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Introduction



How do we decompose variability ?

Figure 1: Image denoising, from [2]. .

Research in Image Processing :

• Signal analysis.

• Segmentation.

• Population Analysis.

We need appropriate

representations.
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Orthonormal image transforms

N = Images naturelles

Figure 2: A well-chosen orthonormal basis (aka. transform) of RW×H can

help us to formulate efficient signal processing algorithms.
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JPEG2000, JPEG : Wavelets, Blockwise (high + low) frequencies

(a) Original image. (b) JPEG2000, 20 : 1. (c) JPEG, 20 : 1.

Figure 3: Taken from www.photozone.de.
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Convolutional Neural Networks : Texture + Structure

Figure 4: CNN visualization, from vision03.csail.mit.edu/cnn_art/.
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Convolutional Neural Networks : Texture + Structure

Figure 5: Reference image.
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Convolutional Neural Networks : Texture + Structure

Figure 5: With a transferred texture component. [6]
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Convolutional Neural Networks : Texture + Structure

Figure 5: With a transferred texture component. [6]
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Convolutional Neural Networks : Texture-invariant Classification

Figure 6: CNNs allow tech companies to group together photos and

sketches of beavers.
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How do we handle intra-class variability ?

Figure 7: Silhouettes segmented from a fishing net. [3]
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Rigid Body Analysis



From images to labeled point clouds

Figure 8: Anatomical landmarks on a tuna fish. [1]
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Mathematical formulation

Let X, Y ∈ RM×D be two labeled point clouds.

Let Sτ,υ denote the rigid-body transformation of parameters

τ (translation) and υ (rotation + scaling).

Then, try to find

τ0, υ0 = argmin
τ,υ

‖ Sτ,υ(X)− Y ‖22 (1)

= argmin
τ,υ

M∑
m=1

| υ · xm + τ − ym |2 . (2)
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Position, Scale and Orientation

Figure 9: Matching the blue wing on the red one. (Wikipedia)
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Pros and cons of Rigid body analysis

Pros :

• Simple and robust

• Parameters make sense

• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 4 or 6 explicative parameters

• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.

However, it is too limited to allow in-detail analysis.
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Optimal Transport



Dynamic formulation

Let : (x1, . . . , xM), (y1, . . . , yM) be two point clouds in RD.

Find a collection of paths γm : t ∈ [0, 1] 7→ γm
t ,

a permutation σ : [[1,M]]→ [[1,M]] such that

∀ m, γm
0 = xm and γm

1 = yσ(m), (3)

minimizing

`2(γ) =
M∑

m=1

∫ 1

t=0
‖γ̇m

t ‖
2 dt. (4)

γ is the optimal transport path between the two shapes

X
γ−−→ Y. (5)
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Static formulation : permutation

If we relabel the unit masses (x1, . . . , xM) and (y1, . . . , yM),

find a permutation σ : [[1,M]]→ [[1,M]]minimizing

CX,Y(σ) =
M∑

m=1

∥∥∥xm − yσ(m)
∥∥∥2 . (6)

σ is an optimal labeling.
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Image matching as a mass-carrying problem

Figure 10: Optimal transport between two curves seen as mass

distributions : from a déblai to a remblai.
15
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Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem

• Global and precise matchings

• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.

However, it does not provide any smoothness guarantee.
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Can we build a rich and practical model

for smooth deformations ?
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The LDDMM framework



Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 11: Source.
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Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 11: Target.
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Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 11: OT matching.
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Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 11: LDDMM matching.
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The LDDMM framework

Regularized transport : a Riemannian problem



Static regularization : a first attempt

A naive way to regularize transport :

Find σ : [[1,M]]→ [[1,M]]minimizing

C
X,Y
k
(σ) =

∑
m

∥∥∥xm − yσ(m)
∥∥∥2︸ ︷︷ ︸

Displacement cost

+
∑
m,m′

k(xm, xm
′
) ·
∥∥∥ yσ(m) − yσ(m

′)
∥∥∥2︸ ︷︷ ︸

Regularization cost

,

(7)

with k(x, y) a kernel neighborhood function.
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Static regularization : symmetry without continuity

Find a permutation σ : [[1,M]]→ [[1,M]]minimizing

C
X,Y
k,sym(σ) =

∑
m

∥∥∥xm − yσ(m)
∥∥∥2︸ ︷︷ ︸

Displacement cost

+
1

2

∑
m,m′

k(xm, xm
′
) ·
∥∥∥yσ(m) − yσ(m

′)
∥∥∥2︸ ︷︷ ︸

X → Y regularization cost

+
1

2

∑
m,m′

k(ym, ym
′
) ·
∥∥∥xσ−1(m) − xσ

−1(m′)
∥∥∥2︸ ︷︷ ︸

Y → X regularization cost

.

This cost is symmetric, but does not handle properly the shapes

between X and Y.
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Going back to the kinematic transportation

Find a collection of paths γm from X to Yminimizing

Ck(γ) =

∫ 1

0

[ ∑
m

‖γ̇m
t ‖

2

︸ ︷︷ ︸
Displacement cost

+
∑
m,m′

k(γm
t , γ

m′
t ) ·

∥∥∥γ̇m
t − γ̇m′

t

∥∥∥2︸ ︷︷ ︸
Regularization cost

]
dt.

Particles will move optimally if they are :

• lazy

• gregarious wrt. their k-neighbors

20



Geodesic path-finding on a Riemannian manifold of point clouds

With γt = (γ1
t , . . . , γ

M
t ) ∈ RM×D, we can write

Ck(γ) =

∫ 1

0
γ̇t

Tgγt γ̇tdt. (8)

Optimal deformations are geodesics on the space of landmarks RM×D

endowed with a Riemannian metric gq :(
dg(q→ q+ v · dt)

)2
dt

=
∑
m

‖vm‖2 +
∑
m,m′

k(qm, qm
′
) ·
∥∥∥vm − vm

′
∥∥∥2

= vTgqv = ‖v‖2gq (9)
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The LDDMM framework

Geodesic shooting on a Riemannian manifold



Riemann : conveniently working with arbitrary geometries

(a) As a deformed square. (b) Embedded in R3.

Figure 12: The donut-shaped torus.
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Sometimes, we can compute geodesics explicitly...

a

b

(1− t) · a+ t · b

(a) The Euclidean plane. (b) The Poincaré disk.

Figure 13: Explicit geodesics on homogeneous manifolds.

(b) is adapted from www.pitt.edu/~jdnorton/.
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But this is not the case in general

Figure 14: Geodesics on the Duhem’s bull, embedded in R3.

Taken from www.chaos-math.org.
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A first result : the geodesic equation

Geodesic=⇒ locally “straight”=⇒ second order ODE,

the geodesic equation satisfied by γt = (γ1
t , . . . , γ

D
t ) :

∀ d ∈ [[1,D]] , γ̈d
t = −

∑
16i,j6D

Γdij(γt) · γ̇ i
t γ̇

j
t, (10)

where the Christoffel symbols Γdij(γt) are given by :

Γdij(γt) =
1

2

D∑
l=1

gdl(q) ·
(
∂igjl(q) + ∂jgil(q)− ∂lgij(q)

)
, (11)

with gij the metric tensor and gdl its inverse, the cometric.

25



A first result : the geodesic equation

Geodesic=⇒ locally “straight”=⇒ second order ODE,

the geodesic equation satisfied by γt = (γ1
t , . . . , γ

D
t ) :

∀ d ∈ [[1,D]] , γ̈d
t = −

∑
16i,j6D

Γdij(γt) · γ̇ i
t γ̇

j
t, (10)

where the Christoffel symbols Γdij(γt) are given by :

Γdij(γt) =
1

2

D∑
l=1

gdl(q) ·
(
∂igjl(q) + ∂jgil(q)− ∂lgij(q)

)
, (11)

with gij the metric tensor and gdl its inverse, the cometric.

25



From celerity to momentum

The “Christoffel” equation is an ODE on the tangent bundle :

(qt, vt) = (γt, γ̇t). (12)

Hamilton : one should work on the cotangent bundle :

(qt, pt) = (qt, gqtvt). (13)

We denote Kq = g−1
q and H(q, p) = 1

2p
TKqp, so that

1

2
vTt gqtvt =

1

2
‖γ̇t‖2γt︸ ︷︷ ︸

Kinetic energy

=
1

2
pTt Kqtpt = H(qt, pt). (14)
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Hamiltonian geodesic equations

Hamilton, 1833

γt is a geodesic if and only if the lifted cotangent trajectory (qt, pt)

follows the Hamiltonian equation :{
q̇t = +∂H

∂p (qt, pt) = +Kqtpt

ṗt = −∂H
∂q (qt, pt) = −1

2∂q(pt, Kqpt)(qt)
. (15)

In the cotangent phase space, we flow along the symplectic gradient :

X(q, p) =

(
+∂H

∂p (q, p)

−∂H
∂q (q, p)

)
= “R−90◦”

(
∇H(q, p)

)
. (16)
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Short physical ‘‘example’’

Consider a free-falling particle of mass m :

q = z, v = ż, (17)

q̇ = v, v̇ = −g. (18)

Now, we can write p = mv so that

H(q, p) = “Ecin”(q, p) + “Epp”(q, p) =
1

2

p2

m
+ mgq. (19)

We find : {
q̇ = +∂H

∂p = +p/m

ṗ = −∂H
∂q = −mg

. (20)
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The geodesic shooting algorithm

A geodesic path γt is characterized by (q0, p0).

To compute any geodesic starting from a source q0, we simply need a

shooting momentum p0 and a simplistic Euler scheme :{
qt+0.1 = qt + 0.1 · Kqtpt
pt+0.1 = pt − 0.1 · ∂q(pt, Kqpt)(qt)

. (21)

Exponential map :

Expq0 : p0 ∈ T?q0M 7→ q1 ∈M (22)
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Lessons taught by the Hamiltonian theory of geodesics

We are looking for :

• Tearing-adverse metrics on the space of landmarks

• Efficient ways to compute geodesics (deformations)

Hamilton has taught us that :

• Geodesics are “simple” iff the cometric Kq = g−1
q is simple

• The Exponential map can be computed efficiently

30
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The LDDMM framework

Kernel cometrics and Diffeomorphic trajectories



Parallelism is the way forward

Figure 15: Highly-parallel MoKaMachine (Mokaplan Inria team). 31



GPUs in action

Figure 16: Mythbusters Demo GPU versus CPU, from the Nvidia YouTube

channel.
32



Kernel cometrics, reduced tensor

Use a reduced kernel matrix

kq =


k(q1, q1) k(q1, q2) · · · k(q1, qM)

k(q2, q1) k(q2, q2) · · · k(q2, qM)
...

...
. . .

...

k(qM, q1) k(qM, q2) · · · k(qM, qM)

 (23)

so that

H(q, p) =
1

2
pTKqp =

1

2

M∑
i,j=1

k(qi, qj) · piT pj. (24)

In a computational sense, this is the simplest family of cometrics on

the space of points clouds.
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Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 17: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .25.
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 18: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .35.
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Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 19: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .50.
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(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 19: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .50.
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Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 20: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = 1..
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(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 20: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = 1..
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RKHS norms on velocity vector fields

Let k be a smooth enough kernel function, with k̂(ω) ∈ R?
+.

If v : RD → RD is a vector field on the ambient space, define

‖v‖2k =

∫
ω∈RD

1

k̂(ω)
|̂v(ω)|2 dω. (25)

• Vk ={v |‖v‖k <∞} is a Hilbert space of k-smooth vector fields

• We assume k is smooth enough, so that δx : v 7→ v(x) belongs to

the dual space (Vk)
? : we link with the theory of Reproducing

Kernel Hilbert Spaces.
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Integration of k-smooth vector flows

Assume that (vt) is a time-varying vector field such that

`k(v)
2 =

∫ 1

0
‖vt‖2k dt < ∞. (26)

According to Picard-Lindelöf theorem, we can integrate the flow, find

a unique trajectory ϕt of diffeomorphisms such that for every point

x ∈ RD and time t ∈ [0, 1] :

ϕ0(x) = x and
d
dt

[ϕt(x)] = vt ◦ ϕt(x),

i.e. ϕ0 = IdRD and ϕt = IdRD +

∫ t

s=0
vs ◦ ϕs ds.

39



Integration of k-smooth vector flows

Assume that (vt) is a time-varying vector field such that

`k(v)
2 =

∫ 1

0
‖vt‖2k dt < ∞. (26)

According to Picard-Lindelöf theorem, we can integrate the flow, find

a unique trajectory ϕt of diffeomorphisms such that for every point

x ∈ RD and time t ∈ [0, 1] :

ϕ0(x) = x and
d
dt

[ϕt(x)] = vt ◦ ϕt(x),

i.e. ϕ0 = IdRD and ϕt = IdRD +

∫ t

s=0
vs ◦ ϕs ds.

39



An infinite-dimensional matching problem

We define Gk ={ϕ1 | · · ·} the set of diffeomorphisms obtained by

integrating finite-cost vector flows (vt) ∈ L2(Vk).

Gk is an infinite-dimensional Riemannian manifold modeled on Vk. As

diffeomorphisms carry around images and measures, we try to

minimize

C2(ϕ1) = `k(v)
2 =

∫ 1

0
‖vt‖2k dt < ∞ (27)

under the constraint that

X
ϕ1−−−−→ Y. (28)
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The kernel and diffeomorphic geodesics coincide

Reduction Principle

Let qt be a time-dependent point cloud, k a kernel function.

Then, the two propositions below are equivalent :

i) qt is a geodesic for the kernel cometric Kq, with momentum pt

associated to the Hamiltonian

H(q, p) =
1

2
pTKqp. (29)

ii) qt is carried around by a locally optimal diffeomorphic trajectory

ϕt = Flow(vt), and we have

vt = k ? pt i.e. vt(x) =
M∑

m=1

k(qmt , x) p
m
t . (30)
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Hand-waving proof of the reduction principle, part 1

At any time t,

vt = argmin{‖v‖k | ∀ m, v(q
m
t ) = vt(q

m
t ) } . (31)

Hence, as vt does not have any superfluous component,

vt ∈{ v | ∀ m, v(qmt ) = 0 }⊥k (32)

i.e. vt ∈

(
M⋂

m=1

{
v |
〈
δqmt , v

〉
= 0

})⊥k

. (33)

But we also know that :〈
k ? δqmt , v

〉
k
=

∫
ω∈RD

1

k̂(ω)
k̂ ? δqmt (ω) · v̂(ω) dω (34)

=

∫
ω∈RD

δ̂qmt (ω) · v̂(ω) dω (35)

=
〈
δqmt , v

〉
= v(qmt ). (36)
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Hand-waving proof of the reduction principle, part 2

Hence why, at any time t,

vt ∈

(
M⋂

m=1

{
v |
〈
k ? δqmt , v

〉
k
= 0

})⊥k

(37)

=
M⋃

m=1

(
k ? δqmt

)⊥k⊥k (38)

= Vect
(
k ? δqmt , m ∈ [[1,M]]

)
. (39)

So, one can write

vt = k ?

(
M∑

m=1

pmt δqmt

)
= k ? pt, (40)

and

‖vt‖2k =
〈
k ? pt, k

(−1) ? k ? pt

〉
= 〈k ? pt, pt〉 = pTt Kqtpt. (41)
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Influence of the kernel width, σ = .25

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 21: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .25.
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 22: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .35.
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 22: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .35.
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 22: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .35.
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(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).
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Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 22: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .35.

45



Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 23: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = .50.
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Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt, pt).

Figure 24: Geodesic shooting, k(x− y) = exp(−‖x− y‖2 /2σ2),

σ = 1..
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Conclusion

We have now presented the Large Deformation Diffeomorphic Metric

Mapping, or LDDMM setting :

• OT (σ = 0)
σ++−−−−−→ Gk

σ++−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)

• The current availability of GPUs (parallelism)

• The Reduction Principle ((qt, pt)←→ ϕt)
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Conclusion



We can now emulate D’Arcy Thompson’s work

Figure 25: Excerpt from the seminal book of D’Arcy Wentworth Thompson

(1860-1948), On Growth and Forms. 49



Statistics on a Riemannian manifold

Biologists, Neurologists and Physicians would like to conduct

statistical surveys such as :

• Linear regression

• Mean computation + Principal Component Analysis

• Transport of tangential information

Problem : no meaningful algebraic structure (+,×) on shapes.

Given a mere Riemannian distance, we provide :

• Geodesic regression

• Fréchet Mean + PCA on shooting momentums

• Parallel transport
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Transfer of anatomical data: animated silhouettes

Figure 26: Video presentation of the (non-LDDMM) paper Anatomy Transfer

Fast Forward, Siggraph Asia 2013 by Ali-Hamadi, Liu, Gilles et al.

51



Transfer of anatomical data: medical applications

Figure 27: Video presentation of the (non-LDDMM) paper Anatomy Transfer

Fast Forward, Siggraph Asia 2013 by Ali-Hamadi, Liu, Gilles et al.
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Construction of anatomical atlases

Figure 28: Building an atlas from the retina dataset [5].
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A continuum of professions

Figure 29: A (very) schematic view of the fields related to Computational

Anatomy. 54



A continuum of professions

Figure 29: The people behind the labels.
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The future of Computational Anatomy

Computers

Maths Medicine

Figure 30: The space of anatomical models.
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Figure 30: The space of anatomical models.
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Thank you for your attention.
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The pytorch library: symbolic maths on the GPU

31 def _Hqp(q, p, sigma) :
32 "The hamiltonian, or kinetic energy of the shape q with momentum p."
33 pKqp = _k(q, q, sigma) * (p @ p.t()) # pKqpi,j = k(qi, qj)

〈
pi, pj

〉
2

34 return .5 * pKqp.sum() # H(q, p) = 1
2

∑
i,j k(qi, qj) pi.pj

35
36 # The partial derivatives of the Hamiltonian are automatically computed !
37 def _dq_Hqp(q,p,sigma) :
38 return torch.autograd.grad(_Hqp(q,p,sigma), q, create_graph=True)[0]
39 def _dp_Hqp(q,p,sigma) :
40 return torch.autograd.grad(_Hqp(q,p,sigma), p, create_graph=True)[0]
41
42 def _HamiltonianShooting(q, p, sigma) :
43 "Shoots to time 1 a k-geodesic starting (at time 0) from q with momentum p."
44 for t in range(10) : # Let's hardcode the "dt = .1".
45 q,p = [q + .1 * _dp_Hqp(q,p,sigma) , # Euler steps for the Hamiltonian flow
46 p - .1 * _dq_Hqp(q,p,sigma) ] # in the cotangent bundle.
47 return [q,p] # Return the final state + momentum.



Shooting routines emulate the Exponential map

Figure: Matching a curve to another.

A deformation ϕt(X) is

encoded as a shooting

momentum p0 ∈ T?XM.

Find the momentum

X
ϕ'p0−−−→ Y through

gradient descent.
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Typical run with OT fidelity

(a)Momentum p0. (b)Model q1 = Expq0(p0).

Figure 31: Iteration 0.
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Matchings of partially observed shapes

(a) X and Y. (b) Target Y, view 1. (c) Target Y, view 2.

(d) Source X. (e) f(X), view 1. (f) f(X), view 2.

Figure 32: Matching artifacts for the retina dataset.
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