Dimension reduction
and manifold learning (M2 MASH)
Agenda
Course material
•
Manifold learning in context
- -
High-dimensional geometry, estimation, and hope
(notes)
- -
Linear algebra refresher
(notes)
•
Multidimensional scaling
•
From MDS to dimension reduction
- -
Principal Component Analysis, ISOMAP, LLE
(slides)
- -
Basic spectral dimension reduction
(practice,
solution)
•
A non-exhaustive tour into nonlinear dimension reduction
- -
Laplacian Eigenmaps, Kernel PCA, MVU, Diffusion maps, t-SNE, UMAP
(slides)
•
Geometric inference
- -
Dimension estimation, Manifold estimation, Local PCA, optimality
(slides)
•
Supervised dimension reduction
Exam
Instructions,
Reading report,
Article choice