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Abstract. We consider an inverse scattering problem and its near-field
approximation at high frequencies. We first prove, for both problems,
Lipschitz stability results for determining the low-frequency component
of the potential. Then we show that, in the case of a radial poten-
tial supported sufficiently near the boundary, infinite resolution can be
achieved from measurements of the near-field operator in the monotone
case.
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Introduction

The first aim of this paper is to establish Lipschitz stability results for
the inverse scattering problem of determining the low-frequency component
(lower than the operating frequency) of the compactly supported potential
from scattering or near-field measurements. It is known that, in general,
the problem is exponentially unstable [4, 5, 6, 36, 40]. However, taking
advantage of a priori information may improve stability and give accurate
reconstruction algorithms [8, 12, 13]. The Lipschitz stability results proved
in this paper together with the recent analysis of the local convergence of
the nonlinear Landweber iteration in [33] show that the low-frequency com-
ponent of the potential can be determined from the data in a linearly stable
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way. Moreover, they precisely quantify the resolution limit, which is de-
fined as the characteristic size of the smallest oscillations in the potential
that can be stably recovered from the data. Since Rayleigh’s work, it has
been admitted that the resolution limit in inverse scattering is of order π
over the operating frequency [19]. This is nothing else than a direct appli-
cation of the uncertainty principle in inverse scattering [18, 24, 28, 55]. It
is well-known that if the support of the potential is a point support, then
the reconstructed location of the point potential from the scattering data
has finite size of order of the Rayleigh resolution limit [7, 18]. Having this
in mind, the results of this paper prove that the Fourier transform of the
potential can be reconstructed in a linearly stable way for all frequencies
(dual variable to the space one) smaller than the operating frequency, and
therefore, justify the notion of resolution limit. More intriguingly, again
in view of [33], they prove that the stability of the reconstruction of the
potential increases at high operating frequencies.

The second aim of the paper is to show that infinite resolution can be
achieved from near-field measurements. Here, the near-field operator ap-
proximates Sommerfeld’s radiation condition and is equivalent to the mea-
surements of the Cauchy data at a finite distance. Moreover, if the potential
is supported near the boundary, then infinite resolution can be achieved in
the monotone case. In fact, a Lipschitz stability result holds for both the
low and high frequency components of the potential. It should be noted
that the scattering amplitude can be recovered from the near-field operator.
However, approximating the near-field operator from the scattering ampli-
tude is a severely ill-posed problem [37, 47, 48, 59] and therefore cannot
be of any practical and realistic use. It was shown in [37] that in order to
compute the near-field operator from the scattering amplitude one needs to
differentiate the scattering amplitude an infinite number of times.

The results of this paper extend to medium scattering the recent results in [9,
10, 63], where a stability and resolution analysis was performed for linearized
conductivity and wave imaging problems. They can be also used to justify
the hopping (or continuation in the frequency) reconstruction algorithms
proposed in [14, 24, 25, 26].

In connection with our results in this paper, we also refer to the works by
Isakov [34] and Isakov and Kindermann [35], Bao, Lin, and Triki [15, 16],
Nagayasu, Uhlmann and Wang [45, 46], as well as Derveaux, Papanicolaou,
and Tsogka [27]. In [34, 35], an evidence of increasing stability in wave
imaging when frequency is growing was given. In [15], stability estimates
for the inverse source problem were established and the conversion of the
logarithmic type stability to a Lispchitz one first proved. Numerical results
to illustrate the stability of the source reconstruction problem were pre-
sented in [16]. In [17], Lipschitz stability estimates for the time-dependent
wave equation were obtained. In [45], a stability estimate for a linearized
conductivity problem was derived and its dependence on the depth of the
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inclusion highlighted. In [46], it is shown that the ill-posedness of the inverse
acoustic problem decreases when the frequency increases and the stability
estimate changes from logarithmic type for low frequencies to a Lipschitz
type for large frequencies. In [27], the enhancement of resolution in the
near-field was studied and numerically illustrated. Our results in this pa-
per confirm these important observations in a quite general situation and
precisely quantify them.

Our paper is organized as follows. Section 1 is devoted to the stability of
the reconstruction of the potential from the scattering amplitude (called
also far-field pattern) in the high frequency regime. Theorem 2 proves that
the low-frequency component of the potential can be determined in a stable
way from the scattering amplitude. The threshold frequency determines
the resolution limit. Section 2 extends the results of Section 1 to the near-
field measurements. Theorem 3 shows that the same results as those in
Section 1 hold for reconstructing the potential from measurements of the
near-field operator. In Section 3 we show that we gain infinite resolution for
potentials supported near the boundary. If the potential is supported near
the boundary, then infinite resolution can be achieved in the monotone case.
Theorem 4 provides a Lipschitz stability result for both the low and high
frequency components of the potential. Finally, in Appendix A, we provide
useful results on Bessel’s functions.

Finally, we mention that the letter C will be used to denote a universal
constant which may vary from line to line. We also use A . B to denote an
estimate of the form A ≤ CB for some constant C. We also use the classical
notation 〈x〉 =

√
1 + |x|2.

Acknowledgements. We are very grateful to J. Sjöstrand for taking the
time to discuss some properties of the Laplace transform with us.

1. Far field pattern

1.1. Definitions and notations. Let Ω be a bounded domain in the Eu-
clidean space Rd of dimension d ≥ 2, let q ∈ C∞0 (Rd) be a real-valued poten-
tial supported in Ω. We use the classical notation D = −i∂ for derivatives
and consider the Helmholtz equation with potential

D2u− λ2u+ qu = 0(1.1)

at frequency λ ∈ R∗
+ := R+ \ {0}. Plane waves eiλx·ω propagating along the

direction ω in Sd−1 are solutions of the free Helmholtz equation

D2u− λ2u = 0.(1.2)

Here Sd−1 denotes the unit sphere in Rd. More generally, plane waves gen-
erate the set of solutions in the space of tempered distributions, S ′(Rd), of
the free Helmholtz equation: all solutions of (1.2) with polynomial growth
are superpositions of elementary plane waves eiλx·ω when ω varies on the
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sphere Sd−1. It will be useful later on to adopt Melrose’s notation in [42] to
designate these solutions: for g ∈ C∞(Sd−1), we shall write

Φ0(λ)g(x) =
∫

Sd−1

eiλx·ωg(ω) dω.

Obviously Φ0(λ)g is a solution of (1.2) which belongs to S ′(Rd).

To guarantee the uniqueness of solutions to the Helmholtz equation (1.1),
one can impose conditions on the behavior of solutions at infinity. More
precisely, we are interested in solutions which can be decomposed

u = eiλx·ω + uscat = uin + uscat(1.3)

as the sum of an incoming planar wave and a scattered wave satisfying
Sommerfeld’s radiation condition∣∣∣∣( ∂

∂|x|
− iλ

)
uscat

∣∣∣∣ = o

(
1

|x|
d−1
2

)
as |x| → +∞,(1.4)

uniformly with respect to the direction θ = x
|x| at fixed frequency λ ∈ R∗

+.
The following result from [42, Lemma 2.4] holds.

Proposition 1.1. There exists a unique solution to the Helmholtz equa-
tion (1.1) with potential q ∈ C∞0 (Ω) of the form

(1.5) ϕq(x, ω, λ) = eiλx·ω + ϕscat
q (x, ω, λ),

where the scattered wave ϕscat
q satisfies Sommerfeld’s radiation condition (1.4)

and which is given by

(1.6) ϕscat
q = −Rq(λ)(eiλx·ωq).

Here Rq denotes the meromorphic continuation of the perturbed resolvent.
Furthermore ϕq depends smoothly on (x, ω, λ) ∈ Rd × Sd−1 × R∗

+ and is
bounded.

We choose to denote

Φq(λ)g =
∫

Sd−1

ϕq(x, ω, λ)g(ω) dω

the operator with kernel ϕq(x, ω, λ) given by (1.5).

Theorem 1. The scattered wave in the solution (1.3) to the Helmholtz equa-
tion (1.1) given by Proposition 1.1 assumes the form

ϕscat
q (x) =

eiλ|x|

|x|
d−1
2

aq

(
x

|x|
, ω, λ

)
+O

(
1

|x|
d+1
2

)
as |x| → +∞,(1.7)

where aq is a smooth function on Sd−1 × Sd−1 × R∗
+ and

aq

(
x

|x|
, ω, λ

)
= − 1

2iλ

(
λ

2πi

) d−1
2
∫
q(y)ϕq(y, ω, λ)e−iλ x

|x| ·y dy.
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Proof. We consider the Green functionGλ corresponding to the free Helmholtz
equation

(D2
y − λ2)Gλ(x, y) = δ(x− y),(1.8)

subject to Sommerfeld’s radiation condition (1.4), with δ being the Dirac
delta function.
Let R > 0 be large enough so that the ball of radius R contains the support
of q. By definition of the Green function, for all |x| ≤ R we have

u(x) =
∫
|y|≤R

(D2
y − λ2)Gλ(x, y)u(y) dy,

and if u is a solution to the Helmholtz equation (1.1) we deduce by Green’s
formula that for any |x| ≤ R

u(x) = −
∫
|y|≤R

Gλ(x, y)q(y)u(y) dy

−
∫
|y|=R

(
∂Gλ

∂r
(x, y)u(y)−Gλ(x, y)

∂u

∂r
(y)
)

dσ(y).

Along the same lines, it is possible to derive a similar identity for the plane
wave uin(x) = eiλω·x

uin(x) = −
∫
|y|=R

(
∂Gλ

∂r
(x, y)uin(y)−Gλ(x, y)

∂uin(y)
∂r

(y)
)

dσ(y),

taking into account the fact that (D2 − λ2)uin = 0. Subtracting the two
identities gives the following representation formula for the scattered wave
uscat = u− uin

uscat(x) = −
∫
|y|≤R

Gλ(x, y) q(y)u(y) dy

−
∫
|y|=R

(
∂Gλ

∂r
(x, y)uscat(y)−Gλ(x, y)

∂uscat

∂r
(y)
)

dσ(y).

The Green function of the free Helmholtz equation is explicitly given by

Gλ(x, y) =
1
4i

(
λ

2π

) d−2
2

|x− y|−
d−2
2 H

(1)
d/2−1

(
λ|x− y|

)
,(1.9)

where H(1)
d/2−1 is the Hankel function of first kind and order d/2− 1 (cf. Ap-

pendix A). The asymptotic behavior of Hankel functions (A.3) implies that
for |y| large enough

Gλ(x, y) =
1

2iλ

(
λ

2πi

) d−1
2

eiλ|x−y||x− y|−
d−1
2

(
1 +O

(
1

λ|x− y|

))
.(1.10)

Since we have

|x− y| = |y| − x · y
|y|

+O
(
|x|2

|y|

)
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we find for |y| large enough and fixed λ:

eiλ|x−y| = eiλ |y|e−iλ y
|y| ·x

(
1 +O

(
|x|2

|y|

))
.

We therefore obtain for fixed x, λ and large R = |y|

Gλ(x, y) =
1

2iλ

(
λ

2πi

) d−1
2

|y|−
d−1
2 eiλ |y|e−iλ y

|y| ·x
(

1 +O
(

1
R

))
.(1.11)

Analogously, we have
∂Gλ

∂r
(x, y) = iλcd(λ)|y|−

d−1
2 eiλ|y|e−iλ y

|y| ·x
(

1 +O
(

1
R

))
,

with cd(λ) = 1
2iλ(λ/2πi)

d−1
2 . This leads to

uscat(x) = −
∫
|y|≤R

Gλ(x, y)q(y)u(y) dy

+
cd(λ)

R
d−1
2

∫
|y|=R

(
∂uscat

∂r
− iλuscat

)
eiλR−iλ y

|y| ·x
(

1 +O
(

1
R

))
dσ(y).

Sommerfeld’s radiation condition implies that the second right-hand side
term tends to zero when R tends to infinity, so we get

uscat(x) = −
∫
Gλ(x, y)q(y)u(y) dy .

Using once again the asymptotic formula (1.11) together with the fact that
the Green function is symmetric we get

uscat(x) = − 1
2iλ

(
λ

2πi

) d−1
2 eiλ|x|

|x|
d−1
2

∫
q(y)u(y)e−iλ x

|x| ·y
(

1 +O
(
|y|2

|x|

))
dy.

To summarize, we have that

uscat(x) =
eiλ|x|

|x|
d−1
2

aq

(
x

|x|
, ω, λ

)
+O

(
1

|x|
d+1
2

)
,

with

aq

(
x

|x|
, ω, λ

)
= − 1

2iλ

(
λ

2πi

) d−1
2
∫
q(y)u(y)e−iλ x

|x| ·y dy.

This proves that the scattered part of any solution of Helmholtz’ equation
subject to Sommerfeld’s radiation condition takes the form announced in
Theorem 1. �

Definition 1.2. We define the scattering amplitude associated with the po-
tential q ∈ C∞0 (Rd) by the smooth function aq : Sd−1 × Sd−1 × R∗

+ → C
given by

aq(θ, ω, λ) = − 1
2iλ

(
λ

2πi

) d−1
2
∫
q(y)ϕq(y, ω, λ)e−iλθ·y dy.(1.12)
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We denote

Aq(λ)g(θ) =
∫

Sd−1

aq(θ, ω, λ)g(ω) dω, θ ∈ Sd−1,

the corresponding operator with kernel aq(θ, ω, λ).

It is easy to get an asymptotic expansion of

Φq(λ)g(x) =
∫

Sd−1

(
eiλx·ω + ϕscat

q (x, ω, λ)
)
g(ω) dω

as |x| → +∞ using the stationary phase and Theorem 1:

(1.13) Φq(λ)g =
(

2π
λ|x|

) d−1
2

(
e−iλ|x|ei(d−1)π

4 g(−θ)

+ eiλ|x|
(

e−i(d−1)π
4 g(θ) +

(
λ

2π

) d−1
2

Aq(λ)g(θ)
)

+O
(

1
|x|

))
with θ = x/|x| ∈ Sd−1. The operator which maps the coefficient of e−iλ|x|

into the coefficient of eiλ|x| is given by

g(−θ) 7→ i−d+1

(
g(θ) +

(
λi

2π

) d−1
2

Aq(λ)g(θ)
)
.

This is, after renormalization and composition with the antipodal map, the
scattering matrix [42].

Definition 1.3. The scattering matrix is the operator given by

Sq(λ) = Id +
(
λi

2π

) d−1
2

Aq(λ).

Integration by parts allows to relate the values of the potential inside the
domain with the scattering matrix Sq(λ).

Lemma 1.4. We have the following identities∫
(q1 − q2)u1u2 dx = −2iλ

(
2π
λ

)d−1 ∫
Sd−1

g1 g2 − Sq1(λ)g1 Sq2(λ)g2 dω,∫
(q1 − q2)u1u2 dx = −2iλ

(
2π
λi

)d−1 ∫
Sd−1

ǧ2 Sq1(λ)g1 − ǧ1 Sq2(λ)g2 dω,

for any pair of solutions1

u1 = Φq1(λ)g1, u2 = Φq2(λ)g2,

to the Helmholtz equations (1.1) related to the potentials q1, q2.

1We use the notation ǧ(ω) = g(−ω) = Pg(ω) for the antipodal map.
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Proof. Let R be large enough so that the ball of radius R contains the
support of both potentials q1, q2. By Green’s formula, we have∫

|x|≤R
(q1 − q2)u1u2 dx =

∫
|x|=R

∂ru1 u2 − u1 ∂ru2 dσ(x)

and using the asymptotic formula (1.13) on the functions u1 = Φq1(λ)g1 and
u2 = Φq2(λ)g2, we deduce

∂ru1 u2 − u1 ∂ru2 =

− 2iλ
(

2π
λR

)d−1(
g1(−θ) g2(−θ)− Sq1(λ)g1(θ)Sq2(λ)g2(θ)

)
+O

(
1
Rd

)
,

which implies∫
|x|≤R

(q1 − q2)u1u2 dx

= −2iλ
(

2π
λ

)d−1 ∫
Sd−1

(
g1 g2 − Sq1g1 Sq2g2

)
dθ +O

(
1
R

)
.

Letting R tend to infinity provides the first identity.
The proof of the second identity is similar, since

∂ru1 u2 − u1 ∂ru2 = −2iλ
(

2π
λR

)d−1(
g1(−θ)Sq2g2(θ)− Sq1(λ)g1(θ) g2(−θ)

)
+O

(
1
Rd

)
.

This completes the proof of the lemma. �

Choosing q1 = q2 = q in Lemma 1.4, we obtain the following properties of
the scattering matrix:

tSq(λ) = P ◦ Sq(λ) ◦ P, Sq(λ)∗Sq(λ) = Id

recalling that Pg = ǧ is the antipodal map. Here, t denotes the transpose
and ∗ the transpose conjugate. Besides, using the first relation together
with Lemma 1.4, we finally get

∫
(q1 − q2)u1u2 dx = 2iλ

(
2π
λi

) d−1
2
∫

Sd−1

ǧ2
(
Aq1(λ)−Aq2(λ)

)
g1 dω,

(1.14)

for any pair of solutions

u1 = Φq1(λ)g1, u2 = Φq2(λ)g2,

to the Helmholtz equations (1.1) with Sommerfeld’s radiation condition (1.4)
related to the potentials q1, q2.
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1.2. Stability estimates at high frequencies. The first stability result
we shall prove in this paper states that low frequencies (i.e. smaller than 2λ)
may be recovered in a stable way from the scattering amplitude.

Theorem 2. For all ε,M,R > 0 and all α > d there exist Cε, λ0 > 0 such
that the following stability estimate holds true.
Let q1, q2 ∈ C∞0 (Rd) be two potentials supported in the ball centered at 0 and
of radius R such that ‖q1‖L∞ , ‖q2‖L∞ ≤M . Then for all λ ≥ λ0,

(1.15)
∫
|ξ|≤(2−ε)λ

〈ξ〉−α
∣∣(q̂1 − q2)(ξ)

∣∣2 dξ

≤ Cελ
3‖aq1 − aq2‖2

L2 + Cελ
−2‖q1 − q2‖2

L∞ .

The proof of Theorem 2 relies on estimates on solutions to the Helmoltz
equations stated below, as well as on the following lemma, stating that
one can relate the Fourier transform of the potential and the scattering
amplitude.

Lemma 1.5. For all M,R > 0 there exist constants C, λ0 > 0 such that
for all potentials q ∈ C∞0 (Rd) supported in the ball B(0, R) and satisfy-
ing ‖q‖L∞ ≤M, we have the following approximation:∣∣∣∣aq(θ, ω, λ) +

1
2iλ

(
λ

2πi

) d−1
2

q̂
(
λ(θ − ω)

)∣∣∣∣ ≤ C λ
d−5
2 ‖q‖2

L2(1.16)

for all λ ≥ λ0.

Lemma 1.5 is based on the following classical estimate on the free resolvent
R0(λ). We refer to [21] for an exposition by Burq of an elementary proof
due to Zworski. This type of a priori estimates have a long history and go
back to the work of Agmon [2] on weighted estimates on the resolvent and
the limiting absorption principle.

Proposition 1.6. Let χ ∈ C∞0 (Rd), there exists a constant C > 0 such that
for all λ > 1 we have

‖χR0(λ)χ‖L(L2(Rd)) ≤ Cλ−1.

Proof of Lemma 1.5. We start with the expression defining the scattering
amplitude (see Definition 1.2):

aq(θ, ω, λ) = − 1
2iλ

(
λ

2πi

) d−1
2
∫
q(y)ϕq(y, ω, λ)e−iλθ·y dy

so by (1.5) we deduce that

aq(θ, ω, λ) +
1

2iλ

(
λ

2πi

) d−1
2

q̂
(
λ(θ − ω)

)
= − 1

2iλ

(
λ

2πi

) d−1
2
∫
q(x)ϕscat

q (x, ω, λ) e−iλx·θ dx.
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The resolvent identity reads (see for instance Formula (2.3) in [42])

(1.17) Rq(λ) = R0(λ)−R0(λ) q Rq(λ)

which implies that if χ ∈ C∞0 (Rd) is a cutoff function which equals 1 on the
ball B(0, R), then

χRq(λ)χ = χR0(λ)χ−
(
χR0(λ)χ

)
q
(
χRq(λ)χ

)
.

If we apply this identity to −qeiλx·ω, we get in view of (1.6)

χϕscat
q = −

(
χR0(λ)χ

)(
qeiλx·ω) +

(
χR0(λ)χ

)(
qχϕscat

q

)
and using the estimate of Proposition 1.6, we obtain

‖χϕscat
q ‖L2 ≤ Cλ−1‖q‖L2 + Cλ−1‖q‖L∞‖χϕscat

q ‖L2 .

Taking λ ≥ 2CM we deduce

‖χϕscat
q ‖L2 ≤ 2Cλ−1‖q‖L2 .

Using Cauchy-Schwarz’s inequality, we get∣∣∣∣ ∫ q ϕscat
q e−iλx·ω dx

∣∣∣∣ ≤ 2Cλ−1‖q‖2
L2

and this completes the proof of the lemma. �

Note that the main ingredient in the proof of Lemma 1.5 consists in combin-
ing the estimate for the non-perturbed resolvent (Proposition 1.6) with the
resolvent identity (1.17), along with the fact that q is compactly supported.

This lemma is the basis of the reconstruction of the potential from the
scattering amplitude at high frequencies, since one can choose θ, ω ∈ Sd−1

such that λ(θ − ω) = ξ for any fixed frequency ξ with |ξ| ≤ 2λ and let λ
tend to infinity. We use a similar approach to prove a stability estimate at
high frequencies.

Proof of Theorem 2. Again, we start with the expression defining the scat-
tering amplitude and then express the potential in terms of the scattering
amplitude: for j ∈ {1, 2} we write

q̂j
(
λ(θ − ω)

)
= −2i(2πi)

d−1
2 λ−

d−3
2 aqj (θ, ω, λ)−

∫
qj(x)ϕscat

qj
(x, ω, λ) e−iλx·θ dx.

Taking the difference of the two expressions yields

(1.18)
∣∣(q̂1 − q2)

(
λ(θ − ω)

)∣∣ ≤ 2(2π)
d−1
2 λ−

d−3
2

∣∣(aq1 − aq2)(θ, ω, λ)
∣∣

+ ‖q1 − q2‖L2 ‖ϕscat
q1

‖L2(|x|≤R) + ‖q2‖L2 ‖ϕscat
q1

− ϕscat
q2

‖L2(|x|≤R)

where we recall that the supports of q1, q2 are contained in the ball of center 0
and radius R > 0. As in the proof of Lemma 1.5 we have

‖ϕscat
q1

‖L2(|x|≤R) ≤ Cλ−1‖q1‖L2 .(1.19)

In light of (1.6), the difference of the two scattered waves satisfies

ϕscat
q1

− ϕscat
q2

= −
(
Rq1(λ)−Rq2(λ)

)
(q1eiλx·ω)−Rq2(λ)

(
(q1 − q2)eiλx·ω)
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and by the resolvent identity (1.17), the first term on the right-hand side
reads

Rq2(λ)(q1 − q2)Rq1(λ)(q1eiλx·ω) = −Rq2(λ)(q1 − q2)ϕscat
q1

.

Let χ ∈ C∞0 (Rd) be a cutoff function which equals 1 on the ball B(0, R),
then

χ(ϕscat
q1

− ϕscat
q2

) = −
(
χRq2(λ)χ

)(
(q1 − q2)ϕscat

q1

)
−
(
χRq2(λ)χ

)(
(q1 − q2)eiλx·ω).

Therefore along the same lines as in the proof of Lemma 1.5, the resolvent
identity (1.17) and Proposition 1.6 give rise to

(1.20) ‖ϕscat
q1

− ϕscat
q2

‖L2(|x|≤R) . λ−1‖q1 − q2‖L∞‖ϕscat
q1

‖L2(|x|≤R)

+ λ−1‖q1 − q2‖L2 .

Indeed invoking the resolvent identity (1.17), we infer that

χRq2(λ)χ = χR0(λ)χ−
(
χR0(λ)χ

)
q2
(
χRq2(λ)χ

)
.

Thus applying this identity to (q1 − q2)ϕscat
q1

, we obtain

‖
(
χRq2(λ)χ

)(
(q1 − q2)ϕscat

q1

)
‖L2 ≤ Cλ−1‖q1 − q2‖L∞‖ϕscat

q1
‖L2(|x|≤R)

+ Cλ−1‖q2‖L∞
∥∥(χRq2(λ)χ

)(
(q1 − q2)ϕscat

q1

)∥∥
L2 ,

which implies for λ > 2CM

‖
(
χRq2(λ)χ

)(
(q1 − q2)ϕscat

q1

)
‖L2 ≤ 2Cλ−1‖q1 − q2‖L∞‖ϕscat

q1
‖L2(|x|≤R).

We have also

‖
(
χRq2(λ)χ

)(
(q1 − q2)eiλx·ω)‖L2 . λ−1‖q1 − q2‖L2 ,

which achieves the proof of Estimate (1.20).

Taking into account those bounds, we obtain in view of (1.18) the estimate

(1.21)
∣∣(q̂1 − q2)

(
λ(θ − ω)

)∣∣ . λ−
d−3
2

∣∣(aq1 − aq2)(θ, ω, λ)
∣∣

+ λ−1‖q1 − q2‖L∞ .

We denote r(ξ) =
√

1− |ξ|2 when |ξ| ≤ 1. For ξ ∈ Rd with |ξ| ≤ 2λ,
choose η ∈ ξ⊥ with norm |η| = r(ξ/2λ). The vectors

θ = η +
ξ

2λ
, ω = η − ξ

2λ
,

have length one, taking the square of (1.21) and integrating the resulting
estimate with respect to η yields∣∣(q̂1 − q2)(ξ)

∣∣2 . λ−2 ‖q1 − q2‖2
L∞

+ λ−d+3r(ξ/2λ)−d+2

∫
|η|=r(ξ/2λ)

η⊥ξ

∣∣∣(aq1 − aq2

)(
η +

ξ

2λ
, η − ξ

2λ
, λ
)∣∣∣2 dη.
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When |ξ| ≤ (2 − ε)λ we have r(ξ/2λ) ≥
√
ε(4− ε)/2 therefore multiplying

the previous inequality by 〈ξ〉−α ≤ 1 and integrating with respect to ξ we
get ∫

|ξ|≤(2−ε)λ
〈ξ〉−α

∣∣(q̂1 − q2)(ξ)
∣∣2 dξ ≤ Cελ

−2‖q1 − q2‖2
L∞

+ Cελ
3

∫
|ξ|≤1

∫
|η|=r(ξ)

η⊥ξ

∣∣(aq1 − aq2)
(
η + ξ, η − ξ, λ

)∣∣2 dη dξ.

We consider the following 2d− 2 dimensional submanifold of S2d−1

Σ =
{
(ξ, η) ∈ S2d−1 : 〈ξ, η〉 = 0

}
and the following diffeomorphism

ϕ : Σ → Sd−1 × Sd−1

(ξ, η) 7→ (ξ + η, η − ξ),

with inverse

ϕ−1 : Sd−1 × Sd−1 → Σ

(θ, ω) 7→
(
θ − ω

2
,
θ + ω

2

)
for which we have∫

Σ
F (η + ξ, η − ξ) dη ∧ dξ =

∫
Sd−1×Sd−1

F (θ, ω)ϕ−1∗(dη ∧ dξ)

= 2−d

∫
Sd−1×Sd−1

F (θ, ω) dω ∧ dθ.

Then we finally get∫
|ξ|≤(2−ε)λ

〈ξ〉−α
∣∣(q̂1 − q2)(ξ)

∣∣2 dξ

≤ Cελ
3

∫∫
Sd−1×Sd−1

∣∣aq1

(
θ, ω, λ

)
− aq2

(
θ, ω, λ

)∣∣2 dθ dω

+ Cε λ
−2‖q1 − q2‖2

L∞

and this completes the proof of our estimate. �

In particular, we recover the uniqueness of the potential from the scattering
amplitude at high frequencies.

Corollary 1.7. If for all (θ, ω, λ) belonging to Sd−1 × Sd−1 × R∗
+, we

have aq1(θ, ω, λ) = aq2(θ, ω, λ) then q1 = q2.
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2. Near field pattern

2.1. Definitions and notations. Instead of considering the Helmholtz
equation on the whole Euclidean space (with Sommerfeld’s radiation condi-
tion) we focus on the Cauchy problem with Robin boundary condition on a
bounded open set Ω ⊂ Rd with smooth boundary{

(D2 − λ2 + q)u = 0 in Ω,
(∂ν − iλ)u|∂Ω = f ∈ L2(∂Ω).

(2.1)

This problem has a unique solution u ∈ H1(Ω) for all f ∈ L2(∂Ω). Writing
a variational formulation of (2.1) and using a unique continuation argument
shows the uniqueness of a solution to (2.1). The existence follows from
Fredholm’s alternative [41].

Remark 2.1. Other classical boundary conditions are either Dirichlet or
Neumann boundary conditions. However, one has to make the additional
assumption that λ2 is not a Dirichlet (or Neumann) eigenvalue of D2 + q,
for the Dirichlet problem corresponding to (2.1) to have a unique solution
for all f ∈ H

1
2 (∂Ω). Unfortunately, this does not make sense if one wants to

take the high frequency limit λ→∞. To bypass this difficulty, we study the
boundary problem (2.1). Indeed, this condition is natural. It approximates
Sommerfeld’s radiation condition at high frequencies [30, 38].

Remark 2.2. It follows from [41] that the unique solution u ∈ H1(Ω)
of (2.1) satisfies

‖Du‖L2(Ω) + λ‖u‖L2(Ω) ≤ C
(
‖qu‖L2(Ω) + ‖f‖L2(∂Ω)

)
for some constant C independent of λ. Therefore, as λ→∞, we have

‖Du‖L2(Ω) +
λ

2
‖u‖L2(Ω) ≤ C‖f‖L2(∂Ω).

Definition 2.3. The near field pattern is the map

Nq(λ) : L2(∂Ω) → L2(∂Ω)

f 7→ u|∂Ω.

The typical inverse problem on the near field pattern is whether it uniquely
determines the potential q. This was solved (for smooth potentials) by
Sylvester and Uhlmann [57] in dimension d ≥ 3 in the case of the Dirichlet-
to-Neumann map. Reconstruction methods were proposed by Nachman
in [43] and stability issues were studied by Alessandrini [6]. It was shown by
Mandache in [40] that the logarithmic stability result of Alessandrini in [6]
is optimal.

2.2. Stability estimates at high frequencies. The following result is the
counterpart of Theorem 2 in the near-field context.
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Theorem 3. For all M,R > 0 and all α > d there exist C, λ0 > 0 such that
the following stability estimate holds true.
Let q1, q2 ∈ C∞0 (Rd) be two potentials supported in the ball centered at 0 and
of radius R such that ‖q1‖L∞ , ‖q2‖L∞ ≤M . Then for all λ ≥ λ0,

(2.2)
∫
|ξ|≤2λ

〈ξ〉−α
∣∣q̂1 − q2(ξ)

∣∣2 dξ ≤ C‖Nq1 −Nq2 ‖2 +Cλ−2‖q1− q2‖2
L∞ .

Proof. We start with two solutions u1, u2 of the equations

(D2 − λ2 + qj)uj = 0

and computing∫
Ω
(q1 − q2)u1u2 dx =

∫
Ω

∆u1u2 dx−
∫

Ω
u1∆u2 dx

=
∫

∂Ω
(∂ν − iλ)u1u2 dσ −

∫
∂Ω
u1(∂ν − iλ)u2 dσ

yields the formula∫
Ω
(q1 − q2)u1u2 dx =

∫
∂Ω

(
u2 Nq1(λ)u1 − u1Nq2(λ)u2

)
dσ.

Choosing q1 = q2 shows that the application Nqj is symmetric, and using
this additional information, we get the formula∫

Ω
(q1 − q2)u1u2 dx =

∫
∂Ω
u2

(
Nq1(λ)−Nq2(λ)

)
u1dσ.

Let us write q = q1 − q2 and choose

u1 = ϕq1 = eiλx·θ1 + ϕscat
q1

and u2 = ϕq2 = eiλx·θ2 + ϕscat
q2

,

with θ1, θ2 ∈ Sd−1. Recall from the proof of Lemma 1.5 that the scattered
waves satisfy the estimate

‖ϕscat
q1

‖L2(B(0,R)) + ‖ϕscat
q2

‖L2(B(0,R)) ≤ Cλ−1.

It follows that∫
Ω

eiλx·(θ1+θ2)q(x) dx =
∫

∂Ω

(
Nq1(λ)−Nq2(λ)

)
u1u2 dσ

−
∫

Ω
q(x)(ϕscat

q1
+ ϕscat

q2
+ ϕscat

q1
ϕscat

q2
) dx

and therefore∣∣q̂(λ(θ1 + θ2)
)∣∣ ≤ ‖Nq1(λ)−Nq2(λ)‖‖u1‖L2(∂Ω)‖u2‖L2(∂Ω) +

C

λ
‖q‖L∞

≤ C‖Nq1(λ)−Nq2(λ)‖+
C

λ
‖q‖L∞

for all (θ1, θ2) ∈ Sd−1 × Sd−1.



15

We notice that

Sd−1 × Sd−1 → B(0, 2)

(θ1, θ2) 7→ θ1 + θ2

is a submersion when θ1, θ2 are not colinear. This implies that∣∣q̂(ξ)∣∣ ≤ C‖Nq1(λ)−Nq2(λ)‖+
C

λ
‖q‖L∞ , ξ ∈ B(0, 2λ).(2.3)

Multiplying this estimate by 〈ξ〉−α/2, taking the square and integrating on
the ball B(0, 2λ) completes the proof of the theorem. �

3. The case of a potential located near the boundary

3.1. Definitions and notations. In this section we show, in the model case
of the unit disk, that if the potential is supported close to the boundary of
the disk, then a larger range of frequencies may be recovered by the near
field Nq(λ) than in the general case treated in the previous two sections.
More precisely, introducing radial coordinates (x1, x2) = (r cos θ, r sin θ),
with (r, θ) ∈ R+ × [0, 2π[, we consider the following model problem in two
space dimensions:

(3.1)

{
(D2 − λ2 + qλ)un = 0 in B =

{
x ∈ R2, |x| ≤ 1

}
,(

∂r − iλ
)
un|∂B = einθ.

We suppose that qλ is a smooth, radial function, with support included
in Dκ

λ for some fixed constant κ > 0, where

(3.2) Dκ
λ =

{
r ∈ [0, 1], 1− κλ−1 < r < 1

}
.

In the following for simplicity we shall drop the index λ in the notation of
the potential.
The following result shows that in the monotone case, one can improve on
the frequency band recovered in the general case (see Theorems 2 and 3).
We recall that ‖Nq(λ)‖ denotes the operator norm of Nq(λ) in L(L2).

Theorem 4. Let q1 and q2 be two smooth radial potentials supported on Dκ
λ

as defined in (3.2) and such that q1 ≥ q2. There are positive constants λ0

and C such that the following holds.
Let λ 7→ K(λ) be any function such that λ ≤ K(λ). Then the following
stability estimate is valid for all λ ≥ λ0:∫

|ξ|≤K(λ)

∣∣(q̂1 − q2)(ξ)
∣∣2 dξ ≤ CK2(λ)

(
λ4‖Nq1(λ)−Nq2(λ)‖2

+
C2

q1,q2

λ4
‖q1 − q2‖2

L∞

)
,

where Cq1,q2 = max
(
‖q1‖L∞ , ‖q2‖L∞ , ‖q1‖L∞‖q2‖L∞

)
.
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Remark 3.1. One has trivially that∫
|ξ|≤K(λ)

∣∣(q̂1 − q2)(ξ)
∣∣2 dξ ≤ CK2(λ)‖q̂1 − q2‖2

L∞

≤ CK2(λ)
λ2

‖q1 − q2‖2
L∞ ,

so the estimate provided in Theorem 4 is of a different nature.

Remark 3.2. The proof of Theorem 4 is presented in Section 3.2, as an
immediate consequence of Lemma 3.3 proved in Section 3.3. That lemma
relates the Laplace transform of a function to the near field operator. It holds
in much more generality than Theorem 4, without the additional assumption
that q1 − q2 ≥ 0. However we are unable to relate the Fourier transform
of a function to its Laplace transform in general (this fact is well-known to
be difficult and in general very unstable); for nonnegative functions however
the relation is very easy and enables us to conclude.

3.2. Proof of Theorem 4. We start by stating a lemma, proved in Sec-
tion 3.3, which relates the Laplace transform of a function to the near field
operator. It is stated in the framework of general, non radial functions.
We define the operator T : g 7→ Tg by

Tg(r) = g(1− r)

as well as the Laplace transform L:

L(g)(t) =
∫

R
g(s) e−s t ds.

For any function θ 7→ f(θ) we call ck(f) its Fourier transform, for k ∈ Z:

ck(f)(r) =
∫ 2π

0
f(r, θ) e−i k θ dθ.

Lemma 3.3. Let q1 and q2 be two functions supported on Dκ
λ. There are

three positive constants λ0,K and C such that if t ≥ 2Kλ > 2Kλ0, then∣∣∣L(ck(T (r(q1 − q2)
))

(t)
∣∣∣

≤ C

(
λ2 ‖Nq1(λ)−Nq2(λ)‖+

Cq1,q2

λ2
‖q1 − q2‖L∞

)
where Cq1,q2 = max

(
‖q1‖L∞ , ‖q2‖L∞ , ‖q1‖L∞‖q2‖L∞

)
.

Proof of Theorem 4. Let q = q1−q2. Since q is radial, we have q(x) = Q(|x|)
and

q̂(ξ) = Q(|ξ|)
with for all ρ > 0,

Q(ρ) =
∫ 2π

0

∫ ∞

0
e−irρ cos θQ(r) rdrdθ.
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In particular recalling that Q is nonnegative, we find that for all ξ ∈ R2,

|q̂(ξ)| ≤ 2π
∫ ∞

0
Q(r) rdr

≤ 2π
∫ ∞

0
eζ0(1−r)e−ζ0(1−r)Q(r) rdr

for any ζ0 ∈ R. Then we can apply Lemma 3.3 to the particular case of a
radial function, so choosing k = 0 and ζ0 = 3Kλ0 we infer that

|q̂(ξ)| ≤ Ceζ0κ/λL
(
T (rQ)

)
(ζ0)(3.3)

≤ Ce3Kκ

(
λ2 ‖Nq1(λ)−Nq2(λ)‖+

Cq1,q2

λ2
‖q1 − q2‖L∞

)
.

The end of the proof of Theorem 4 follows easily by taking the L2 norm
in ξ. �

3.3. Proof of Lemma 3.3. The method of proof follows the ideas devel-
oped in the proofs of Theorems 2 and 3, adapting the estimates to our special
situation where the potentials are located near the boundary. The heart of
the matter consists to approximate the solutions to Helmholtz equation (3.1)
by separable solutions in radial coordinates involving Bessel functions, which
allows in light of Debye’s formula to relate the Laplace transform of the po-
tential to its near field operator.

More precisely, we shall look for solutions to (3.1) under the following
form, for n ∈ Z:

un(r, θ) =
J|n|(λr)

λ(J ′|n|(λ)− iJ|n|(λ))
einθ + vn

= zn(r, λ) einθ + vn,

where Jn is a Bessel function of the first kind (see Appendix A), solution to(
∂2

r +
1
r
∂r −

n2

r2
+ 1
)
Jn(r) = 0.

Suppose that for ` ∈ {1, 2}, u`
n solves (3.1) with potential q`. Then writing

u`
n(r, θ) = zn(r, λ) einθ + v`

n(r, θ),

we find that {
(D2 − λ2 + q`)v`

n = −q` zn einθ in B,

(∂r − iλ)v`
n|∂B = 0.

Due to Property (A.6) we have if 1−λ−1 ≤ r ≤ 1 and |n| ≥ Kλ for K large,
that

∣∣λ zn(r, λ)
∣∣ is bounded, for λ ≥ λ0, by a constant depending only on K

and λ0.
For now on we shall denote by C(λ0,K) such a constant, which may change
from line to line.



18 AMMARI, BAHOURI, DOS SANTOS FERREIRA, AND GALLAGHER

Therefore, arguing as in the proof of Lemma 1.5 and taking advantage of
the fact that on the support of q`, r varies in an interval of size λ−1, we find
as soon as λ is large enough compared to ‖q`‖L∞

(3.4) ‖v`
n‖L2 ≤

C(λ0,K)
λ

‖q`(r, θ) zn(r, λ)‖L2 ≤
C(λ0,K)

λ
5
2

‖q`‖L∞ .

Now going back to the computations of Section 2 we consider two positive
integers n and m such that n,m ≥ Kλ, and we write∫

B
(q1 − q2)u1

nu
2
−m dx =

∫
∂B

(Nq1(λ)−Nq2(λ)einθe−imθ dθ.

Therefore decomposing

u1
n(r, θ) = zn(r, λ) einθ + v1

n(r, θ) and

u2
−m(r, θ) = zm(r, λ) e−imθ + v2

−m(r, θ),

we get ∫ 2π

0

(
Nq1(λ)−Nq2(λ)

)
einθe−imθdθ

=
∫

B
(q1 − q2)ei(n−m)θzn(r, λ) zm(r, λ) rdr dθ

+
∫

B
(q1 − q2)einθzn(r, λ) v2

−m rdr dθ(3.5)

+
∫

B
(q1 − q2)e−imθzm(r, λ) v1

n rdr dθ

+
∫

B
(q1 − q2)v1

nv
2
−m rdr dθ.

As
∣∣λ zn(r, λ)

∣∣ is bounded by a constant C(λ0,K), we have (recalling that q1
and q2 are compactly supported in an interval in r of size λ−1)∣∣∣∣∫

B
(q1 − q2)einθ zn(r, λ) v2

−m r dr dθ
∣∣∣∣ ≤ C(λ0,K)

λ
3
2

‖q1 − q2‖L∞‖v2
−m‖L2

and similarly∣∣∣∣∫
B

(q1 − q2)e−imθ zm(r, λ) v1
n r dr dθ

∣∣∣∣ ≤ C(λ0,K)

λ
3
2

‖q1 − q2‖L∞‖v1
n‖L2 .

Finally ∣∣∣∣∫
B

(q1 − q2)v1
nv

2
−m rdr dθ

∣∣∣∣ ≤ ‖q1 − q2‖L∞‖v1
n‖L2‖v2

−m‖L2 .
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Thus by (3.4), we get from (3.5), for n,m ≥ Kλ > Kλ0,

(3.6)
∣∣∣∣∫

B
(q1 − q2)ei(n−m)θ zn(r, λ) zm(r, λ) rdr dθ

∣∣∣∣
≤
∣∣∣∣∫ 2π

0

(
Nq1(λ)−Nq2(λ)

)
einθ e−imθ dθ

∣∣∣∣+ Cq1,q2

λ4
‖q‖L∞ ,

where q = q1 − q2 and

Cq1,q2 = C(λ0,K) max
(
‖q1‖L∞ , ‖q2‖L∞ , ‖q1‖L∞‖q2‖L∞

)
.

This gives rise to

(3.7)
∣∣∣∣∫

B
(q1 − q2)ei(n−m)θ zn(r, λ) zm(r, λ) rdr dθ

∣∣∣∣
≤ ‖Nq1(λ)−Nq2(λ)‖+

Cq1,q2

λ4
‖q‖L∞ ,

which leads in light of (A.6) to∣∣∣ ∫
B

(q1 − q2)ei(n−m)θe−(n+m)(1−r) rdr dθ
∣∣∣

≤ C(λ0,K)
(
λ2 ‖Nq1(λ)−Nq2(λ)‖+

Cq1,q2

λ2
‖q‖L∞

)
,

for all n,m ≥ Kλ. In conclusion we have for any k ∈ Z, any ` ∈ N and
any j ≥ 2Kλ > 2Kλ0,

(3.8)
∣∣∣∣∫

B
(q1 − q2)e−i kθe−j(1−r) rdr dθ

∣∣∣∣
≤ C(λ0,K)

(
λ2 ‖Nq1(λ)−Nq2(λ)‖+

Cq1,q2

λ2
‖q‖L∞

)
.

The conclusion follows from (3.3). Lemma 3.3 is proved. �

4. Concluding remarks

In this paper we have shown that the low-frequency component of the
potential can be determined in a stable way from the scattering measure-
ments and justified the resolution limit. We have also proved that in the
near-field we have in the monotone case infinite resolution in reconstructing
the potential near the boundary. We think that the result holds in the gen-
eral case. However, its proof seems to be out of reach. In fact, even though
a sampling (or interpolation) formula for the Laplace transform does ex-
ist [20, 54], making norm-estimates similar to those in Theorem 4 is very
challenging. Our results can be extended in many directions. It would be
very interesting to study the limited-view case and show, as in [11], that
we recover infinite resolution from near-field measurements on the overlap
of the source and receiver apertures. Another challenging problem is to un-
derstand how probe interaction can improve local resolution by converting
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evanescent modes of the potential to propagating ones [23]. These problems
will be the subject of forthcoming works.

Appendix A. Bessel functions

Bessel’s equation arises when finding separable solutions to the Helmholtz
equation in spherical coordinates, and writes as follows:

(A.1)
(
∂2

z +
1
z
∂z +

(
1− n2

z2

))
u = 0, n ∈ Z.

It is well known (see for instance [39, 49] and the references therein) that one
of the solutions of Bessel’s equation is the entire function Jn(z) known as the
Bessel function of the first kind of order n, and defined for arbitrary z ∈ C
by the convergent series

Jn(z) =
k=∞∑
k=0

(−1)k

k! (n+ k)!
(z/2)n+2k,

in the case where n ∈ N and by J−n(z) = (−1)n Jn(z).

To find a general solution of Bessel’s equation (A.1), we need a second
solution of (A.1) which is linearly independent of Jn(z). For such a solution,
we usually choose Yn(z) the Bessel function of the second kind which is entire
in the complex plane cut along the segment ]−∞, 0] and defined for n ∈ N
by

Yn(z) =
2
π
Jn(z) log

z

2
− 1
π

k=n−1∑
k=0

(n− k − 1)!
k!

(
z

2
)2k−n

− 1
π

k=∞∑
k=0

(−1)k (z/2)n+2k

k! (n+ k)!
[ψ(k + 1) + ψ(k + n+ 1)],

where ψ(m + 1) = −γ + 1 +
1
2

+ ... +
1
m
, γ being the Euler constant. We

also define Y−n(z) = (−1)n Yn(z).

Since Jn and Yn are linearly independent, the general expression for solutions
of (A.1) is a linear combination of Bessel functions of the first and second
kinds, i.e,

u(z) = AJn(z) +B Yn(z),
where A and B are constants.

Another basis of solutions to the differential equation (A.1) is given by the
Bessel functions of the third kind or Hankel functions, denoted by H

(1)
n

and H(2)
n . These functions are defined by the formulas

(A.2) H(1)
n (z) = Jn(z) + iYn(z) and H(2)

n (z) = Jn(z)− iYn(z),
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where z is any point of the complex plane cut along the segment ]−∞, 0].
The motivation for introducing the Hankel functions is that the linear com-
bination of Jn(z) and Yn(z) have very simple asymptotic expansions for
large |z|: it is thus well-known that

H(1)
n (z) =

( 2
πz

) 1
2 ei (z−nπ

2
−π

4
)

(
1 +O

( 1
|z|

))
and(A.3)

H(2)
n (z) =

( 2
πz

) 1
2 e−i (z−nπ

2
−π

4
)

(
1 +O

( 1
|z|

))
(A.4)

as |z| → ∞.
Furthermore, we have the following Debye formulas whose proof can be
found for instance in [49, Chapter 9.4] and [1, Chapter 9]:

Jn(n sechα) ∼ e−n(α−tanh α)

(2πn tanhα)
1
2

(
1 + (

1
8

cothα− 5
24

(cothα)3)
1
n

+ ...

)
and particulary

(A.5)

Jn(n sechα) =
e−n(α−tanh α)

(2πn tanhα)
1
2

(
1 +O

( 1
n

))
,

J ′n(n sechα) =
(tanhα)

1
2 e−n(α−tanh α)

(4πn)
1
2

(
1 +O

( 1
n

))
as n→∞, where sech z denotes the hyperbolic secant of z defined by

sech z =
1

cosh z

with cosh z the hyperbolic cosine.

Debye’s formula gives rise to the following asymptotic behavior for the func-
tion introduced in Section 3:

zn(λ, r) =
J|n|(λr)

λ(J ′|n|(λ)− iJ|n|(λ))

defined for n ∈ Z. Let us prove that for |n| � λ and r ∼ 1,

(A.6)
Re zn(λ, r) ∼ C

λ
e−n(1−r)

(
1 +O

( 1
n

))
,

and Im zn(λ, r) ∼ C

λ
e−n(1−r)

(
1 +O

( 1
n

))
.

Without loss of generality we may assume that n ∈ N, then defining

coshα1 =
n

λr
and coshα2 =

n

λ
,
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it is easy to see that under the above assumptions (λ � n and r ∼ 1),
we have necessarily coshαi � 1 for i ∈ {1, 2}, hence αi � 1. This im-
plies coshαi ∼ eαi , sinhαi ∼ eαi , and tanhαi ∼ 1, which gives rise to

Re zn(λ, r) =
Jn(n sechα1)J ′n(n sechα2)

λ(J ′2n (n sechα2) + J2
n(n sechα2))

and

Im zn(λ, r) =
Jn(n sechα1)Jn(n sechα2)

λ(J ′2n (n sechα2) + J2
n(n sechα2)) ·

Finally, taking advantage of (A.5) we get

Re zn(λ, r) ∼ e−n(α1−α2)

λ
∼ e−n log( 1

r
)

λ
·

The computation is identical for Im zn(λ, r), so using the fact that r is near
to 1, we obtain the desired conclusion.
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