always does. It doesn’t matter what the sample size is or what

the population distribution looks like.
2. We only need the data points in our sample to be independent
3. If the data in the sample were chosen at random and are <10%

of the population
4. We need randomization, <10 % population, and the population

to be reasonably normal looking (skew is ok with a larger n).

Answer: 4.
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Hypothesis Testing with t-Distributions

15 years ago, the average finishing time of a Marathon was 3.683
hours. You are curious if runners are getting faster or slower in the
current year.

Let µ be the average time of finishers in the current year.

H0 : µ = 3.683 ; HA : µ 6= 3.683

You collect data for 20 random runners in the current year, and get
x̄ = 3.8 with sx = 0.5. Run a hypothesis test with α = 0.05.
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You should always convert to the standard t-distribution. To do so,
you’ll need the t-score:

T = point estimate− null value
SE

= 3.8− 3.683
0.5/
√

20
' 1.046.
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The Last Example Done Easily
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What Assumptions Must We Meet to Use
t-Distributions?

When doing statistical inference (using CIs or hypothesis testing),
you rely on the shape and SE of the sampling distribution. To get
these to be correct, you must have:

Independence of data: Knowing one piece of data should not help
you predict other data. Since this is hard to check, this is usually re-
placed with the:

• Randomization Condition
• < 10% Condition

Population distribution must be nearly normal. Since this is
hard to check:

• Look for near normality in the histogram of your sample
(or its qq-plot).

• More skew is OK as n gets larger.
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Beetle Study

We study beetle biodiversity in a pasture. For this, we collect a bio-
diversity index (Steinhaus index) in 12 parcels and get the following
data:

x̄ = 0.2505 and sx = 0.0959.

An environmental engineer, specialist of beetle populations, tells you
than an average biodiversity index lower than 0.49 in the pasture
would be worrying.

Build a test with level of confidence α = 5% for determining if the
state of the pasture is worrying.
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Beetle Study

1) We build hypotheses for the situation

H0: µ = 0.49,
HA: µ < 0.49.

2) We want to build a hypothesis test using the t-distribution, so we
have to check the normality of our population distribution.

Beetle Biodiversity Data

 Steinhaus Index

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

19 / 38



Beetle Study

1) We build hypotheses for the situation

H0: µ = 0.49,
HA: µ < 0.49.

2) We want to build a hypothesis test using the t-distribution, so we
have to check the normality of our population distribution.

Beetle Biodiversity Data

 Steinhaus Index

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

19 / 38



Beetle Study

1) We build hypotheses for the situation

H0: µ = 0.49,
HA: µ < 0.49.

2) We want to build a hypothesis test using the t-distribution, so we
have to check the normality of our population distribution.

Beetle Biodiversity Data

 Steinhaus Index

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

19 / 38



Beetle Study

1) We build hypotheses for the situation

H0: µ = 0.49,
HA: µ < 0.49.

2) We want to build a hypothesis test using the t-distribution, so we
have to check the normality of our population distribution.

Beetle Biodiversity Data

 Steinhaus Index

F
re

qu
en

cy

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

19 / 38



Beetle Study
3) t-score your data

T = point estimate− null value
SE

= 0.25− 0.49
0.09/

√
12
' −9.23.

4) Compute the p-value

–9.23

With Minitab, you find the area
under the curve is ' 8× 10−7.

Since p ' 8 · 10−7 � 0.05, we reject H0 and favor HA.
There is (a very) strong evidence that the true average biodiversity

index is smaller than 0.49.
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What Can Go Wrong?

There are Four possible scenarios we must think about related to hy-
pothesis testing:

• We reject H0 when H0 is actually true
• We do not reject H0 when H0 is actually true
• We reject H0 when H0 is actually false
• We do not reject H0 when H0 is actually false

Type I Error
Awesome!
Awesome!
Type II Error

Truth
Test Conclusion Do not reject H0 Reject H0

H0 true OK Type I Error
HA true Type II Error OK
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How Often Do We Make These Errors?
P (Type I error) = P (reject H0|H0 is true).

P (Type I error) = α

We reject the null when the p-value is < α (say, 0.05). For this to
happen, p̂ must be large enough to get the shaded area < α.
Said differently, we need p̂ to be in the top 5% of the data values.
This happens with probability α.
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How Often Do We Make These Errors?

We also care about

P (Making a Type II Error) = P (Do not reject H0|H0 is false) .

No nice formula for this probability: it is given the letter β.
(Not related with to linear regression)

The power of a test is

P (Reject H0|H0 is false) = 1− β.

You’ll learn how to deal with β in more advanced stat classes.
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Type I and II Errors in Real Life
In the US legal system, you are either innocent (H0) or guilty (HA).

Type I Error: You reject H0 when, in fact, H0 is true.
This means you convict an innocent person: “Wrongful conviction”

How you might reduce Type I Error: Require more proof to convict.
Notice that this increases Type II Error.

Type II Error: You don’t reject H0 when, in fact, H0 is false.
This means you set free a guilty person: “Guilty person set free”

How you might reduce Type II Error: Require less proof to convict.
Notice that this increases Type I Error.

Moral: For most actions,

Type I Error ↘ when Type II Error ↗ (and vice versa).
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A food inspector is asked to investigate a restaurant that has some
negative sanitation reputation. The inspector decides to use a hy-
pothesis testing framework to decide if regulations are being met. If
the restaurant is in violation of these regulations, the restaurant will
be closed down.

What are the null and alternative hypotheses?

H0: The restaurant meets the regulations
HA: The restaurant violates sanitation regulations

What does Type I Error mean in this case?

A Type I Error would mean the restaurant did meet regulations, but
the inspector thought this was not true and shut it down.
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What does Type II Error mean?

A Type II Error would mean the restaurant violated regulations, but
the inspector made the mistake of letting the restaurant stay open.

Which error is worse for the restaurant owner? Which is worse for
the diners?

The restaurant owner dislikes Type I because the restaurant is shut
down for no reason.
Diners dislike Type II because they are exposed to dangerous condi-
tions.
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Reviewing the Framework: 21 Questions

A student claims she can guess the suit on the top card from a shuf-
fled deck better than chance. You decide to design an experiment to
test this.

1. We will study the parameter p. What should p represent?

Let p be the proportion of suits the student can correctly name using
her special powers (out of all possible cards we could ever ask her
about).

2. What is an appropriate null hypothesis?

If the student has no powers, she will get the correct answer one-
fourth of the time. We set H0 p = 0.25.
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3. What is our alternative hypothesis?

Since she claims to do better, we have HA: p > 0.25.

4. When we draw a sample, how do we make sure the suits of the
cards are independent of one another?

We need to shuffle the cards after each top card is guessed and re-
vealed. Otherwise, the student has information about the suits that
remain in the deck.

5. How many cards should we test the student on and why?

We eventually look at a sampling distribution, which will be normal
if we have at least 10 successes and failures. We expect 0.25 × n suc-
cesses, so we need at least n ≥ 40 to get adequate successes.
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6. We plan to also calculate a confidence interval for p based on our
sample. Name two ways to get a smaller interval.

The CI is p̂± z∗SE(p̂). If we decrease the confidence level or increase
the sample size, this will shrink the interval.

7. We decide on a sample of size 100 because 100 ≥ 40 and drawing
a larger sample isn’t too hard. During the experiment, she guesses 32
suits correctly. She says this proves her claim. Why is her logic false?

We got p̂ = 0.32, but sampling variability exists. Some samples of 100
cards would yield results like this, other may not support her claim.
We must sort out whether 32% is from sampling variation or not.
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8. If we drew many samples of size 100, found the proportion of cor-
rect guesses of each and plotted these, we would get a sampling dis-
tribution (histogram). Why is it approximately normal in this case?

Reshuffling gives independence, 100 cards i less than 10% of all the
cards we could ask her (= ∞!), and the sample is big enough to ex-
pect at least 10 successes and failures.

9. Where is the normal approximation to the sampling distribution
centered? What spread does it have?

Under the null,
µ(p̂) = p = 0.25 and SE(p̂) =

√
pq/n =

√
0.75× 0.25/100 ' 0.0433.

10. In words, what will be the p-value for this situation represent?

It is the probability that sample variation gives us the result p̂ = 0.32
(or something more extreme) if the null hypothesis is true (that is, if
the student is just randomly guessing).
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11. Using symbols, how can we fill in this blank for our particular
problem?

p-value = P (

p̂ ≥ 0.32|p = 0.25

)

12. Describe two ways to find this p-value.

• We can use Minitab to find the area on the sampling distribution
itself,

• or we can convert p̂ to a z-score and use a table to find the area
on the standard normal distribution.

Let’s learn a new way to do this!
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13. Our p-value was 0.053. Interpret what this means in terms of
probability in our situation.

If the student is randomly guessing, we would expect to get a result
like 0.32 correct (or more) about 5.3% of the time.

14. This suggests that if we ran the experiment 20 times, one of
those times we would expect to get a result like 0.32 (or wilder!). If
there were 20 science labs in the country running this experiment,
what would happen?

We expect one of them to get a result whose probability is very near
the 0.05 significance threshold. They will probably publish a paper
saying they found a student with special powers.
If we live in a society that only publishes results with p-values < 0.05,
then for every published finding, we might expect 19 unpublished
findings that found no interesting result.
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15. The p-value is above the 0.05 cutoff. What do many scientists
do?

They fail to reject the null hypothesis. The 0.32 evidence is not enough
to convince us the girl has special powers. We keep believing she is
randomly guessing.

16. Give some reasons why a 0.05 cutoff is silly.

0.05 is a historical artifact derived from a 1931 book by Fisher (The
Design of Experiments). He though a 1 in 20 event might be surpris-
ing enough to toss out one’s belief system (H0).
In some situations, you might be willing to reject the null hypothesis
more or less readily.
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Are the Following True or False? Why?

17. The probability that the null hypothesis is true is 5.3%.

False. We found P (p̂ ≥ 0.32|p = 0.25) = 0.053, not “P (H0 is true) =
0.053”

18. If we reject the null hypothesis, this means the alternative hy-
pothesis is true.

False. If we reject H0, it is because we had evidence against H0 and
for HA. This doesn’t make HA true.

19. The choice of the cutoff is influenced by the sample size n.

False. The cutoff, or α level, is decided by the researcher. Values of
α = 0.05, 0.01, 0.001 are common.
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Are the Following True or False? Why?

20. It is better to use α = 0.01 than α = 0.05.

Not necessarily, this just manipulates the Type I Error rate.

21. If α = 0.10, the the p-value of 0.09 is statistically significant.

True. The phrase “statistically significant” means that the p-value is
less than the α cutoff.

Note: Statistical significance is not the same as practical signif-
icance. For example, consider an SAT class that raises grades by
0.1% vs. a drug that cures 0.1% more people.
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One Final Example: The Case of Two Coins

Your friend has two coins, one that is fair, and the other that comes
up tails 85% of the time. You get to spin one of the coins and then
must decide which coin it is.

1. You pick a coin and flip it under the assumption it is unfair. What
are H0 and HA? Let p be the probability of getting tails on the flipped
coin.

Set H0: p = 0.85 and HA: p = 0.5.

2. Your flip is head. What would you do?

Find a p-value! It equals

P (our result or something more extreme|H0 is true).

Here, this means P (Heads|H0) = 0.15. We might reject H0.
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3. If your flip was tails, what do you do?

Here, the p-value is P (Tails|H0) = 0.0.85. We have a piece of infor-
mation that meshes well with H0, so we probably won’t reject it.

4. What do Type I and Type II Errors mean in context?
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