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Line of Best Fit
(AKA Linear Model AKA Regression Line)

Notation: for the Regression Line: ŷ = b0 + b1 · x

Interpretation:
• Intercept b0: This is the predicted value for y when x = 0.
• Slope b1: Measures the steepness of the regression line.
It says how much y changes for each 1 unit change of x.
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Calculating The Regression Equation

Regression Line: ŷ = b0 + b1 · x

b1 = R · sy

sx

We see that:
• R gets the correct sign on the
slope

• sy/sx gets the correct units
on the slope

After calculating b1 you get

b0 = ȳ − b1x̄

This formula holds because the
regression line always passes
through (x̄, ȳ).
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Back to Old Faithful

Using technology, we get:

̂Time until next = 33.83 + 10.74 · (Length of last)

Interpret what the intercept and slop mean in this context.

• The intercept is 33.83 minutes, which means that if the last
eruption lasted 0 minutes (!), then we will wait about 34 minutes
until the next eruption begins.
(Sometimes intercepts don’t make real-world sense)

• The slope is 10.74 (minutes until next/minutes of last). This
means that each additional minute of eruption time leads to
about 11 more minutes of waiting for the next eruption.
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A Classic Example

Ŵeight = −111 + 3.51×Height

The intercept suggests that a 0 inch tall
person should weigh -111 lbs.
This makes no real-world sense, but is a
theoretical starting point for the model.

The slope suggests that for every inch
increase in height, we expect a person to
be about 3.5 lbs heavier.
Similarly, for every inch decrease in
height we expect a decrease in 3.5 lbs.

Slope = ∆y

∆x

3.5 lbs/inch = 3.5 lbs
1 inch
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Why Build A Model?

– Perhaps y is really hard or expensive to measure, but well associ-
ated with x which is easy to measure.

– Perhaps y can only be measured after the fact (e.g. damage done
by a tornado), but you need a sense for this before the fact.

– A model allows you to move from your data set to the larger uni-
verse of possibilities

– Parts of a model might answer questions you have about an issue
(e.g. slope of height-weight graph gives the “weight of an inch of a
person”)
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U.S. Navy

We see from this chart that every inch of height for a male equals
about 5 or 6 pounds, and every inch for a female weighs about 3 or 4
pounds. This is exactly the slope of the regression line!
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Using the Regression Model
Ŵeight = −111 + 3.51×Height

Try an example:
Convert your height to inches, see what the model predicts.
What is the residual based on your actual weight?

My data: 190cm converts to 75 inches.
The associated predicted weight is −111 + 3.5 · 75 = 151.5.
My actual weight is 202 lbs, so the residual is 202 − 151.5 = 50.5 lbs.
So my data point lies above the regression line (since residual >0).
The model (strongly) under-predicted.
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Your Turn!

What might each dot represent?
1. A person in the U.S.
2. A small town in the U.S.
3. A metropolitan area in the U.S.
4. One of America’s 20 richest cities

Answer: 3.
Individuals don’t have poverty rates, so 1. is wrong.
Small towns don’t have a million people, so the y axis wouldn’t make
sense in 2.
Rich cities have low poverty rates, so the x axis wouldn’t make sense
in 4.
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Your Turn!

Guess the correlation coefficient for this scatterplot.
1. R ' 0
2. R ' 0.25
3. R ' 0.55
4. R ' 0.85
5. R ' 1

Answer: 4. The actual value is R = 0.84.
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Your Turn!

You are told the regression line is

Annual murder rate/million people = −30 + 2.6 · Poverty Rate.

What annual murder rate (per million people) do we expect in a city
with a 20% poverty rate?
1. 4
2. 12
3. 22
4. 31

Answer: 3., since −30 + 2.6 · 20 = 22.
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Your Turn!
Which statements are true? Recall that the prediction is

Annual murder rate/million people = −30 + 2.6 · Poverty Rate.

1. A city with no poverty would have a murder rate of -30
people/million.

2. For every 1 unit increase in poverty, 2.6 more people will be
murdered per year (for each million people in the city).

3. If you want to know the murder rate (per million people) of any
city in the U.S., plug in the poverty rate into this equation.

4. The best values to plug in for the poverty rate are vetween 14
and 26.

5. The only values we may plug in for the poverty rate are between
14 and 26.

1. True. That’s the interpretation of the intercept.
2. True. That’s the interpreation of the slope.
3. False. Our prediction may only be valid for big cities.
4. True. Since most of the data used to build the model are

between 14 and 26, we get the best results in this range.
5. False. Too strong language to be true.
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More on the Slope

b1 = R · sy

sx

= R · sy

1 · sx

= ∆y

∆x

1 · sx

R · sy

In other words:
• If you’re 1·SD above the mean height, you’ll be R·SD’s above the
mean weight.

• If you’re 2·SD above the mean height, you’ll be 2R·SD’s above
the mean weight.
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Regression to the Mean

Recall that

−1 ≤ R ≤ 1.

Hence, moving 1SD from the mean of the x-variable takes us less
than 1·SD (precisely R·SD) from the mean in the y-variable.

So, the world of x-values gets compressed (SD-wise) as the linear
model converts them over to y-predictions.

The phrase “regression to the mean” is used to describe this phe-
nomenon, and is where the term “linear regression” comes from.
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Regression to the Mean Examples

Why this occurs: Being exceptional on one measure (the idea on the
left) requires exceptionalism AND luck. If you focus on these people,
you are focusing on those who had both exceptionalism and luck.

When you look at them on the other measure (the idea on the right),
they are still exceptional, but probably won’t have the luck this time
around.
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Conditions for Creating a Regression Model

Since correlations are involved, we need our three conditions from
before:
1) Quantitative Variables
2) Straight Enough
3) No Outliers
Be we also have one new condition: 4) Residual Noise. We want the
residual plot to look like “noise”. It should have no pattern.

Here, we do see a pattern, as indicated by the fanning out effect.
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A New Statistic: R2 (Percent Variance Explained)
If you calculate the correlation from the Old Faithful example, you
get R = 0.854.

For a given linear model, R2 = r2 is the proportion of the variation in
the y-variable that is accounted for (or explained) by the variation in
the x-variable.

So, R2 = 0.8542 = 0.73 = 73% of how long we must wait is com-
pletely determined by how long the last eruption lasted.

As another example, the R2 in the height-weight regression is 0.67.
So 67% of the variability in weight is because of height differences.

17 / 34



A New Statistic: R2 (Percent Variance Explained)
If you calculate the correlation from the Old Faithful example, you
get R = 0.854.

For a given linear model, R2 = r2 is the proportion of the variation in
the y-variable that is accounted for (or explained) by the variation in
the x-variable.

So, R2 = 0.8542 = 0.73 = 73% of how long we must wait is com-
pletely determined by how long the last eruption lasted.

As another example, the R2 in the height-weight regression is 0.67.
So 67% of the variability in weight is because of height differences.

17 / 34



A New Statistic: R2 (Percent Variance Explained)
If you calculate the correlation from the Old Faithful example, you
get R = 0.854.

For a given linear model, R2 = r2 is the proportion of the variation in
the y-variable that is accounted for (or explained) by the variation in
the x-variable.

So, R2 = 0.8542 = 0.73 = 73% of how long we must wait is com-
pletely determined by how long the last eruption lasted.

As another example, the R2 in the height-weight regression is 0.67.
So 67% of the variability in weight is because of height differences.

17 / 34



Warning! Danger!
If you want to switch the roles of the predictor and response vari-
ables, you cannot just rearrange your existing linear model.

ŷ = b0 + b1x,

which gives

x = −b0

b1
+ 1

b1
ŷ.

But what we really want is x̂ = c0 + c1 · · · y.

In the Height-Weight example, we actually have

Ŵeight = −111 + 3.51 · (Height)

Ĥeight = 55.9 + 0.0949 · (Weight)

You can check that these equations are NOT simply rearrangements
of each other.
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Getting Better at Regression

Sad Reality: As simple as linear regression is, most people use it
incorrectly:
1. They fail to look at the residuals and make sure the model is

reasonable.
2. They extrapolate without caution.
3. They don’t consider outliers carefully enough.
4. They build a model on data that isn’t “straight enough”.
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Look at the Residuals (Seriously!)

Lesson 1 If the residuals show any type of pattern, your current linear
model is not appropriate.

Lesson 2 A high R2 value is not an indication that a linear model is
appropriate!
Here, R2 = 98.3%.
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More on Residuals (Do They Look Like Noise?)

a) This is noisy, but there is a clear downward, then upward,
pattern.

b) This plot tends to show more variation for smaller x values, and
less for greater x values. A linear model is not appropriate.

c) This truly looks like noise! A linear model is appropriate
assuming the other regression conditions are met.
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Subgroups In Your Data

Often, you can identify subgroups in your original data or in the
residuals. In this case, split your data into different parts and do sev-
eral linear regression instead of one, clunky, regression.

# of passengers thru Oakland’s
airport each month

Average age at which people got
married
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Subgroups May Not Be Visible Unless You Think of
Them

Lesson 3 Don’t assume your data are all part of one homogeneous
population.
Think about possible subgroups to make the analysis better.
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Interpolation VS Extrapolation

Interpolation: Using your model
to predict a new y value for an x
value that is within the span of x
data you modeled. (Here, inside
the 61-77 inch range)

Extrapolation: Using your
model to predict a new y value for
an x value that is outside the span
of x data you modeled. (Here,
outside the 61-77 inch range)

Lesson 4 Extrapolation is dangerous because it assumes the relationship
holds beyond the data range you have seen and used for a model.
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Should I Run a Regression With an Outlier?
For each graph,

• the orange line is the regression line using all the point
(including the outlier)

• the green line is the regression line when the outlier is excluded.

High leverage
Low influence

High leverage
High influence

Low leverage
Moderate influence

Two important ideas:
• A high leverage point is one where x is far from the mean of the

x values.
• A high influence point is one that gives a significantly different
slope for the regression line when it is included, versus excluded.

Lesson 5 Don’t run regression when a high influence outlier is present
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Inflating R2: Three Common Practices

1. Dividing the data into subgroups that are more homogeneous.
(Often GOOD)

2. Tossing outliers and doing the analysis without them.
(GOOD or BAD, depending)

3. Using summarized data rather than un-summarized data.
(Often BAD)

Lesson 2 (again) A high R2 does not indicate a linear model is
appropriate
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Getting Your Data Straight

When the original data or the residuals convince you that the data
are not straight enough, apply a mathematical function to the y-
value.
(You might apply a function to the x-values, or both the x and y val-
ues)
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What Function Should I Apply? The Tower of Power

Power Function You Apply
2 y2

y
1 no function applied this is the raw data,

and your home base for the Tower of Power
1/2 √

y
“0” log y

−1/2 −1
√

y

−1 −1
y

−2 −1
y2
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Tukey’s Circle
If the graph looks like

or

then apply a function higher on the Tower of
Power than is currently being used.

If the graph looks like

or

then apply a function lower on the Tower of
Power than is currently being used.

Tukey’s Rule of Thumbs for
Re-Expression
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Transforming Data: An Example

Suppose we try this transformation −1/y.
(see next slide)
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Transforming Data: An Example

Let’s try log y next...
(see next slide)
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Transforming Data: An Example

There is no magic to choosing the right transformation. If the changes
to the y variable don’t give a straight-enough graph, try some of the
x transformations.
(or use both x and y transformations)
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Working With a Transformed Model

Software gives us a linear model:

̂log(GDP) = 4.755− 0.8264(Crowdedness).

Predict the per capita GDP for a country with a crowdedness of 5.

Plugging in 5 gives us ̂log(GDP) = 4.755− 0.8264 · 5.

Thus ̂log(GDP) = 0.623, and so GDP = 100.623 = 4.20.

We expect a country with an average of 5 people living per room to
have a per-capita GDP of $4.20!

Note: Pakistan has the highest crowdedness score of 3. So, we just
extrapolated, even if we didn’t realize it.
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Why Not Fit a Curve to the Data?

• This is possible but requires additional technical machinery
• You lose the intuitive meaning of slope
• You lose the ease of a linear model; transformations help convert
things to a linear world

• Non-technical audiences struggle with anything beyond the world
of the linear
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