
An efficient kernel product for automatic

differentiation libraries, with applications to

measure transport

Benjamin Charlier1, Jean Feydy2,3, Joan Alexis Glaunès4 and
Alain Trouvé3

1Institut Montpelliérain Alexander Grothendieck, CNRS, Univ.
Montpellier

2DMA, École Normale Supérieure, Paris
3CMLA, CNRS, ENS Paris-Saclay, Cachan

4MAP5, Univ. Paris 5, Paris

November 12, 2017

Abstract

This paper presents a memory-efficient implementation of the kernel
matrix-vector product (sparse convolution) and the way to link it with
automatic differentiation libraries such as PyTorch. This piece of software
alleviates the major bottleneck of autodiff libraries as far as diffeomor-
phic shape registration is concerned: memory consumption. As a result,
symbolic python code can now scale up to large point clouds and shapes
(> 100, 000 vertices).
To showcase the value of automatic differentiation to the LDDMM com-
munity, we introduce the normalized Hamiltonian setting and show that it
corresponds to a spatially regularized optimal transport of mass distribu-
tions: made tractable by autodiff libraries, the kernel normalization trick
turns an extrinsic image deformation routine into an intrinsic measure
transportation program.

Index terms— Automatic differentiation, convolution, CUDA, kernel, LD-
DMM, optimal transport, Sinkhorn algorithm

1

Contents

1 Introduction 2
1.1 Data flow of a diffeomorphic registration pipeline 3
1.2 Practical bottlenecks, motivations for this work 5

2 Automatic differentiation for shape analysis 7
2.1 Backpropagation 101 . 7
2.2 Memory usage in the computation of the Hamiltonian 10
2.3 Linking custom CUDA routines with PyTorch 12

3 Computing a kernel product using Cuda 16
3.1 A crash course in Cuda . 16

3.1.1 Data transfer: host to device 16
3.1.2 Cuda kernel grid . 17
3.1.3 Memory management in Cuda 19

3.2 The tiled kernel matrix-vector product 20
3.2.1 A first implementation with 1d grid 20
3.2.2 A second implementation with a 2d grid 23

3.3 Implementation of a generic convolution, with order 2 derivatives 25

4 Normalizing kernels to gain mass awareness 28
4.1 The LDDMM theory of kernel cometrics 28
4.2 Normalized kernels for landmarks transport 36
4.3 A new diffeomorphic setting for measures 40

5 Conclusion 40

1 Introduction

[ToDo: Introduction classique sur LDDMM.]

This work is about the automatic differentiation (autodiff) libraries which
have been recently developed by the Deep Learning community, allowing seam-
less computation of symbolic gradients. As of 2017, the most prominent frame-
works are Theano, TensorFlow and PyTorch: in the following pages, we will
explain how these tools work under the hood; how we can curb them to suit

2

the needs of the LDDMM community; and what they can bring to us from a
mathematical perspective.

As these libraries free the researchers from the burden of implementation and
debugging, they are bound to allow mathematical ideas to be prototyped and
tested at a much faster rate than what was previously the norm. We are thus
convinced that the development of efficient autodiff libraries, a true engineering
feat, can be the force that drives the study of shapes spaces beyond the current
mainstream paradigms.

Plan of the paper To reflect this, and just for once, we invert the classical
plan of applied mathematics papers and write from the code to the maths. In
this introduction, we remind the reader of the data flow of a generic LDDMM
pipeline. We shall write in detail the steps by which a shooting momentum
“p0” is turned into a descent direction and real-valued cost. In section 2, we
proceed to explain the underlying principles of autodiff libraries without glanc-
ing over technicalities. This allows us to precisely identify the major bottleneck
that is encountered when one tries to employ a Deep Learning framework for a
shape registration task: the memory consumption in the computation of kernel
products of the form

g = Kx,yb, that is, gi =
∑
j

k(xi − yj) bj (1)

where (xi), (yj) are families of points in RD, (bj) is a family of vectors in RE
and k : RD → R is a radial kernel function.[ToDo: Speak about non-scalar
kernels?]

In section 3, we therefore propose a memory-efficient CUDA implementation
of this “KernelProduct” operation, and explain how to link it with the most flex-
ible autodiff framework to date: PyTorch. Empowered with a convenient and
scalable development tool, we then propose in section 4 a new LDDMM-like al-
gorithm suited to the transport of measures. Relying on an inner normalization
loop, the normalized kernel setting will be shown to provide a link between the
LDDMM and Optimal Transport theories, at a reasonable computational cost.

1.1 Data flow of a diffeomorphic registration pipeline

The LDDMM theory of shape analysis has already been covered extensively
in the literature, and we refer the interested reader to introductory works such
as !!! and !!!. Instead of recalling the major theoretical results, we dedicate this
section to the actual implementations and detail the handful of variables and
numerical routines that are needed to put the theory into practice.

Variables In this work, we leave images aside and focus on segmented shapes
instead: triangulated surfaces, fiber bundles, bidimensional curves and proteins.
All the shapes considered will be embedded in a Euclidean ambient space RD
of dimension 2 or 3, as each shape Q is represented by a point cloud (qi)i∈[[1,N]]

3

and a connectivity matrix (cs)s∈[[1,F]], respectively encoded as an N -by-D float
array and an F -by-G integer array. Here, N is the number of vertices of the
shape, D is the dimension of the ambient space, F is the number of faces and
G is the number of vertices per shape element. The latter is equal to 2 if Q is
a segmented curve, and 3 if Q is a triangulated surface.

The Riemannian shape theory also relies on velocity fields “v” or momenta
“p” associated to points clouds “q”: those are encoded as N -by-D float ar-
rays. Here, we list all the variable names used by a generic LDDMM matching
algorithm:

1. A source shape A, modeled by a point cloud (ai) where i ∈ [[1, N]].

2. A target shape B, modeled by a point cloud (bj) where j ∈ [[1,M]].

3. A moving point cloud (qit) and its associated momentum (pit), where time
t ∈ [0, 1] and index i ∈ [[1, N]].

Functions We denote by Q = RN×D the space of point clouds of size N , and by
P = Q∗ = RN×D the dual space of momenta. Acting on the shape-momentum
coordinates, a diffeomorphic shape registration program relies on the following
routines:

1. The Hamiltonian – kinetic energy – function:

H : Q× P → R
(q, p) 7→ H(q, p) = 1

2

∑
i,j k(

∥∥qi − qj∥∥)
〈
pi, pj

〉
RD

, (2)

where k : RD → R is a kernel function and 〈· , · 〉RD is the standard L2

dot product in the ambient space. The kernel formula written above is
the most popular in the literature, as it is both tractable and theoreti-
cally principled. But as far as the Riemannian theory is concerned, this
kinetic energy should simply be smooth with respect to the position q and
quadratic, positive definite wrt. the momentum p. In section 4, we will
introduce a new family of formulas which are suited to the transport of
measures.

2. The Hamiltonian flow in the cotangent bundle

HamFlow : Q× P → P ∗ ×Q∗ ' Q× P
(q, p) 7→ (+∂pH(q, p),−∂qH(q, p))

, (3)

associated to the geodesic equation.

3. The geodesic shooting routine (aka. the Riemannian exponential map),
which takes as input an initial shape-momentum state (q0, p0), flows along
the geodesic vector field HamFlow from t = 0 to t = 1 and outputs the
resulting shape q1:

Shoot : Q× P → Q
(q0, p0) 7→ q1

with
d

dt
(qt, pt) = HamFlow(qt, pt).

(4)

4

Integration of the ODE is typically done using linear update rules from
the Runge-Kutta family – say, from RK1 (Euler) to RK4.

4. The data attachment function, which penalizes the “dissimilarity” between
a deformed shape q1 and the target B:

Att. : Q → R
q 7→ Att. (q | b) . (5)

A convenient way to get a parametrization-invariant formula is to work
with measures, turning both q and b into sums of weighted diracs by using
appropriate connectivity matrices. Still, the choice of a well-behaved data
attachment cost is highly dependent on the properties of the dataset: pop-
ular choices include the non-local currents and varifolds kernel formulas,
while global costs relying on the Optimal Transport theory have recently
been shown to be computationally tractable.

Shape matching In the simplest LDDMM setting, matching a source shape
A to a target B is about finding an optimal shooting momentum p0 such that

Cost : P → R
p0 7→ H(A, p0) + Att. (Shoot(A, p0) | B)

(6)

is minimized – here, H(A, p0) acts as a regularizer. As Cost is a complicated
numerical function, one is restricted to the use of local descent schemes such as
gradient descent or quasi-Newton algorithms, which converge to local optimums.
A typical L-BFGS run on these problems converges in 20-100 iterations: the
numerical complexity of an LDDMM pipeline is therefore proportional to that
of a single computation of the oracle

Oracle : P → R× P ∗
p0 7→ (Cost(p0), ∂pCost(p0))

. (7)

1.2 Practical bottlenecks, motivations for this work

Structure of LDDMM codebases Now, assume that the data attachment
formula has been chosen from the kernel or Optimal Transport families. As
evidenced by Equations (2-5), an evaluation of Oracle(p0) makes use of only
three types of operations:

1. Pointwise additions, multiplications and L2 dot products.

2. Kernel matrix-vector products, also known as convolutions, of the form

KernelProd : RND × RMD × RME → RNE

((xi), (yj), (bj)) 7→
(∑M

j=1 k(xi − yj) bj
)
i∈[[1,N]]

(8)

5

Indeed, the Hamiltonian formula (2) can be written as

H(q, p) =
1

2
〈 p , KernelProd(q, q, p) 〉RND , (9)

and the various kernel or Optimal Transport fidelity terms have been
precisely designed with this convolution operator in mind.

3. Gradient computations – that is, partial derivatives of H and Cost with
respect to their input variables.

Operations of the first kind are both easy to code and quick to execute;
unfortunately, this cannot be said of the rest of our codebases. As researchers,
we collectively got used to dedicate a lot of time to the writing, testing and
debugging of gradient routines. Meanwhile, the computation of convolutions
makes up the bulk of the execution time of our pipelines.

The memory bottleneck Automatic differentiation libraries come with a
promise: that of relieving us of these thankless gradient implementations. Un-
fortunately, out of the box, Deep Learning toolboxes allow us to implement
kernel convolutions only in the most memory-intensive way: by computing and
storing full N -by-M kernel matrices (k(xi − yj))i,j . This method makes a lot
of sense in a neural network setting, where data samples have a low memory
footprint (mini batches of 2D images, etc.), because any intensive memory usage
is directly correlated to the size of the neural model chosen by the researcher.
As training speed is one of their primary concerns, data scientists never feel the
need to trade time for memory and thus mostly content themselves with “the
largest neural net” that fits on their GPUs.

Motivations for this work This approach is not sensible in our setting, as
the time and memory complexity of an LDDMM matching comes directly from
the large size of the point clouds considered: in a medical setting, N and M are
typically of the order of 100, 000. Storing a handful of M -by-N matrices in the
GPU memory is simply not possible.

In order to allow researchers of the shape analysis community to use au-
tomatic differentiation beyond toy examples, we propose a memory efficient
CUDA implementation of the KernelProd operator of Eq. (8) and of its deriva-
tives of order 1 and 2. Thanks to the flexibility of the PyTorch library, we were
able to package those codes into a single operation, KernelProd, that can be
used seamlessly within any symbolic PyTorch code.

First and foremost, this paper was written to explain and document what is
happening beneath the convenient (black-box) python abstraction. Please note
that our code is available online,

https://plmlab.math.cnrs.fr/benjamin.charlier/libkp

We hope that it will help to release the creativity of researchers in this field. As
a showcase example of what can be achieved when one combines Riemannian
geometry with automatic differentiation, we present in the last section of this
paper the preliminary results of Jean Feydy and Alain Trouvé on a new class of
normalized Hamiltonian formulas.

6

https://plmlab.math.cnrs.fr/benjamin.charlier/libkp

2 Automatic differentiation for shape analysis

The main contribution of this paper is a piece of software that can be plugged
into any sufficiently flexible autodiff framework: the KernelProd operator and
its underlying CUDA implementation. Relative to the standards of the shape
analysis community, this work is definitely low-level software engineering. As
the reader cannot be expected to be fluent with the internal design of recent
Deep Learning libraries, we now dedicate a whole section to the step-by-step
computation and differentiation of the classical Hamiltonian formula introduced
in Eq. (2):

H(q, p) =
1

2

N∑
i,j=1

k(qi − qj)
〈
pi, pj

〉
RD (10)

=
1

2
〈p,Kq,qp〉RND with (Kq,q)i,j = k(qi − qj), (11)

where (qi) and (pi) are represented by N -by-D float arrays. By the end of this
section, hopefully, the reader should have a clear understanding of what is (and
what is not) possible within an automatic differentiation framework.

2.1 Backpropagation 101

Finite differences are not the solution Let F : Rn → R be a differentiable
function defined as a symbolic computer program. Our problem of interest is:
How does one efficiently compute the oracle value (F (x0), ∂xF (x0)) at a given
location x0 ∈ Rn?

A naive approach, the so-called finite differences scheme, would be to use a
Taylor expansion of F around x0 and write, for δt sufficiently small,

∂x1F (x0)
∂x2F (x0)

...
∂xnF (x0)

 ' 1

δt

F (x0 + δt · (1, 0, 0, . . . , 0))− F (x0)
F (x0 + δt · (0, 1, 0, . . . , 0))− F (x0)

...
F (x0 + δt · (0, 0, 0, . . . , 1))− F (x0)

 . (12)

This idea is simple to implement. But it also requires n + 1 evaluations of the
function F to compute a single gradient vector! As soon as the dimension of the
input space exceeds 10-100, this is not tractable: Just like inverting a full matrix
A is not the sensible way to solve the linear system “Ax = b”, one should not use
finite differences – or any equivalent forward scheme – to compute a gradient.

Gradients between Hilbert spaces Thankfully, there exists an efficient way
to compute gradients of real-valued functions: the reverse accumulation scheme.
As it relies on a backward pass through the computational graph, this useful al-
gorithm has recently been popularized under the name of “backpropagation” and
lies at the core of every Deep Learning framework. To understand it, consider
the following definition of (generalized) gradients between Hilbert spaces:

7

Definition 1. Let (X, 〈 · , · 〉X) and (Y, 〈 · , · 〉Y) be two Hilbert spaces, and let
F : X → Y be a continuously differentiable function between them.
Let also x0 ∈ X be an input position and α ∈ Y ∗ be a linear form on Y , which
we identify with a vector a ∈ Y through the Riesz theorem.
Then, for all increment δx ∈ X, we have

〈α, F (x0 + δx)〉 = 〈α, F (x0)〉 + 〈 α, dxF (x0) · δx 〉 + o(δx) (13)

= 〈α, F (x0)〉 + 〈 (dxF)∗(x0) · α, δx 〉 + o(δx) (14)

= 〈a, F (x0)〉Y + 〈 ∂xF (x0) · a, δx 〉X + o(δx), (15)

where we identify the adjoint of the differential (dxF)∗(x0) : Y ∗ → X∗ with a
continuous linear ap ∂xF(x0) : Y → X, thanks to the Riesz theorem.
We say that the latter is the generalized gradient of F at x0, with respect to
the Hilbertian structures of X and Y .

If X and Y are respectively equal to Rn and R endowed with their canonical
L2-Euclidean structures, ∂xF (x0) coincides when displayed in the canonical
basis with the well-known vector ∇xF (x0) of directional derivatives.

Chain rule for gradients This Hilbertian definition of the gradient has two
major advantages over the “vector of derivatives” one. First, it stresses the fact
that a gradient is an object which is defined with respect to a metric structure,
not a basis. As we frequently work with spaces of momenta on which the L2

metric makes very little sense, this is important.
Second, it allows us to compose gradients without reserve. Indeed, if X, Y ,

Z are three Hilbert spaces, and if F = H ◦G with G : X → Y and H : Y → Z,
then for all x0 ∈ X, the composition rule asserts that

dxF (x0) = dyH(G(x0)) ◦ dxG(x0), (16)

so that

[dxF (x0)]
∗

= [dxG(x0)]
∗ ◦ [dyH(G(x0))]

∗
(17)

i.e. ∂xF (x0) = ∂xG(x0) ◦ ∂yH(G(x0)). (18)

Backpropagation Suppose that the function of interest F : Rn → R is defined
as a composition F = Fp ◦· · ·◦F2 ◦F1 of elementary functions Fi : RNi−1 → RNi

where N0 = n and Np = 1:

Rn = RN0 RN1 RN2 · · · RNp = R
F1 F2 · · · Fp

To keep the notations simple, we will assume that all the input and output
spaces RNi are endowed with their canonical L2-Euclidean metrics. Remem-
ber that we are interested in computing at an arbitrary location x0 ∈ Rn the
gradient

∂xF (x0) : R→ Rn, (19)

8

a linear map which is entirely determined by the value of the “‘gradient vector”

∂xF (x0) · 1 = ∂xF1(x0) ◦ ∂xF2(F1(x0)) ◦ · · · ◦ ∂xFp(Fp−1(· · · (F1(x0)))) · 1 (20)

= ∂xF1(x0) ◦ ∂xF2(x1) ◦ · · · ◦ ∂xFp(xp−1) · 1 (21)

where the xi = Fi ◦ · · · ◦ F1(x) are nothing but the intermediate results in the
computation of xp = F (x0).

Then, our major assumption is that the forward and backward operators

Fi : RNi−1 → RNi

x 7→ Fi(x)
(22)

and
∂xFi : RNi−1 × RNi → RNi−1

(x0, a) 7→ ∂xFi(x0) · a (23)

are all encoded as computer programs. According to Eq. (21), it is there-
fore possible to compute both F (x0) and ∂xF (x0) by a forward-backward pass
through the following diagram:

Rn RN0 RN1 RN2 · · · RNp R

x0 x0 x1 x2 · · · xp F (x0)

∂xF (x0) · 1 x∗0 x∗1 x∗2 · · · x∗p 1

Rn RN0 RN1 RN2 · · · RNp R

input F1 F2 · · · Fp output

output ∂xF1 ∂xF2 · · · ∂xFp input

∈ ∈ ∈ ∈ ∈ ∈
∈ ∈ ∈ ∈ ∈ ∈

The backpropagation algorithm proceeds in two steps corresponding to the
two lines of the above diagram:

1. Starting from x0 ∈ Rn = RN0 , compute and store in memory the
successive vectors xi ∈ RNi . The last one, xp ∈ R, is equal to the value of
the objective F (x0).

2. Starting from the canonical value of x∗p = 1 ∈ R, compute the successive
dual vectors

x∗i = ∂xFi+1(xi) · x∗i+1. (24)

The last one, x∗0 ∈ Rn, is equal to the gradient ∇F (x0) = ∂xF (x0) · 1.

Implementation and performances The generalization of this procedure to
any acyclic “forward” computational graph is straightforward. Hence, provided
that the forward and backward operators of Eq. (22-23) are pre-implemented,
one can compute automatically the gradient of any symbolic procedure that is
written as a succession of elementary vector operations, the Fi’s.

Consequently, Deep Learning libraries rely on three core modules: a set of
low-level GPU routines; an exhaustive list of usual operations (forward and
backward) provided to end-users; a high-level graph manipulation API.

9

Bottom line is: The backwards of the usual operations are seldom more costly
than 4-5 applications of the corresponding forward operators. Ergo, if one has
enough memory available to store the intermediate results during the forward
pass, the backpropatation algorithm is an automatic and time-effective
way to compute arbitrary gradients.

2.2 Memory usage in the computation of the Hamiltonian

A minimal working example Let us illustrate the underlying mechanics
of PyTorch – a Deep Learning library – in a simple case: the computation of
the kernel Hamiltonian defined Eq. (10-11) when using a gaussian kernel of
deviation s > 0:

k : RD × RD → R
(x, y) 7→ e−‖x−y‖

2
2 / s

2 . (25)

1 import torch # GPU + autodiff library

2 from visualize import make_dot # GraphViz tool to plot graphs

3 # See github.com/szagoruyko/functional -zoo/blob/master/visualize.py

4
5 # With PyTorch , using the GPU is that simple:

6 use_gpu = torch.cuda.is_available ()

7 dtype = torch.cuda.FloatTensor if use_gpu else torch.FloatTensor

8 # Under the hood , this flag will determine the backend used for

9 # forward and backward operations , as they have all been

10 # implemented both in pure CPU and in GPU (CUDA) code.

11
12 N = 1000; D = 3 ; # Work with clouds of 10 ,000 points in 3D

13 # Generate arbitrary arrays on the host (CPU) or device (GPU):

14 q = torch.linspace(0, 5, N*D).type(dtype).view(N,D)

15 p = torch.linspace(3, 6, N*D).type(dtype).view(N,D)

16 s = torch.Tensor([2.5]).type(dtype)

17
18 # Wrap them into "autodiff" graph nodes. In this demo ,

19 # we won’t try to fine tune the deformation model , so

20 # we do not need any derivative with respect to s:

21 q = torch.autograd.Variable(q, requires_grad = True)

22 p = torch.autograd.Variable(p, requires_grad = True)

23 s = torch.autograd.Variable(s, requires_grad = False)

24
25 # Actual computations. Every PyTorch instruction is executed

26 # on-the -fly , but the graph API ’torch.autograd ’ keeps track of

27 # the order of the operations and stores in memory the intermediate

28 # results that are needed for the backward pass.

29 q_i = q.unsqueeze (1) # shape (N,D) -> (N,1,D)

30 q_j = q.unsqueeze (0) # shape (N,D) -> (1,N,D)

31 sqd = torch.sum((q_i - q_j)**2 , 2) # |q_i -q_j |^2

32 K_qq = torch.exp(- sqd / (s**2)) # Gaussian kernel

33 v = K_qq @ p # matrix multiplication. (N,N)@(N,D) = (N,D)

34 # Finally , compute the Hamiltonian H(q,p):

35 H = .5 * torch.dot(p.view(-1), v.view(-1)) # .5*<p,v>

36
37 # Display -- see next figure.

38 print(H); make_dot(H, {’q’:q, ’p’:p, ’s’:s}).render(view=True)

10

For the sake of completeness, we provide here a full, verbose working exam-
ple: Needless to say, its header is bound to get deprecated sooner or later. But
the core of the procedure, the lines related to the Hamiltonian formula, those
are here to stay. From a mathematical point of view, these symbolic python in-
structions define a computational graph that can be used to differentiate H(q, p)
with respect to q and p.

Encoding a formula in the computer’s memory In the figure below,
we display this torch.autograd.Variable graph ‘H’ as it is understood by
PyTorch. This acyclic graph is the exact equivalent of the second “backward”
line of the diagram presented page 9: Every white node stands for a backward
operator ∂xFi : (xi, x

∗
i+1) 7→ x∗i . The green leave is the first covariable x∗p ∈ R,

the “gradient with respect to the output” which is initialized to 1; the red leaves
are the covariables x∗0 in which the gradients are to be accumulated; and the
blue ones are the stored values xi computed during the forward pass.

∂Unsqueeze

∂Div

∂Dot

∂Sub

∂View

∂Exp

Kq,qp
(3000)

∂Unsqueeze

p
(1000, 3)

qi − qj
(1000, 1000, 3)

∂Addmm

s2

(1)

∂Negate

p
(1000, 3)

p
(3000)

q
(1000, 3)

Kq,q

(1000, 1000)

∂Sum

−‖qi − qj‖2/s2
(1000, 1000)

∂MulConstant

∂View

∂PowConstant

∂PowConstant

−‖qi − qj‖2
(1000, 1000)

11

Memory usage The precise meaning of the backpropagation graph will be
made clear in section 2.3. Nevertheless, we can already point out the ex-
travagant memory usage required for the computation of the velocity field v

= K(q,q) @ p. To differentiate “PowConstant”, “Div”, “Exp” and “Addmm”,
the backpropagation algorithm has to store in memory full N -by-N intermediate
results: qi − qj , −‖qi − qj‖2, etc.

Therefore, the native PyTorch implementation of page 10 is intractable as
soon as the number of pointsN exceeds the square root of the GPU memory
– that is, about 50, 000 for a recent piece of hardware.

Our contribution To break this ceiling in a way which is most profitable for
the shape analysis community, we propose to wrap the critical computation of
‘v’ into a generic and memory efficient operator: the KernelProduct object,
which implements the kernel convolution formula of Eq. (8). As KernelProduct
takes as input two point clouds and one momentum field – of respective shapes
(N,D), (M,D) and (M,E) – to output a momentum field of shape (N,E), the
torch.autograd module will never need to store full (N,M) arrays in the GPU
memory.

This way of doing bypasses the built-in PyTorch operators to rely on a finely
crafted CUDA memory management scheme, explained in section 3. In sec-
tion 4, we then showcase a typical example of use: the normalized Hamiltonian
setting.

2.3 Linking custom CUDA routines with PyTorch

But first of all, we wish to document here the proper way of linking CUDA
routines to PyTorch symbolic instructions. As we are about to implement a new
PyTorch elementary operator, we start with a brief exposition of the framework’s
internal behaviors and paradigms.

Static autodiff Remember. The legacy Theano (2008-2017) library divided
in three steps the translation of a python symbolic script into an efficient GPU
routine. First, the python programmer declared a whole computational graph
at once, without any actual computation taking place. Then, a graph optimizer
pruned out unused nodes, merged subgraphs, etc., and automatically generated
a C/CUDA program. The latter was then compiled using gcc, and the resulting
executable was linked to a wrapper python function.

This way of doing made differentiation look easy: ‘.grad’ was just another
symbolic node in a purely abstract computational graph. Unfortunately, it also
induced two adverse side effects: a lengthy compilation time at the start of every
single script; the inability to implement dynamic flow control (if-then-else
structures, etc.), which make the operations applied to arrays depend on their
actual values.

The dynamic workflow The PyTorch library has recently been introduced to
cover those deficiencies. Unlike the static Declaration-Optimization-Compilation

12

frameworks, it implements a dynamic workflow which can be summarized as fol-
lows:

1. Variables are seen as graph objects, wrapped around int/float arrays.

2. Instructions are executed on-the-fly, using pre-compiled CPU or GPU rou-
tines in the back end. The result of any such operation is a new Variable

wrapped around an “output” array, with a “graph history” attribute keep-
ing track of all the operations that are needed to compute the output.

3. As differentiation upsets the whole “graph history” of input Variables,
it is handled by a specific bunch of instructions. If a variable H was com-
puted using two user-defined variables q and p, the most math-like way of
applying a backpropagation pass on the graph history of H is to write:

[dq,dp] = torch.autograd.grad(H, [q,p], g, create graph=True)

where g is the “̀ınput” gradient x∗p with respect to H, initialized by default
to 1 if H is scalar. This special instruction outputs two variables dq and dp

whose numerical values were computed as output of the backpropagation
algorithm.

Computing second derivatives The default behaviour of autograd.grad

is to output Variable objects with a blank history: if one simply needs to
do gradient descent on H, keeping track of the computational history of the
gradients is basically useless. However, as evidenced by the Shooting, Cost and
Oracle routines of Eq. (4-7), differentiating the Hamiltonian a second time is
crucial to our LDDMM shape analysis pipelines.

This is made possible by the create graph flag. When it is set to the
value True – as in the above instruction – PyTorch considers that the diagram
displayed in page 9 is a new “forward” program which takes as input the vector
x0 and the covector x∗p, to output the backpropagated gradient x∗0.

This means that the autograd.grad instruction can be differentiated once
again, at the condition that the order-0 and order-1 operators Fi and ∂xFi
defined Eq. (22-23) are available as computer programs... As well as their
own gradients. In practice, this means that PyTorch must know how to
compute the “gradients of gradients” operators:

∂x0
(∂xFi(x0) · a) : RNi−1 × RNi × RNi−1 → RNi−1

(x0,a, e) 7→ ∂x0
(∂xFi(x0) · a)(x0,a) · e

(26)

∂a (∂xFi(x0) · a) : RNi−1 × RNi × RNi−1 → RNi

(x0,a, e) 7→ ∂a(∂xFi(x0) · a)(x0,a) · e
(27)

13

The convolution operator The simplest way to do this is to define operators
of “order 1” such as KernelProductGrad x, and explicitly use them in the
backward method of our order 0 operator, KernelProduct.

As PyTorch is not yet fully documented, we provide below the meaningful
elements of syntax that allowed us to implement a twice-differentiable CUDA-
based operator. This may help other researchers to get their own non-standard
ideas to work on real data. Note that for complete reference, our code is available
on the CNRS gitlab:

https://plmlab.math.cnrs.fr/benjamin.charlier/libkp.

1 import torch

2
3 class KernelProduct(torch.autograd.Function):

4 @staticmethod

5 def forward(ctx , s, x, y, b, kernel_type):

6 # save everything to compute the gradient

7 ctx.save_for_backward(s, x, y, b)

8 # init gamma , the output of the convolution K_xy @ b

9 gamma = torch.zeros(x.size()[0] * b.size()[1]

10).type(dtype)

11 # Inplace CUDA routine on the raw float arrays ,

12 # loaded from .dll/.so files by the "ctypes" module

13 cudaconv.cuda_conv(x.numpy(), y.numpy (), b.numpy(),

14 gamma.numpy (), s.numpy(),

15 kernel = kernel_type)

16 gamma = gamma.view(x.size()[0], b.size()[1])

17 return gamma

18
19 @staticmethod

20 def backward(ctx , a):

21 (ss , xx , yy, bb) = ctx.saved_variables

22 # In order to get second derivatives , we encapsulated the

23 # cudagradconv.cuda_gradconv routine in another

24 # torch.autograd.Function object:

25 kernelproductgrad_x = KernelProductGrad_x ().apply

26
27 # Call the CUDA routines

28 # ...

29 grad_x = kernelproductgrad_x(...)

30 # ...

31 return (grad_s , grad_x , grad_y , grad_b , None)

32
33 class KernelProductGrad_x(torch.autograd.Function):

34 @staticmethod

35 def forward(ctx , s, a, x, y, b, kernel_type):

36 # Save for Backward + Call the CUDA routines

37 # ...

38 return grad_x

39
40 @staticmethod

41 def backward(ctx , e):

42 # Call the CUDA routines

43 # ...

44 return (grad_xs , grad_xa , grad_xx , grad_xy , grad_xb , None)

14

https://plmlab.math.cnrs.fr/benjamin.charlier/libkp

The resulting object can now be used seamlessly in a PyTorch computa-
tion, taking as input a kernel size, a kernel type (such as ‘‘gaussian’’ or
‘‘energy’’) and three tensors. KernelProduct is as easy to use as a built-in
operator and stands for the following piece of graph:

y
(M,D)

s
(1)

∂KernelProduct
(N,E)

x
(N,D)

y
(M,D)

b
(M,E)

x
(N,D)

b
(M,E)

Computing a Hamiltonian efficiently This python object can be used to
compute “kernel”, “currents”, “varifolds” or “Optimal Transport” discrepancies
between shapes. Crucially, it can also be used in the declaration of the Hamilto-
nian: in the PyTorch example showcased page 10, one simply has to replace the
lines 25-35 with the code shown below. The resulting computational graph is
then mathematically equivalent to that of page 11, but doesn’t store any large
matrix in memory.

1 # Compute the kernel convolution

2 kernelproduct = KernelProduct.apply

3 v = kernelproduct(s, q, q, p, "gaussian")

4 # Then , compute the Hamiltonian H(q,p):

5 H = .5 * torch.dot(p.view(-1), v.view(-1)) # .5*<p,v>

q
(1000, 3)

∂View

q
(1000, 3)

s
(1)

p
(1000, 3)

Kq,q

(3000)

p
(1000, 3)

∂Dot

p
(3000) ∂MulConstant

q
(1000, 3) ∂View

∂KernelProduct

15

3 Computing a kernel product using Cuda

Cuda is a programming language similar to C/C++ allowing to run mas-
sively parallel programs on a Graphical Processor Unit. It is developed by
Nvidia... and runs only on Nvidia hardware. This specificity allows a very fine
tuning of memory and data transfer management yielding impressive perfor-
mance. Moreover, the Cuda Toolkit now contains a version of most common
standard linear algebra libraries (cuBlas, cuFft) and some relatively high level
libraries (Thrust) helping the developer to use a Nvidia GPU at minor devel-
opment cost.

The dark side of this efficiency, is a complete lack of portability: if you
don’t have an access to a Nvidia GPU you will not be able to run the code.
Unfortunately, few alternatives exist (openCL or openACC may be used with
GPU fom other brands) but they are not currently as competitive as the pair
Nvidia/Cuda [?].

3.1 A crash course in Cuda

3.1.1 Data transfer: host to device

A Cuda function is sometime called a kernel (not to be confuse with the
mathematical meaning of kernel). The CPU is often called the host whereas
the GPU is called the device. Usually, the main part of a code runs on the host
and only some specific operations are performed on the device.

The data are initially stored on the host and should be transfer to the device
to be treated. This operation is often considered as the bottleneck of the GPU
programming as the bandwidth of the PCIe port linking phisically the moth-
erboard to the GPU card can be easily saturated. To overcome this limitation
Nvidia has recently developed a proprietary port (with IBM) called NVLink.

The data transfer is coded in a gateway C or C++ function. Considering
the convolution defined formula (1), we need to transfer the coordinates of the
points (xi)i and (yj)j , the vectors (bj)j , the kernel bandwidth σ and the address
of γ = (γi)i where the results are stored. It reads :

Listing 1: Outline of the gateway function and data tranfer between host and
device.

1 #include <cuda.h>

2 ...

3 // x_h : matrix N x dimPoint

4 // y_h : matrix M x dimPoint

5 // b_h : matrix M x D

6 // gamma_h :

7
8 int KernelGpuEvalConv(float ooSigma2 ,float* x_h , float* y_h , float*

beta_h , float* gamma_h ,...){

9
10 // Data on the device.

11 float* x_d;

12 float* y_d;

16

13 float* beta_d;

14 float* gamma_d;

15
16 // Allocate arrays on device.

17 cudaMalloc ((void **)&x_d ,sizeof(float)*(N*dimPoint));

18 cudaMalloc ((void **)&y_d ,sizeof(float)*(M*dimPoint));

19 cudaMalloc ((void **)&beta_d ,sizeof(float)*(M*D));

20 cudaMalloc ((void **)&gamma_d , sizeof(float)*(N*D));

21
22 ...

23
24 // Upload data from host to device.

25 cudaMemcpy(x_d ,x_h ,sizeof(float)*(N*dimPoint),

cudaMemcpyHostToDevice);

26 cudaMemcpy(y_d ,y_h ,sizeof(float)*(M*dimPoint),

cudaMemcpyHostToDevice);

27 cudaMemcpy(beta_d , beta_h , sizeof(float)*(M*D),

cudaMemcpyHostToDevice);

28
29
30 ...

31 // Call the cuda kernel which store the results in gamma_d

32 // See next Sections

33 ...

34
35 // Download data from device to host.

36 cudaMemcpy(gamma_h , gamma_d , sizeof(float)*(N*D),

cudaMemcpyDeviceToHost);

37
38 // Free memory (maybe not needed with last version of cuda ??)

39 cudaFree(x_d);

40 cudaFree(y_d);

41 cudaFree(beta_d);

42 cudaFree(gamma_d);

43
44 return 0;

3.1.2 Cuda kernel grid

A GPU architecture is built around a scalable array of multithreaded Stream-
ing Multiprocessors (SM s). In a SM, each single processor is called a thread and
is able to execute an independent set of instructions. For example, a standard
matrix multiplication between A ∈ RN×M and B ∈ RM×D:

[AB]ij =

M∑
k=1

aikbkj = 〈ai·, b·j〉, i = 1, · · · , N, j = 1, · · · , D

may be though as the computation of ND scalar products between the col-
umn vector ai· (containing the entries in the i-th row of A) and b·j (being the
column vector containing the j-th column of B). Now imagine that you have
N processors (even if N is huge), so that each processor can be dedicated to
the computation of D scalar products. The results of the matrix multiplication
could then be returned in the same amount of time than D scalar product. In

17

fact, this is roughly speaking what happen with a GPU as depicted in Figure
1. Note that in our setting we are mainly interrested in computing convolutions
with N ≈M ≈ 106 and D = 2, 3.

ai·

B
lo

ck

M

th
re

a
d
i

b·j M

〈ai·, b·j〉

D

N

Figure 1: A matrix multiplication AB (where A ∈ RN×M and B ∈ RM×D) is a
set of ND scalar products. In a Cuda kernel with a 1d grid, D scalar products
are computed by a single thread i. Source: http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#shared-memory

In the Cuda paradigm, one start by specifying a computation plan (called a
grid). A grid is composed by blocks and each block contains a certain number of
thread. The maximum number of thread in each block is 210 = 1024. For histor-
ical reasons (remember that GPU were initially created to render 3d graphics),
the grid is in one, two or three dimensional. The values of the three dimensions
are stored in triple of int called a dim3 For our convolution, we complete the
piece of code above by illustrating (replace lines 30 to 33 in Listing 1) the call
of a Cuda kernel with a 1d grid:

Listing 2: Definition of the grid size.

1 // The blocksize is a triple of integer stored in a "dim3".

Here we define a 1d kernel as the y and z coordinates are

1. Each block then contains a ’vector ’ of 128 threads.

18

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

2 dim3 blockSize (128,1,1);

3
4 // We now have to defined the grid size (ie number of blocks in

the grid). A dim3 is automatically initialize to (1,1,1).

We just have to modify its first coordinates.

5 dim3 gridSize;

6 gridSize.x = N / blockSize.x + (N%blockSize.x==0 ? 0 : 1);

7
8 // Here , we call the cuda kernel executed on the device. The

<<<nb_of_block_in_the_grid , nb_of_thread_in_each_block ,

size_of_shared_mem_per_block >>> syntax allows to pass the

parameters of the grid to the compiler.

9 KernelGpuConvOnDevice <<<gridSize ,blockSize ,blockSize.x*(D+

dimPoint)*sizeof(float) >>>(ooSigma2 , x_d , y_d , beta_d ,

gamma_d , N, M);

Note that we do not have written a single line of Cuda code yet. This is
pure C/C++.

3.1.3 Memory management in Cuda

The memory architecture of a GPU is rather complicated and is evolving
with each new generation of card. We stick here to the very basics and the
interested reader may find many good introduction on this topic on Internet.
We mention here only 3 different types of memory (pictured in the Figure [?]):

• Global memory: huge amount of space (typically several Giga Bytes) but
access is slow. Every thread can red/write to this memory. This is the
only memory that can be accessible from the CPU.

• Register and local memory: from Nvidia doc : ”Local memory is so named
because its scope is local to the thread, not because of its physical location.
In fact, local memory is off-chip. Hence, access to local memory is as
expensive as access to global memory. In other words, the term local in
the name does not imply faster access. Local memory is used only to hold
automatic variables. This is done by the nvcc compiler when it determines
that there is insufficient register space to hold the variable. Automatic
variables that are likely to be placed in local memory are large structures
or arrays that would consume too much register space and arrays that the
compiler determines may be indexed dynamically.”

• Shared memory : very small amount of memory (48 KB per SM) but
extremely fast. If N blocks runs at the same time on one SM, the max
amount of shared mem avalaible per block is 48/N KB.

A smart use of the shared memory is often the key to provide an efficient code
in term of computational time. This is classical for GPU developer and well doc-
umented in the Nvidia docs or any course in GPU programming. The interested
reader may find all the characteristics of Nvidia Cards at the following website:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

19

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications

Figure 2: Sketch of the memory architecture of a GPU. A double heads arrow
means read/write access and single head arrow means read only access. Source
: https://cvw.cac.cornell.edu/gpu/images/figure6.png

To cast the memory architecture in a culinary metaphor: you have to cook a
dish (perform a computation) with a complicated recipe (with a Cuda kernel).
Imagine that you have at your disposal a huge restaurant (a GPU device) with
many kitchens (blocks). Each kitchen has several chefs (threads). The spatial
organization of the various kitchen in the restaurant should fit the particular
need of the recipe (1d, 2d or 3d Grid). The ingredient are stored in the cellar
(the global memory). To cook the dish, each chef of a kitchen first access to
the cellar to fetch an ingredient (ie the access to global memory are paralyzed).
If the ingredient is specific to each chef it goes to the personal kitchen counter
of the chef (private local memory to each thread). If the ingredient is common
to every chef of the kitchen it goes to the fridge of the kitchen (shared memory
accessible by any thread in the block), so that every one in the kitchen may
access quickly to the ingredient. Intuitively, the counter and the fridge of the
kitchen are small but very efficient in term of time access.

3.2 The tiled kernel matrix-vector product

3.2.1 A first implementation with 1d grid

The implementation introduced in Section 3.1.2 uses a one dimensional grid
meaning that each thread will compute D scalars products. We recall here
that we are interested on convolution-like operations and in practice we have

20

https://cvw.cac.cornell.edu/gpu/images/figure6.png

1 6 D 6 3.
It is well known that the performances of a matrix multiplication imple-

mented in Cuda without using shared memory are poor. It yields to many re-
dundant memory access as described in http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

index.html#shared-memory-in-matrix-multiplication-c-ab__using-shared-memory-improve-global-memory-load-efficiency-matrix-multiplication.
In our example on convolution, we assume, for simplicity, that D is equal to

1. Given an index i ∈ {1, · · · , N}, the Cuda kernel will contains the instruction
for the thread i to compute γi =

∑
j k(xi, yj)bj . The first lines of the codes are:

Listing 3: A Cuda kernel that computes a convolution. This function is exe-
cuted on the device. First part: Data are loaded in private local memory.

1 __global__ void KernelGpuConvOnDevice(float ooSigma2 , float *x,

float *y, float *beta , float *gamma , int N, int M) {

2 // The current thread (numbered i) computes : gamma_i = sum_j k

(x_i ,y_j)*beta_j. So we need to get this index i which

depends of the grid:

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4
5 // Declare the shared memory. The amount of shared mem is given

at the function call with the <<< >>> syntax

6 extern __shared__ float SharedData [];

7 // size of shift to access the data in shared mem. See below

8 int inc = DIMPOINT + D;

9
10 // One thread = One line = One x_i + One gamma_i + a whole

bunch of "y_j".

11 float xi[DIMPOINT], gammai[DIMVECT];

12
13 // we will compute gammai only if i is in the range (ie the

last block may not be "full"

14 if(i<nx){

15 // Load xi from device global memory to the local register

of the current thread

16 for(int k=0; k<DIMPOINT; k++){xi[k] = x[i*DIMPOINT+k];}

17
18 // Make sure to initialize the result to zero

19 for(int k=0; k<DIMVECT; k++) {gammai[k] = 0.0f;}

20 }

21
22 ...

Now, let T ∈ N∗ and we may write the Euclidean division M = ntT +r with
r ∈ N and 0 6 r < T . In practice the tile size is T = Blocksize.x the number
of threads in a block and then nt = gridSize.x as written lines 6 of Listing 2.
The thread i should then compute

γi = 〈ai·, b·1〉 =

M∑
j=1

ai,jbj,1 where aij = k(xi, yj)

=

nt∑
t=1

T∑
`=1

ai,(t−1)T+` b(t−1)T+`,1 +

r∑
`=1

ai,ntT+` bntT+`,1,

21

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#shared-memory-in-matrix-multiplication-c-ab__using-shared-memory-improve-global-memory-load-efficiency-matrix-multiplication
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#shared-memory-in-matrix-multiplication-c-ab__using-shared-memory-improve-global-memory-load-efficiency-matrix-multiplication

where the computation of the scalar product is divided in chunks of size T as
Figure 3 illustrates. We have to be careful with the last chunk as it contains r
terms with r possibly less than T .

KernelGpuConvOnDevice: common data is loaded in shared memory

1 ...

2
3 // We start the loop over the tile

4 for(int jstart = 0, tile = 0; jstart < ny; jstart += blockDim.x

, tile ++){

5
6 // get the current column

7 int j = tile * blockDim.x + threadIdx.x;

8
9 // We use all the threads to load the tiles in the Shared

memory

10
11 if(j<ny){

12
13 // ... but we have to check that we are in the range j<

ny (we may be in the last columns of the last tile)

14
15 // Pretty uneasy to read : we store yj and betaj

interleaved , for better performance : SharedData =

"[y0 , b0 , y1, b1, y2, b2, ...]"

16
17 for(int k=0; k<DIMPOINT; k++){SharedData[threadIdx.x*

inc+k] = y[j*DIMPOINT+k];}

18 for(int k=0; k<D; k++) {SharedData[threadIdx.x*inc+

DIMPOINT+k] = beta[j*D +k];}

19 }

20
21 // Crucial to wait for all the thread to be done. If not ,

we may access the shared memory with false values of

y_j or beta_j

22 __syncthreads ();

23
24 ...

All the data of the current tile is now loaded: xi and γi are in the local
memory (more exactly in the register) and yj and bj are in the shared memory
as they are needed by all the threads of the block. We can now perform the
computations :

KernelGpuConvOnDevice: the tiled matrix multiplication

1 ...

2 //We are still in the loop over the tile

3 if(i<nx){ // we compute gammai only if needed

4
5 // declare convenient shortcuts to access the shared

mem

6 float *yj , *betaj;

7 yj = SharedData;

8 // As y_j and beta_j are interleaved ...

9 betaj = SharedData + DIMPOINT;

10

22

11 // jrel is the iterator within the tile.

12 for(int jrel = 0; jrel < blockDim.x && jrel <ny -jstart;

jrel++, yj+=inc , betaj+=inc) {

13
14 // Compute the squared norm of (x_i -y_j):

15 float r2 = 0.0f;

16 for(int k=0; k<DIMPOINT; k++) {

17 float temp = xi[k]-yj[k];

18 r2 += temp*temp;

19 }

20
21 // The kernel function

22 float s = KernelF(r2 ,ooSigma2);

23
24 // The matrix multiplication is here : add the vector s

*beta_j to gamma_i

25 for(int k=0; k<DIMVECT; k++) {gammai[k] += s * betaj[k

];}

26
27 }

28
29 // Once the loop is over , the current tiled matrix product

has been reduced to gamma_i

30 __syncthreads (); // So make sure that no one’s left behind

...

31
32
33 // End of the for loop on tile.

34 }

35 ...

The results γi sit in the local memory of each thread. We then have to copy
in the global memory so that the results of the Cuda kernel can be brought
back to the host.

KernelGpuConvOnDevice: tranfer the result from local to global memory
(still on the device)

1 ...

2 // Save the result in global memory.

3 if(i<nx){

4 for(int k=0; k<DIMVECT; k++){gamma[i*DIMVECT+k] = gammai[k

];}

5 }

6
7 // end of cuda function

8 }

The entire functions listed in the section may be found in cudaconv.cu and
cudaconv.cx.

3.2.2 A second implementation with a 2d grid

The previous implementation of the convolution uses a 1D computing grid,
each block being given a single index corresponding to a range of i indices.
It is possible, and useful in some situations, to use also a different computing

23

B
lo

ck

ai·

Tile

th
re

ad
i

M

b·j
load in shared mem

T
il

e
〈ai·, b·j〉

D

N

Figure 3

scheme via a 2D grid, in which each block is given two indices corresponding
to both i and j ranges of indices. In this new scheme, each block is devoted to
compute, for its particular i index, only a partial sum for indices belonging to
the corresponding range. This produces one output per i index and per range
of j indices, and thus an additional reduction step is needed to sum up values.

The differences between the two methods is small because as we have seen
previously the 1D grid method in fact already divides the j indices into sub-
blocks due to shared memory limitations.

*** code description here : only present parts that are different from the 1D
method : the gammaB output vector, the 2D grid specification, the reduction
operation. ***

Figure 4 compares executions using both methods on a toy example. Each
left and right diagram represents an ongoing computation of a kernel convolution
with matrix size 9 × 11. Each color represents a particular running thread ; a
total of 12 threads being available. The blocksize is fixed to 6. On the left, the
1D method. The first 6 threads are in Block 1, computing outputs for i = 1
to i = 6 and have currently loaded data vectors Y7 to Y12 into shared memory.
Threads 7 to 12 are in Block 2, have loaded data vectors Y1 to Y6, and threads
7 to 9 are computing outputs for i = 7 to i = 9. Here threads 8 and 9 are in

24

Figure 4: Comparison of executions of 1D and 2D grid methods.

fact waiting (at a ”syncthread” point) for thread 7 to finish the first sub-block
before moving to the next. On the right, the 2D method. The process is similar,
except that the grid of blocks is now 2D, and the computation of each sum is
split into parts. Block 1,1 has terminated ; blocks 1,2 and 2,1 are active.

The advantage of the 2D method comes when the number of rows of the
matrix is below the total number of threads, in which case remaining threads
are available for populating new blocks in the 2D method, while they stay unused
with the 1D method.

3.3 Implementation of a generic convolution, with order
2 derivatives

The kernel product operation

gi =
∑
j

k(xi − yj)bj

may be implemented with various types of kernel functions k, including matrix-
valued kernels, and various dimensions D and K. Moreover, since automatic
differentiation is not available in Cuda , it is necessary to implement convolu-
tions for first and second order derivatives of the kernel function. More precisely,
the computation of the hamiltonian system and its adjoint differential necessi-
tate to perform operations such as

gi =
∑
j

∇x
(
aTi k(xi − yj)bj

)
and

gi =
∑
j

∇2
x

(
aTi k(xi − yj)bj

)
cj

25

Also, one may need to implement operations which have more complex formu-
lation, such as products of kernels of the form

gi =
∑
j

k(xi − yj)h(ai, bj)

where h is another kernel function. In LDDMM applications, this is useful for
deriving specific data attachment terms, such as the ones corresponding to the
varifolds framework [].

All such operations can be implemented in Cuda following the same ideas
presented in the previous section. From a programming viewpoint, one may
then consider to write a generic code for convolutions of the type :

Gi =
∑
j

F (X1
i , . . . , X

p
i , Y

1
j , . . . , Y

q
j)

with any number of arguments p and q, and where each input and output have
arbitrary dimensions Gi ∈ Rdg , Xa

i ∈ Rdx,a , 0 6 a 6 p, Y aj ∈ Rdy,b , 1 6 b 6 q.
Using variadic templates, it is possible to factor out the implementation of
function F from the GPU related implementation of the convolution. The F
function itself can then be implemented in a separate file, and written as a
member of a previously instantiated class if one uses a static member wrapper
inside the class. This avoids having to pass extra parameters, such as the kernel
size σ, through the device and host functions.

Host function. (inputs: pointers to data X, Y in CPU memory, and
function F)

• Transfer input data X and Y from CPU memory to GPU global memory.

• define the computing grid

• call the device function

• transfer back result G from GPU global memory to CPU memory.

Device function. (inputs: pointers to data X, Y in GPU global memory,
and function F)

• define indices it and jt corresponding to thread id.

• set Git = 0

• load variables Xa
it

into local memory, for all 1 6 a 6 p

• load variables Y bjt into shared memory, for all 1 6 b 6 q

• synchronize threads. This step is crucial to ensure all threads in the block
have loaded the Y bj into shared memeory.

• loop through all indices j in the block : call the F function on Xa
it

and

Y bj and add the result to Git .

26

• synchronize threads

• transfer back result Git into global memory

27

4 Normalizing kernels to gain mass awareness

The development framework presented in the last two sections is both flexible
and scalable: Prototyping new ideas has never been so easy and we can only
hope that researchers will make the most out of this newfound liberty. To
give some food for thought to our readers, we now wish to showcase a simple
model whose study was made accessible by autodiff libraries: the normalized
Hamiltonian setting.

Our core idea is simple: Instead of using a kernel cometric

(Kq)i,j∈[[1,N]] = k(qi − qj) (28)

in the computation of the Hamiltonian 1
2 〈p,Kqp〉 of Eq. (2), couldn’t we venture

off the beaten track and use a normalized cometric

(K̃q)i,j∈[[1,N]] = diag(λq) ·Kq · diag(λq), (29)

where λq ∈ RN+ is the unique nonnegative vector such that K̃q is a bistochastic
matrix? The existence, uniqueness and computability of such a vector λq is
in fact guaranteed by the Sinkhorn Theorem [?], while the normalization of
LDDMM metrics has been a niggling concern for a few years, more or less
alleviated through the estimation of the global or local density of the point
cloud representing the source shape “q0”.

Automatic differentiation is a game changer Prior to the development of
automatic differentiation libraries, investing months of work into such a maver-
ick line of thought would have been a risky long shot. Today, however, imple-
menting and testing it from scratch is a matter of hours!

Preliminary numerical results are encouraging, and a genuine mathematical
study reveals links between the normalized kernel K̃q and the theory of Optimal
Transport of measures. As it provides a neat example of what can be achieved
with the numerical tools presented in sections 2 and 3, we expose in the next
pages the preliminary results of Jean Feydy and Alain Trouvé on the subject.
Note that we shall stick here to the practical tone of the previous sections: a
thorough theoretical study of this new Hamiltonian formula is left for an ulterior,
dedicated paper.

4.1 The LDDMM theory of kernel cometrics

The extrinsic point of view The normalized Hamiltonian algorithm can be
seen as a natural “hack” of the classical LDDMM theory, which was historically
developed as a relaxation of the affine registration setting: given a source shape
X and a target shape Y , one is looking for an optimal matching ϕ in some fixed
diffeomorphism group G ⊂ Diff(RD), such that the model ϕ(X) is as close as
possible to the target Y (according to a given data attachment formula).

If G is the group of rigid-body deformations, one falls back on Procustean
analysis. If it is the group of linear changes of coordinates plus translations, we

28

retrieve affine registrations. And if G is a group modeled on a Reproducible Ker-
nel Hilbert Space of vector fields – endowed with the induced right-invariant
metric – that is LDDMM theory.

The summary article [?] provides a clear introduction to this extrinsinc
point of view, in which shape variability is explained through the action of
diffeomorphisms of the ambient space with costs that do not depend on the
shape being carried around. We stress that an LDDMM analysis is conducted
as if the deformed shape ϕ(X), instead of being a measure that carries a mass,
was a mere image painted on an elastic canva – this is precisely what is implied
by the geometers’ term “right-invariant”.

Purpose of this section In the next few pages, we intend to show that the
normalization trick introduced in Eq. (29) breaks the right-invariance property
of kernel cometrics, and replaces it with a behavior that mimics that of a spatially
regularized transports of measures.

A slight change in the Hamiltonian computation is enough to turn an image
registration routine into a measure transportation program. To make sense of
this dramatic change of behavior, we now take the time needed to re-discover
the LDDMM theory from an intrinsic, particular point of view. As we develop
the theory underlying Eq. (2-7) in the limit setting of landmarks, we will argue
that the LDDMM framework is popular because it is the theory of continuous
deformations of point clouds with the lowest computational cost. We can then
justify the Hamiltonian’s normalization trick by the fact it provides, at a rea-
sonable premium, a Wasserstein-like behavior that makes the theory relevant
for the transport of general measures.

Optimal Transport of landmarks First, we introduce the classical prob-
lem of Monge-Wasserstein, concerned with the transport of independent land-
marks. Let our shapes X and Y be represented as point clouds (x1, . . . , xM)
and (y1, . . . , yM) in RD, and let us look for a permutation σ : [[1,M]]→ [[1,M]],
a collection of transport paths γm : t ∈ [0, 1] 7→ γmt that minimizes the overall
L2-transport cost

`2(γ) =

M∑
m=1

∫ 1

t=0

‖γ̇mt ‖
2

dt (30)

under the constraint that every point of X is matched to a point of Y :

∀ m, γm0 = xm and γm1 = yσ(m). (31)

In this decorrelated setting, particles γmt are always better off traveling in
straight lines: the problem can therefore be reduced to the combinatorial search
of a permutation σ : [[1,M]]→ [[1,M]] minimizing

CX,Y (σ) =

M∑
m=1

‖xm − yσ(m)‖2, (32)

and we call σ the optimal labeling between X and Y .

29

(a) Source X. (b) Target Y .

(c) OT matching . (d) LDDMM matching.

Figure 5: Difference between an Optimal Transport and an LDDMM registra-
tion between two curves. As the Monge-Wasserstein problem of Eq. (30) does
not promote the correlation of neighboring particles, it completely discards the
topology of shapes and breaks up the source curve into pieces (even if we relax
the bijectivity constraint of Eq. (31), as shown here). The LDDMM theory in-
duces a higher computational cost and the loss of convexity, but alleviates the
topological issues by guaranteeing a diffeomorphic shape registration.

Regularizing Optimal Transport trajectories As evidenced by Figure 5,
the complete independence of particles is not a reasonable modeling prior for
shape analysis: discarding the topology of the shape matching problem allows
one to get efficient, convex solvers... Which may very well tear shapes apart.

Hence, optimal transport should be regularized spatially as neighboring points
get correlated to each other. A naive way to prevent tears would be to replace
the cost CX,Y of Eq. (32) with a continuity-inducing formula :

CX,Yk (σ) =
∑
m

‖xm − yσ(m)‖2︸ ︷︷ ︸
Displacement cost

+
∑
m,m′

k(xm, xm
′
) · ‖ yσ(m) − yσ(m

′)‖2︸ ︷︷ ︸
Regularization cost

, (33)

30

where k(x, y) is a kernel neighborhood function – say, a Gaussian of given
deviation σ. Even better, one could symmetrize the regularization cost and use

CX,Yk,sym(σ) =
∑
m

‖xm − yσ(m)‖2︸ ︷︷ ︸
Displacement cost

+
1

2

∑
m,m′

k(xm, xm
′
) · ‖yσ(m) − yσ(m

′)‖2︸ ︷︷ ︸
X → Y regularization cost

(34)

+
1

2

∑
m,m′

k(ym, ym
′
) · ‖xσ

−1(m) − xσ
−1(m′)‖2︸ ︷︷ ︸

Y → X regularization cost

.

This “handcrafted” cost is symmetric and could be satisfying from a computa-
tional point of view. Unfortunately, it lacks a proper dynamical interpretation
and puts too much emphasis on the source and target shapes, to the detriment
of the interpolating trajectory.

Using Riemannian geometry to handle a continuous population of
shapes This is a problem as most practical applications work with shapes that
are sampled from continuous populations. For instance, X and Y may represent
two snapshots of the same subject shape γt at different times t0 and t1: to
prevent the introduction of an acquisition bias, we need to use a deformation
model that weighs equivalently all the instants of the interval [t0, t1].

We must therefore consider an infinitesimal, dynamic version of the model
of Eq. (34) and look for a collection of paths γm from X to Y minimizing

Ck(γ) =

∫ 1

0

[∑
m

‖γ̇mt ‖
2

︸ ︷︷ ︸
Displacement cost

+
∑
m,m′

k(γmt , γ
m′

t) · ‖γ̇mt − γ̇m
′

t ‖2︸ ︷︷ ︸
Regularization cost

]
dt, (35)

under the transportation constraint of Eq. (31). According to this model, par-
ticles will move optimally if they are both lazy and gregarious with respect to
their neighbors, as defined by the kernel function k.

A remarkable property of the infinitesimal cost integrated above is that it is
quadratic with respect to the velocity γ̇t and smooth with respect to the position
γt. With γt = (γ1t , . . . , γ

M
t) ∈ Q = RM×D, we can thus write the overall cost as

Ck(γ) =

∫ 1

0

〈γ̇t , gγt γ̇t〉2 dt (36)

where 〈 · , · 〉2 is the canonical euclidean product of Q = RM×D and g : Q →
RMD×MD is a smooth field of symmetric positive definite matrices.

Interestingly, trying to regularize spatially the Monge-Wasserstein
problem has led us to introduce Riemannian concepts: the optimal
deformations of the continuous model (36) are nothing but geodesics on the
space of landmarks RM×D endowed with a Riemannian metric gq such that, if

31

δq = vδt is a small deformation of a point cloud q,(
dg(q → q + v · δt)

)2
(δt)2

+ o(1) =
∑
m

‖vm‖2 +
∑
m,m′

k(qm, qm
′
) · ‖vm − vm

′
‖2 (37)

= 〈v , gqv〉2 = ‖v‖2gq . (38)

Shooting geodesics Riemannian geometry is a convenient theoretical setting,
which appears to be relevant for shape analysis as the natural framework for
regularized OT. With practical applications, however, comes the question of
tractability: what are the metrics gq on the space of landmarks whose geodesics
are easy to compute? At first glance, geodesics are locally “straight” curves
governed by a non-trivial second order ODE (involving Christoffel symbols) on
the tangent bundle TQ, with coordinates

(qt, vt) = (γt, γ̇t). (39)

This could be pretty damning from a practical point of view, as computing
Christoffel symbols involves the computation of both the metric tensor gq and
its inverse Kq. Fortunately though, physicists involved with classical mechanics
have noted more than a century ago that the equation of geodesics can be
considerably simplified by a locally linear change of variables. Instead of using
the coordinates (qt, vt) of Eq. (39), one should work on the cotangent bundle
and use :

(qt, pt) = (qt, gqtvt). (40)

We define the cometric tensor Kq = g−1q , and introduce the general Hamil-

tonian function H(q, p) = 1
2 〈p ,Kqp〉 so that

1

2
〈vt , gqtvt〉 =

1

2
‖γ̇t‖2γt︸ ︷︷ ︸

Kinetic energy

=
1

2
〈pt , Kqtpt〉 = H(qt, pt). (41)

The following theorem, which links geodesic on (Q, gq) to the sole Hamilto-
nian function H, is of primary importance:

Theorem 1 (Hamilton, 1833). Assume that gq endows the space of landmarks
Q = RMD with a Riemannian structure. Then, with the notations described
above, a smooth curve γt is a geodesic if and only if the lifted cotangent trajectory
(qt, pt) follows the Hamiltonian equation :{

q̇t = +∂H
∂p (qt, pt) = +Kqtpt

ṗt = −∂H∂q (qt, pt) = − 1
2∂q(pt,Kqpt)(qt)

. (42)

In the cotangent phase space, the geodesic equation is therefore given by
the flow along the symplectic gradient of H which can (very informally) be
written as :

X(q, p) =

(
+∂H
∂p (q, p)

−∂H∂q (q, p)

)
= “Rot−90◦”

(
∇H(q, p)

)
. (43)

32

Summary This theorem is the theoretical basis on which relies the LDDMM
shooting routine “Shoot” presented in Eq. (4), which implements the Rieman-
nian exponential. Now, if we recapitulate the exposition of the last paragraphs,
we must recall that our prime motivation is to find a principled and practical
way of regularizing Optimal Transport. As shown by Eq. (36), this amounts to
finding a Riemannian metric on the space of landmarks which is tearing-adverse,
and for which the computation of geodesics is as cheap as possible.

The important lesson given by the Theorem 1 (Hamilton) is that the com-
putational cost of shooting a geodesic on a Riemannian manifold is directly
related to that of computing the cometric Kq = g−1q and its derivatives. From
a practical point of view, the tensor Kq is more important than its in-
verse, the metric gq. This is a major change of perspective, as it discourages
us from using the “naive” regularizing metric of Eq. (35).

GPUs and kernel cometrics In today’s landscape, scientific computing is
heavily biased towards operations that can be parallelized efficiently. On a GPU,
given a point cloud q = (q1, . . . , qM) ∈ RM×D, computing a kernel matrix

kq =

k(q1, q1) k(q1, q2) · · · k(q1, qM)
k(q2, q1) k(q2, q2) · · · k(q2, qM)

...
...

. . .
...

k(qM , q1) k(qM , q2) · · · k(qM , qM)

 (44)

has nearly become an atomic operation. The simple yet efficient idea behind
the LDDMM theory is then to use this very matrix kq, appropriately expanded
into an (MD,MD) shape by using a Kronecker product

Kq = kq ⊗ ID (45)

so that

H(q, p) =
1

2
〈p ,Kqp〉 =

1

2

M∑
i,j=1

k(qi, qj) ·
〈
pi , pj

〉
RD . (46)

Using a translation and rotation invariant kernel k(x, y) = k(‖x− y‖), we re-
trieve the expression presented Eq. (2). In a computational sense, this
formula defines the simplest family of cometrics and geodesics on the
space of point clouds.

33

(a) t = 0. (b) t = 1, s=.25. (c) t = 1, s=.35. (d) t = 1, s=.50.

(e) t = 0, s=.50. (f) t = 1, s=.25. (g) t = 1, s=.35. (h) t = 1, s=.50.

Figure 6: First line: in the unit square, results (q1, p1) of the “Shoot” LDDMM
routine on the initial situation (q0, p0) depicted in (a), for various choices of
Gaussian kernels k : x 7→ exp(−x2/2s2). Second line: the Theorem 2 (Re-
duction principle) allows us to lift the landmarks trajectory in a manifold of
diffeomorphisms of the plane. Starting from an initial state (e), the moving
(landmark, momentum) pairs (qt, pt) generate a flow field vt = k ? pt (in blue)
that deforms the ambiant space, carrying around the Identity grid.

Understanding the kernel cometrics We could be content with this algo-
rithmic reasoning. Since the landmarks qi only interact with each other through
the kernel function k, the latter’s smoothness should prevent tears in the match-
ings. The geodesics shown in the first line of Figure 6 tend to confirm this
intuition: as the radius of the kernel function k increases, neighboring points
behave more and more like a cohesive unit.

Surprisingly, there is more to this than a simple coincidence. The little
miracle of the LDDMM theory is that the “kernel cometric setting” – which
is the most favorable one from a computational perspective – is also gifted
with a very strong theoretical structure: the landmarks trajectories defined by
the shooting routine of Eq. (4) can be canonically lifted to a manifold Gk of
diffeomorphisms of the ambient space, whose smoothness is directly controlled
by the kernel function.

Kernel metrics on vector fields Indeed, let k : RD → R be a kernel function
with a positive Fourier transform, that is, such that k̂(ω) ∈ R?+ for all frequencies

34

ω. If v : RD → RD is a vector field on the ambient space, we define the k-norm

‖v‖2k =

∫
ω∈RD

1

k̂(ω)
|v̂(ω)|2 dω ∈ R ∪ {+∞}. (47)

We can then consider the set of “k-smooth” vector fields

Vk ={v | ‖v‖k <∞} , (48)

endowed with the Hilbertian norm ‖ · ‖. [ToDo: quelles sont les conditions
sur k pour que Vk soit complet ?] One technical assumption should be
made: we will assume that k is smooth enough to let the pointwise evaluation
δx : v 7→ v(x) be a continuous mapping from (V,‖ · ‖V) to R. This allows us to
link with the theory of Reproducing Kernel Hilbert Spaces and guarantee the
integrability results to come (all of which can be found, with demonstrations,
in [?]).

Integrating trajectories of finite energy We now remark that if (vt) ∈
L2([0, 1], Vk) is a time-varying vector field such that

`2k(v) =

∫ 1

0

‖vt‖2k dt < ∞, (49)

then, according to Picard-Lindelöf theorem, we can integrate its flow, and find
a unique trajectory ϕt of diffeomorphisms such that for every point x ∈ RD and
time t ∈ [0, 1] :

ϕ0(x) = x and
d

dt
[ϕt(x)] = vt ◦ ϕt(x), (50)

i.e. ϕ0 = IdRD and ϕt = IdRD +

∫ t

s=0

vs ◦ ϕs ds. (51)

The reduction principle As diffeomorphisms carry around images, measures
and landmarks, we could try to minimize over L2([0, 1], Vk) the cost

C2(ϕ1) = `2k(v) =

∫ 1

0

‖vt‖2k dt, (52)

under the constraint that ϕ1(X) = Y . This is an infinite-dimensional mini-
mization problem, related to k through the k-norm of Eq. (47) which coerces
the integrable flows vt into having Fourier spectrums comparable to that of k.
Surprisingly, the critical points of this functional coincide with the Riemannian
geodesics in the space of landmarks Q – endowed with the kernel cometric Kq

of Eq. (45) – as stated by the following theorem:

Theorem 2 (Reduction Principle, [ToDo: ref.]). Let qt be a time-dependent
point cloud, and k be a kernel function which is smooth enough. Then, the two
propositions below are equivalent :

35

1. qt is a geodesic for the kernel cometric Kq, with momentum pt associated
to the Hamiltonian

H(q, p) =
1

2
〈p,Kqp〉 . (53)

2. qt is carried around by a locally optimal diffeomorphic trajectory ϕt =
Flow(vt), and we have

vt = k ? pt i.e. vt(x) =

M∑
m=1

k(qmt , x) pmt . (54)

The three pillars of LDDMM Figure 6 provides an illustration of the reduc-
tion principle. The latter allows one to make sense of the kernel cometric, and
completes our brief re-exposition of the LDDMM theory – which was originally
developed from the diffeomorphic point of view, towards the case of landmarks
[?]. As we have shown in the previous pages, the relevance of the LDDMM
framework relies on three pillars :

Hamilton’s theorem, which shows that geodesics on a Riemannian manifold
can be computed as soon as the cometric tensor is simple enough.

The current availability of GPUs, which promotes the fully parallelizable
kernel cometric in applications.

The reduction principle, which links the kernel cometric to the action of
k-smooth diffeomorphisms on the ambient space.

4.2 Normalized kernels for landmarks transport

Now that the theory underlying kernel cometrics has been briefly recalled,
we introduce the normalized Hamiltonian in the very simple case of landmarks.
But first, we have to point out some of the shortcomings of the classical LDDMM
setting as far as the transport of measures is concerned.

Did we bridge the gap between Procustes and Optimal Transport?
No, we didn’t. At first glance, it looks as though the LDDMM infinitesimal
metric ‖v‖k on vector fields (Eq. (47)), defined for Gaussian kernels k : x 7→
exp(−‖x‖22 /s2) interpolates between the translation-only metric ‖ · ‖s=∞ and a
Wasserstein-like norm ‖ · ‖s=0, respectively defined as

‖ v ‖s=∞ =

{
‖w‖22 if ∀ x ∈ RD, v(x) = w

+∞ otherwise
, (55)

‖ v ‖s=0 =

∫
RD

‖v(x)‖22 dx. (56)

Therefore, one could be tempted to assume that as the radius s of the ker-
nel k tends to zero, LDDMM geodesics degenerate to Optimal Transport solu-
tions... Unfortunately, this is completely untrue. Problem is, the hand-waving

36

argument presented above does not take into account the fact that the action
of LDDMM diffeomorphisms is fully extrinsic, whereas the Monge-Wasserstein
cost of Eq. (30) keeps track of the mass, the number of landmarks that are
currently being carried aroud.

Right-invariant metrics and cigar-shaped geodesics The most blatant

A toy example We provide here a minimal generalization of the above example
to the case of

On considère un état q ∈ L2
6, donné par six points (q1, q2, q3, q4, q5, q6) du

plan sur lesquels on fait les hypothèses simplificatrices suivantes :

• Les points se répartissent en trois groupes de taille variable : (q1), (q2, q3, q4),
et (q5, q6), qui sont éloignés les uns des autres à une distance très grande
devant l’échelle l du noyau.

• q5 et q6 sont à une distance d donnée l’un de l’autre.

• Le groupe (q2, q3, q4) est un triangle équilatéral de côté d.

On peut voir Figure ?? une telle situation, qui modélise de manière simple la
présence d’amas de masses variées dans l’image.

Sous ces hypothèses, on peut écrire très simplement la matrice de noyau
réduite :

kq =

1 · · · · ·
· 1 a a · ·
· a 1 a · ·
· a a 1 · ·
· · · · 1 a
· · · · a 1

 , (57)

où a = exp(−d2/2 l2) ∈ [0, 1], et où l’on a remplacé les termes négligeables par
des points.

l

x1

x2

x3

x4x5 x6

À la limite, la matrice de noyau réduite kq puis son homologue vectoriel Kq

37

sont des matrices diagonales par blocs, remplies de blocs élémentaires

Bn(a) = (1− a) · In + a · (1)(1)T =

1

1 (a)
. . .

(a) 1
1

 . (58)

Pour trouver la métrique, inverser kq, la clé est donc de savoir inverser les
blocs Bn(a) associés aux amas de n points.

Lemma 1 (Pertinence des métriques à noyaux, version discrète). On note e =
(1)/‖(1)‖2 le vecteur unitaire constant de taille n, rempli de 1/

√
n. L’inverse

de Bn(a) est alors donné par :

(Bn(a))−1 =
1

1 + (n− 1) a
eeT +

1

1− a
(In − eeT). (59)

Autrement dit, pour tout vecteur v = (v1, . . . , vn) que l’on décompose en

v = e (eTv) + (v − e (eTv)) (60)

= vmoy + vvar , (61)

une partie “moyenne” constante et une partie de somme nulle, la variance. On
a

vT(Bn(a))−1v =
1

1 + (n− 1) a
‖vmoy‖22 +

1

1− a
‖vvar‖22 (62)

Proof. Il suffit d’écrire la décomposition spectrale de Bn(a), i.e. trouver les axes
de l’ellipsöıde associé :

Bn(a) = (1 + (n− 1) a) eeT + (1− a) (In − eeT). (63)

Bn(a) possède donc une valeur propre 1 + (n− 1) a selon la direction e, et agit
comme (1−a) fois l’identité sur l’orthogonal. Pour trouver l’inverse, il suffit alors
d’inverser les valeurs propres – qui correspondent ici aux valeurs singulières, il
n’y a vraiment aucun piège.

Interprétation Rappelons que a = exp(−(d/l)2/2), où d est le diamètre de
l’amas et l l’échelle du noyau utilisé par la cométrique. Il vaut donc 1 si d << l,
et décrôıt jusqu’à 0 lorsque d >> l. L’équation (62) est extrêmement précieuse,
car elle contient en germe tout la dynamique associée à la cométrique Kq.

D’abord, elle met en évidence un fait rassurant : le rôle particulier joué par
les champs de vitesses constants, “colinéaires”. Le coût associé à un champ de
vitesses sur l’amas est donc la somme d’un terme de translation, proportionnel à
‖vcol‖22, et d’un terme de régularisation pénalisant la non-uniformité en‖vncol‖22.

38

Lorsque le diamètre d de l’amas est bien supérieur à l’échelle du noyau, a
est petit devant 1. On a alors

1

1 + (n− 1) a
' 1 ' 1

1− a
, (64)

l’équilibre entre les deux pénalisations. Le coût vT(Bn(a))−1v est simplement

égal au coût Wasserstein vTv = ‖v‖22 du transport décorrélé. On dira que les
particules n’interagissent pas ensemble.

À l’inverse, si le diamètre d de l’amas est petit devant l, si le noyau voit les
points de l’amas comme quasiment confondus, on aura a ' 1− et par suite

vT(Bn(a))−1v ' 1

n
‖vmoy‖22 + ∞ ‖vvar‖22 . (65)

Lorsque les points sont l-proches les uns des autres, qu’ils interagissent entre
eux au sens de k, on a donc combinaison de deux effets : la sur-pénalisation
des non-uniformités, des déchirures, avec le poids quasi-infini devant vvar; la
mutualisation des coûts de translation, avec une atténuation en 1/n du coût
quadratique sur vmoy. Tout se passe donc comme si notre amas de n
particules se réduisait à un seul atome, très difficile à éclater mais
aussi facile à transporter qu’une particule seule.

Retour sur la forme globale, combinaison de plusieurs amas Si l’on
revient au nuage de la Figure ??, on peut maintenant exprimer simplement la
métrique gq associée par kq aux déformations infinitésimales de sa géométrie :

gq = (kq)
−1 =

1 · · · · ·
· · ·
· B3(a)−1 · ·
· · ·
· · · ·

B2(a)−1· · · ·

 (66)

(on se dispense ici d’écrire le produit de Kronecker avec Id, qui impose sim-
plement de sommer les coûts sur les dimensions). Les trois amas sont donc
complètement indépendants, ce qui n’est pas une surprise puisqu’ils sont décorrélés
au sens de k.

Interprétation Étant donné un champ de vitesses v = (v1, v2, v3, v4, v5, v6),
comment se trouve-t-il pénalisé par gq ? Les comportements limites se retrou-
vent aussi facilement que pour un amas simple. Aussi, lorsque d >> l et donc
a ' 0, on a :

vTgqv ' ‖v1‖22 + ‖v2‖22 + ‖v3‖22 + ‖v4‖22 + ‖v5‖22 + ‖v6‖22. (67)

Par contre, si d << l, alors un champ de coût fini s’écrit nécessairement :

(v1, v2, v3, v4, v5, v6) = (w1, w2, w2, w2, w3, w3), (68)

39

avec wi la “vitesse de groupe” de l’amas i, et :

vTgqv = ‖v1‖22 +
1

3

(
‖v2‖22 + ‖v3‖22 + ‖v4‖22

)
+

1

2

(
‖v5‖22 + ‖v6‖22

)
(69)

= ‖w1‖22 + ‖w2‖22 + ‖w3‖22. (70)

Cahin-caha, on peut donc se forger une certaine intuition des trajectoires
géodésiques “typiques”, qui tiennent groupés les k-amas.

Normalizing kernels to straighten geodesics

A modified Sinkhorn algorithm

4.3 A new diffeomorphic setting for measures

Measure-dependent RKHS

Including translations in our model

Computing the local density

Computing the velocity field

PyTorch implementation

Examples

5 Conclusion

40

	Introduction
	Data flow of a diffeomorphic registration pipeline
	Practical bottlenecks, motivations for this work

	Automatic differentiation for shape analysis
	Backpropagation 101
	Memory usage in the computation of the Hamiltonian
	Linking custom CUDA routines with PyTorch

	Computing a kernel product using Cuda
	A crash course in Cuda
	Data transfer: host to device
	Cuda kernel grid
	Memory management in Cuda

	The tiled kernel matrix-vector product
	A first implementation with 1d grid
	A second implementation with a 2d grid

	Implementation of a generic convolution, with order 2 derivatives

	Normalizing kernels to gain mass awareness
	The LDDMM theory of kernel cometrics
	Normalized kernels for landmarks transport
	A new diffeomorphic setting for measures

	Conclusion

