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Inference About Regression

Recall our setup:

Take a data set where each data
point has two values
(here, height and weight)

Plot these and have the computer
determine a line of best fit (or
linear regression)

This line has the form

ŷ = b0 + b1 · x

Here,

Ŵeight = −111 + 3.51 ·Height
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When There’s A Sample, There’s A Population

But... Those People are Just a Sample From the Population

Population: Everyone in the U.S.
Parameter Model: ŷ = β0 + β1 · x

From this population, we could virtually get many samples:

. . .Sample: 250 people in the U.S.
Statistic-Based Model: ŷ = b0 + b1 · x

Sample: 250 people in the U.S.
Statistic-Based Model: ŷ = b0 + b1 · x

b0

b0

For both of these, we
wonder about:
– Center, The SE
– Curve best fitting the
histogram
– What conditions for this
curve to actually fit the
histogram

b1

b1
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From this population, we could virtually get many samples:

. . .Sample: 250 people in the U.S.
Statistic-Based Model: ŷ = b0 + b1 · x
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Sample: 250 people in the U.S.
Statistic-Based Model: ŷ = b0 + b1 · x
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Exploring the Regression Slope b1

We’re not interested here in the intercept b0.
The important idea to explore is almost always
the slope b1 (which encodes variations!).

b1

b1

Where is the histogram of all the possible b1’s centered?

At the true population value β1.

What about the spread?

SEb1 = se

sx

√
n− 1

,

where
• se: Standard deviation of the residuals
• sx: Standard deviation of the x values
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Exploring the Regression Slope b1

What curve best approximates the histogram?

Under the conditions below, the histogram is
approximately tn−2.

b1

b1

What conditions do we need to check to ensure the curve is tn−2?

Those four conditions for creating a regression model:
• Roughly linear data
• Independence of observations
• Nearly normal residual histogram
• Constant variability around the regression line
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Example

You are curious how much an “inch of human being” weighs. To de-
termine this, you plan to collect the data of 250 randomly picked
Americans and build a regression model that predicts weight based
on height.
You do so and get the below scatterplot and residuals plot.

Discuss if we meet the four conditions for linear regression.
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Example

The scatterplot shows a linear trend, the residuals look roughly nor-
mal, we get independence from Randomization and the <10% rule,
and the variability looks roughly constant at each value of x.

We get the regression line

Ŵeight = −102.5 + 3.382 ·Height.

Why is it inappropriate to conclude that, on average, every inch of
height adds 3.382 lbs?

The value b1 = 3.382 is a statistic built on a sample of 250 Ameri-
cans. A different sample would give rise to a different regression line
and a different value for b1.
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Parameter VS Point Estimate... Again!
We wish to use statistical inference to estimate β1, which is the weight,
on average, for “an inch of American” (if we were to make a regres-
sion model based on everyone in the U.S.)

b1 gives an estimate for β1, and we saw earlier that b1 is modelled by
tn−2 centered at β1 with SEb1 = se

sx

√
n− 1

.

If the conditions for inference are satisfied, we can build a confidence
interval as we usually do:

point estimate± t∗n−2 · SE.

Here, we would set our Confidence Interval as

C.I. = b1 ± t∗n−2 ·
se

sx

√
n− 1

.

Note: To find se, you’ll need technology.
(Or a lot of time to lose doing it by hand!)
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Reading These Values With Technology

You fit the line and notice this output:

From this we get:
• The estimated values b0 = −102.50 and b1 = 3.382
• The SE’s for b0 (9.48) and b1 (0.133). This means that:

SEb1 = se

sx

√
n− 1

= 0.133.
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Building Our Confidence Interval

From previous slides, b1 = 3.382 and SEb1 = 0.133.

Here, n = 250, so for a 95% confidence level, a table gives t∗248 '
1.969.

Our 95% confidence interval is

C.I. = 3.382± 1.969 · 0.133
= (3.12 lb/inch, 3.64 lb/inch).

We are 95% confident that the weight of an inch of American is be-
tween 3.12 lbs and 3.64 lbs.
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Hypothesis Testing on Slopes of Regression Lines

Typically, a hypothesis test on a slope sets H0: β1 = 0.

Here, x doesn’t help predict y at all!

When two variables have no association,
the slope of the regression line is 0 and
the scatterplot looks like noise.

We tend to use a two-sided alternative HA: β1 6= 0.

If the slope isn’t 0, we have an association (which may be weak or
strong, positive or negative).
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As usual, we calculate a test-statistic by finding

estimate− null value
SE

In this case we find

Tn−2 = b1 − 0
SEb1

= 25.39

We also a p-value p = 0.000 .
(from line “Height”)

Since p < 0.05, we’d reject the null:
there is an association between Teight
and weight.

Indeed, our 95% C.I. for β1 was (3.12, 3.64) (which does not contain
the value 0).

Remark: This p-value is always computed for a two-sided alterna-
tive hypothesis.
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Course and Professor Evaluation (CAPE)

Don’t forget to give feedback on the course on

http://www.cape.ucsd.edu

13 / 36
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Teaching and Beauty

Researchers were curious if the attractiveness of a professor would
affect his/her teaching evaluations. (Source)

To test this, researchers collected data of 463 randomly picked profes-
sors:

• Average teaching evaluation:
1 (worst) – 5 (best)

• Standardized attractiveness score:
0 (average), - (< average), + (> average)

What are the null and alternative hypotheses for this study?

H0: Beauty and teaching have no association

β1 = 0

HA: Beauty and evaluations have some associations

β1 6= 0

14 / 36
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Given These 4 Plots, Should We Conduct the Study?

• The scatterplot almost looks
like noise. Hard to say if it’s
linear. Note that weak
associations will look a little
like noise.

• Independence: Okay from
randomization and the <10%
rule.

• Normal residuals: Okay from
the two bottom plots. Some
worry about profs near the
extremes of the beauty scale
though.

• Constant variance: The
residuals plot suggests this is
true. Some concerns for the
upper end of the beauty scale.
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You get the below incomplete printout. Try and complete it.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 4.010 0.0255 157.21 0.0000
Beauty

0.133

0.0322 4.13 0.0000

Under the null, the β1 sampling distribution is modeled by tn−2.
Also, the test statistic is

Tn−2 = estimate− 0
SE

.

The output gives us

4.13 = estimate− 0
0.0322 ,

thus we get
estimate = 4.13× 0.0322 ' 0.133.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 4.010 0.0255 157.21 0.0000
Beauty 0.133 0.0322 4.13 0.0000

What is the regression for our particular sample?

̂Teach Score = 4.01 + 0.133 · (Beauty Score)

What does the value 4.010 mean?
It is the y-intercept of the regression line. So, it is the Teach Score we
expect for professors with Beauty 0 (average).

What conclusion should the researcher draw about this test?
Given that the p-value is about 0, they should reject the null:
There does appear to be an association between teaching evaluations
and beauty.
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Back to Old Faithful
From our study that predicts (time until eruption) of Old Faithful
based on (Time of last eruption) using 270 observations, we get this
printout.

Build a 90% C.I. for how much each second of eruption creates in
waiting time for the next eruption. Is there really an association be-
tween these two ideas?

For inference on the slope of a regression,

C.I. = b1 ± t∗n−2 · SEb1 .

Based on the printout, we have

C.I. = 0.176± t∗268 · 0.00535.

18 / 36
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Based on the table, t∗268 ' 1.65.

We get

C.I. = 0.176± 1.65 · 0.00535
= (0.167, 0.184).

We are 90% confident that each second of
current eruption leads to between 0.167 to 0.184
second of waiting for the next eruption.

Given the p-value p < 2 · 10−16, we also believe that there is an asso-
ciation between the two variables we are studying.
The confidence interval gives a very good sense of how these variables
are related.
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Prediction Intervals / Confidence Intervals

The reason we build a model is because we want to make predictions
using it! How do we honestly share the fact that our prediction is
only a “best guess”?
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The Three Types of Questions We Ask

1. My friend is 72” tall. What does your model predict for his weight?
→ Plug 72” into our regression equation. Done. Answer is a number.

2. My friend is 72” tall. What is a reasonable interval of possibilities
for his weight?
(Given the fact that your model was based on a small sample and
that natural variation exists)
→ Build a prediction interval for the weight of this one person.

3. What is a reasonable interval of possibilities for the average weight
of all men 72” tall?
→ Build a confidence interval for the average weight of all men
72” tall.

Remark: Both of 2. and 3. are centered about the prediction from
our model (question 1.).
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The Prediction Interval (PI)
This is a statistical technique that captures the fact that models are
based on samples, and that a low of variation occurs from one indi-
vidual to the next.
Think of this as our attempt to move beyond the model prediction ŷ,
by giving an interval.

Notation: Take our friend of height 72”: xf = 72.

Our best guesss: ŷf = b0 + b1 · xf = 141.72 lbs.

The prediction interval is

PI = ŷf ± t∗n−2 × SEP I .

It turns out that

SEP I =
√
SE(b1)2 × (xf − x̄)2 + s2

e

n
+ s2

e
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PI = ŷf ± t∗n−2 × SEP I .

It turns out that

SEP I =
√
SE(b1)2 × (xf − x̄)2 + s2

e

n
+ s2

e

22 / 36



Thinking About SEPI
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The Confidence Interval (CI)

“What is a reasonable ranger for the average weight of all men 72”
tall?”
(This question is different. It isn’t asking for a weight of a particular individual.
It is asking for sensible bounds on the average weight across all 72” tall men.)

This type of question is answered with a confidence interval, not a
prediction interval.

Here, the formula is

CI = ŷnew ± t∗n−2 × SECI ,

where

SECI =
√
SE(b1)2 × (xnew − x̄)2 + s2

e

n
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Example with Old Faithful

̂Time till next = 33.83 + 10.74× Time of last

• What does the model predict for the wait time after a 4 minute
eruption? Why do we do a disservice by just reporting this value?

̂Time till next = 33.83 + 10.74 × 4 ' 76.79 minutes. This value is the
model’s best guess, but doesn’t share the fact that variability exists
in the data.

• You see a 4 minute eruption. What is a 95% prediction interval for
the wait time until the next eruption?
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We are 95% confident that the next eruption will begin somewhere
between 63.46 and 90.12 minutes after the 4-minute eruption we just
witnessed.

Note: You will get to practice doing this in Lab 8.
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• What is a reasonable range for the average wait time after all possi-
ble 4 minute eruptions?
(This question is different. It isn’t asking for a wait time interval after a particu-
lar (individual) eruption. It is asking for sensible bounds on the average wait time
across all 4-minute eruptions)

We are 95% confident that the wait time, on average, after all 4 minute
eruptions will be between 75.35 and 78.24 minutes.

Remark: Compare this with our prediction interval from before:
We are 95% confident that the wait time after a particular 4-minute
eruption we just witnessed will be between 63.46 and 90.12 minutes.

Moral: It is much easier to be confident about average ideas than
individual ideas. Average ideas have a way of “self-balancing” because
extreme data cancel each other out.
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Comparing SEPI and SECI

Prediction interval:

ŷf ± t∗n−2 × SEP I

where

SEP I =
√
SE(b1)2 × (xf − x̄)2 + s2

e

n
+ s2

e.

Confidence interval:

ŷnew ± t∗n−2 × SECI

where

SECI =
√
SE(b1)2 × (xnew − x̄)2 + s2

e

n
.

From the formulas, we see that

SEP I > SECI .
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How I Think About All This
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Your Turn

Which of the following situations is asking for a prediction interval?
1. Use a model to tell me the weight we expect for my best friend

who is 6’2”.
2. Give a range of reasonable values for the average weight of

people who are 6’2”.
3. Based on a model, give a range of possible weights for my best

friend who is 6’2”.
4. Figure out a range of reasonable values for the weight of an inch

of human being.

Answer: 3.
1. asks for a ŷ for some particular x.
2. is a CI
3. is a PI
4. is about the slope of a regression model.
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Your Turn

Which of the following situations is asking for a confidence interval?
1. Find a realistic range for the weight of a baby whose mother

weights 132 pounds.
2. Use your model to tell me what baby weight we expect from a

mom who is 132 pounds.
3. Use your model to tell me how much a baby should weight if the

mother weighs 0 pounds.
4. Give me a sensible range of values for the average baby weight

across all mothers of weight 132 pounds.

Answer: 4.
1. is a PI.
2. asks for a ŷ for some particular x.
3. is the intercept of a linear model.
4. is a CI.
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Your Turn
Recall that a prediction interval is:

ŷf ± t∗n−2 × SEP I

where

SEP I =
√
SE(b1)2 × (xf − x̄)2 + s2

e

n
+ s2

e.

Which of the following choices will shrink the size of a prediction in-
terval?
1. Predict a value farther from the mean x̄ value of the model.
2. Add new data to the model that tend to fit the existing model

well.
3. Use a model based on new data with smaller residuals.
4. Rerun the regression process on a totally new data set. Then

make your PI at the same x value you were using before.

Answer: 2. and 3.
1. actually increases the width of the PI.
4. should not change things drastically (up to random variations).
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Cricket Chirp Rate (#/sec) vs. Temperature (◦F)

Is there a relationship between the temperature and the number of
chirps that crickets make per second?
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Cricket Chirp Rate (#/sec) vs. Temperature (◦F)

• Discuss the conditions necessary for linear regression and for doing
inference (here, PI’s and CI’s).
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• Make a 95% prediction interval for the chirp rate of crickets on an
82 degree day. Do the same for a 96 degree day. Discuss.

While these are both PIs, note that this second is wider because 96 is
farther from the mean of the x values used to build the model (com-
pared to the value 82).
The software is even worried and gives the “X” notation.
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• Make a 95% prediction interval for the average chirp rate of crickets
across many 82-degree days.

We are 95% confident that the average chirp rate on 82 degree days
in between 16.5 chirps/sec and 17.6 chirps/sec.
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