Robust shape matching with Optimal Transport

Jean Feydy BIRS, Banff seminar 18w5151 – 13th December, 2018

Écoles Normales Supérieures de Paris et Paris-Saclay Collaboration with B. Charlier, J. Glaunès (KeOps library); S.-i. Amari, G. Peyré, T. Séjourné, A. Trouvé, F.-X. Vialard (OT theory)

Source A, target B,

Source A, target B, mapping φ

Source A, target B, mapping φ

Source A, target B, mapping φ

A good Loss function is a guarantee of robustness

Iterative Matching Algorithm

- 1: $A' \leftarrow A$
- 2: repeat
- 3: $L, v \leftarrow \text{Loss}(A', B), -\partial_{A'}\text{Loss}(A', B)$
- 4: $A' \leftarrow A' + Model(v)$
- 5: until L < tol

Output : deformed shape $A' = \varphi(A)$.

A good Loss function is a guarantee of robustness

Iterative Matching Algorithm

- 1: $A' \leftarrow A$
- 2: repeat
- 3: $L, v \leftarrow \text{Loss}(A', B), -\partial_{A'}\text{Loss}(A', B)$
- 4: $A' \leftarrow A' + Model(v)$
- 5: **until** L < tol**Output:** deformed shape $\mathbf{A}' = \varphi(\mathbf{A})$.

"Model" encodes the **prior knowledge** on admissible deformations:

- smoothing convolution
- LDDMM/SVF backprop + regularization + shooting
- trained neural network

A good Loss function is a guarantee of robustness

Iterative Matching Algorithm

1: $A' \leftarrow A$

2: repeat

- 3: $L, v \leftarrow \text{Loss}(A', B), -\partial_{A'}\text{Loss}(A', B)$
- 4: $A' \leftarrow A' + Model(v)$

5: **until** L < tol**Output:** deformed shape $\mathbf{A}' = \varphi(\mathbf{A})$.

"Model" encodes the **prior knowledge** on admissible deformations:

- smoothing convolution
- LDDMM/SVF backprop + regularization + shooting
- trained neural network

 \Rightarrow The raw Loss gradient v is what **drives** the registration

On labeled shapes, use a spring energy

Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

On labeled shapes, use a spring energy

Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$A \longrightarrow \alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \qquad B \longrightarrow \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{y_j} \,.$$

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{\mathsf{y}_j} \,.$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{x_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{y_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

(

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

Display
$$v = -\nabla_{\mathbf{x}_i} d(\boldsymbol{\alpha}, \boldsymbol{\beta}).$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$
Display $v = -\nabla_{\mathbf{x}_i} \mathbf{d}(\alpha, \beta).$

Seamless extensions to:

- $\sum_{i} \alpha_{i} \neq \sum_{j} \beta_{j}$, outliers [Chizat et al., 2018],
- curves and surfaces [Kaltenmark et al., 2017],
- variable weights α_i .

1. Computing fidelities between measures

- 1. Computing fidelities between measures
- 2. What's new, in 2018?

- 1. Computing fidelities between measures
- 2. What's new, in 2018?
- 3. Efficient GPU routines: KeOps

A simple formula: Hausdorff distance (aka. ICP, \simeq GMM-MLE)

Define the fields $a(x) = d(x, \operatorname{supp}(\alpha)) = \min_{i} ||x_i - x||,$ $b(x) = d(x, \operatorname{supp}(\beta)) = \min_{j} ||x - y_j||,$

A simple formula: Hausdorff distance (aka. ICP, \simeq GMM-MLE)

Define the fields
$$a(x) = d(x, \operatorname{supp}(\alpha)) = \min_{i} ||x_i - x||,$$

 $b(x) = d(x, \operatorname{supp}(\beta)) = \min_{j} ||x - y_j||,$

$$Loss(\alpha, \beta) = \frac{1}{2} \langle \alpha, b \rangle + \frac{1}{2} \langle \beta, a \rangle$$
$$= \frac{1}{2} \sum_{i} \alpha_{i} \cdot \min_{j} ||\mathbf{x}_{i} - \mathbf{y}_{j}|| + \frac{1}{2} \sum_{j} \beta_{j} \cdot \min_{i} ||\mathbf{x}_{i} - \mathbf{y}_{j}||$$

A simple formula: Hausdorff distance (aka. ICP, \simeq GMM-MLE)

Define the fields
$$a(x) = d(x, \operatorname{supp}(\alpha)) = \min_{i} ||x_{i} - x||,$$

 $b(x) = d(x, \operatorname{supp}(\beta)) = \min_{j} ||x - y_{j}||,$
 $\operatorname{Loss}(\alpha, \beta) = \frac{1}{2} \langle \alpha, b \rangle + \frac{1}{2} \langle \beta, a \rangle = \frac{1}{2} \langle \alpha - \beta, b - a \rangle$
 $= \frac{1}{2} \sum_{i} \alpha_{i} \cdot \min_{j} ||x_{i} - y_{j}|| + \frac{1}{2} \sum_{j} \beta_{j} \cdot \min_{i} ||x_{i} - y_{j}||$

A simple formula: Kernel norms (aka. MMD)

Define the fields

$$a(x) = \sum_{i} \alpha_{i} ||x - x_{i}|| = (|| \cdot || \star \alpha)(x),$$

$$b(x) = \sum_{j} \beta_{j} ||x - y_{j}|| = (|| \cdot || \star \beta)(x),$$

A simple formula: Kernel norms (aka. MMD)

Define the fields
$$a(x) = \sum_{i} \alpha_{i} ||x - x_{i}|| = (|| \cdot || \star \alpha)(x)$$
$$b(x) = \sum_{j} \beta_{j} ||x - y_{j}|| = (|| \cdot || \star \beta)(x)$$
$$Loss(\alpha, \beta) = \frac{1}{2} \langle \alpha - \beta, b - a \rangle = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} ||x_{i} - y_{j}||$$
$$- \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} ||x_{i} - x_{j}|| - \frac{1}{2} \sum_{i} \sum_{j} \beta_{i} \beta_{j} ||y_{i} - y_{j}||$$

The Hausdorff distance is local, the Energy Distance is global

The Hausdorff distance is local, the Energy Distance is global

 \implies Can we get the best of both worlds?

Computational Optimal Transport

The Optimal Transport problem

Minimize over N-by-M matrices (transport plans) π :

$$OT(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$$

subject to $\pi_{i,j} \ge 0$, $\sum_{j} \pi_{i,j} = \alpha_{i}, \quad \sum_{i} \pi_{i,j} = \beta_{j}.$

 \Rightarrow Hungarian method in $O(N^3)$.

Entropic regularization = add temperature, blur the transport plan

For
$$\varepsilon > 0$$
:

$$OT_{\varepsilon}(\alpha, \beta) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}} + \varepsilon \underbrace{\sum_{i,j} \pi_{i,j} \cdot \log \frac{\pi_{i,j}}{\alpha_i \beta_j}}_{\text{entropic barrier}}$$
subject to

$$\sum_{j} \pi_{i,j} = \alpha_{i}, \quad \sum_{i} \pi_{i,j} = \beta_{j}$$

 \Rightarrow Sinkhorn algorithm (GPU).

11

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Problem : if $\varepsilon > 0$, OT_{ε} is not a valid divergence

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Problem : if $\varepsilon > 0$, OT_{ε} is not a valid divergence

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Problem : if $\varepsilon > 0$, OT_{ε} is not a valid divergence

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Bad news: for $0 < \varepsilon \leq +\infty$, we converge towards α such that

 $\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) < \mathsf{OT}_{\varepsilon}(\boldsymbol{\beta}, \boldsymbol{\beta}).$

Standard solution: use an annealing scheme

TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

Standard solution: use an annealing scheme

TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

⇒ Expensive and cumbersome workaround, with parameters to tune.

$$OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\boldsymbol{\pi}} \langle \boldsymbol{\pi}, \boldsymbol{C} \rangle + \varepsilon \operatorname{KL}(\boldsymbol{\pi}, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$$

s.t. $\boldsymbol{\pi} \mathbf{1} = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} &= \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} &= \beta \\ \\ \mathsf{OT}_{\varepsilon}(\alpha,\beta) & \xrightarrow{\varepsilon \to +\infty} & \langle \alpha\otimes\beta,\mathsf{C} \rangle &= \langle \alpha,\mathsf{C}\star\beta \rangle \end{aligned}$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\alpha,\beta) = \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta)$$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,, \, \mathsf{C} \, \rangle \ = \ \langle \alpha \,, \, \mathsf{C} \, \star \, \beta \, \rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\alpha,\beta) = \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta)$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \xleftarrow{\varepsilon \to 0} \mathsf{S}_{\varepsilon}(\alpha,\beta) \xrightarrow{\varepsilon \to +\infty} \mathsf{Kernel}_{-\mathsf{C}}(\alpha,\beta)$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,, \, \mathsf{C} \, \rangle \ = \ \langle \alpha \,, \, \mathsf{C} \, \star \, \beta \, \rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\alpha}) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\boldsymbol{\beta},\boldsymbol{\beta})$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \stackrel{\varepsilon \to 0}{\longleftarrow} \mathsf{S}_{\varepsilon}(\alpha,\beta) \stackrel{\varepsilon \to +\infty}{\longrightarrow} \mathsf{Kernel}_{-\mathsf{C}}(\alpha,\beta)$

In practice, S_{ε} is "good enough" for ML applications [Genevay et al., 2018, Salimans et al., 2018, Sanjabi et al., 2018].

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_arepsilon(oldsymbollpha,eta)$ with equality iff. oldsymbollpha=eta

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_arepsilon(oldsymbollpha,eta)$ with equality iff. oldsymbollpha=eta

 $\alpha \mapsto S_{\varepsilon}(\alpha, \beta)$ is convex, differentiable and metrizes $\alpha \rightharpoonup \beta$

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex, differentiable and metrizes lpha oeta

These results can be generalized to arbitrary **feature** spaces – e.g. (position, orientation, curvature).

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex, differentiable and metrizes lpha
ightarroweta

These results can be generalized to arbitrary **feature** spaces – e.g. (position, orientation, curvature).

In practice

The ε -Sinkhorn divergence; with $\|\mathbf{x} - \mathbf{y}\|^2$ and $\sqrt{\varepsilon} = \mathbf{.1}$

The ε -Sinkhorn divergence; with $\|\mathbf{x} - \mathbf{y}\|^2$ and $\sqrt{\varepsilon} = \mathbf{.1}$

The ε -Sinkhorn divergence; with $\|\mathbf{x} - \mathbf{y}\|^2$ and $\sqrt{\varepsilon} = .1$

KErnel OPerationS, with autodiff, without memory overflows

Fidelity + gradient with N vertices on a high-end GPU (Tesla P100)

We provide a reference PyTorch implementation

github.com/jeanfeydy/global-divergences.

Gradient of the Energy Distance, computed in 0.5s on my laptop. Data from the OsteoArthritris Initiative: 52,319 and 34,966 voxels out of a 192-192-160 volume.

• Try using k(x, y) = -||x - y||!

• Try using
$$k(x, y) = -||x - y||!$$

• Remove the entropic bias from the SoftAssign algorithm!

- Try using k(x, y) = -||x y||!
- Remove the entropic bias from the SoftAssign algorithm!
- Sinkhorn = Hausdorff + mass spreading constraint
 - $\simeq~{\rm best}$ you can do without topology or landmarks
 - $\simeq~$ 20-50 convolutions through the data
 - ightarrow Is it worth it?

• Rigorous link with the auction algorithm?

- Rigorous link with the auction algorithm?
- Link between S_{ε} and Sobolev distances?

- Rigorous link with the auction algorithm?
- Link between S_{ε} and Sobolev distances?
- What about **multiscale** schemes?

- Rigorous link with the auction algorithm?
- Link between S_{ε} and Sobolev distances?
- What about **multiscale** schemes?
- Interest in the CVPR/SIGGRAPH communities?

Thank you for your attention.

Any questions ?

Our papers:

Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018

Our papers:

- Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
 F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018

Our papers:

- Global divergences between measures: from Hausdorff distance to Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
 F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018
- Optimal Transport for diffeomorphic registration, F., Charlier, Vialard, Peyré, 2017

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2018). Unbalanced optimal transport: Dynamic and kantorovich formulations.

Journal of Functional Analysis, 274(11):3090–3123.

Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in neural information processing systems, pages 2292–2300.

References ii

Genevay, A., Peyre, G., and Cuturi, M. (2018). Learning generative models with sinkhorn divergences. In Storkey, A. and Perez-Cruz, F., editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 1608–1617. PMLR.

Kaltenmark, I., Charlier, B., and Charon, N. (2017).
 A general framework for curve and surface comparison and registration with oriented varifolds.

In Computer Vision and Pattern Recognition (CVPR).

References iii

- Peyré, G. and Cuturi, M. (2018). Computational optimal transport. arXiv preprint arXiv:1803.00567.

 Ramdas, A., Trillos, N. G., and Cuturi, M. (2017).
 On wasserstein two-sample testing and related families of nonparametric tests.
 Entropy, 19(2).

Salimans, T., Zhang, H., Radford, A., and Metaxas, D. (2018). Improving GANs using optimal transport. arXiv preprint arXiv:1803.05573.

Sanjabi, M., Ba, J., Razaviyayn, M., and Lee, J. D. (2018). On the convergence and robustness of training GANs with regularized optimal transport.

arXiv preprint arXiv:1802.08249.