
Optimal Transport and Theano for
diffeomorphic registration
A presentation to the Asclepios Inria team.

Jean Feydy
June 27, 2017

Écoles Normales Supérieures de Paris et Paris-Saclay

Some information

Jean Feydy (sept. 2016 - aug. 2019) :

• PhD student under the supervision of Alain Trouvé.
• Caïman at the ENS.

Two main points today :

• Optimal Transport as a data attachment term.
• theano as a development tool.

1

Some information

Jean Feydy (sept. 2016 - aug. 2019) :

• PhD student under the supervision of Alain Trouvé.
• Caïman at the ENS.

Two main points today :

• Optimal Transport as a data attachment term.
• theano as a development tool.

1

Supplementary material

Further references available online :

www.math.ens.fr/~feydy/

Research and Teaching tabs, look for :

• Optimal Transport for Diffeomorphic Matching,
MICCAI 2017, J. Feydy, B. Charlier, F.-X. Vialard and G. Peyré.

• Culture Mathématique, chap. 9-10.
• Introduction à la Géométrie Riemannienne par l’Étude des
Espaces de Formes.

2

www.math.ens.fr/~feydy/

Table of contents

1. Procustes Analysis

2. Optimal Transport

3. The diffeomorphic framework

Shooting on spaces of diffeomorphisms

An iterative matching algorithm

Let’s read some code

Results

4. Conclusion

3

Procustes Analysis

Position, Scale and Orientation

Figure 1: Matching the blue wing on the red one. (Wikipedia)

4

From images to labeled point clouds

Figure 2: Anatomical landmarks on a tuna fish.
From A morphometric approach for the analysis of body shape in
bluefin tuna: preliminary results, Addis and al.

5

Mathematical formulation

Let X, Y ∈ RM×D be two labeled point clouds.
Let Sτ,υ denote the rigid-body transformation of parameters
τ (translation) and υ (rotation + scaling).
Then, try to find

τ0, υ0 = argmin
τ,υ

‖ Sτ,υ(X)− Y ‖22 (1)

= argmin
τ,υ

M∑
m=1
| υ · xm + τ − ym |2 . (2)

6

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Typical run on polygons

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

7

Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

8

Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

8

Pros and cons of Procustes analysis

Pros :

• Simple and robust
• Parameters make sense
• Miracle results for populations of triangles (Kendall, 1984)

Cons :

• Max. number of 2 · D explicative parameters
• Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

8

Optimal Transport

Image matching as a mass-carrying problem

Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

9

Image matching as a mass-carrying problem

Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

9

Image matching as a mass-carrying problem

Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

9

Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)

10

Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)

10

Dynamic formulation

Let : (x1, . . . , xI) and (y1, . . . , yJ) be two point clouds
and (µ1, . . . , µI), (ν1, . . . , νJ) the associated (integer) weights,
such that

∑
µi = M =

∑
νj.

Then, find a collection of paths γm : t ∈ [0, 1] 7→ γmt minimizing

`2(γ) =
M∑
m=1

∫ 1

t=0
‖γ̇mt ‖

2 dt, (3)

under the constraint that for all indices i and j,

#
{
m ∈ [[1,M]] , γm0 = xi

}
= µi, (4)

#
{
m ∈ [[1,M]] , γm1 = yj

}
= νj. (5)

γ is the optimal transport path between the two measures
I∑
i=1

µiδxi = µ
γ−−−→ ν =

J∑
j=1

νjδyj . (6)
10

Static formulation : permutation

If we relabel the unit masses (x1, . . . , xM) and (y1, . . . , yM),
find a permutation σ : [[1,M]]→ [[1,M]] minimizing

CX,Y(σ) =
M∑
m=1

∥∥∥xm − yσ(m)
∥∥∥2 . (7)

σ is an optimal labeling.

11

Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ci,j =

∥∥xi − yj∥∥2, find an optimal transport plan
Γ = (γi,j)(i,j)∈[[1,I]]×[[1,J]] minimizing

CX,Y(Γ) =
∑
i,j

γi,j ci,j (8)

under the constraints :

∀ i, j, γi,j > 0, ∀ i,
∑
j

γi,j = µi, ∀ j,
∑
i

γi,j = νj. (9)

This is textbook linear programming.

12

Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ci,j =

∥∥xi − yj∥∥2, find an optimal transport plan
Γ = (γi,j)(i,j)∈[[1,I]]×[[1,J]] minimizing

CX,Y(Γ) =
∑
i,j

γi,j ci,j (8)

under the constraints :

∀ i, j, γi,j > 0, ∀ i,
∑
j

γi,j = µi, ∀ j,
∑
i

γi,j = νj. (9)

This is textbook linear programming.

12

Entropic regularization

Under marginal constraints Γ1 = µ, 1TΓ = νT, minimize

CX,Yε (Γ) =
∑
i,j

γi,j ci,j − ε · H(Γ) (10)

with entropy H(Γ) = −
∑

i,j γi,j(log(γi,j)− 1).

Figure 5: Image borrowed to Gabriel Peyré.
13

The regularized transport problem

Schrödinger problem :
How much do ε-Brownian bridges get mixed together ?

14

Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem
The optimal transport plan can be written

Γ = diag(a) · K · diag(b) = (aibjki,j), (11)

with

ki,j = e−ci,j/ε, a > 0, b > 0. (12)

Sinkhorn theorem =⇒ this scaling problem is tractable.

15

Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem
The optimal transport plan can be written

Γ = diag(a) · K · diag(b) = (aibjki,j), (11)

with

ki,j = e−ci,j/ε, a > 0, b > 0. (12)

Sinkhorn theorem =⇒ this scaling problem is tractable.

15

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),

i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.
2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),
i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.
2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),
i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.
2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),
i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.
2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),
i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.
2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),
i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.

2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

The Sinkhorn algorithm

We want :

diag(a) · K · diag(b) · 1 = µ and νT = 1T · diag(a) · K · diag(b),
i.e. diag(a) · Kb = µ and ν = diag(b) · KTa,

i.e. Kb =
µ

a
and ν

b
= KTa,

i.e. a =
µ

Kb
and b =

ν

KTa
.

Sinkhorn algorithm :

1. start with a = 1I, b = 1J.
2. Apply repeatedly

a ← µ

Kb
, b ← ν

KTa
. (13)

16

Implementation details

We use

a ← µ

Kb
, b ← ν

KTa
. (14)

• Very efficient scheme for squared distances on a grid.
• Otherwise, we work in the log-domain :

u = ε log(a) and v = ε log(b) (15)

so that the iterations read

u← u+ ε log(µ)− ε log

∑
j

exp
(ui + vj − ci,j

ε

) (16)

v ← v + ε log(ν)− ε log
(∑

i

exp
(ui + vj − ci,j

ε

))
. (17)

17

Implementation details

We use

a ← µ

Kb
, b ← ν

KTa
. (14)

• Very efficient scheme for squared distances on a grid.
• Otherwise, we work in the log-domain :

u = ε log(a) and v = ε log(b) (15)

so that the iterations read

u← u+ ε log(µ)− ε log

∑
j

exp
(ui + vj − ci,j

ε

) (16)

v ← v + ε log(ν)− ε log
(∑

i

exp
(ui + vj − ci,j

ε

))
. (17)

17

The Sinkhorn algorithm : an efficient iterative solver

Figure 6: Measures to match.

18

The Sinkhorn algorithm : an efficient iterative solver

Figure 6: Monge transport,
√
ε = 0.

18

The Sinkhorn algorithm : an efficient iterative solver

Figure 6: Diffuse transport,
√
ε = .01.

18

The Sinkhorn algorithm : an efficient iterative solver

Figure 6: Diffuse transport,
√
ε = .03.

18

Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

19

Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

19

Pros and cons of Optimal Transport

Pros :

• Well-posed, convex problem
• Global and precise matchings
• Light-speed numerical solvers at hand (Cuturi, 2013)

Cons :

• Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

19

Can we build a rich and practical model for
smooth deformations ?

19

The diffeomorphic framework

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 7: Source.

20

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 7: Target.

20

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 7: OT matching.

20

Spoiler alert : yes indeed, but it won’t be convex anymore

Figure 7: LDDMM matching.

20

The diffeomorphic framework

Shooting on spaces of diffeomorphisms

Riemann : conveniently working with arbitrary geometries

(a) As a deformed square. (b) Embedded in R3.

Figure 8: The donut-shaped torus.

21

Natural curves on the space of diffeomorphisms

Problem : Match two shapes X and Y .
Simple solution : Try to find a sensible diffeomorphic
trajectory ϕt such that

ϕ0 = IdRd and ϕ1 · X ' Y. (18)

ϕ̇t = vt is a vector field on the ambient space Rd.
Two main models :

Log-demons ϕt is a one-parameter subgroup→ vt is constant.
LDDMM ϕt is a geodesic on the group of diffeomorphisms

seen as a manifold endowed with a right-invariant
metric given by a euclidean norm‖vt‖k
→ (ϕt, vt) obeys a geodesic equation.

22

Natural curves on the space of diffeomorphisms

Problem : Match two shapes X and Y .
Simple solution : Try to find a sensible diffeomorphic
trajectory ϕt such that

ϕ0 = IdRd and ϕ1 · X ' Y. (18)

ϕ̇t = vt is a vector field on the ambient space Rd.
Two main models :

Log-demons ϕt is a one-parameter subgroup→ vt is constant.
LDDMM ϕt is a geodesic on the group of diffeomorphisms

seen as a manifold endowed with a right-invariant
metric given by a euclidean norm‖vt‖k
→ (ϕt, vt) obeys a geodesic equation.

22

Sometimes, we can compute geodesics explicitly...

a

b

(1− t) · a+ t · b

(a) The Euclidean plane. (b) The Poincaré disk.

Figure 9: Explicit geodesics on homogeneous manifolds.
(b) is adapted from www.pitt.edu/~jdnorton/.

23

www.pitt.edu/~jdnorton/

But this is not the case in general

Figure 10: Geodesics on the Duhem’s bull, embedded in R3.
Taken from www.chaos-math.org.

24

www.chaos-math.org

The exponential map

In both models, we get an exponential map :

Log-demons Fast exponentiation of (Id+ v
256)

256,

Exp : v ∈ V 7→ ϕ1 ∈ Diff(Rd). (19)

LDDMM Euler-like integration of the Hamiltonian geodesic
equations :{

qt+0.1 = qt + 0.1 · Kqtpt
pt+0.1 = pt − 0.1 · ∂q(pt, Kqpt)(qt)

, (20)

so that

Expq0 : p0 ∈ T
?
q0M 7→ q1 ∈M. (21)

25

The exponential map

In both models, we get an exponential map :

Log-demons Fast exponentiation of (Id+ v
256)

256,

Exp : v ∈ V 7→ ϕ1 ∈ Diff(Rd). (19)

LDDMM Euler-like integration of the Hamiltonian geodesic
equations :{

qt+0.1 = qt + 0.1 · Kqtpt
pt+0.1 = pt − 0.1 · ∂q(pt, Kqpt)(qt)

, (20)

so that

Expq0 : p0 ∈ T
?
q0M 7→ q1 ∈M. (21)

25

It works !

(a) 2D parametrization. (b) Embedded in R3.

Figure 11: Geodesics on the donut-shaped torus.

26

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .35

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 12: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .35.

27

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = .50

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 13: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = .50.

28

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Influence of the kernel width, σ = 1.

(a) Kernel matrix kqt . (b) Shooted cloud (qt,pt).

Figure 14: Geodesic shooting, k(x − y) = exp(−‖x − y‖2 /2σ2),
σ = 1..

29

Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

• OT (σ = 0) σ++−−−−−−→ Gk
σ++−−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)
• The current availability of GPUs (parallelism)
• The Reduction Principle ((qt,pt)←→ ϕt)

30

Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

• OT (σ = 0) σ++−−−−−−→ Gk
σ++−−−−−−→ (σ = +∞) Translations

• Deformations computed through geodesic shooting

The (basic) framework relies on three pillars :

• Hamilton’s theorem (gq −→ Kq)
• The current availability of GPUs (parallelism)
• The Reduction Principle ((qt,pt)←→ ϕt)

30

The diffeomorphic framework

An iterative matching algorithm

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
ϕ ∈ Gk such that :

X ϕ−→ ϕ(X) � Y with minimal dissimilarity “‖ϕ(X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖ϕ(X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (22)

Ideally, we are looking for

p⊥s (Y → Gk · X) = arg min
ϕ∈Gk
‖ϕ(X)− Y‖2s. (23)

31

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
ϕ ∈ Gk such that :

X ϕ−→ ϕ(X) � Y with minimal dissimilarity “‖ϕ(X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖ϕ(X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (22)

Ideally, we are looking for

p⊥s (Y → Gk · X) = arg min
ϕ∈Gk
‖ϕ(X)− Y‖2s. (23)

31

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
ϕ ∈ Gk such that :

X ϕ−→ ϕ(X) � Y with minimal dissimilarity “‖ϕ(X)− Y‖2”.

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as :

‖ϕ(X)− Y‖2s = ‖µ− ν‖2s = ‖Bs ? (µ− ν)‖2L2(RD) . (22)

Ideally, we are looking for

p⊥s (Y → Gk · X) = arg min
ϕ∈Gk
‖ϕ(X)− Y‖2s. (23)

31

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, ϕ(X)) = dGk(IdRD , ϕ) 6 C < +∞

We settle for the minimization over the deformation ϕ of :

Cost(ϕ) = γreg · d2k(X, ϕ(X)) + γatt ·‖ϕ(X)− Y‖2s. (24)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (25)

If γreg << γatt, q1 should be good enough.

32

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, ϕ(X)) = dGk(IdRD , ϕ) 6 C < +∞

We settle for the minimization over the deformation ϕ of :

Cost(ϕ) = γreg · d2k(X, ϕ(X)) + γatt ·‖ϕ(X)− Y‖2s. (24)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (25)

If γreg << γatt, q1 should be good enough.

32

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, ϕ(X)) = dGk(IdRD , ϕ) 6 C < +∞

We settle for the minimization over the deformation ϕ of :

Cost(ϕ) = γreg · d2k(X, ϕ(X)) + γatt ·‖ϕ(X)− Y‖2s. (24)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (25)

If γreg << γatt, q1 should be good enough.

32

Regularized matching problem

However, in practice :

• Gk is not well understood
• We want dk(X, ϕ(X)) = dGk(IdRD , ϕ) 6 C < +∞

We settle for the minimization over the deformation ϕ of :

Cost(ϕ) = γreg · d2k(X, ϕ(X)) + γatt ·‖ϕ(X)− Y‖2s. (24)

That is, minimize over the shooting momentum p0 :

Cost(p0) = γreg · pT0Kq0p0 + γatt ·‖q1 − Y‖2s. (25)

If γreg << γatt, q1 should be good enough.

32

Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, ϕ(X)) is much less
constrained than the dissimilarity‖ϕ(X)− Y‖2s . 33

Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, ϕ(X)) is much less
constrained than the dissimilarity‖ϕ(X)− Y‖2s . 33

Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to
the golden sphere Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, ϕ(X)) is much less
constrained than the dissimilarity‖ϕ(X)− Y‖2s . 33

Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, ϕ(X)) is much less
constrained than the dissimilarity‖ϕ(X)− Y‖2s . 34

Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, ϕ(X)) is much less
constrained than the dissimilarity‖ϕ(X)− Y‖2s . 34

Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to
the golden torus Gk · X .
Here, γreg << γatt : the geodesic length d2k(X, ϕ(X)) is much less
constrained than the dissimilarity‖ϕ(X)− Y‖2s . 34

The diffeomorphic framework

Let’s read some code

The theano library

1 # Import the relevant tools
2 import time # to measure performance
3 import numpy as np # standard array library
4 import theano # Autodiff & symbolic calculus library :
5 import theano.tensor as T # - mathematical tools;
6 from theano import config, printing # - printing of the Sinkhorn error.

theano :

• Is a python library
• Symbolic computations =⇒ efficient CPU/GPU binaries
• Auto-differentiates expressions

• It changed my life... Let’s see why.

35

The theano library

1 # Import the relevant tools
2 import time # to measure performance
3 import numpy as np # standard array library
4 import theano # Autodiff & symbolic calculus library :
5 import theano.tensor as T # - mathematical tools;
6 from theano import config, printing # - printing of the Sinkhorn error.

theano :

• Is a python library
• Symbolic computations =⇒ efficient CPU/GPU binaries
• Auto-differentiates expressions
• It changed my life... Let’s see why.

35

The Hamiltonian

230 # Part 1 : kinetic energy on the phase space (Hamiltonian) =========================
231
232
233 def _squared_distances(x, y) :
234 "Returns the matrix of |x_i-y_j|^2."
235 x_col = x.dimshuffle(0, 'x', 1)
236 y_lin = y.dimshuffle('x', 0, 1)
237 return T.sum((x_col - y_lin)**2 , 2)
238
239 def _k(x, y, s) :
240 "Returns the matrix of k(x_i,y_j)= 1/(1+|x_i-y_j|^2)^{1/4}, with a heavy tail."
241 sq = _squared_distances(x, y) / (s**2)
242 return T.pow(1. / (1. + sq), .25)
243
244 def _cross_kernels(q, x, s) :
245 "Returns the full k-correlation matrices between two point clouds q and x."
246 K_qq = _k(q, q, s)
247 K_qx = _k(q, x, s)
248 K_xx = _k(x, x, s)
249 return (K_qq, K_qx, K_xx)
250
251 def _Hqp(q, p, sigma) :
252 "The hamiltonian, or kinetic energy of the shape q with momenta p."
253 pKqp = _k(q, q, sigma) * (p.dot(p.T))# Use a simple isotropic kernel
254 return .5 * T.sum(pKqp) # H(q, p) = 1

2 ·
∑

i,j k(xi, xj)pi.pj

36

Geodesic shooting

255 # Part 2 : Geodesic shooting ===
256
257
258 # The partial derivatives of the Hamiltonian are automatically computed !
259 def _dq_Hqp(q,p,sigma) :
260 return T.grad(_Hqp(q,p,sigma), q)
261 def _dp_Hqp(q,p,sigma) :
262 return T.grad(_Hqp(q,p,sigma), p)
263
264 def _hamiltonian_step(q,p, sigma) :
265 "Simplistic euler scheme step with dt = .1."
266 return [q + .1 * _dp_Hqp(q,p,sigma) ,
267 p - .1 * _dq_Hqp(q,p,sigma)]
268
269 def _HamiltonianShooting(q, p, sigma) :
270 "Shoots to time 1 a k-geodesic starting (at time 0) from q with momentum p."
271 # We use the "scan" theano routine, which can be understood as a "for" loop
272 result, updates = theano.scan(fn = _hamiltonian_step,
273 outputs_info = [q,p],
274 non_sequences = sigma,
275 n_steps = 10) # hardcode the "dt = .1"
276 # We do not store the intermediate results,
277 # and only return the final state + momentum :
278 final_result = [result[0][-1], result[1][-1]]
279 return final_result

37

OT fidelity, part 1

298 # Part 3 : Data attachment ==
299
300 def _ot_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
301 """
302 Given two measures q1 and xt represented by locations/weights arrays,
303 outputs an optimal transport fidelity term and the transport plan.
304 """
305 # The Sinkhorn algorithm takes as input three Theano variables :
306 c = _squared_distances(q1_x, xt_x) # Wasserstein cost function
307 mu = q1_mu ; nu = xt_mu
308
309 # Parameters of the Sinkhorn algorithm.
310 epsilon = (.02)**2 # regularization parameter
311 rho = (.5) **2 # unbalanced transport (Lenaic Chizat)
312 niter = 10000 # max niter in the sinkhorn loop
313 tau = -.8 # Nesterov-like acceleration
314 lam = rho / (rho + epsilon) # Update exponent
315 # Elementary operations ..
316 def ave(u,u1) :
317 "Barycenter subroutine, used by kinetic acceleration through extrapolation."
318 return tau * u + (1-tau) * u1
319 def M(u,v) :
320 "M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon"
321 return (-c + u.dimshuffle(0,'x') + v.dimshuffle('x',0)) / epsilon
322 lse = lambda A : T.log(T.sum(T.exp(A), axis=1) + 1e-6) # prevents NaN

38

OT fidelity, part 2

326 # Actual Sinkhorn loop ..
327 # Iteration step :
328 def sinkhorn_step(u, v, foo) :
329 u1=u # useful to check the update
330 u = ave(u, lam * (epsilon * (T.log(mu) - lse(M(u,v))) + u))
331 v = ave(v, lam * (epsilon * (T.log(nu) - lse(M(u,v).T)) + v))
332 err = T.sum(abs(u - u1))
333 # "break" the loop if error < tol
334 return (u,v,err), theano.scan_module.until(err < 1e-4)
335
336 # Scan = "For loop" :
337 err0 = np.arange(1, dtype=config.floatX)[0]
338 result, updates = theano.scan(fn = sinkhorn_step, # Iterated routine
339 outputs_info = [(0.*mu), (0.*nu), err0], # Start
340 n_steps = niter # Number of iters
341)
342 U, V = result[0][-1], result[1][-1] # We only keep the final dual variables
343 Gamma = T.exp(M(U,V)) # Transport plan g = diag(a)*K*diag(b)
344 cost = T.sum(Gamma * c) # Simplistic cost, chosen for readability
345 if True : # Shameful hack to prevent the pruning of the error-printing node...
346 print_err_shape = printing.Print('error : ', attrs=['shape'])
347 errors = print_err_shape(result[2])
348 print_err = printing.Print('error : ') ; err_fin = print_err(errors[-1])
349 cost += .00000001 * err_fin
350 return [cost, Gamma]

39

Kernel fidelity, Data attachment term

351 def _kernel_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
352 """
353 Given two measures q1 and xt represented by locations/weights arrays,
354 outputs a kernel-fidelity term and an empty 'info' array.
355 """
356 K_qq, K_qx, K_xx = _cross_kernels(q1_x, xt_x, radius)
357 q1_mu = q1_mu.dimshuffle(0,'x') # column
358 xt_mu = xt_mu.dimshuffle(0,'x') # column
359 cost = .5 * (T.sum(K_qq * q1_mu.dot(q1_mu.T)) \
360 + T.sum(K_xx * xt_mu.dot(xt_mu.T)) \
361 -2*T.sum(K_qx * q1_mu.dot(xt_mu.T)))
362
363 [...] # error-tracking stuff
364 return [cost , ...]
365
366 def _data_attachment(q1_measure, xt_measure, radius) :
367 "Given two measures and a radius, returns a cost (Theano symbolic variable)."
368 if radius == 0 : # Convenient way to allow the choice of a method
369 return _ot_matching(q1_measure[0], q1_measure[1],
370 xt_measure[0], xt_measure[1],
371 radius)
372 else :
373 return _kernel_matching(q1_measure[0], q1_measure[1],
374 xt_measure[0], xt_measure[1],
375 radius)

40

Actual cost function

383 # Part 4 : Cost function and derivatives ==
384
385
386 def _cost(q,p, xt_measure, connec, params) :
387 """
388 Returns a total cost, sum of a small regularization term and the data attachment.
389 .. math ::
390
391 C(q_0, p_0) = .1 * H(q0,p0) + 1 * A(q_1, x_t)
392
393 Needless to say, the weights can be tuned according to the signal-to-noise ratio.
394 """
395 s,r = params # Deformation scale, Attachment scale
396 q1 = _HamiltonianShooting(q,p,s)[0] # Geodesic shooting from q0 to q1
397 # Convert the set of vertices 'q1' into a measure.
398 q1_measure = Curve._vertices_to_measure(q1, connec)
399 attach_info = _data_attachment(q1_measure, xt_measure, r)
400 return [.1* _Hqp(q, p, s) + 1.* attach_info[0] , attach_info[1]] # [cost, info]
401
402
403 # The discrete backward scheme is automatically computed :
404 def _dcost_p(q,p, xt_measure, connec, params) :
405 "The gradients of C wrt. p_0 is automatically computed."
406 return T.grad(_cost(q,p, xt_measure, connec, params)[0] , p)
407

41

Minimization script, part 1

421 def perform_matching(Q0, Xt, params, scale_momentum = 1, scale_attach = 1) :
422 """ Performs a matching from the source Q0 to the target Xt,
423 returns the optimal momentum P0. """
424 (Xt_x, Xt_mu) = Xt.to_measure() # Transform the target into a measure
425 q0 = Q0.points ; p0 = np.zeros(q0.shape) # Null initialization for the momentum
426
427 # Compilation ---
428 print('Compiling the energy functional.')
429 time1 = time.time()
430 # Cost is a function of 6 parameters :
431 # The source 'q', the starting momentum 'p',
432 # the target points 'xt_x', the target weights 'xt_mu',
433 # the deformation scale 'sigma_def', the attachment scale 'sigma_att'.
434 q, p, xt_x = T.matrices('q', 'p', 'xt_x') ; xt_mu = T.vector('xt_mu') # types
435
436 # Compilation. Depending on settings specified in the ~/.theanorc file or
437 # given at execution time, this will produce CPU or GPU code under the hood.
438 Cost = theano.function([q,p, xt_x,xt_mu],
439 [_cost(q,p, (xt_x,xt_mu), Q0.connectivity, params)[0],
440 _dcost_p(q,p, (xt_x,xt_mu), Q0.connectivity, params) ,
441 _cost(q,p, (xt_x,xt_mu), Q0.connectivity, params)[1]],
442 allow_input_downcast=True)
443 time2 = time.time()
444 print('Compiled in : ', '{0:.2f}'.format(time2 - time1), 's')
445

42

Minimization script, part 2

445 # Display pre-computing ---
446 connec = Q0.connectivity ; q0 = Q0.points ;
447 g0,cgrid = GridData() ; G0 = Curve(g0, cgrid)
448 # Given q0, p0 and grid points grid0 , outputs (q1,p1,grid1) after the flow
449 # of the geodesic equations from t=0 to t=1 :
450 ShootingVisualization = VisualizationRoutine(q0, params)
451 # L-BFGS minimization ---
452 from scipy.optimize import minimize
453 def matching_problem(p0_vec) :
454 "Energy minimized in the variable 'p0'."
455 p0 = p0_vec.reshape(q0.shape)
456 [c, dp_c, info] = Cost(q0, p0, Xt_x, Xt_mu)
457 matching_problem.Info = info
458 if (matching_problem.it % 1 == 0) and (c < matching_problem.bestc) :
459 matching_problem.bestc = c
460 q1,p1,g1 = ShootingVisualization(q0, p0, np.array(g0))
461 Q1 = Curve(q1, connec) ; G1 = Curve(g1, cgrid)
462 DisplayShoot(Q0, G0, p0, Q1, G1, Xt, info,
463 matching_problem.it, scale_momentum, scale_attach)
464 print('Iteration : ',matching_problem.it,', cost : ',c,' info : ',info.shape)
465 matching_problem.it += 1
466 # The fortran routines used by scipy.optimize expect float64 vectors
467 # instead of gpu-friendly float32 matrices: we need a slight conversion
468 return (c, dp_c.ravel().astype('float64'))
469 matching_problem.bestc=np.inf ; matching_problem.it=0 ; matching_problem.Info=None

43

Minimization script, part 3

473 time1 = time.time()
474 res = minimize(matching_problem, # function to minimize
475 p0.ravel(), # starting estimate
476 method = 'L-BFGS-B', # an order 2 method
477 jac = True, # matching_problems returns the gradient
478 options = dict(
479 maxiter = 1000, # max number of iterations
480 ftol = .000001,# Don't bother fitting to float precision
481 maxcor = 10 # Prev. grads. used to approx. the Hessian
482))
483 time2 = time.time()
484
485 p0 = res.x.reshape(q0.shape)
486 print('Convergence success : ', res.success, ', status = ', res.status)
487 print('Optimization message : ', res.message.decode('UTF-8'))
488 print('Final cost after ', res.nit, ' iterations : ', res.fun)
489 print('Elapsed time after ', res.nit, ' iterations : ',
490 '{0:.2f}'.format(time2 - time1), 's')
491 return p0, matching_problem.Info
492
493 def matching_demo(source_file, target_file, params, scale_mom = 1, scale_att = 1) :
494 Q0 = Curve.from_file(source_file) # Load source...
495 Xt = Curve.from_file(target_file) # and target.
496 # Compute the optimal shooting momentum :
497 p0, info = perform_matching(Q0, Xt, params, scale_mom, scale_att)

44

The diffeomorphic framework

Results

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 0.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 3.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 4.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 5.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 6.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 7.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 8.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 9.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 10.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 11.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 12.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 13.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 14.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 15.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 16.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 17.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 18.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 19.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 20.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 21.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 22.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 23.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 24.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 25.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 26.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 27.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 28.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 29.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 30.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 31.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 32.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 33.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 34.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 35.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 36.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 37.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 38.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 39.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 41.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 42.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 43.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 44.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 46.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 47.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 48.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 49.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 50.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 52.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 53.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 54.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 55.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 56.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 57.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 58.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 59.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 60.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 61.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 62.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 64.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 65.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 66.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 67.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 68.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 69.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 70.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 71.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 72.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 73.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 74.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 75.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 77.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 78.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 79.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 80.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 81.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 82.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 83.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 85.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 86.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 87.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 88.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 89.

45

Typical run with OT fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 17: Iteration 90.

45

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 0.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 3.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 4.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 5.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 6.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 7.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 8.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 9.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 10.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 11.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 12.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 13.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 14.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 15.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 16.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 17.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 19.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 20.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 21.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 22.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 23.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 24.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 25.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 26.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 27.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 28.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 30.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 31.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 32.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 33.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 34.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 36.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 37.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 38.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 39.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 40.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 41.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 42.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 44.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 45.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 46.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 47.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 50.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 70.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 90.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 110.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 130.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 150.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 170.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 200.

46

Typical run with kernel fidelity

(a) Momentum p0. (b) Shooted model q1.

Figure 18: Iteration 240.

46

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .01.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .02.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .03.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .04.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .05.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .06.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .07.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .08.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .09.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .1.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .11.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .12.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .13.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .14.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .15.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .16.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .17.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .18.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .19.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .2.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .21.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .22.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .23.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .24.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .25.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .26.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .27.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .28.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .29.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .3.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .31.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .32.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .33.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .34.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .35.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .36.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .37.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .38.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .39.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .4.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .41.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .42.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .43.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .44.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .45.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .46.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .47.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .48.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .49.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .5.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .51.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .52.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .53.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .54.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .55.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .56.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .57.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .58.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .59.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .6.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .61.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .62.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .63.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .64.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .65.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .66.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .67.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .68.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .69.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .70.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .71.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .72.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .73.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .74.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .75.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .76.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .77.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .78.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .79.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .8.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .81.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .82.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .83.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .84.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .85.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .86.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .87.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .88.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .89.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .9.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .91.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .92.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .93.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .94.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .95.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .96.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .97.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .98.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = .99.

47

Influence of the kernel width

(a) Momentum p0. (b) Shooted model q1.

Figure 19: Final matching, σ = 1.0.

47

Conclusion

OT as a fidelity term

Pros :

• Principled globalization trick.
• Versatile : any distance on any feature space will do.

Cons :

• Only affordable for large ε diffusion values.
• Can still be tricked in symmetric situations.

Coming soon (say, end of 2017) :

• Implementation on 3D dense images.
• Investigate the continuum “RKHS→ OT”.

48

OT as a fidelity term

Pros :

• Principled globalization trick.
• Versatile : any distance on any feature space will do.

Cons :

• Only affordable for large ε diffusion values.
• Can still be tricked in symmetric situations.

Coming soon (say, end of 2017) :

• Implementation on 3D dense images.
• Investigate the continuum “RKHS→ OT”.

48

OT as a fidelity term

Pros :

• Principled globalization trick.
• Versatile : any distance on any feature space will do.

Cons :

• Only affordable for large ε diffusion values.
• Can still be tricked in symmetric situations.

Coming soon (say, end of 2017) :

• Implementation on 3D dense images.
• Investigate the continuum “RKHS→ OT”.

48

theano for image registration

Pros :

• Incredibly versatile and math-friendly.
• Unleash your GPU without getting stuck in CUDA.
• Exact derivative : safer to use with BFGS and line searchs.

Cons :

• Current bottleneck : memory overflows.
• Using BCH formula will require some hack
(OpFromGraph...).

Stay tuned :

• RAM-GPU memory links coming soon ?
• Libraries are moving fast : check TensorFlow, etc.

49

theano for image registration

Pros :

• Incredibly versatile and math-friendly.
• Unleash your GPU without getting stuck in CUDA.
• Exact derivative : safer to use with BFGS and line searchs.

Cons :

• Current bottleneck : memory overflows.
• Using BCH formula will require some hack
(OpFromGraph...).

Stay tuned :

• RAM-GPU memory links coming soon ?
• Libraries are moving fast : check TensorFlow, etc.

49

theano for image registration

Pros :

• Incredibly versatile and math-friendly.
• Unleash your GPU without getting stuck in CUDA.
• Exact derivative : safer to use with BFGS and line searchs.

Cons :

• Current bottleneck : memory overflows.
• Using BCH formula will require some hack
(OpFromGraph...).

Stay tuned :

• RAM-GPU memory links coming soon ?
• Libraries are moving fast : check TensorFlow, etc.

49

Questions?

49

	Procustes Analysis
	Optimal Transport
	The diffeomorphic framework
	Shooting on spaces of diffeomorphisms
	An iterative matching algorithm
	Let's read some code
	Results

	Conclusion

