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The Normal Distribution

The density function of the normal distribution is:

f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 ,

where µ is the mean, and σ is the standard deviation.

µ µ+ σµ− σ

Notation: X = N(µ, σ).

Other name: Gaussian distribution
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Importance of the Normal Distribution

The Normal model is the most important continuous random variable
in all of modern statistics.

Roughly speaking, this comes from the fact that any time some quan-
tity is the combination of many independent factors, then this quan-
tity will follow a normal model.

Examples:
• Human heights in the US (Female: µ = 65 in, σ = 3.5 in)
• Diastolic blood pressure (µ = 77 mm Hg, σ = 5.5 mm Hg)
• IQ scores (µ = 100, σ = 15)
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Normal Distribution: Example
Suppose the height of US women is normally distributed with a mean
µ = 65 inches and standard deviation σ = 3.5 inches.
What is the probability the next woman you see has a height over 72
inches?

Let X = N(65, 3.5). We want

P (X ≥ 72) =
∫ ∞

72

1
3.5
√

2π
e
− (x−65)2

2×(3.5)2 dx

= ...

That’s a hard integral! This is the first example of a distribution
where probabilities cannot be found by hand.
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Technology and the z-table

Technology:

The z-Table:

This is a way to look up the areas
under part of a normal curve and
get the answer 0.02275.

Trouble:
We don’t want a different table for
every possible normal curve (recall
that the mean can be any number,
and the standard deviation can be
any positive number!) We need a
way to convert any situation
modelled by a normal curve into
some standard setup.
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z-score

You are in charge of admissions at UCSD. One applicant took the
SAT and got a 1775. Another took the ACT and got 27. Which would
you admit?

When data are measured on different scales (= have different units),
we need a common way to compare them that is unitless.

The z-score of a data point y from a dataset is y − ȳ
sy

.

The z-score:
• Is a unitless idea (units in numerator and denominator cancel)
• Tells you how many standard deviations above the mean some
piece of data is.
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z-score: Example

You see on Google that the SAT has mean 1500 with SD 250, and
the ACT has mean 20.8 with SD 4.8. Which do you admit, the 1775
SAT or 27 ACT?

zSAT = 1775− 1500
250 = 1.1 zACT = 27− 20.8

4.8 ' 1.29.

Assuming the two tests are equally difficult, you’d ratther admit the
ACT person.

z-scores provide a single “ruler idea” to measure all phenomena, eras-
ing the effect of units.

The z-score says how extreme a data point is relative to its own data
set.
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z-score
Let’s take a data set and find the z-score for every data point.

µSAT = 1500, σSAT = 250

Some data

F
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0
x zx = x− µSAT

σSAT

It appears:
• The new histogram is similar
• The new mean is 0.
• The new standard deviation is 1.
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z-Score Summary

• z-scores allow us to compare two data points from different data
sets (with different centers and spreads) and get a sense for
which datum is more extreme relative to its own data set.

• z-scores allow us to rescale a given data set so it has mean 0 and
standard deviation 1.
In the case of probability models, this allows us to think about
whole families of curves using a single “standardized” model.
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All Roads Lead To . . . The Standard Normal Model

By rescaling data with the z-score, we turn all Normal models N(µ, σ)
into a single one: the Standard Normal Model N(0, 1).

Standard Normal Model N(0,1)

−3.0 −2.4 −1.8 −1.2 −0.6 0.0 0.6 1.2 1.8 2.4 3.0

0.
0

0.
2

0.
4

Any question in the original setting can be reframed as a question on
the standard Normal model N(0, 1).

If we understand N(0, 1), we understand all the Normal models.
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One Question, Many Ways to Solve
Find the percentage of students that has an SAT score below 1800.

A priori, we could find this probability by finding the area under the
density curve using an integral. For normal distributions, this is too
difficult to do by hand.

Option 1: Original setting + technology. X = N(1500, 250), and we
want P (X ≤ 1800).
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Doing This in Minitab

Go to Graph » Probability Distribution Plot »
View Probability

Set up the distribution you want (here: Normal
with mean 1500 and SD 250), then click on
“Shaded Area” tab. Specify the area you are
trying to find.

You get a nice plot with
the answer displayed. Note
that this does NOT require
converting 1800 to a
z-score.
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One Question, Many Ways to Solve

Option 2: Standardized setting + tables.
We notice than

P (X ≤ 1800) = P

(
X − 1500

250 ≤ 1800− 1500
250

)
= P (Z ≤ 1.2).

We want the area less than z = 1.20 under the Standard Normal.
Any question about Normal curves can be converted to an equivalent
question on the standard normal curve. We just need a lookup table
of “areas under the curve” for the standard normal!
On tests, you won’t have access to Minitab, so you will have to use
this approach.
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z-Table (see at the end of your book)

The values in the table are all areas (probabilities) The number along
the top and left side are the z − value broken into its two parts.

Here, z = 1.20 = 1.2 + 0.00, so we find P (Z ≤ 1.20) ' 0.8849.
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Disneyland
10-year-olds, regardless of gender, have heights (in inches) well-modeled
by N(55, 6). What percentage of 10-year-olds can ride Disneyland’s
Space Mountain, which has a height requirement of 44”?

Remark: Always define your random variable and draw a picture!

Let X = N(55, 6). We want P (X ≥ 44).

Minitab gives use p = 0.9666.
So, 96.7% of 10-yearolds can ride the Space Mountain ride at Disney-
land.
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Practice With Tables

Writing Z = X − 55
6 , we see that we want

P (X ≥ 44) = P

(
Z ≥ 44− 55

6

)
= P (Z ≥ −1.83)
= 1− P (Z < −1.83)
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Practice With Tables

We read P (Z < −1.83) ' 0.0336, so

P (X ≥ 44) ' 1− P (Z < −1.83) ' 1− 0.0336 = 0.9664.

Remark: On these types of problems, never worry about rounding
issues or slight difference in answers, we just want approximations.
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Sleep Time
The sleep times (in hours) of American men on a weekday are well-
modeled by N(6.9, 1.5). What percentage of American men are within
1 standard deviation of the mean sleep time?

Let X = N(6.9, 1.5). We want P (5.4 ≤ X ≤ 8.4).
To find this, we solve

P (5.4 ≤ X ≤ 8.4) = P (X ≤ 8.4)− P (X < 5.4).

About 68% American men are within one σ of the mean.

18 / 33
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The 68− 95− 99.7% (Approximate) Rule

This holds for any data set that is normally distributed.
• About 68% of the data values are within 1 SD of the mean
(blue).

• About 95% are within 2 SDs (blue and green).
• About 99.7% are within 3 SDs (blue, green, and yellow).
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A Question using the 68− 95− 99.7% Rule

What percentage of students score above a 1250 on the SAT? (µ =
1500, σ = 250)

Notice that 1250 is one SD below the mean.

The area outside the 1 SD windows is 100− 68 = 32%.

So, the area to the left of -1 SD is 32/2 = 16% (by symmetry)

The desired percentage is 100− 16 = 84% .
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Percentiles and “Going Backwards”

For any x value (or z-score, if you convert to a standard normal), the
percentile is simply the area to the left of this value.

Example: the value x = 1800 on the SAT is about the 88th per-
centile.

This means you scored higher than 88% of people who took the SAT.
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Percentiles and “Going Backwards”
Suppose a college only takes students who reach the 99th percentile
(or better) on the SAT. What cutoff must you attain?

You must score at or above a 2082 to get into this college!
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“Going Backwards” with Tables
As a New Year’s resolution, you decide to get more sleep than 93%
of American men. What is the least amount you can sleep per night?
We remember that sleep is modelled by N(6.9, 1.5).

We find the area in the table that gives 93%:

z93% = 1.48
Since the initial model is X = N(6.9, 1.5), we get

z93% = x93%−6.9
1.5 which we solve to get

x93% = 1.5× z93% + 6.9 = 9.12 hours/night.
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We remember that sleep is modelled by N(6.9, 1.5).

We find the area in the table that gives 93%: z93% = 1.48
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But Wait! Are My Data Really Normal?

Two Tests for Normality:

1) The human eye:
Does the histogram look unimodal and symmetric?
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But Wait! Are My Data Really Normal?

Two Tests for Normality:

2) Use a “probability plot”. Minitab: Graph » Probability Plot
If the data fall on a straight line, that implies normality. If not, your
data are non-normal.
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Practice

Joe Bob is totally average in every way. What will his z-score be
when he takes the SAT?
1. 1500
2. 0
3. 1
4. -1

Answer: 2., by definition of the z-score!
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Practice

A recent stat test had a mean of 80% with a SD of 3%. What test
score has a z-score -3?
1. 89%
2. 89
3. 71%
4. 71

Answer: 3. Notice that (71%− 80%)/3% = −3 (no unit)
The 89% has a z-score of +3.
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Practice

Who was better in his sport?
• Michael Phelps, swimming, 27 olympic medals
(mean olympic medals won by swimmers: 0.3, SD: 0.1)

• Barry Bonds, baseball, 762 home runs
(mean home runs by baseball player: 4, SD: 3)

1. Phelps
2. Bonds
3. Equally good

Answer: 1., since Phelps z-score is (27-0.3)/0.1 = 267, and Bonds’ is
(762-4)/3 = 252.7, and 267 > 252.7.

28 / 33



Practice

Who was better in his sport?
• Michael Phelps, swimming, 27 olympic medals
(mean olympic medals won by swimmers: 0.3, SD: 0.1)

• Barry Bonds, baseball, 762 home runs
(mean home runs by baseball player: 4, SD: 3)

1. Phelps
2. Bonds
3. Equally good

Answer: 1., since Phelps z-score is (27-0.3)/0.1 = 267, and Bonds’ is
(762-4)/3 = 252.7, and 267 > 252.7.

28 / 33



Practice

The median on a test is 60. If the teacher halves everyone’s score and
adds 50, what is the new median?
1. 55
2. 110
3. 30
4. 80

Answer: 4., since the median undergoes all the transformation the
data does. So 60/2 + 50 = 80 is the new median.

(This reasoning would also apply to the mean)
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Practice

The SD of temperature in a city is 10 degrees Celsius (C).
What is the SD if the data are measured in Fahrenheit (F)?
Recall that F = (9/5)C + 32
1. 50◦ F
2. 18◦ F
3. 10◦ F
4. −3◦ F

Answer: 2., since (9/5)× 10 = 18.
(SD’s are only affected by scaling, not shifting)
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Practice

Billy takes the weight of everyone in his class and converts them to
z-scores. What is the mean of the data when written as z-scores?
1. Cannot determine with given info
2. 0
3. 1
4. -1

Answer: 2., by definition of z-scores!!
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Practice

Billy takes the weight of everyone in his class and converts them to
z-scores. What is the SD of the data when written as z-scores?
1. Cannot determine with given info
2. 0
3. 1
4. -1

Answer: 3.
We have New Data = Old data−mean

SD
.

The SD ignores shifts like substracting the mean. To find the new
SD, we just apply the scaling in the formula (division by the old SD).
So the new SD is SD/SD = 1.
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Are Those Claims Really True?

Suppose you data set collects random variables X with mean µ and
standard deviation σ.

By moving to z-scores, we create a new random variable Z = X − µ
σ

.

Note that

E(Z) = E

(
X − µ
σ

)
= 1
σ
E(X − µ) = 1

σ
(E(X)− µ)

= 1
σ

(µ− µ) = 0.

Also,

SD(Z) = SD

(
X − µ
σ

)
= 1
σ
SD(X − µ) = 1

σ
SD(X)

= 1
σ
σ = 1.
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