Robust shape matching with Optimal Transport

Jean Feydy Télécom Paristech – 15th November, 2018

Écoles Normales Supérieures de Paris et Paris-Saclay Collaboration with B. Charlier, J. Glaunès (KeOps library); S.-i. Amari, G. Peyré, T. Séjourné, A. Trouvé, F.-X. Vialard (OT theory)

Source A, target B,

Source A, target B, mapping φ

Source A, target B, mapping φ

Source A, target B, mapping φ

A good Loss function is a guarantee of robustness

Iterative Matching Algorithm

- 1: $A' \leftarrow A$
- 2: repeat
- 3: $L, v \leftarrow \text{Loss}(A', B), -\partial_{A'}\text{Loss}(A', B)$
- 4: $A' \leftarrow A' + Model(v)$
- 5: until L < tol

Output : deformed shape $A' = \varphi(A)$.

A good Loss function is a guarantee of robustness

Iterative Matching Algorithm

- 1: $A' \leftarrow A$
- 2: repeat
- 3: $L, v \leftarrow \text{Loss}(A', B), -\partial_{A'}\text{Loss}(A', B)$
- 4: $A' \leftarrow A' + Model(v)$
- 5: **until** L < tol**Output:** deformed shape $\mathbf{A}' = \varphi(\mathbf{A})$.

"Model" encodes the **prior knowledge** on admissible deformations:

- smoothing convolution
- LDDMM/SVF backprop + regularization + shooting
- trained neural network

A good Loss function is a guarantee of robustness

Iterative Matching Algorithm

1: $A' \leftarrow A$

2: repeat

- 3: $L, v \leftarrow \text{Loss}(A', B), -\partial_{A'}\text{Loss}(A', B)$
- 4: $A' \leftarrow A' + Model(v)$

5: **until** L < tol**Output:** deformed shape $\mathbf{A}' = \varphi(\mathbf{A})$.

"Model" encodes the **prior knowledge** on admissible deformations:

- smoothing convolution
- LDDMM/SVF backprop + regularization + shooting
- trained neural network

 \Rightarrow The raw Loss gradient v is what **drives** the registration

First setting: processing of point clouds

- + φ is \mathbf{rigid} or affine
- Occlusions
- Outliers

From the documentation of the Point Cloud Library.

Second setting: medical imaging

From Marc Niethammer's Quicksilver slides.

- φ is a spline or a **diffeomorphism**
- Ill-posed problem
- Some occlusions

Wasserstein Auto-Encoders, Tolstikhin et al., 2018.

- + φ is a neural network
- Very weak regularization
- High-dimensional space

- + φ is a neural network
- Very weak regularization
- High-dimensional space

Wasserstein Auto-Encoders, Tolstikhin et al., 2018.

Which **Loss** function should we use?

On labeled shapes, use a spring energy

Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

On labeled shapes, use a spring energy

Anatomical landmarks from A morphometric approach for the analysis of body shape in bluefin tuna, Addis et al., 2009.

Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$A \longrightarrow \alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \qquad B \longrightarrow \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{y_j} \,.$$

Encoding unlabeled shapes as measures

Let's enforce sampling invariance:

$$\mathsf{A} \ \longrightarrow \ \alpha \ = \ \sum_{i=1}^{\mathsf{N}} \alpha_i \delta_{\mathsf{x}_i} \,, \qquad \mathsf{B} \ \longrightarrow \ \beta \ = \ \sum_{j=1}^{\mathsf{M}} \beta_j \delta_{\mathsf{y}_j} \,.$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{x_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{y_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

(

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$

Display $v = -\nabla_{\mathbf{x}_i} d(\boldsymbol{\alpha}, \boldsymbol{\beta}).$

$$\alpha = \sum_{i=1}^{N} \alpha_i \delta_{\mathbf{x}_i}, \quad \beta = \sum_{j=1}^{M} \beta_j \delta_{\mathbf{y}_j}.$$
$$\sum_{i=1}^{N} \alpha_i = 1 = \sum_{j=1}^{M} \beta_j$$
Display $v = -\nabla_{\mathbf{x}_i} d(\alpha, \beta).$

(

Seamless extensions to:

- $\sum_{i} \alpha_{i} \neq \sum_{j} \beta_{j}$, outliers [Chizat et al., 2018],
- curves and surfaces [Kaltenmark et al., 2017],
- variable weights α_i .

Computing fidelities between measures:

- 1. Computer graphics: weighted Hausdorff distance
- 2. Statistics: kernel distances
- 3. Optimal Transport: Wasserstein distance

 $\simeq~{
m Robust}~{
m Point}~{
m Matching}$

Computing fidelities between measures:

- 1. Computer graphics: weighted Hausdorff distance
- 2. Statistics: kernel distances
- 3. Optimal Transport: Wasserstein distance

 $\simeq~{
m Robust}~{
m Point}~{
m Matching}$

- 4. What's new, in 2018?
- 5. Efficient GPU routines: KeOps

The weighted Hausdorff distance: Iterative Closest Point algorithm

p-Hausdorff distance:

 $\text{Loss}(\alpha,\beta) = \frac{1}{2} \sum_{i} \alpha_{i} \cdot \min_{j} ||\mathbf{x}_{i} - \mathbf{y}_{j}||^{p}$

p-Hausdorff distance:

 $\operatorname{Loss}(\alpha,\beta) = \frac{1}{2} \sum_{i} \alpha_{i} \cdot \min_{j} \|\mathbf{x}_{i} - y_{j}\|^{p} + \frac{1}{2} \sum_{j} \beta_{j} \cdot \min_{i} \|\mathbf{x}_{i} - y_{j}\|^{p}$

with
$$a(x) = d(x, \operatorname{supp}(\alpha))^p$$

 $b(x) = d(x, \operatorname{supp}(\beta))^p$

with
$$a(x) = d(x, \operatorname{supp}(\alpha))^p$$

 $b(x) = d(x, \operatorname{supp}(\beta))^p$

$$\begin{aligned} \text{Loss}(\alpha,\beta) &= \frac{1}{2} \sum_{i} \alpha_{i} \cdot \min_{j} \|\mathbf{x}_{i} - \mathbf{y}_{j}\|^{p} &+ \frac{1}{2} \sum_{j} \beta_{j} \cdot \min_{i} \|\mathbf{x}_{i} - \mathbf{y}_{j}\|^{p} \\ &= \frac{1}{2} \langle \alpha, b \rangle &+ \frac{1}{2} \langle \beta, a \rangle \\ &= \frac{1}{2} \langle \alpha, b - a \rangle &+ \frac{1}{2} \langle \beta, a - b \rangle \end{aligned}$$

with
$$a(x) = d(x, \operatorname{supp}(\alpha))^p$$

 $b(x) = d(x, \operatorname{supp}(\beta))^p$

$$\begin{aligned} \text{Loss}(\alpha,\beta) &= \frac{1}{2} \sum_{i} \alpha_{i} \cdot \min_{j} \|\mathbf{x}_{i} - \mathbf{y}_{j}\|^{p} + \frac{1}{2} \sum_{j} \beta_{j} \cdot \min_{i} \|\mathbf{x}_{i} - \mathbf{y}_{j}\|^{p} \\ &= \frac{1}{2} \langle \alpha, b \rangle + \frac{1}{2} \langle \beta, a \rangle \\ &= \frac{1}{2} \langle \alpha, b - a \rangle + \frac{1}{2} \langle \beta, a - b \rangle \\ &= \frac{1}{2} \langle \alpha - \beta, b - a \rangle \end{aligned}$$

with
$$a(x) = d(x, \operatorname{supp}(\alpha))^p$$

 $b(x) = d(x, \operatorname{supp}(\beta))^p$

Naive projections in Hausdorff cause imbalance

$$\operatorname{Loss}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{1}{2} \langle \boldsymbol{\alpha}, \boldsymbol{b} - \boldsymbol{a} \rangle + \frac{1}{2} \langle \boldsymbol{\beta}, \boldsymbol{a} - \boldsymbol{b} \rangle$$

Naive projections in Hausdorff cause imbalance

$$\operatorname{Loss}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{1}{2} \langle \boldsymbol{\alpha}, \boldsymbol{b} - \boldsymbol{a} \rangle + \frac{1}{2} \langle \boldsymbol{\beta}, \boldsymbol{a} - \boldsymbol{b} \rangle$$

Naive projections in Hausdorff cause imbalance

$$\operatorname{Loss}(\alpha,\beta) = \frac{1}{2} \langle \alpha, b-a \rangle + \frac{1}{2} \langle \beta, a-b \rangle$$

Naive projections in Hausdorff cause imbalance

$$\operatorname{Loss}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{1}{2} \langle \boldsymbol{\alpha}, \boldsymbol{b} - \boldsymbol{a} \rangle + \frac{1}{2} \langle \boldsymbol{\beta}, \boldsymbol{a} - \boldsymbol{b} \rangle$$

An idea from statistics: Kernel distances

Kernel fidelities: the simplest formula for $d(\alpha, \beta)$

Raw signal $(\alpha - \beta)$.

Choose a symmetric blurring function g, a **kernel** $k = g \star g$: $d_k(\alpha, \beta) = ||g \star \alpha - g \star \beta ||_{L^2}^2$

Choose a symmetric blurring function g, a **kernel** $k = g \star g$: $d_k(\alpha, \beta) = \|g \star \alpha - g \star \beta\|_{L^2}^2$ $= \langle \alpha - \beta | k \star (\alpha - \beta) \rangle$

Choose a symmetric blurring function g, a **kernel** $k = g \star g$: $d_{k}(\alpha, \beta) = ||g \star \alpha - g \star \beta ||_{L^{2}}^{2}$ $= \langle \alpha - \beta | k \star (\alpha - \beta) \rangle$ $= -2 \sum_{i,j} k(\mathbf{x}_{i}, \mathbf{y}_{j}) \alpha_{i} \beta_{j} + \cdots$

Choose a symmetric blurring function q, a **kernel** $k = q \star q$: $\mathsf{d}_k(\boldsymbol{\alpha},\boldsymbol{\beta}) = \|\boldsymbol{q}\star\boldsymbol{\alpha} - \boldsymbol{q}\star\boldsymbol{\beta}\|_{L^2}^2$ $= \langle \alpha - \beta | k \star (\alpha - \beta) \rangle$ $= -2 \sum_{i,i} k(\mathbf{x}_i, \mathbf{y}_j) \alpha_i \beta_j + \cdots$ $= \langle \alpha - \beta | b^k - a^k \rangle$ with $a^k = -k \star \alpha$, $b^k = -k \star \beta$.

Kernel distances: distance fields computed through convolutions

Kernel distances, aka. blurred SSDs:

choose
$$a(x) = -(k \star \alpha)(x) = -\sum_{i} \alpha_{i} k(x, x_{i})$$

and use $\frac{1}{2} \langle \alpha - \beta, b - \alpha \rangle = \frac{1}{2} \langle \alpha - \beta, k \star (\alpha - \beta) \rangle.$

Kernel distances: distance fields computed through convolutions

Kernel distances, aka. blurred SSDs:

choose
$$a(x) = -(k \star \alpha)(x) = -\sum_{i} \alpha_{i} k(x, \mathbf{x}_{i})$$

and use $\frac{1}{2}\langle \alpha - \beta, b - a \rangle = \frac{1}{2}\langle \alpha - \beta, k \star (\alpha - \beta) \rangle.$

The **Energy Distance**: an underrated kernel, k(x, y) = -||x - y||.

$$a(x) = \sum_{i} \alpha_{i} ||x - x_{i}|| \quad \text{instead of} \quad a(x) = \min_{i} ||x - x_{i}||$$

$$b(x) = \sum_{j} \beta_{j} ||x - y_{j}|| \quad \text{instead of} \quad b(x) = \min_{j} ||x - y_{j}||.$$

Kernel distances: distance fields computed through convolutions

Kernel distances, aka. blurred SSDs:

choose
$$a(x) = -(k \star \alpha)(x) = -\sum_{i} \alpha_{i} k(x, \mathbf{x}_{i})$$

and use $\frac{1}{2}\langle \alpha - \beta, b - a \rangle = \frac{1}{2}\langle \alpha - \beta, k \star (\alpha - \beta) \rangle.$

The **Energy Distance**: an underrated kernel, k(x, y) = -||x - y||.

$$a(x) = \sum_{i} \alpha_{i} ||x - x_{i}|| \quad \text{instead of} \quad a(x) = \min_{i} ||x - x_{i}||$$

$$b(x) = \sum_{j} \beta_{j} ||x - y_{j}|| \quad \text{instead of} \quad b(x) = \min_{j} ||x - y_{j}||.$$

$$Loss(\alpha, \beta) = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} \|\mathbf{x}_{i} - \mathbf{y}_{j}\| - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\| - \frac{1}{2} \sum_{i} \sum_{j} \beta_{i} \beta_{j} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|$$
13

The Hausdorff distance is local, the Energy Distance is global

The Hausdorff distance is local, the Energy Distance is global

 \implies Can we get the best of both worlds?

An idea from Optimal Transport theory: The SoftAssign algorithm

Introducing the Optimal Transport problem

Minimize over N-by-M matrices (transport plans) π :

$$OT(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$$

subject to $\pi_{i,j} \ge 0$, $\sum_{j} \pi_{i,j} = \alpha_{i}, \quad \sum_{i} \pi_{i,j} = \beta_{j}.$

With $C(\mathbf{x}_i, \mathbf{y}_j) = \|\mathbf{x}_i - \mathbf{y}_j\|^p$,

 $\begin{aligned} \mathsf{OT}(\boldsymbol{\alpha},\boldsymbol{\beta}) &= \min_{\boldsymbol{\pi}} \langle \, \boldsymbol{\pi} \,,\, \mathsf{C} \, \rangle & \longrightarrow \text{Assignment} \\ \text{s.t. } \boldsymbol{\pi} &\geq 0, \qquad \boldsymbol{\pi} \, \mathbf{1} \,=\, \boldsymbol{\alpha}, \qquad \boldsymbol{\pi}^{\mathsf{T}} \, \mathbf{1} \,=\, \boldsymbol{\beta} \end{aligned}$

With $C(\mathbf{x}_i, y_j) = \|\mathbf{x}_i - y_j\|^p$,

$$\begin{array}{ll} \operatorname{OT}(\alpha,\beta) &= \min_{\pi} \left\langle \pi \,,\, \mathsf{C} \right\rangle & \longrightarrow \text{ Assignment} \\ & \text{ s.t. } \pi \geqslant 0, \quad \pi \, \mathbf{1} \,=\, \alpha, \quad \pi^{\mathsf{T}} \, \mathbf{1} \,=\, \beta \\ & = \max_{f,g} \left\langle \,\alpha \,,\, f \right\rangle \,+\, \left\langle \,\beta \,,\, g \,\right\rangle & \longrightarrow \text{ FedEx} \\ & \text{ s.t. } & f(\mathbf{x}_i) \,+\, g(y_j) \,\leqslant\, C(\mathbf{x}_i,y_j), \end{array}$$

With $C(\mathbf{x}_i, y_j) = \|\mathbf{x}_i - y_j\|^p$,

$$\begin{aligned} \mathsf{OT}(\alpha,\beta) &= \min_{\pi} \langle \pi, \mathsf{C} \rangle & \longrightarrow \mathsf{Assignment} \\ \text{s.t. } \pi &\geq 0, \qquad \pi \mathbf{1} = \alpha, \qquad \pi^{\mathsf{T}} \mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle & \longrightarrow \mathsf{FedEx} \\ \text{s.t.} & f(\mathsf{x}_i) + g(y_j) \leqslant C(\mathsf{x}_i, y_j), \end{aligned}$$

 \implies Combinatorial problem on the simplex

With $C(\mathbf{x}_i, \mathbf{y}_j) = \|\mathbf{x}_i - \mathbf{y}_j\|^p$,

$$\begin{array}{ll} \operatorname{OT}(\boldsymbol{\alpha},\boldsymbol{\beta}) &= \min_{\pi} \left\langle \pi \,,\, \mathsf{C} \right\rangle & \longrightarrow \text{ Assignment} \\ & \text{ s.t. } \pi \geqslant 0, \qquad \pi \, \mathbf{1} \,=\, \boldsymbol{\alpha}, \qquad \pi^{\mathsf{T}} \mathbf{1} \,=\, \boldsymbol{\beta} \\ & = \max_{f,g} \left\langle \, \boldsymbol{\alpha} \,,\, f \right\rangle \,+\, \left\langle \, \boldsymbol{\beta} \,,\, g \,\right\rangle & \longrightarrow \text{ FedEx} \\ & \text{ s.t. } \quad f(\mathbf{x}_i) \,+\, g(y_j) \,\leqslant\, C(\mathbf{x}_i,y_j), \end{array}$$

- \implies Combinatorial problem on the simplex
- \implies Hungarian method in $O(N^3)$.

Entropic regularization: introducing Schrödinger's problem

F

 $\beta_1 \ \beta_2 \ \beta_3 \ \beta_4 \ \beta_5 \ \beta_6$

. . .

 $(\pi_{i,j})$

 α_1

 α_2

 $\frac{\alpha_3}{\alpha_4}$

For
$$\varepsilon > 0$$
:
 $DT_{\varepsilon}(\alpha, \beta) = \min_{\pi} \underbrace{\sum_{i,j} \pi_{i,j} \cdot |\mathbf{x}_i - \mathbf{y}_j|^2}_{\text{transport cost}}$

$$+ \varepsilon \underbrace{\sum_{i,j} \pi_{i,j} \cdot \log \frac{\pi_{i,j}}{\alpha_i \beta_j}}_{\text{entropic barrier}}$$

subject to

$$\sum_{j} \pi_{ij} = \alpha_i, \quad \sum_{i} \pi_{ij} = \beta_j.$$

$$OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\pi} \langle \pi, C \rangle + \varepsilon \operatorname{KL}(\pi, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$$

s.t. $\pi \mathbf{1} = \boldsymbol{\alpha}, \qquad \pi^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy assignment} \\ \text{s.t.} \quad \pi \mathbf{1} = \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle &\longrightarrow \mathsf{Cheeky FedEx} \\ &- \underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - \mathsf{C})/\varepsilon} - 1 \rangle}_{\mathsf{soft constraint } f \oplus g \leqslant \mathsf{C}} \end{aligned}$$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \operatorname{\mathsf{KL}}(\pi,\alpha\otimes\beta) &\longrightarrow \operatorname{Fuzzy assignment} \\ \text{s.t.} & \pi \mathbf{1} = \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha,f \rangle + \langle \beta,g \rangle &\longrightarrow \operatorname{Cheeky FedEx} \\ &\quad -\underbrace{\varepsilon \langle \alpha\otimes\beta, e^{(f\oplus g-\mathsf{C})/\varepsilon} - 1 \rangle}_{\operatorname{soft constraint } f\oplus g \leqslant \mathsf{C}} \end{aligned}$$

 \implies Strictly convex problem on the simplex

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi, \mathsf{C} \rangle + \varepsilon \operatorname{\mathsf{KL}}(\pi, \alpha \otimes \beta) &\longrightarrow \operatorname{Fuzzy assignment} \\ \text{s.t.} & \pi \mathbf{1} = \alpha, \qquad \pi^{\mathsf{T}} \mathbf{1} = \beta \\ &= \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle &\longrightarrow \operatorname{Cheeky FedEx} \\ &- \underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - \mathsf{C})/\varepsilon} - 1 \rangle}_{\operatorname{soft constraint} f \oplus g \leqslant \mathsf{C}} \end{aligned}$$

 \implies Strictly convex problem on the simplex

At the optimum,
$$\pi = e^{(f \oplus g - C)/\varepsilon} \cdot \alpha \otimes \beta$$

i.e. $\pi_{i,j} = \alpha_i e^{f_i/\varepsilon} e^{-C(x_i, y_j)/\varepsilon} e^{g_j/\varepsilon} \beta_j$.

Textbook interpretation: balancing of a kernel matrix

$$\pi_{i,j} = \Delta(\boldsymbol{U}\boldsymbol{\alpha}) \cdot \mathsf{K}_{\mathbf{x},\mathbf{y}} \cdot \Delta(\boldsymbol{U}\boldsymbol{\beta})$$

with

- a kernel function k
 - $k(\mathbf{x}_i \mathbf{y}_j) = e^{-C(\mathbf{x}_i, \mathbf{y}_j)/\varepsilon}.$
- $U = e^{f/\varepsilon}$ and $V = e^{g/\varepsilon}$, positive weights on $\{x_i\}$ and $\{y_j\}$.
- ightarrow Enforce the **constraints**

$$\pi \mathbf{1} = \boldsymbol{\alpha}, \qquad \pi^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$$

Source and target.

Sinkhorn Iterative Algorithm **Input** : source $\alpha = \sum_{i} \alpha_{i} \delta_{\mathbf{x}_{i}}$ target $\beta = \sum_{i} \beta_{i} \delta_{y_{i}}$ **Parameter :** $k : x \mapsto e^{-|x|^2/\varepsilon}$ 1: $U \leftarrow \text{ones}(\text{size}(\alpha))$ 2: $U \leftarrow \text{ones}(\text{size}(\beta))$ 3: while updates > tol do 4: $U \leftarrow 1$./ K $\cdot (U\beta)$ 5: $U \leftarrow 1$./ $K^{T} \cdot (U\alpha)$ 6: return ε ($\langle \alpha, \log(U) \rangle + \langle \beta, \log(U) \rangle$) **Output :** fidelity $OT_{\varepsilon}(\alpha, \beta)$

Seen by the kernel k.

Input : source $\alpha = \sum_{i} \alpha_{i} \delta_{x_{i}}$ target $\beta = \sum_{i} \beta_{i} \delta_{y_{i}}$ **Parameter :** $k : x \mapsto e^{-|x|^2/\varepsilon}$ 1: $U \leftarrow \text{ones}(\text{size}(\alpha))$ 2: $V \leftarrow \text{ones}(\text{size}(\beta))$ 3: while updates > tol do 4: $U \leftarrow 1$./ K $\cdot (U\beta)$ 5: $U \leftarrow 1$./ $K^{T} \cdot (U\alpha)$ 6: return ε ($\langle \alpha, \log(U) \rangle + \langle \beta, \log(U) \rangle$) **Output :** fidelity $OT_{\epsilon}(\alpha, \beta)$

Sinkhorn Iteration 000

Starting estimate.

Input : source $\alpha = \sum_{i} \alpha_{i} \delta_{x_{i}}$ target $\beta = \sum_{i} \beta_{i} \delta_{y_{i}}$ **Parameter :** $k : x \mapsto e^{-|x|^2/\varepsilon}$ 1: $U \leftarrow \text{ones}(\text{size}(\alpha))$ 2: $U \leftarrow ones(size(\beta))$ 3: while updates > tol do 4: $U \leftarrow 1$./ K · $(U\beta)$ 5: $U \leftarrow 1$./ $K^{T} \cdot (U\alpha)$ 6: return ε ($\langle \alpha, \log(U) \rangle + \langle \beta, \log(U) \rangle$) **Output :** fidelity $OT_{\epsilon}(\alpha, \beta)$

Sinkhorn Iteration 250

Computing the OT plan.

Input : source $\alpha = \sum_{i} \alpha_{i} \delta_{x_{i}}$ target $\beta = \sum_{i} \beta_{i} \delta_{y_{i}}$ **Parameter :** $k : x \mapsto e^{-|x|^2/\varepsilon}$ 1: $U \leftarrow \text{ones}(\text{size}(\alpha))$ 2: $V \leftarrow \text{ones}(\text{size}(\beta))$ 3: while updates > tol do 4: $U \leftarrow 1$./ K · $(U\beta)$ 5: $\boldsymbol{V} \leftarrow \boldsymbol{1}$./ $\boldsymbol{K}^{\mathsf{T}} \cdot (\boldsymbol{U}\alpha)$ 6: return ε ($\langle \alpha, \log(U) \rangle + \langle \beta, \log(U) \rangle$) **Output :** fidelity $OT_{\epsilon}(\alpha, \beta)$

Sinkhorn Iteration 250

Computing the OT plan.

Input : source $\alpha = \sum_{i} \alpha_{i} \delta_{x_{i}}$ target $\beta = \sum_{i} \beta_{i} \delta_{y_{i}}$ **Parameter :** $k : x \mapsto e^{-|x|^2/\varepsilon}$ 1: $U \leftarrow \text{ones}(\text{size}(\alpha))$ 2: $V \leftarrow \text{ones}(\text{size}(\beta))$ 3: while updates > tol do 4: $U \leftarrow 1$./ K $\cdot (U\beta)$ 5: $U \leftarrow \mathbf{1} . / K^{\mathsf{T}} \cdot (\mathbf{U}\alpha)$ 6: return ε ($\langle \alpha, \log(U) \rangle + \langle \beta, \log(U) \rangle$) **Output :** fidelity $OT_{\varepsilon}(\alpha, \beta)$

Robust Point Matching, 1998-2017

TPS-RPM algorithm, Chui and Rangarajan, CVPR **2000** Optimal Transport for diffeomorphic registration, Feydy et al., MICCAI 2017

Robust Point Matching, 1998-2017

TPS-RPM algorithm, Chui and Rangarajan, CVPR **2000** Optimal Transport for diffeomorphic registration, Feydy et al., MICCAI **2017**

 \Longrightarrow We've added weights, orientations, convergence analysis... But shouldn't we go a bit further?

It's 2018 now: What's new?

Fact 1 : Sinkhorn is best implemented in the log-domain

Unfortunately,

 $k(\mathbf{x}_i, \mathbf{y}_j) \simeq 0$ if ε is too small.

Fact 1 : Sinkhorn is best implemented in the log-domain

Unfortunately,

 $k(\mathbf{x}_i, \mathbf{y}_j) \simeq 0$ if ε is too small.

$$OT_{\varepsilon}(\alpha,\beta) = \max_{f,g} \langle \alpha, f \rangle + \langle \beta, g \rangle \longrightarrow Cheeky \ FedEx$$
$$-\underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - C)/\varepsilon} - 1 \rangle}_{\text{soft constraint } f \oplus g \leq C}$$

Fact 1 : Sinkhorn is best implemented in the log-domain

Unfortunately,

$$k(\mathbf{x}_i, \mathbf{y}_j) \simeq 0$$
 if ε is too small.

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) \ = \ \max_{f,g} \langle \alpha, f \rangle \ + \ \langle \beta, g \rangle & \longrightarrow \mathsf{Cheeky FedEx} \\ & - \underbrace{\varepsilon \langle \alpha \otimes \beta, e^{(f \oplus g - \mathsf{C})/\varepsilon} - 1 \rangle}_{\mathsf{soft constraint } f \oplus g \leqslant \mathsf{C}} \end{aligned}$$

Equivalent to the constraints on π , the optimality conditions read:

$$\begin{split} f(\mathbf{x}_i) &= -\varepsilon \log \sum_j \beta_j \exp \frac{1}{\varepsilon} (g(\mathbf{y}_j) - \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j)), \\ g(\mathbf{y}_j) &= -\varepsilon \log \sum_i \alpha_i \exp \frac{1}{\varepsilon} (f(\mathbf{x}_i) - \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j)). \end{split}$$

The SoftMin interpolates between a minimum and a sum

$$\log\left(e^{c} + e^{d}\right) = \max(c, d) + \log\left(\underbrace{e^{c-\max(c, d)} + e^{d-\max(c, d)}}_{\in [1, 2]}\right)$$
The SoftMin interpolates between a minimum and a sum

$$\log\left(e^{c} + e^{d}\right) = \max(c, d) + \log\left(\underbrace{e^{c-\max(c, d)} + e^{d-\max(c, d)}}_{\in [1, 2]}\right)$$

Building on this, for a regularization parameter $\varepsilon >$ 0, we define

$$b^{\varepsilon}(\mathbf{x}) = \min_{\substack{y \sim \beta}} \|\mathbf{x} - \mathbf{y}\| = -\varepsilon \log \sum_{j=1}^{M} \beta_j \exp\left(-\frac{1}{\varepsilon} \|\mathbf{x} - \mathbf{y}_j\|\right)$$

Energy Distance : $\sum_{j} \beta_{j} \|\mathbf{x}_{i} - \mathbf{y}_{j}\| = b_{k}(\mathbf{x}_{i})$

Energy Distance : $\sum_{j} \beta_{j} \|\mathbf{x}_{i} - \mathbf{y}_{j}\| = b_{k}(\mathbf{x}_{i})$

Hausdorff Distance : $\min_{j} ||\mathbf{x}_{i} - \mathbf{y}_{j}|| = d(\mathbf{x}_{i}, \operatorname{supp}(\beta))$

- Energy Distance : $\sum_{i} \beta_{j} \|\mathbf{x}_{i} \mathbf{y}_{j}\| = b_{k}(\mathbf{x}_{i})$
- $\begin{array}{lll} \varepsilon \text{-SoftMin} & : & \min_{\varepsilon} \|\mathbf{x}_i \mathbf{y}\| & = & b_{\varepsilon}(\mathbf{x}_i) \simeq f(\mathbf{x}_i) \\ \text{Hausdorff Distance} & : & \min_{j} \|\mathbf{x}_i \mathbf{y}_j\| & = & d(\mathbf{x}_i, \operatorname{supp}(\beta)) \end{array}$

The optimality conditions read:

$$\begin{aligned} f(\mathbf{x}_i) &= b(\mathbf{x}) = -\varepsilon \log \sum_j \beta_j \exp \frac{1}{\varepsilon} \big[g(\mathbf{y}_j) - \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j) \big], \\ g(\mathbf{y}_j) &= a(\mathbf{y}) = -\varepsilon \log \sum_i \alpha_i \exp \frac{1}{\varepsilon} \big[f(\mathbf{x}_i) - \mathsf{C}(\mathbf{x}_i, \mathbf{y}_j) \big]. \end{aligned}$$

The optimality conditions read:

$$\frac{f(\mathbf{x}_i) = b(\mathbf{x}) = \min_{\mathbf{y} \sim \beta} \left[C(\mathbf{x}, \mathbf{y}) - a(\mathbf{y}) \right] ,$$

$$g(y_j) = a(y) = \min_{\mathbf{x} \sim \alpha} \left[C(\mathbf{x}, y) - b(\mathbf{x}) \right]$$

The optimality conditions read:

$$\frac{f(x_i)}{y \sim \beta} = b(x) = \min_{y \sim \beta} \left[C(x,y) - a(y) \right] ,$$

$$g(y_j) = a(y) = \min_{\substack{x \sim \alpha}} \left[C(x, y) - b(x) \right]$$

Final cost:

 $OT_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \langle \boldsymbol{\alpha},\boldsymbol{f} \rangle + \langle \boldsymbol{\beta},\boldsymbol{g} \rangle = \langle \boldsymbol{\alpha},\boldsymbol{b} \rangle + \langle \boldsymbol{\beta},\boldsymbol{a} \rangle.$

٠

The optimality conditions read:

$$\frac{f(x_i)}{y \sim \beta} = b(x) = \min_{y \sim \beta} \left[C(x,y) - a(y) \right] ,$$

 $g(y_j) = a(y) = \min_{\substack{\mathbf{x}\sim\alpha}} \left[C(\mathbf{x},y) - b(\mathbf{x}) \right]$

Final cost:

$$OT_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \langle \boldsymbol{\alpha},\boldsymbol{f} \rangle + \langle \boldsymbol{\beta},\boldsymbol{g} \rangle = \langle \boldsymbol{\alpha},\boldsymbol{b} \rangle + \langle \boldsymbol{\beta},\boldsymbol{a} \rangle.$$

Discrete, computational OT [Cuturi, 2013, Peyré and Cuturi, 2018]: Start from an ε -smoothed **Hausdorff** distance, but let the influence fields **a** and **b interact** with each other. Enforce a **mass spreading** constraint on the spring system: all of α should be linked to all of β .

If $\varepsilon = 0$: the Sinkhorn loop gets **stuck** after two iterations.

If $\varepsilon = 0$: the Sinkhorn loop gets **stuck** after two iterations. If $\varepsilon > 0$: it is a fixed-point iteration that converges linearly...

- If $\varepsilon = 0$: the Sinkhorn loop gets **stuck** after two iterations.
- If $\varepsilon > 0$: it is a fixed-point iteration that converges linearly...

But even in simple cases, we only converge in $O((1 - \varepsilon)^n)$: Computing a true Wasserstein distance OT_0 is out-of-reach.

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.1$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Registrating circles, $C(x, y) = ||x - y||^2$, $\sqrt{\varepsilon} = 0.2$:

Bad news: for $0 < \varepsilon \leq +\infty$, we converge towards α such that

 $\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) < \mathsf{OT}_{\varepsilon}(\boldsymbol{\beta}, \boldsymbol{\beta}).$

Standard solution: use an annealing scheme

TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

Standard solution: use an annealing scheme

TPS-RPM algorithm, Chui and Rangarajan, CVPR 2000

⇒ Expensive and cumbersome workaround, with parameters to tune.

$$OT_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \min_{\boldsymbol{\pi}} \langle \boldsymbol{\pi}, \boldsymbol{C} \rangle + \varepsilon \operatorname{KL}(\boldsymbol{\pi}, \boldsymbol{\alpha} \otimes \boldsymbol{\beta}) \longrightarrow \operatorname{Fuzzy assignment}$$

s.t. $\boldsymbol{\pi} \mathbf{1} = \boldsymbol{\alpha}, \quad \boldsymbol{\pi}^{\mathsf{T}} \mathbf{1} = \boldsymbol{\beta}$

 $\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} &= \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} &= \beta \\ \\ \mathsf{OT}_{\varepsilon}(\alpha,\beta) & \xrightarrow{\varepsilon \to +\infty} & \langle \alpha\otimes\beta,\mathsf{C} \rangle &= \langle \alpha,\mathsf{C}\star\beta \rangle \end{aligned}$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} &= \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} &= \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,,\, \mathsf{C} \,\rangle \ = \ \langle \alpha \,,\, \mathsf{C} \,\star\, \beta \,\rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\alpha,\beta) = \mathsf{OT}_{\varepsilon}(\alpha,\beta) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\alpha,\alpha) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\beta,\beta)$$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,, \, \mathsf{C} \, \rangle \ = \ \langle \alpha \,, \, \mathsf{C} \, \star \, \beta \, \rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) \quad = \quad \mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) \ - \ \frac{1}{2}\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\alpha}) \ - \ \frac{1}{2}\mathsf{OT}_{\varepsilon}(\boldsymbol{\beta},\boldsymbol{\beta})$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \quad \stackrel{\varepsilon \to 0}{\longleftrightarrow} \quad \mathsf{S}_{\varepsilon}(\alpha,\beta) \quad \stackrel{\varepsilon \to +\infty}{\longrightarrow} \quad \mathsf{Kernel}_{-\mathsf{C}}(\alpha,\beta)$

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\alpha,\beta) &= \min_{\pi} \langle \pi,\mathsf{C} \rangle + \varepsilon \,\mathsf{KL}(\pi,\alpha\otimes\beta) &\longrightarrow \mathsf{Fuzzy} \text{ assignment} \\ \text{s.t.} \quad \pi \,\mathbf{1} \,=\, \alpha, \qquad \pi^{\mathsf{T}}\mathbf{1} \,=\, \beta \end{aligned}$$

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) \qquad \xrightarrow{\varepsilon \to +\infty} \qquad \langle \alpha \otimes \beta \,, \, \mathsf{C} \, \rangle \ = \ \langle \alpha \,, \, \mathsf{C} \, \star \, \beta \, \rangle$$

Define the Sinkhorn divergence [Ramdas et al., 2017]:

$$\mathsf{S}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\beta}) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\boldsymbol{\alpha},\boldsymbol{\alpha}) - \frac{1}{2}\mathsf{OT}_{\varepsilon}(\boldsymbol{\beta},\boldsymbol{\beta})$$

 $\mathsf{Wasserstein}_{+\mathsf{C}}(\alpha,\beta) \stackrel{\varepsilon \to 0}{\longleftarrow} \mathsf{S}_{\varepsilon}(\alpha,\beta) \stackrel{\varepsilon \to +\infty}{\longrightarrow} \mathsf{Kernel}_{-\mathsf{C}}(\alpha,\beta)$

In practice, S_{ε} is "good enough" for ML applications [Genevay et al., 2018, Salimans et al., 2018, Sanjabi et al., 2018].

In our paper: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures α , β and regularization $\varepsilon > 0$:

In our paper: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

In our paper: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex and differentiable
In our paper: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{arepsilon}(oldsymbol{lpha},eta)$ with equality iff. $oldsymbol{lpha}=eta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex and differentiable

These results can be generalized to arbitrary **feature** spaces – e.g. (position, orientation, curvature).

In our paper: theoretical guarantees

Theorem (F., Séjourné, Vialard, Amari, Trouvé, Peyré; 2018) For all probability measures *α*, *β* and regularization $\varepsilon > 0$:

 $0 \leqslant S_{\varepsilon}(\alpha, \beta)$ with equality iff. $\alpha = \beta$

 $lpha\mapsto \mathsf{S}_arepsilon(lpha,eta)$ is convex and differentiable

These results can be generalized to arbitrary **feature** spaces – e.g. (position, orientation, curvature).

Conclusion

The true OT_0 problem is hard.

The true OT_0 problem is hard. Approximating it with subsampling or smoothing is easy: this is what SoftAssign is all about. The true OT_0 problem is hard. Approximating it with subsampling or smoothing is easy: this is what SoftAssign is all about.

Remarkably, $S_{\varepsilon}(\alpha, \beta)$ is a cheap approximation of $OT_0(\alpha, \beta)$ that defines a **positive definite** cost between the **full samples**. It is the first known way of doing so.

Kernel norm + gradient with N vertices on a cheap laptop's GPU (GTX960M)

⇒ pip install pykeops ⇐ (Thanks Benjamin and Joan!)

Kernel norm + gradient with N vertices on a cheap laptop's GPU (GTX960M)

Fidelity + gradient with N vertices on a cheap laptop's GPU (GTX960M)

Fidelity + gradient with N vertices on a high-end GPU (Tesla P100)

We provide a reference PyTorch implementation

github.com/jeanfeydy/global-divergences.

Gradient of the Energy Distance, computed in 0.5s on my laptop. Data from the OsteoArthritris Initiative: 52,319 and 34,966 voxels out of a 192-192-160 volume.

The ε -Sinkhorn divergence; with $\|\mathbf{x} - \mathbf{y}\|^2$ and $\sqrt{\varepsilon} = \mathbf{.1}$

The ε -Sinkhorn divergence; with $\|\mathbf{x} - \mathbf{y}\|^2$ and $\sqrt{\varepsilon} = \mathbf{.1}$

The ε -Sinkhorn divergence; with $\|\mathbf{x} - \mathbf{y}\|^2$ and $\sqrt{\varepsilon} = .1$

• Try using k(x, y) = -||x - y||!

• Try using
$$k(x, y) = -||x - y||!$$

• Remove the entropic bias from the SoftAssign algorithm!

- Try using k(x, y) = -||x y||!
- Remove the entropic bias from the SoftAssign algorithm!
- Sinkhorn = Hausdorff + mass spreading constraint
 - $\simeq~{\rm best}$ you can do without topology or landmarks
 - $\simeq~$ 20-50 convolutions through the data
 - ightarrow Is it worth it?

Our work:

• Miccai2017 : proof of concept

Our work:

- Miccai2017 : proof of concept
- ShapeMi2018/AiStats2019 :
 - link with statistics and computer graphics
 - reference implementation on sparse data
 - theoretical guarantees

Our work:

- Miccai2017 : proof of concept
- ShapeMi2018/AiStats2019 :
 - link with statistics and computer graphics
 - reference implementation on sparse data
 - theoretical guarantees
- 2019:
 - unbalanced formulation, gestion of **outliers**
 - evaluation in varied settings
 - separable volumetric implementation

• Combinatorial interpretation of the Sinkhorn iterations?

- Combinatorial interpretation of the Sinkhorn iterations?
- Link between S_{ε} and Sobolev distances?

- Combinatorial interpretation of the Sinkhorn iterations?
- Link between S_{ε} and Sobolev distances?
- What about Octrees?

- Combinatorial interpretation of the Sinkhorn iterations?
- Link between S_{ε} and Sobolev distances?
- What about Octrees?
- Interest in the CVPR/SIGGRAPH communities?

Thank you for your attention.

Any questions ?

$$k(x-y) = \exp(-||x-y||/.2)$$

 $\begin{aligned} \mathsf{d}_{k}(\alpha,\beta) &= \frac{1}{2} \langle \alpha - \beta \mid k \star (\alpha - \beta) \rangle \\ \nabla_{\mathsf{x}_{i}} \mathsf{d}_{k}(\alpha,\beta) &= \nabla \big[k \star (\alpha - \beta) \big](\mathsf{x}_{i}) = \nabla b^{k}(\mathsf{x}_{i}) - \nabla a^{k}(\mathsf{x}_{i}) \end{aligned}$

$$k(x-y) = -\|x-y\|$$

 $d_{k}(\alpha,\beta) = \frac{1}{2} \langle \alpha - \beta | k \star (\alpha - \beta) \rangle$ $\nabla_{\mathbf{x}_{i}} d_{k}(\alpha,\beta) = \nabla [k \star (\alpha - \beta)](\mathbf{x}_{i}) = \nabla b^{k}(\mathbf{x}_{i}) - \nabla a^{k}(\mathbf{x}_{i})$

The Energy Distance is scale-invariant, robust

$$k(x-y) = \exp(-||x-y||^2/.1^2)$$

The Energy Distance is scale-invariant, robust

$$k(\mathbf{x}-\mathbf{y}) = -\|\mathbf{x}-\mathbf{y}\|$$

An idea from computer graphics: Hausdorff distances
The SoftMin fidelity interpolates between Hausdorff and ED

Kernel, \sum

The SoftMin fidelity interpolates between Hausdorff and ED

$$\max^{\varepsilon}(c,d) = \varepsilon \log \left(\exp(\frac{c}{\varepsilon}) + \exp(\frac{d}{\varepsilon}) \right)$$

The SoftMin fidelity interpolates between Hausdorff and ED

$$\max^{\varepsilon}(c,d) = \varepsilon \log \left(\exp(\frac{c}{\varepsilon}) + \exp(\frac{d}{\varepsilon}) \right)$$

You can also use it with e.g. $||x - y||^2$ instead of ||x - y||.

Our papers:

Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018

Our papers:

- Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
 - F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018

Our papers:

- Global divergences between measures: from Hausdorff distance to
 Optimal Transport, F., Trouvé, 2018
- Sinkhorn entropies and divergences,
 F., Séjourné, Vialard, Amari, Trouvé, Peyré, 2018
- Optimal Transport for diffeomorphic registration, F., Charlier, Vialard, Peyré, 2017

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2018). Unbalanced optimal transport: Dynamic and kantorovich formulations.

Journal of Functional Analysis, 274(11):3090–3123.

Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in neural information processing systems, pages 2292–2300.

References ii

Genevay, A., Peyre, G., and Cuturi, M. (2018). Learning generative models with sinkhorn divergences. In Storkey, A. and Perez-Cruz, F., editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 1608–1617. PMLR.

Kaltenmark, I., Charlier, B., and Charon, N. (2017).
 A general framework for curve and surface comparison and registration with oriented varifolds.

In Computer Vision and Pattern Recognition (CVPR).

References iii

- Peyré, G. and Cuturi, M. (2018). Computational optimal transport. arXiv preprint arXiv:1803.00567.

 Ramdas, A., Trillos, N. G., and Cuturi, M. (2017).
 On wasserstein two-sample testing and related families of nonparametric tests.
 Entropy, 19(2).

Salimans, T., Zhang, H., Radford, A., and Metaxas, D. (2018). Improving GANs using optimal transport. arXiv preprint arXiv:1803.05573.

Sanjabi, M., Ba, J., Razaviyayn, M., and Lee, J. D. (2018). On the convergence and robustness of training GANs with regularized optimal transport.

arXiv preprint arXiv:1802.08249.