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I.H.E.S., Université Paris-Saclay, CNRS, Laboratoire Alexandre
Grothendieck. 35 Route de Chartres, 91440 Bures-sur-Yvette, France.

E-mail : bodineau@ihes.fr

I. Gallagher
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STATISTICAL DYNAMICS OF A HARD
SPHERE GAS:

FLUCTUATING BOLTZMANN EQUATION
AND LARGE DEVIATIONS

Thierry Bodineau, Isabelle Gallagher,
Laure Saint-Raymond, Sergio Simonella

Abstract. — We present a mathematical theory of dynamical fluctuations
for the hard sphere gas in the Boltzmann-Grad limit. We prove that: (1) fluc-
tuations of the empirical measure from the solution of the Boltzmann equation,
scaled with the square root of the average number of particles, converge to a
Gaussian process driven by the fluctuating Boltzmann equation, as predicted
by Spohn; (2) large deviations are exponentially small in the average number
of particles and are characterized, under regularity assumptions, by a large
deviation functional as previously obtained by Rezakhanlou for dynamics with
stochastic collisions. The results are valid away from thermal equilibrium, but
only for short times. Our strategy is based on uniform a priori bounds on the
cumulant generating function, characterizing the fine structure of the small
correlations.
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CHAPTER 1

INTRODUCTION

This paper is devoted to a detailed analysis of the dynamical correlations

arising, at low density, in a deterministic particle system obeying Newton’s

laws. In this chapter we start by defining our model precisely, and recalling

the fundamental result of Lanford on the short-time derivation of the Boltz-

mann equation, as a law of large numbers. After that, we state our main

results, Theorem 2 and Theorem 3 below, regarding small fluctuations and

large deviations of the empirical measure, respectively. Finally, the last part of

this introduction describes the essential features of the proofs, the organization

of the paper, and presents some open problems.

1.1. The hard-sphere model with random initial data

We consider a system of N ≥ 0 spheres of diameter ε > 0 in the d-

dimensional torus TdN with d ≥ 2. The positions (xε1, . . . ,x
ε
N ) ∈ TdN and

velocities (vε1, . . . ,v
ε
N ) ∈ RdN of the particles satisfy Newton’s laws

(1.1.1)
dxεi
dt

= vεi ,
dvεi
dt

= 0 as long as |xεi (t)− xεj(t)| > ε , 1 ≤ i ̸= j ≤ N ,

with specular reflection at collisions

(1.1.2)

(vεi )
′ := vεi −

1

ε2
(vεi − vεj) · (xεi − xεj) (x

ε
i − xεj)(

vεj
)′
:= vεj +

1

ε2
(vεi − vεj) · (xεi − xεj) (x

ε
i − xεj)

if |xεi (t)− xεj(t)| = ε .

Observe that these boundary conditions do not cover all possible situations, as

for instance triple collisions are excluded. Nevertheless the hard-sphere flow

generated by (1.1.1)-(1.1.2) (free transport of N spheres of diameter ε, plus
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instantaneous reflection (
vεi ,v

ε
j

)
→
((

vεi
)′
,
(
vεj
)′)

at contact) is well defined on a full measure subset of Dε
N (see [1], or [28] for

instance) where Dε
N is the canonical phase space

Dε
N :=

{
ZN ∈ DN : ∀i ̸= j , |xi − xj | > ε

}
.

We have denoted ZN := (XN , VN ) ∈ (Td × Rd)N the positions and velocities

in the extended space DN := (Td × Rd)N with XN := (x1, . . . , xN ) ∈ TdN
and VN := (v1, . . . , vN ) ∈ RdN . We set ZN = (z1, . . . , zN ) with zi = (xi, vi).

The probability density W ε
N of finding N hard spheres of diameter ε at

configuration ZN at time t is governed by the Liouville equation in the 2dN -

dimensional phase space

(1.1.3) ∂tW
ε
N + VN · ∇XNW

ε
N = 0 on Dε

N ,

with specular reflection on the boundary. If we denote

∂Dε±
N (i, j) :=

{
ZN ∈ DN : |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0

and ∀(k, ℓ) ∈ [1, N ]2 \ {i, j}, k ̸= ℓ , |xk − xℓ| > ε
}
,

then

(1.1.4) ∀ZN ∈ ∂Dε+
N (i, j) , i ̸= j , W ε

N (t, ZN ) :=W ε
N (t, Z

′i,j
N ) ,

where Z
′i,j
N differs from ZN only by (vi, vj) →

(
v′i, v

′
j

)
, given by (1.1.2).

The canonical formalism consists in fixing the number N of particles, and

in studying the probability density W ε
N of particles in the state ZN at time t,

as well as its marginals. The main drawback of this formalism is that fixing

the number of particles creates spurious correlations (see e.g. [26, 57]). We are

rather going to define a particular class of distributions on the grand canonical

phase space

Dε :=
⋃
N≥0

Dε
N ,

where the number of particles is not fixed but given by a modified Poisson

law (actually Dε
N = ∅ for large N). For notational convenience, we work with

functions extended to zero over DN \ Dε
N . Given a probability distribution

f0 : D → R satisfying

(1.1.5) |f0(x, v)|+ |∇xf
0(x, v)| ≤ C0 exp

(
− β0

2
|v|2
)
, C0 ≥ 1 , β0 > 0 ,

the initial probability density is defined on the configurations (N,ZN ) ∈ DN as

(1.1.6)
1

N !
W ε0
N (ZN ) :=

1

Zε

µNε
N !

N∏
i=1

f0(zi)1DεN (ZN ),
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where µε > 0 and the normalization constant Zε is given by

Zε := 1 +
∑
N≥1

µNε
N !

∫
DN

dZN

N∏
i=1

f0(zi)1DεN (ZN ) .

Here and below, 1A will be the indicator function of the set A. We will also use

the symbol 1“∗” for the indicator function of the set defined by condition “∗”.
Note that in the chosen probability measure, particles are “exchangeable”,

in the sense that W ε0
N is invariant by permutation of the particle labels in its

argument. Moreover, the choice (1.1.6) for the initial data is the one guarantee-

ing the “maximal factorization”, in the sense that particles would be i.i.d. were

it not for the indicator function (‘hard-sphere exclusion’).

Our fundamental random variable is the time-zero configuration, consisting

of the initial positions and velocities of all the particles of the gas. We will

denote N the total number of particles (as a random variable) and Zε0N =(
zε0i
)
i=1,...,N the initial particle configuration. The particle dynamics

(1.1.7) t 7→ ZεN (t) = (zεi (t))i=1,...,N

is then given by the hard-sphere flow solving (1.1.1)-(1.1.2) with random initial

data Zε0N (well defined with probability 1). The probability of an event X with

respect to the measure (1.1.6) will be denoted Pε(X), and the corresponding

expectation symbol will be denoted Eε. Notice that particles are identified

by their label, running from 1 to N . We shall mostly deal with expectations

of observables of type Eε
(∑N

i=1 . . .
)
. Unless differently specified, we always

imply that Eε
(∑

i . . .
)
= Eε

(∑N
i=1 . . .

)
.

The average total number of particles N is fixed in such a way that

(1.1.8) lim
ε→0

Eε (N ) εd−1 = 1 .

The limit (1.1.8) ensures that the Boltzmann-Grad scaling holds, i.e. that the

inverse mean free path is of order 1 [33]. Thus from now on we will set

µε = ε−(d−1) .

Let us define the rescaled initial n-particle correlation function

F ε0n (Zn) := µ−nε

∞∑
p=0

1

p!

∫
Dp
dzn+1 . . . dzn+pW

ε0
n+p(Zn+p) .

We say that the initial measure admits correlation functions when the series

in the right-hand side is convergent, which is the case with our choice (1.1.6)

of initial data, together with the series in the inverse formula

W ε0
n (Zn) = µnε

∞∑
p=0

(−µε)p
p!

∫
Dp
dzn+1 . . . dzn+p F

ε0
n+p(Zn+p) .
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In this case, the set of functions
(
F ε0n
)
n≥1

describes all the properties of the

system.

For any test function hn : Dn → R, the following holds :

Eε
( ∑

i1,...,in
ij ̸=ik,j ̸=k

hn
(
zε0i1 , . . . , z

ε0
in

))
= Eε

(
δN≥n

N !

(N − n)!
hn
(
zε01 , . . . , z

ε0
n

))

=
∞∑
p=n

∫
Dp
dZp

W ε0
p (Zp)

p!

p!

(p− n)!
hn
(
Zn
)

(1.1.9)

= µnε

∫
Dn
dZn F

ε0
n (Zn)hn(Zn) .

Starting from the initial distribution W ε0
N , the density W ε

N (t) evolves on Dε
N

according to the Liouville equation (1.1.3) with specular boundary reflec-

tion (1.1.4). At time t ≥ 0, the (rescaled) n-particle correlation function is

defined as

F εn(t, Zn) := µ−nε

∞∑
p=0

1

p!

∫
Dp
dzn+1 . . . dzn+pW

ε
n+p(t, Zn+p)(1.1.10)

and, as in (1.1.9), we get

(1.1.11) Eε
( ∑

i1,...,in
ij ̸=ik,j ̸=k

hn
(
zεi1(t), . . . , z

ε
in(t)

))
= µnε

∫
Dn
dZn F

ε
n(t, Zn)hn

(
Zn
)
,

where we used the notation (1.1.7). Notice that F εn(t, Zn) = 0 for Zn ∈ Dn\Dε
n.

1.2. Lanford’s theorem : a law of large numbers

In the Boltzmann-Grad limit µε → ∞, the average behavior is governed by

the Boltzmann equation :

(1.2.1)∂tf(z) + v · ∇xf(z) =

∫
D

∫
Sd−1

(
f(t, z′1)f(t, z

′)− f(t, z1)f(t, z)
)
dµz(z1, ω) ,

f(0, z) = f0(z),

where, for any z = (x, v) ∈ D,

(1.2.2) dµz(z1, ω) := δx1−x
(
(v1 − v) · ω

)
+
dω dx1 dv1,

with z1 = (x1, v1) ∈ D and the precollisional velocities of the configurations

z′ = (x, v′) and z′1 = (x1, v
′
1) are defined by the scattering law

(1.2.3) v′ := v −
(
(v − v1) · ω

)
ω , v′1 := v1 +

(
(v − v1) · ω

)
ω .
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More precisely, the convergence is described by Lanford’s theorem [47] (in the

canonical setting — for the grand-canonical setting see [46], where the case

of smooth compactly supported potentials is also addressed), which we state

here in the case of the initial measure (1.1.6).

Theorem 1 (Lanford [47]). — Consider a system of hard spheres initially

distributed according to the grand canonical measure (1.1.6) with f0 satisfy-

ing the estimate (1.1.5). Then, in the Boltzmann-Grad limit µε → ∞, the

rescaled one-particle density F ε1 (t) converges uniformly to the solution f(t) of

the Boltzmann equation (1.2.1) on a time interval [0, TL] (which depends only

on f0 through C0, β0 as TL ∼ C−1
0 β

(d+1)/2
0 ). Furthermore for each n, one

has propagation of chaos : the rescaled n-particle correlation function F εn(t)

converges almost everywhere in Dn to f⊗n(t) on the same time interval.

We refer to [39, 69, 20, 19] for detailed proofs. The topic continues to

be studied and developed, see [44, 28, 23, 57, 29, 30, 58] for more recent

contributions.

Let us define the empirical measure

(1.2.4) πεt :=
1

µε

N∑
i=1

δzεi (t) ,

where δzεi (t) denotes the Dirac mass at point zεi (t). Tested on a (one-particle)

function h : D → R, it reads

(1.2.5) πεt (h) =
1

µε

N∑
i=1

h (zεi (t)) .

By definition, F ε1 describes the average behavior of (exchangeable) particles :

(1.2.6) Eε
(
πεt (h)

)
=

∫
D
F ε1 (t, z)h(z) dz .

The propagation of chaos derived in Theorem 1 implies in particular that the

empirical measure concentrates on the solution of Boltzmann equation: let

us prove the following law of large numbers, which is an easy corollary to

Theorem 1.

Corollary 1.2.1. — Under the assumptions of Theorem 1, for all δ > 0 and

smooth h : D → R,

Pε
(∣∣∣πεt (h)− ∫

D
f(t, z)h(z)dz

∣∣∣ > δ

)
−−−−→
µε→∞

0 .
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Proof. — Computing the variance for any test function h, we get that

(1.2.7)

Eε
((
πεt (h)−

∫
F ε1 (t, z)h(z) dz

)2)
= Eε

( 1

µ2ε

N∑
i=1

h2
(
zεi (t)

)
+

1

µ2ε

∑
i ̸=j

h
(
zεi (t)

)
h
(
zεj(t)

))
−
(∫

F ε1 (t, z)h(z) dz
)2

=
1

µε

∫
F ε1 (t, z)h

2(z) dz

+

∫
F ε2 (t, Z2)h(z1)h(z2) dZ2 −

(∫
F ε1 (t, z)h(z) dz

)2
−−−−→
µε→∞

0 ,

where the convergence to 0 follows from the fact that F ε2 converges to f⊗2

and F ε1 to f almost everywhere.

Remark 1.2.2. — The restriction to the time interval [0, TL] in the statement

of Theorem 1 originates from a Cauchy-Kovalevskaya argument in a scale of

Banach spaces. A (non optimal) estimate of TL in terms of C0 and β0 is

provided in Theorem 10 of the present paper, of the form TL ∼ C−1
0 β

(d+1)/2
0 .

(Notice that in this estimate the inverse temperature is given by β0, while the

physical density is C0/β
d
2
0 ). Remark that the Cauchy-Kovalevskaya argument

provides the same dependence in terms of C0 and β0 for the wellposedness time

of the Boltzmann equation: see Appendix A.1.

1.3. The fluctuating Boltzmann equation

Describing the fluctuations around the Boltzmann equation is a way to cap-

ture part of the information which has been lost in the limit µε → ∞.

As in the classical central limit theorem, we expect these fluctuations to

be of order 1/
√
µε, which is the typical size of the remaining correlations.

We therefore define the fluctuation field ζε as follows: for any test function

h : D → R (recall (1.2.6))

(1.3.1) ζεt
(
h
)
:=

√
µε

(
πεt (h)−

∫
F ε1 (t, z)h

(
z
)
dz

)
.

Initially the empirical measure starts close to the density profile f0 and ζε0
converges in law towards a Gaussian white noise ζ0 with covariance

(1.3.2) E
(
ζ0(h1) ζ0(h2)

)
=

∫
h1(z)h2(z) f

0(z) dz .

This follows from a computation similar to (1.2.7) because, with our choice of

initial data given in (1.1.6), µε

(
F ε2 (0)− (F ε1 )

⊗2 (0)
)
vanishes as µε → ∞ (the

Gaussian character requires an estimate of higher order cumulants, which is
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made precise in Proposition 8.1.4 below). Note that, for more general initial

states, a smoothly correlated part may appear in the covariance [68, 57].

In this paper we prove that in the limit µε → ∞, starting from “almost in-

dependent” hard spheres, ζεt converges to a Gaussian process, solving formally

(1.3.3) dζt = Lt ζt dt+ dηt ,

where Lt is the linearized Boltzmann operator around the solution f(t) of the

Boltzmann equation (1.2.1)

(1.3.4) Lt := −v · ∇x + Lt

with the collision part

(1.3.5)
Lth(z) :=

∫
D

∫
Sd−1

dµz(z1, ω)
(
f(t, z′1)h(z

′) + f(z′)h(z′1)

− f(t, z)h(z1)− f(t, z1)h(z)
)
,

where z′ = (x, v′), z′1 = (x1, v
′
1) are obtained by scattering as in (1.2.3). The

noise dηt(z) is Gaussian, with zero mean and covariance

(1.3.6)

E
(∫

dt1 dz1h1(z1)ηt1(z1)

∫
dt2 dz2 h2(z2)ηt2(z2)

)
=

1

2

∫
dt dµ(z1, z2, ω)f(t, z1) f(t, z2)∆h1∆h2

denoting

(1.3.7) dµ(z1, z2, ω) := δx1−x2
(
(v1 − v2) · ω

)
+
dω dv1 dv2dx1

and defining for any h

(1.3.8) ∆h(z1, z2, ω) := h(z′1) + h(z′2)− h(z1)− h(z2) ,

where z′i := (xi, v
′
i) with notation (1.2.3) for the velocities obtained after scat-

tering. We postpone the precise definition of a weak solution to (1.3.3) to

Section 6.1.

Our result is the following.

Theorem 2. — Consider a system of hard spheres initially distributed ac-

cording to the grand canonical measure (1.1.6) where f0 is a function satis-

fying (1.1.5). Then, there exists T > 0 (depending on f0 as T ∼ C−1
0 β

d+1
2

0 )

such that, in the Boltzmann-Grad limit µε → ∞, the fluctuation field (ζεt )t≥0

converges in law to a Gaussian process, uniquely determined by its covariance,

which solves (1.3.3) in a weak sense on the time interval [0, T ].
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The convergence towards the limiting process (1.3.3) was conjectured by

Spohn in [68] and the non-equilibrium covariance of the process at two different

times was computed in [67], see also [69]. The noise emerges after averaging

the deterministic microscopic dynamics. It is white in time and space, but

correlated in velocities so that momentum and energy are conserved.

At equilibrium the convergence of a discrete-velocity version of the same pro-

cess was derived rigorously by Rezakhanlou in [60], starting from a dynamics

with stochastic collisions (see also [43, 42, 70, 72, 73, 51] for fluctuations

space-homogeneous models).

The physical aspects of the fluctuations for the rarefied gas have been thor-

oughly investigated in [26, 67, 68]. We also refer to [12], where we gave an

outline of our results and strategy. Here we would like to recall only a few

important features.

1) The noise in (1.3.3) originates from dynamical correlations.

It is a very general fact that, when the macroscopic equation is dissipative,

the dynamical equation for the fluctuations contains a term of noise. In the

case under study, dynamical correlations correspond for example to two given

particles having interacted directly or indirectly backward in time on [0, t]

— a precise, albeit technical definition will be given later on in terms of a

suitable class of pseudo-dynamics (Definition 4.1.1 below). These correlations

have a negligible contribution to the limit πεt → f(t) (see Corollary 1.2.1).

The proof of Theorem 2 provides a further insight on the relation between

collisions and noise. Note that there is no a priori contradiction between the

dynamics being deterministic, and the appearance of noise from collisions in

the singular limit. Indeed when ε goes to zero, the deflection angles are no

longer deterministic (as in the probabilistic interpretation of the Boltzmann

equation). The randomness, which is entirely coded on the initial data of the

hard sphere system, is transferred to the dynamics in the limit.

2) Equilibrium fluctuations can be deduced by the fluctuation-dissipation the-

orem.

As a particular case, we obtain the result at thermal equilibrium f0 = M ,

where M is a Maxwellian. The stochastic process (1.3.3) boils down to a

generalized Ornstein-Uhlenbeck process. The noise term compensates the dis-

sipation induced by the linearized Boltzmann operator, and the covariance of

the noise (1.3.6) can be predicted heuristically by using the invariant mea-

sure. More precisely at equilibrium, one has the equation dζt = Leq ζt dt+ dηt
where Leq is the linearized Boltzmann operator around M . To determine the

structure of the Gaussian noise, one can formally express the time-independent

quantity E
(
ζt(h1) ζt(h2)

)
=
∫
h1 h2M dz in terms of the initial fluctuations ζ0,
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and of dη. Using that Leq is contracting, the limit t → ∞ cancels the depen-

dence on ζ0 and provides formula (1.3.6), with f = M , for the covariance of

the noise; see [69] for details, and also Remark 6.1.2 page 75.

3) Away from equilibrium, the fluctuating equations keep the same structure.

The most direct way to guess (1.3.3)-(1.3.6) is starting from the equilibrium

prediction (previous point) and assuming that M = M(v) can be substituted

with f = f(t, x, v). This heuristics is known as “extended local equilibrium”

assumption, in the context of fluctuating hydrodynamics; we refer again to [69]

for details. The hypothesis is based on the remark that the noise in the fluctu-

ating equation (1.3.3) should be white in space and time (δ−correlated in t and

x) and therefore it should be determined completely by the local properties

of the gas. If locally the system is at equilibrium, then the non equilibrium

equation (1.3.3) should be simply the one obtained from the equilibrium equa-

tion by adjusting the local parameters. This procedure turns out to give the

right result also for our gas at low density, even if f = f(t, x, v) is not locally

Maxwellian. The reason is that a form of local equilibrium is still true, in

terms of ideal gases; namely, around a little cube of volume µ−1
ε centered in

x at time t, the hard sphere distribution converges, as µε → ∞, to a uniform

Poisson measure with constant density
∫
f(t, x, v)dv and independent velocities

distributed according to f(t, x, v)/
∫
f(t, x, v)dv (see Corollary 4.7 in [69]).

4) Away from equilibrium, fluctuations exhibit long range correlations.

The covariance of the fluctuation field at different points x1, x2 is not zero

when |x1 − x2| is of order one (and decays slowly with |x1 − x2|). At vari-

ance with (1.3.2) which is δ−correlated, at positive times a smooth dynamical

contribution to the covariance emerges, which is non zero on macroscopic dis-

tances. This feature is typical of non equilibrium fluctuations as discussed

in [26]. In the hard sphere gas at low density, this dynamical contribution

originates again from dynamical correlations. The proof of Theorem 2 will

provide an explicit formula describing this effect; see [67], and Proposition

6.4.1 page 91.

Remark 1.3.1. — Note that a fluctuation theorem in the spirit of Theorem 2

was proved first in the context of a mean-field limit of Hamiltonian particle

systems, interacting by means of smooth, weak and long-range forces [17] (see

also [36, 32] for early results on quantum mechanical models). However, this

situation is deeply different from ours. The macroscopic limit is governed by

the Vlasov equation, which is a reversible equation with no entropy production.

Correspondingly, there is no dynamical noise in the fluctuating equation: the

fluctuations evolve deterministically according to the linearized Vlasov equa-

tion.
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1.4. Large deviations

While typical fluctuations are of order O(µ
−1/2
ε ), they may sometimes hap-

pen to be large, leading to a dynamics which is different from the Boltzmann

equation. A classical problem is to evaluate the probability of such an atypical

event, namely that the empirical measure remains close to a probability density

φ ̸= f during a time interval [0, t]. The following explicit formula for the large

deviation functional on [0, t] was obtained by Rezakhanlou [61] in the case of

a one-dimensional stochastic dynamics mimicking the hard-sphere dynamics,

and then conjectured for the deterministic hard-sphere dynamics in [63, 16]:

F̂(t, φ) := F̂(0, φ0)(1.4.1)

+ sup
p

{∫ t

0
ds

[∫
Dd
dz p(s, z)Dsφ(s, z)−H

(
φ(s), p(s)

)]}
,

where the supremum is taken over bounded measurable functions p, and the

Hamiltonian is given by

(1.4.2) H(φ, p) :=
1

2

∫
dµ(z1, z2, ω)φ(z1)φ(z2)

(
exp

(
∆p(z1, z2)

)
− 1
)
,

with dµ and ∆p defined in (1.3.7)-(1.3.8). We have denoted Dt the transport

operator

(1.4.3) Dtφ(t, z) := ∂tφ(t, z) + v · ∇xφ(t, z) ,

and finally

(1.4.4) F̂(0, φ0) :=

∫
D
dz

(
φ0 log

(
φ0

f0

)
− φ0 + f0

)
with φ0 = φ|t=0, is the large deviation rate for the empirical measure at time

zero.

The functional F̂(0) can be obtained by a standard procedure, modifying

the measure (1.1.6) in such a way to make the (atypical) profile φ0 typical (1).

Similarly, to obtain the collisional term H in F̂(t, φ), one would like to under-

stand the mechanism leading to an atypical path φ = φ(s) at positive times.

A serious difficulty then arises, due to the deterministic dynamics. Ideally, one

should conceive a way of tilting the initial measure in order to observe a given

trajectory. Whether such an efficient bias exists, we do not know. We shall

proceed in a different way and deduce the large deviations from the cumulant

generating function

(1.4.5) Λεt (e
h) :=

1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
1. In [65], at equilibrium, a derivation of large deviations by means of cluster expansion

methods is discussed for a larger range of densities.
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in the spirit of the Gärtner-Ellis Theorem which is classical in the large de-

viation theory [22]. In this approach, the main difficulty is the explicit char-

acterization of the cumulant generating function which requires to control the

dynamics at all scales in ε. For our purpose, we will actually need to sample

the empirical measure on the whole interval [0, t] and not only at time t, which

will be implemented by a more general functional (see Eq. (4.4.9) below).

We will be able to evaluate the asymptotic probability of observing any

trajectory φ satisfying Dtφ = ∂H
∂p , namely the biased Boltzmann equation

(1.4.6)
Dtφ(t, z1) =

∫
D

∫
Sd−1

(
φ(t, z′1)φ(t, z

′
2)e

−∆p(t,z1,z2,ω)

− φ(t, z1)φ(t, z2)e
∆p(t,z1,z2,ω)

)
dµz1(z2, ω)

for some Lipschitz p, and with initial data

(1.4.7) φ(0, x, v) = f0(x, v) ep(0,x,v) .

It is known indeed (see [61]) that (1.4.6) allows to code a large class of macro-

scopic profiles which can be attained in a large deviation regime. The perturbed

equation (1.4.6) describes a collision process with biased transition rate.

It can be proved (see Chapter 7 and Appendix A) that (1.4.6), in mild form,

has a unique solution in the class of continuous functions with Gaussian decay

in v. Such solutions will be called strong solutions.

Consider M(D) the set of positive measures on D with finite mass (metrized

with the topology of weak convergence). Define the set of trajectories in [0, t]

taking values in M(D) as the Skorokhod space D([0, t],M(D)) and denote

by d[0,t] the corresponding distance (see [8] page 121). The large deviation

theorem states as follows – a more complete version is proved in Chapter 7

(see Theorems 8 and 9).

Theorem 3. — Consider a system of hard spheres initially distributed accord-

ing to the grand canonical measure (1.1.6) where f0 satisfies (1.1.5). For any

r > 0, there exists a time T > 0 (depending only on C0, β0, r) such that the

following holds. Define

Rr,T :=
{
φ : [0, T ]× D 7→ R+ : φ is the strong solution of (1.4.6)-(1.4.7)

on [0, T ] for some p such that ∥p∥W 1,∞([0,T ]×D) ≤ r
}
.



12 CHAPTER 1. INTRODUCTION

For any φ ∈ Rr,T , in the Boltzmann-Grad limit µε → ∞, the empirical measure

satisfies the large deviation estimates

lim
δ→0

lim sup
µε→∞

1

µε
logPε[d[0,T ](πε, φ) ≤ δ] = −F̂(T, φ) ,

lim
δ→0

lim inf
µε→∞

1

µε
logPε[d[0,T ](πε, φ) ≤ δ] = −F̂(T, φ) .

A companion program for large deviations (including gradient flows) has

been developed for spatially homogeneous models and stochastic particle sys-

tems, in the spirit of Kac’s approach for the justification of kinetic theory

[49, 37, 5, 3, 4]. For (regular) homogeneous observables φ, the functional F̂
coincides with the functional obtained for the Kac model (see also [61] for the

additional spatial dependence).

Thus a feature of Theorem 3 is that the large deviation behaviour of the

mechanical dynamics is also ruled by the large deviation functional of the

stochastic process. It is generally accepted that there is good similarity be-

tween deterministic systems displaying some chaoticity and random stochastic

processes, an idea that has been used several times in mathematical physics.

Our context is more specific, because of the property of molecular chaos which

underlies the kinetic theory of gases. Traditionally, the rigorous justification

of this theory is based on two approaches, the programs of Grad [34] and

Kac [41], corresponding respectively to the deterministic and the random case

which are both effective with some limitations. It is therefore natural to ask

to what extent the “equivalence” of dynamical system and stochastic process

can be pushed. Our result proves such equivalence up to dynamical events of

exponentially small probability.

For an extensive formal discussion on large deviations in the Boltzmann

gas, as well as for some physical motivations, we refer to [16] (see also [7] for

diffusive systems). As argued in the following section, fluctuations and large

deviations are a systematic way to probe the physical system on finer and

finer scales, characterizing all the correlations. In particular, they complement

the rigorous explanation of the transition to irreversibility, by showing that

stochastic reversibility is recovered if one retains all the information discarded

in Lanford’s analysis. Finally, we mention that the large deviations add a

formal geometric structure to the limit, of gradient-flow type as discussed in

[16] (Section 5.4), which might motivate further investigations.
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1.5. Strategy of the proofs

In this section we provide an overview of the paper and describe, informally,

the core of our argument leading to Theorems 2 and 3.

We should start by recalling the basic features of the proof of Theorem 1.

For a deterministic dynamics of interacting particles, so far there has been

only one way to access the law of large numbers rigorously. The strategy is

based on the ‘hierarchy of moments’ corresponding to the family of correlation

functions (F εn)n≥1, Eq. (1.1.10). The main role of F εn is to project the measure

on finite groups of particles (groups of cardinality n), out of the total N .

The term ‘hierarchy’ refers to the set of linear BBGKY equations satisfied

by this collection of functions (which will be written in Section 3.1), where

the equation for F εn has a source term depending on F εn+1. This hierarchy is

completely equivalent to the Liouville equation (1.1.3) for the family (W ε
N )N≥0,

as it contains exactly the same amount of information. However as N ∼ µε in

the Boltzmann-Grad limit (1.1.8), one should make sense of a Liouville density

depending on infinitely many variables, and the BBGKY hierarchy becomes the

natural convenient way to grasp the relevant information. Lanford succeeded

to show that the explicit solution F εn(t) of the BBGKY hierarchy, obtained by

iteration of the Duhamel formula, converges to a product f⊗n(t) (propagation

of chaos), where f is the solution of the Boltzmann equation (1.2.1).

This result based on the hierarchy of moments has two important limita-

tions. The first one is the restriction on its time of validity, which comes from

too many terms in the iteration: we are indeed unable to take advantage of

cancellations between gain and loss terms. The second one is a drastic loss

of information. We shall not give here a precise notion of ‘information’. We

limit ourselves to stressing that (F εn)n≥1 is suited to the description of typical

events. In the limit, everything is encoded in f , no matter how large n. More-

over, the Boltzmann equation produces some entropy along the dynamics: at

least formally, f satisfies

∂t
(
−
∫
f log f dv

)
+∇x ·

(
−
∫
f log f v dv

)
≥ 0 ,

which is in contrast with the time-reversible hard-sphere dynamics. Our main

purpose here is to overcome this second limitation (for short times) and to

perform the Boltzmann-Grad limit in such a way as to keep most of the in-

formation lost in Theorem 1. In particular, the limiting functional (1.4.1)

coincides with the large deviations functional of a genuine reversible Markov

process, in agreement with the microscopic reversibility [16]. We face a signif-

icant difficulty: on the one hand, we know that averaging is important in order



14 CHAPTER 1. INTRODUCTION

to go from Newton’s equations to Boltzmann’s equation; on the other hand,

we want to keep track of some of the microscopic structure.

To this end, we need to go beyond the BBGKY hierarchy and turn to a more

powerful representation of the dynamics. We shall replace the family (F εn)n≥1

(or (W ε
N )N≥0) with a third, equivalent, family of functions (f εn)n≥1, called

(rescaled) cumulants (2). Their role is to grasp information on the dynamics

on finer and finer scales. Loosely speaking, f εn(t) will collect events where n

particles are “completely connected” by a chain of interactions. We shall say

that the n particles form a cluster. Since a collision between two given particles

is typically of order t/µε, a “complete connection” would account for events of

probability of order (t/µε)
n−1. We therefore end up with a hierarchy of rare

events, which we need to control at all orders to obtain Theorem 3. At variance

with (F εn)n≥1, even after the limit µε → ∞ is taken, the rescaled cumulant f εn
cannot be trivially obtained from the cumulant f εn−1. Each step entails extra

information, and events of increasing complexity, and decreasing probability.

The cumulants, which are a standard probabilistic tool, will be investigated

here in the dynamical, non-equilibrium context. Their precise definition and

basic properties are discussed in Chapter 2.

The introduction of cumulants will not entitle us to avoid the BBGKY hier-

archy entirely. Unfortunately, the equations for (f εn)n≥1 are difficult to handle.

But the moment-to-cumulant relation (F εn)n≥1 → (f εn)n≥1 is a bijection and, in

order to construct f εn(t), we can still resort to the same solution representation

of [47] for the correlation functions (F εn(t))n≥1. This formula is an expansion

over collision trees, meaning that it has a geometrical representation as a sum

over binary tree graphs, with vertices accounting for collisions. The formula

will be presented in Chapter 3 (and generalized from the finite-dimensional

case to the case of functionals over trajectories, which is needed to deal with

space-time processes). For the moment, let us give an idea of the structure of

this tree expansion. The Duhamel iterated solution for F εn(t) has a peculiar

characteristic flow: n hard spheres (of diameter ε) at time t flow backwards,

and collide (among themselves or) with a certain number of external particles,

which are added at random times and at random collision configurations. The

following picture (Figure 1) is an example of such flow (say, n = 3).

2. Cumulant type expansions within the framework of kinetic theory appear in [9, 57,

50, 29, 31].
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.

Figure 1

The net effect resembles a binary tree graph. The real graph is just a way to

record which pairs of particles collided, and in which order.

It is important to notice that different subtrees are unlikely to interact: since

the hard spheres are small and the trajectories involve finitely many particles,

two subtrees will encounter each other with small probability. This is a rather

pragmatic point of view on the propagation of chaos, and the reason why F εn(t)

is close to a tensor product (if it is so at time zero) in the classical Lanford

argument. Observe that, in this simple argument, we are giving a notion of

dynamical correlation which is purely geometrical. Actually we will use this

idea over and over. Two particles are correlated if their generated subtrees are

connected, as represented for instance in the following picture (Figure 2).

Figure 2

The event in Figure 2 has ‘size’ t/µε (the volume of a tube of diameter ε and

length t). In Chapter 4, we will give a precise definition of correlation (con-

nection) based on geometrical constraints. It will be the elementary brick to

characterize f εn(t) explicitly in terms of the initial data. The formula for f εn(t)

(Section 4.4) will be supported on characteristic flows with n particles con-

nected, through their generated subtrees (hence of expected size (t/µε)
n−1).

In other words, while F εn projects the measure on arbitrary groups of particles

of size n, the improvement of f εn consists in restricting to completely connected

clusters of the same size.

With this naive picture in mind, let us briefly comment again on informa-

tion, and irreversibility. One nice feature of the geometric analysis of dynam-

ical correlations is that it reflects the transition from a time-reversible to a

time-irreversible model. In [11] we identified, and quantified, the microscopic

singular sets where F εn does not converge. These sets are not invariant by
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time-reversal (they have a direction always pointing to the past, and not to

the future). Looking at F εn(t), we lose track of what happens in these small

sets. This implies, in particular, that Theorem 1 cannot be used to come back

from time t > 0 to the initial state at time zero. The cumulants describe what

happens on all the small singular sets, therefore providing the information

missing to recover the reversibility.

At the end of Chapter 4, we give a uniform estimate on these cumulants

(Theorem 4), which is the main advance of this paper. This L1-bound is sharp

in ε and n (n-factorial bound), roughly stating that the unscaled cumulant

decays as (t/µε)
n−1nn−2. This estimate is intuitively simple. We have given

a geometric notion of correlation as a link between two collision trees. Based

on this notion, we can draw a random graph telling us which particles are

correlated and which particles are not (each collision tree being one vertex of

the graph). Since the cumulant describes n completely correlated particles,

there will be at least n − 1 edges, each one of small ‘volume’ t/µε. Of course

there may be more than n−1 connections (if the random graph has cycles), but

these are hopefully unlikely as they produce extra smallness in ε. If we ignore

all of them, we are left with minimally connected graphs, whose total number

is nn−2 by Cayley’s formula. Thanks to the good dependence in n of these

uniform bounds, we can actually sum up all the family of cumulants into an

analytic series, referred to as ‘cumulant generating function’ (coinciding with

formula (1.4.5)).

The second central result of this paper, stated in Chapter 5 (Theorem 5),

is the characterization of the rescaled cumulants in the Boltzmann-Grad limit,

with minimally connected graphs. Using this minimality property, we derive a

Hamilton-Jacobi equation for the limiting cumulant generating function, which

is our ultimate point of arrival (allowing us, in particular, to characterize the

covariance of the fluctuation field and the large deviation functional).

The rest of the paper is devoted to the proofs of our main results.

Chapter 6 proves Theorem 2. Here, the uniform bounds of Theorem 4 are

considerably better than what is required, and the proof amounts to looking

at a characteristic function living on larger scales. Indeed a simple expansion

shows that the characteristic function of the fluctuation field is determined,

at leading order, by f ε1 , (µ
1−n

2
ε f εn)n≥2 so that only the first two cumulants

contribute to the limit. This proves the Gaussian character of the process (im-

plying in particular the Wick Theorem for the moments of the limiting field).

The more technical part of the proof concerns the tightness of the process

for which we adapt Garsia-Rodemich-Rumsey’s inequality on the modulus of

continuity, to the case of a discontinuous process.
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In Chapter 7 we prove Theorem 3, and actually even a slightly more general

statement. Our purpose is to show that the cumulant generating function

obtained in Chapter 5 is dual, through the Legendre transform, to a large

deviation rate function. Restricting to the class Rr,T of observables, this rate

functional can be identified with the one predicted in the literature, based on

the analogy with stochastic dynamics.

Finally, Chapters 8 and 9 are devoted to the proof of Theorems 4 and 5,

respectively. We encounter here a combinatorial issue. The number of terms in

the formula for f εn(t) grows, at first sight, badly with n, and cancellations need

to be exploited to obtain a factorial growth. At this point, cluster expansion

methods [64] (summarized in Chapter 2), applied to the collision trees, enter

the game. The decay (t/µε)
n−1 follows instead from a geometric analysis on

hard-sphere trajectories with n − 1 connecting constraints, in the spirit of

previous work [9, 11, 57].

Many different types of PDEs appear in this text, which are all solved,

locally in time, by an application of an abstract Cauchy-Kovalevskaya theorem

in the spirit of Nishida [45]. The statement of the theorem, as well as various

applications, are provided in the Appendix.

1.6. Remarks and open problems

We conclude with a few remarks on our results.

— To simplify our proof, we assumed that the initial datum is a quasi-

product measure, with the minimal amount of correlations (only the

mutual exclusion between hard spheres is taken into account). This

assumption is useful to isolate the dynamical part of the problem in

the clearest way. More general initial states could be dealt with along

the same lines (see [68, 57]). However the cumulant expansions would

contain more terms, describing the deterministic (linearized) transport

of initial correlations.

— Similarly, fixing only the average number of particles (instead of the exact

number of particles) allows to avoid spurious correlations. We therefore

work in a grand canonical setting, as is customary in statistical physics

when dealing with fluctuations. Notice that fixing N = N produces a

long range term of order 1/N in the covariance of the fluctuation field.

Note also that the cluster expansion method, which is crucial in our

analysis, is developed (with few exceptions, see [59] for instance) in a

grand canonical framework [55].

— Our results could be established in the whole space Rd, or in a paral-

lelepiped box with periodic or reflecting boundary conditions. Different
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domains might be also covered, at the expense of complications in the

geometrical estimates of dynamical correlations (see [27, 24, 48] for

instance).

— We do not deal with the original BBGKY hierarchy of equations, which

was written for smooth potentials, but always restrict to the hard-sphere

system. It is plausible that our results could be extended to smooth,

compactly supported potentials as considered in [28, 56] (see [2] for a

fast decaying case), but the proof would be considerably more involved.

— At thermal equilibrium, we expect Theorem 2 to be true globally in time:

see [9] for a first step in this direction (3).
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PART I

DYNAMICAL CUMULANTS





CHAPTER 2

COMBINATORICS ON CONNECTED

CLUSTERS

This preliminary chapter consists in presenting a few notions (well-known

in statistical mechanics) that will be essential in our analysis: the content of

this chapter is classical, but proofs are given for completeness and to prepare

the less familiar reader to some of the combinatorial notions and techniques

used in this article. We present in particular cumulants, and their link with

exponential moments as well as with cluster expansions. We conclude the

chapter with some combinatorial identities that will be useful throughout this

work.

2.1. Generating functionals and cumulants

Let h : D → R be a bounded continuous function. We shall use the functional

notation

(2.1.1) F εn,t
(
h⊗n

)
=

∫
Dn
dZn F

ε
n(t, Zn)h(z1) . . . h(zn) ,

(see formula (3.3.2) below for a generalization) and

Ps
n = set of partitions of {1, . . . , n} into s parts ,

with

σ ∈ Ps
n =⇒ σ = {σ1, . . . , σs} , |σi| = κi ,

s∑
i=1

κi = n .

The moment generating functional of the empirical measure (1.2.5), namely

Eε
(
exp

(
πεt (h)

))
is related to the rescaled correlation functions (1.1.10) by the

following remark. We recall that

(2.1.2) Eε
(
exp

(
πεt (h)

))
= Eε

[
exp

( 1
µε

N∑
i=1

h
(
zεi (t)

))]
.
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Proposition 2.1.1. — We have that

(2.1.3) Eε
(
exp

(
πεt (h)

))
= 1 +

∞∑
n=1

µnε
n!
F εn,t

((
eh/µε − 1

)⊗n)
if the series is absolutely convergent.

Proof. — Starting from (2.1.2), one has∑
k≥1

1

k!
Eε
((
πεt (h)

)k)

=
∑
k≥1

1

k!

k∑
n=1

∑
σ∈Pnk

µ−kε Eε
( ∑

i1,...,in
ij ̸=iℓ,j ̸=ℓ

h
(
zεi1(t)

)κ1 . . . h (zεin(t))κn )

=
∑
k≥1

1

k!

k∑
n=1

∑
σ∈Pnk

µ−kε µnε

∫
Dn
dZn F

ε
n(t, Zn)h(z1)

κ1 . . . h(zn)
κn

where in the last equality we used (1.1.11). On the other hand for fixed n∑
k≥n

µ−kε
k!

∑
σ∈Pnk

n∏
i=1

h(zi)
κi

=
∑
k≥n

µ−kε
k!n!

∑
κ1···κn≥1∑

κi=k

(
k

κ1

)(
k − κ1
κ2

)
· · ·
(
k − κ1 − · · · − κn−2

κn−1

) n∏
i=1

h(zi)
κi

=
1

n!

n∏
i=1

∑
κi≥1

h(zi)
κi

µκiε κi!
=

1

n!

n∏
i=1

(
eh(zi)/µε − 1

)
.

Therefore

Eε
(
exp

(
πεt (h)

))
= 1 +

∑
n≥1

µnε

∫
Dn
dZn F

ε
n(t, Zn)

1

n!

n∏
i=1

(
eh(zi)/µε − 1

)
,

which proves the proposition.

The moment generating functional is just a compact representation of

the information coded in the family (F εn(t))n≥1. After the Boltzmann-Grad

limit µε → ∞, the right-hand side of (2.1.3) reduces to
∞∑
n=0

1

n!

(∫
f(t)h

)n
= exp

(∫
f(t)h

)
,

i.e. to the solution of the Boltzmann equation.

As discussed in the introduction, our purpose is to keep a much larger

amount of information. To this end, we study the cumulant generating func-

tional which is, by Cramér’s theorem, an obvious candidate to reach atypical
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profiles [75]. Namely, we pass to the logarithm and rescale as follows:

(2.1.4)

Λεt (e
h) :=

1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
=

1

µε
logEε

(
exp

( N∑
i=1

h
(
zεi (t)

)))
.

The first task is to look for a proposition analogous to the previous one. In

doing so, the following definition emerges naturally, where we use the notation:

(2.1.5) Gσj := G|σj |(Zσj ) , Gσ :=

|σ|∏
j=1

Gσj

for σ = {σ1, . . . , σs} ∈ Ps
n, and denoting |σ| := s the number of parts in σ.

Definition 2.1.2 (Cumulants). — Let (Gn)n≥1 be a family of distributions

of n variables invariant by permutation of the labels of the variables. The

rescaled cumulants associated with (Gn)n≥1 form the family (gn)n≥1 defined,

for all n ≥ 1, by

(2.1.6) gn = µn−1
ε

n∑
s=1

∑
σ∈Psn

(−1)s−1(s− 1)!Gσ .

The scaling factor µn−1
ε (although unnecessary in this chapter) is introduced

for later convenience, and will ensure that the cumulants are of order 1 in ε.

We then have the following result, which is well-known in the theory of point

processes (see [21]).

Proposition 2.1.3. — Let (f εn)n≥1 be the family of rescaled cumulants asso-

ciated with (F εn)n≥1. We have

Λεt (e
h) =

∞∑
n=1

1

n!
f εn,t

((
eh − 1

)⊗n)
,

if the series is absolutely convergent.
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Proof. — Applying Proposition 2.1.1 to h in place of h/µε, expanding the

logarithm in a series and using Definition 2.1.2, we get

1

µε
logEε

(
exp

(
µε π

ε
t (h)

))
=

1

µε

∞∑
n=1

(−1)n−1

n

n∏
ℓ=1

[∑
pℓ

µpℓε
pℓ!

F εpℓ,t

(
(eh − 1)⊗pℓ

)]

=
1

µε

∞∑
n=1

(−1)n−1

n

∑
p1,...,pn

µp1+···+pn
ε

p1! . . . pn!

n∏
ℓ=1

F εpℓ,t

(
(eh − 1)⊗pℓ

)
=

∞∑
p=1

µp−1
ε

p!

p∑
n=1

∑
σ∈Pnp

(−1)n−1(n− 1)!

n∏
ℓ=1

F εpℓ,t

(
(eh − 1)⊗pℓ

)

=
∞∑
p=1

1

p!
f εp,t

((
eh − 1

)⊗p)
.

In the third equality, we used that the number of partitions of {1, . . . , p} into

n sets with cardinals p1, . . . , pn is given by

(2.1.7)

∣∣Pn
p (p1, . . . , pn)

∣∣ = 1

n!

(
p

p1

)(
p− p1
p2

)
· · ·
(
p− p1 − · · · − pn−1

pn

)
=

1

n!

p!

p1! · · · pn!
,

where the factor n! arises to take into account the fact that the sets of the

partition are not ordered. This proves the result.

Note that cumulants measure departure from chaos in the sense that they

vanish identically at order n ≥ 2 in the case of i.i.d. random variables.

2.2. Inversion formula for cumulants

In this section we prove that the cumulants (gn) associated with a fam-

ily (Gn) in the sense of Definition 2.1.2, encode all the correlations, meaning

that Gn can be reconstructed from (gk)k≤n for all n ≥ 1. More precisely, the

following inversion formula holds.

Proposition 2.2.1. — Let (Gn)n≥1 be a family of distributions and (gn)n≥1

its cumulants in the sense of Definition 2.1.2. Then the map from (Gn)n≥1 to

its cumulants (gn)n≥1 is a bijection and, for each n ≥ 1, the distribution Gn
can be recovered from the cumulants (gk)k≤n by the inversion formula

∀n ≥ 1 , Gn =
n∑
s=1

∑
σ∈Psn

µ−(n−s)
ε gσ .(2.2.1)
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Equations (2.2.1) and (2.1.6) are equivalent definitions of (gn)n≥1.

Proof. — Let us check that

Gn = µ−(n−1)
ε gn +

n∑
s=2

µ−(n−s)
ε

∑
σ∈Psn

gσ .

Replacing the cumulants gσj by their definition, we get

An :=

n∑
s=2

∑
σ∈Psn

µ−(n−s)
ε gσ =

n∑
s=2

∑
σ∈Psn

s∏
j=1

( |σj |∑
kj=1

∑
κj∈P

kj
σj

(−1)kj−1(kj − 1)! Gκj

)
.

Using the Fubini Theorem, we can index the sum by the partitions with

r :=
s∑
j=1

kj sets and obtain

An =

n∑
r=2

∑
ρ∈Prn

Gρ

( r∑
s=2

∑
ω∈Psr

(−1)r−s
s∏
i=1

(|ωi| − 1)!
)
.

Note that the partition σ in the definition of An can be recovered as

∀i ≤ s , σi =
⋃
j∈ωi

ρj .

Using the combinatorial identity

n∑
k=1

∑
σ∈Pkn

(−1)k
k∏
i=1

(|σi| − 1)! = 0

(see Lemma 2.5.1 below for a proof), we find that

r∑
s=2

∑
ω∈Psr

(−1)r−s
s∏
i=1

(|ωi| − 1)! = −(−1)r−1(r − 1)! ,

hence it follows that

An = −
n∑
r=2

∑
ρ∈Prn

Gρ(−1)r−1(r − 1)! = −µ−(n−1)
ε gn +Gn ,

where the last equality follows from the definition of gn. Similarly, the fact

that (2.2.1) implies (2.1.6) can be verified by induction on n. This completes

the proof of Proposition 2.2.1.
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2.3. Clusters and the tree inequality

We now prove that the cumulant of order n is supported on clusters (con-

nected groups) of cardinality n. We shall consider an abstract situation based

on a “disconnection” condition, the definition of which may change according

to the context.

Definition 2.3.1. — A connection is a commutative binary relation ∼ on a

set V :

x ∼ y , x, y ∈ V .

The (commutative) complementary relation, called disconnection, is denoted ̸∼,

that is x ̸∼ y if and only if x ∼ y is false.

Consider the indicator function that n elements {η1, . . . , ηn} are discon-

nected

Φn
(
η1, . . . , ηn

)
:=

∏
1≤i ̸=j≤n

1ηi ̸∼ηj .

For n = 1, we set Φ1

(
η1) ≡ 1.

The following proposition shows that the cumulant of order n of Φn is sup-

ported on clusters of length n, meaning configurations (η1, . . . , ηn) in which

all elements are linked by a chain of connected elements. Before stating the

proposition let us recall some classical terminology on graphs. This definition,

as well as Proposition 2.3.3 and its proof, are taken from [40].

Definition 2.3.2. — Let V be a set of vertices and E ⊂
{
{v, w}, v, w ∈

V , v ̸= w
}
a set of edges. The pair G = (V,E) is called a graph (undirected,

no self-edge, no multiple edge). Given a graph G we denote by E(G) the set of

all edges in G. The graph is said connected if for all v, w ∈ V , v ̸= w, there

exist v0 = v, v1, v2, . . . , vn = w such that {vi−1, vi} ∈ E for all i = 1, . . . , n.

We denote by CV the set of connected graphs with V as vertices, and by Cn
the set of connected graphs with n vertices when V = {1, . . . , n}. A minimally

connected, or tree graph, is a connected graph with n − 1 edges. We denote

by TV the set of minimally connected graphs with V as vertices, and by Tn the

set of minimally connected graphs with n vertices when V = {1, . . . , n}.
Finally, the union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is G1 ∪

G2 = (V1 ∪ V2, E1 ∪ E2).

The following result was originally derived by Penrose [54].

Proposition 2.3.3. — The (unrescaled) cumulant of Φn defined as in Defi-

nition 2.1.2 is equal to

(2.3.1) φn
(
η1, . . . , ηn

)
=
∑
G∈Cn

∏
{i,j}∈E(G)

(−1ηi∼ηj ) .
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Furthermore, one has the following “tree inequality”

(2.3.2) |φn
(
η1, . . . , ηn

)
| ≤

∑
T∈Tn

∏
{i,j}∈E(T )

1ηi∼ηj .

Proof. — The first step is to check the representation formula (2.3.1) for the

cumulant φn. The starting point is the definition of Φn

Φn
(
η1, . . . , ηn

)
=

∏
1≤i ̸=j≤n

(1− 1ηi∼ηj ) =
∑
G

∏
{i,j}∈E(G)

(−1ηi∼ηj ) ,

where the sum over G runs over all graphs with n vertices. We then decompose

these graphs into connected components and obtain that

Φn
(
η1, . . . , ηn

)
=

n∑
s=1

∑
σ∈Psn

s∏
k=1

 ∑
Gk∈Cσk

∏
{i,j}∈E(Gk)

(−1ηi∼ηj )

 .

By the uniqueness of the cumulant decomposition as given in Proposition 2.2.1

(without the rescaling), we therefore find (2.3.1).

The second step is to compare connected graphs and trees. This is achieved

by defining a tree partition scheme, i.e. a map π : Cn → Tn such that for

any T ∈ Tn, there is a graph R(T ) ∈ Cn satisfying

π−1({T}) =
{
G ∈ Cn : E(T ) ⊂ E(G) ⊂ E(R(T ))

}
.

Penrose’s partition scheme is obtained in the following way. Given a graph G,

we define its image T iteratively starting from the root 1

— the first generation of T consists of all i such that {1, i} ∈ G; these

vertices are accepted and labeled in increasing order t1,1, . . . , t1,r1 ;

— the ℓ-th generation consists of all i which are not already in the tree, and

such that {tℓ−1,j , i} belongs to E(G) for some j ∈ {1, . . . , rℓ−1}; these
vertices are labeled in increasing order of j = 1, . . . , rℓ−1, then increasing

order of i.

The procedure ends with a unique tree T ∈ Tn. In order to characterize R(T ),

we now investigate which edges of G have been discarded. Denote by d(i) the

graph distance of the vertex i to the root (which is just its generation). Let

{i, j} ∈ E(G) \ E(T ) and assume without loss of generality that d(i) ≤ d(j).

By construction d(j) ≤ d(i) + 1. Furthermore, if d(j) = d(i) + 1, the parent i′

of j in the tree is such that i′ < i. Therefore E(G) \ E(T ) is a subset of the

set E′(T ) consisting of edges within a generation (d(i) = d(j)), and of edges

towards a younger uncle (d(j) = d(i)+1 and i′ < i). Conversely, we can check

that any graph satisfying E(T ) ⊂ G ⊂ E(T )∪E′(T ) belongs to π−1({T}). We

therefore define R(T ) as the graph with edges E(T ) ∪ E′(T ).
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The last step is to exploit the non trivial cancellations between graphs as-

sociated with the same tree. There holds, with the above notation,∑
G∈Cn

∏
{i,j}∈E(G)

(−1ηi∼ηj )

=
∑
T∈Tn

∑
G∈π−1(T )

∏
{i,j}∈E(G)

(−1ηi∼ηj )

=
∑
T∈Tn

 ∏
{i,j}∈E(T )

(−1ηi∼ηj )

 ∑
E′⊂E′(T )

∏
{i,j}∈E′

(−1ηi∼ηj )


=
∑
T∈Tn

 ∏
{i,j}∈E(T )

(−1ηi∼ηj )

 ∏
{i,j}∈E′(T )

(1− 1ηi∼ηj )

 .

The conclusion follows from the fact that (1−1ηi∼ηj ) ∈ [0, 1]. The proposition

is proved.

2.4. Number of minimally connected graphs

The following classical result will be used in Chapter 8.

Lemma 2.4.1. — The cardinality of the set of minimally connected graphs

on n vertices with degrees (number of edges per vertex) of the vertices 1, . . . , n

fixed respectively at the values d1, . . . , dn is

(2.4.1)
∣∣∣{T ∈ Tn : d1(T ) = d1, . . . , dn(T ) = dn

}∣∣∣ = (n− 2)!∏n
i=1(di − 1)!

·

Before proving the lemma, let us notice that it implies Cayley’s formula

|Tn| = nn−2. Indeed the graph is minimal, so there are exactly n − 1 edges

hence (each edge has two vertices) the sum of the degrees has to be equal to

2n− 2. Thus

|Tn| =
∑

d1,...,dn
1≤di≤n−1∑
i di=2(n−1)

(n− 2)!∏n
i=1(di − 1)!

=
∑

d1,...,dn
0≤di≤n−2∑
i di=n−2

(n− 2)!∏n
i=1 di!

=

(
n∑
i=1

1

)n−2

.

Proof. — The lemma can be proved by induction. For n = 2 the result is triv-

ial, so we suppose to have proved it for the set T d1,...,dn
n := {T ∈ Tn | d1(T ) =

d1, . . . , dn(T ) = dn}, for arbitrary d1, . . . , dn, and consider the set T d1,...,dn+1

n+1 .

Since there is always at least one vertex of degree 1, we can assume without loss

of generality that dn+1 = 1. Notice that, if the vertex n+1 is linked to the ver-

tex j, then necessarily dj ≥ 2. We therefore compute the number of minimally

connected graphs on n vertices with degrees d1, . . . , dj−1, dj − 1, dj+1, . . . , dn,
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and sum then over j (all the ways to attach the vertex n+1 of degree 1). This

leads to

|T d1,...,dn+1

n+1 | =
n∑
j=1

(n− 2)!

(dj − 2)!
∏
i ̸=j(di − 1)!

,

hence

|T d1,...,dn+1

n+1 | = (n− 2)!∏n+1
i=1 (di − 1)!

n+1∑
j=1

(dj − 1) =
(n− 1)!∏n
i=1(di − 1)!

having used again
∑n+1

j=1 dj = 2(n+ 1− 1).

2.5. Combinatorial identities

The following combinatorial identities have been used in the previous sec-

tions.

Lemma 2.5.1. — For n ≥ 2 there holds
n∑
k=1

∑
σ∈Pkn

(−1)k(k − 1)! = 0 ,(2.5.1)

n∑
k=1

∑
σ∈Pkn

(−1)k
k∏
i=1

(|σi| − 1)! = 0 .(2.5.2)

Proof. — From the Taylor series of x 7→ log
(
exp(x)

)
, we deduce that

∀n ≥ 2,

n∑
k=1

∑
ℓ1+···+ℓk=n

(−1)k

k

1

ℓ1! . . . ℓk!
= 0 .

Combining (2.1.7) and the previous identity, we get

0 =

n∑
k=1

∑
ℓ1+···+ℓk=n

(−1)k

k

1

ℓ1! . . . ℓk!

=
n∑
k=1

(−1)k

k

∑
ℓ1+···+ℓk=n

k!

n!
♯Pk

n(ℓ1, . . . , ℓk)

=
1

n!

n∑
k=1

(−1)k(k − 1)!♯Pk
n

and this completes the first identity (2.5.1).

From the Taylor series of x 7→ exp
(
log(1 + x)

)
, we deduce that

∀n ≥ 2,

n∑
k=1

1

k!

∑
ℓ1+···+ℓk=n

(−1)k

ℓ1 . . . ℓk
= 0 .
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Combining (2.1.7) and the previous identity, we get

0 =
n∑
k=1

1

k!

∑
ℓ1+···+ℓk=n

(−1)k

ℓ1 . . . ℓk
=

1

n!

n∑
k=1

∑
σ∈Pkn

(−1)k
k∏
i=1

(|σi| − 1)!

and this completes the second identity (2.5.2).

The lemma is proved.



CHAPTER 3

TREE EXPANSIONS OF THE HARD-SPHERE

DYNAMICS

Here and in the next chapter, we explain how the combinatorial methods

presented in the previous chapter can be applied to study the dynamical corre-

lations of hard spheres. The first steps in this direction are to define a suitable

family describing the correlations of order n, and then to obtain a graphical

representation of this family which will be helpful to identify the clustering

structure.

3.1. Space correlation functions

For the sake of simplicity, we start by describing correlations in phase space.

Recall that the n-particle correlation function F εn ≡ F εn(t, Zn) defined by

(1.1.10) counts how many groups of n particles are, in average, in a given

configuration Zn at time t: see Eq. (1.1.11).

Let us now discuss the time evolution of the correlation functions: by in-

tegration of the Liouville equation (1.1.3), we get that the family (F εn)n≥1

satisfies the so-called BBGKY hierarchy (going back to [18]) :

(3.1.1) ∂tF
ε
n + Vn · ∇XnF

ε
n = Cεn,n+1F

ε
n+1 in Dε

n

with specular boundary reflection

(3.1.2) ∀Zn ∈ ∂Dε+
n (i, j) , F εn(t, Zn) := F εn(t, Z

′i,j
n ) ,

where Z
′i,j
N differs from ZN only by (1.1.2). The collision operator in the right-

hand side of (3.1.1) comes from the boundary terms in Green’s formula (using

the reflection condition to rewrite the gain part in terms of pre-collisional

velocities):

Cεn,n+1F
ε
n+1 :=

n∑
i=1

Ci,εn,n+1F
ε
n+1
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with

(Ci,εn,n+1F
ε
n+1)(Zn) :=

∫
F εn+1(Z

⟨i⟩
n , xi, v

′
i, xi + εω,w′)

(
(w − vi) · ω

)
+
dωdw

−
∫
F εn+1(Zn, xi + εω,w)

(
(w − vi) · ω

)
− dωdw ,(3.1.3)

where (v′i, w
′) is recovered from (vi, w) through the scattering laws (1.1.2), and

with the notation

(3.1.4) Z⟨i⟩
n := (z1, . . . , zi−1, zi+1, . . . , zn) .

Note that the collision operator is defined as a trace, and thus some regu-

larity on F εn+1 is required to make sense of this operator. The classical way of

dealing with this issue (see for instance [28, 66]) is to consider the integrated

form of the equation, obtained by Duhamel’s formula

F εn(t) = Sεn(t)F
ε0
n +

∫ t

0
Sεn(t− t1)C

ε
n,n+1F

ε
n+1(t1)dt1 ,

denoting by Sεn the group associated with free transport in Dε
n with specular

reflection on the boundary ∂Dε
n.

Iterating Duhamel’s formula, we can express the solution as a sum of oper-

ators acting on the initial data :

F εn(t) =
∑
m≥0

Qεn,n+m(t)F
ε0
n+m ,(3.1.5)

where we have defined for t > 0

Qεn,n+m(t)F
ε0
n+m :=

∫ t

0

∫ t1

0
· · ·
∫ tm−1

0
Sεn(t− t1)C

ε
n,n+1S

ε
n+1(t1 − t2)C

ε
n+1,n+2

. . . Sεn+m(tm)F
ε0
n+m dtm . . . dt1(3.1.6)

and Qεn,n(t)F
ε0
n := Sεn(t)F

ε0
n , Qεn,n+m(0)F

ε0
n+m := δm,0F

ε0
n+m.

3.2. Geometrical representation with collision trees

The usual way to study the Duhamel series (3.1.5) is to introduce “pseudo-

dynamics” describing the action of the operator Qεn,n+m. In the following,

particles will be denoted by two different types of labels: either integers i or

labels i∗ (this difference will correspond to the fact that particles labeled with

an integer i will be added to the pseudo-dynamics through the Duhamel for-

mula as time goes backwards, while those labeled by i∗ are already present at

time t). The configuration of the particle labeled i∗ will be denoted indiffer-

ently z∗i = (x∗i , v
∗
i ) or zi∗ = (xi∗, vi∗).
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Definition 3.2.1 (Collision trees). — Given n ≥ 1 ,m ≥ 0, an (ordered)

collision tree a ∈ An,m is a family (ai)1≤i≤m with ai ∈ {1, . . . , i − 1} ∪
{1∗, . . . , n∗}.

Note that |An,m| = n(n+ 1) . . . (n+m− 1).

Given a collision tree a ∈ An,m, we define pseudo-dynamics starting from

a configuration Z∗
n = (x∗i , v

∗
i )1≤i≤n in the n-particle phase space at time t as

follows.

Definition 3.2.2 (Pseudo-trajectory). — Given Z∗
n ∈ Dε

n,m ∈ N and a ∈
An,m, we consider a collection of times, angles and velocities (Tm,Ωm, Vm) :=

(ti, ωi, vi)1≤i≤m satisfying the constraint

0 ≤ tm < · · · < t1 ≤ t = t0 .

We define recursively pseudo-trajectories as follows:

— in between the collision times ti and ti+1 the particles follow the (n+ i)-

particle (backward) hard-sphere flow;

— at time t+i , particle i is adjoined to particle ai at position xai + εωi and

with velocity vi, provided it remains at a distance larger than ε from all

the other particles. If (vi − vai(t
+
i )) · ωi > 0, velocities at time t−i are

given by the scattering laws

(3.2.1)
vai(t

−
i ) := vai(t

+
i )−

(
(vai(t

+
i )− vi) · ωi

)
ωi ,

vi(t
−
i ) := vi +

(
(vai(t

+
i )− vi) · ωi

)
ωi .

We denote by Ψε
n,m = Ψε

n,m(t) (we shall sometimes omit to emphasize the

number of created particles and denote it simply by Ψε
n) the so constructed

pseudo-trajectory, and by Zn,m(τ) =
(
Z∗
n(τ), Zm(τ)

)
the coordinates of the

particles in the pseudo-trajectory at time τ ≤ tm. It depends on the parame-

ters a, Z∗
n, Tm,Ωm, Vm, and t. We also define Gεm(a, Z∗

n) to be the set of param-

eters (Tm,Ωm, Vm) such that the pseudo-trajectory exists up to time 0, meaning

in particular that on adjunction of a new particle, its distance to the others

remains larger than ε. For m = 0, there is no adjoined particle and the pseudo-

trajectory Ψε
n,0(τ) = Zn,0(∅, Z∗

n, τ) for τ ∈ (0, t) is the n-particle (backward)

hard-sphere flow.

For a given time t > 0, the sample path pseudo-trajectory of the n

(∗−labeled) particles is denoted by Z∗
n([0, t]).

Remark 3.2.3. — We stress the difference in notation: “zi(τ)” in the above

definition denotes the configuration of particle i in the pseudo-trajectory while

the real, N -particle hard-sphere flow is denoted ZεN (τ) as in (1.1.7): particle i

has configuration zεi (τ) in the hard-sphere flow.
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With these notations, the representation formula (3.1.5) for the n-particle

correlation function can be rewritten as

(3.2.2)

F εn(t, Z
∗
n) =

∑
m≥0

∑
a∈An,m

∫
Gεm(a,Z∗

n)
dTmdΩmdVm

×
( m∏
i=1

(
vi − vai(ti)

)
· ωi
)
F ε0n+m

(
Ψε0
n,m

)
,

where

dTm := dt1 . . . dtm 10≤tm≤···≤t1≤t ,

we have denoted by (F ε0n )n≥1 the initial rescaled correlation function, and Ψε0
n,m

is the configuration at time 0 associated with the pseudo-trajectory Ψε
n,m. Note

that the variables ωi are integrated over spheres and the scalar products take

positive and negative values (corresponding to the positive and negative parts

of the collision operators). Equivalently, we can introduce decorated trees

(a, s1, . . . , sm) with signs si = ± specifying the collision hemispheres: denoting

by A±
n,m the set of all such trees, we can write Eq. (3.2.2) as

(3.2.3)

F εn(t, Z
∗
n) =

∑
m≥0

∑
a∈A±

n,m

∫
Gεm(a,Z∗

n)
dTmdΩmdVm

×
( m∏
i=1

si
((
vi − vai(ti)

)
· ωi
)
+

)
F ε0n+m

(
Ψε0
n,m

)
,

where the pseudo-trajectory is defined as before, with the scattering (3.2.1)

applied in the case si = + and the creation at position xi + siεωi.

1∗ 2∗ 3∗ 4∗ 5∗ 6∗

Figure 3. An example of pseudo-trajectory with n = 6, m = 10. In

this symbolic picture, time is thought of as flowing upwards (at the

top we have a configuration Z∗
6 , at the bottom Ψε0

6,10). The little circles

represent hard spheres of diameter ε. Notice that several collisions

are possible between the adjunction times Tm. These collisions are

highlighted by big circles. For simplicity, the hard spheres have been

drawn only at their first time of existence (going backwards), and at

collisions between adjunction times.
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3.3. Averaging over trajectories

To describe dynamical correlations more precisely, we are going to follow the

particle trajectories. As noted in Remark 3.2.3, pseudo-trajectories provide a

geometric representation of the iterated Duhamel series (3.1.5), but they are

not physical trajectories of the particle system. Nevertheless, the probability

on the trajectories of n particles can be derived from the Duhamel series, as

we are going to explain now.

For a given time t > 0, the sample path of n particles labeled i1 to in,

among the N hard spheres, is denoted (zεi1([0, t]), . . . , z
ε
in
([0, t])). In the case

when ij = j for all 1 ≤ j ≤ n we denote that sample path by Zεn([0, t]).

As Zεn has jumps in velocity, it is convenient to work in the space Dn([0, t])

of functions that are right-continuous with left limits in Dn. This space is

endowed with the Skorokhod topology. In the case when n = 1 we denote it

simply by D([0, t]).

Let Hn be a bounded measurable function on Dn([0, t]) (the assumption on

boundedness will be relaxed later). We define

F εn,[0,t](Hn) :=

∫
dZ∗

n

∑
m≥0

∑
a∈A±

n,m

∫
Gεm(a,Z∗

n)
dTmdΩmdVm

×Hn

(
Z∗
n([0, t])

)( m∏
i=1

si
((
vi − vai(ti)

)
· ωi
)
+

)
F ε0n+m

(
Ψε0
n,m

)
.(3.3.1)

This formula generalizes the representation introduced in Section 3.2 in the

sense that, in the case when Hn(Z
∗
n([0, t])) = hn(Z

∗
n(t)), we obtain

F εn,[0,t](Hn) =

∫
F εn(t, Z

∗
n)hn(Z

∗
n)dZ

∗
n .

More generally, in analogy with (1.1.11), Eq. (3.3.1) gives the average (un-

der the initial probability measure) of the function Hn as stated in the next

proposition.

Proposition 3.3.1. — Let Hn be a bounded measurable function on the space

of trajectories Dn([0, t]). Then

(3.3.2) Eε
( ∑

i1,...,in
ij ̸=ik,j ̸=k

Hn

(
zεi1([0, t]), . . . , z

ε
in([0, t])

))
= µnεF

ε
n,[0,t](Hn) .

Proof. — To establish (3.3.2), we first look at the case of a discrete sampling

of trajectories

Hn(Z
ε
n([0, t])) =

p∏
i=1

h(i)n (Zεn(θi))
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for some decreasing sequence of times Θ = (θi)1≤i≤p in [0, t], and some family

of bounded continuous functions
(
h
(i)
n

)
1≤i≤p

with h
(i)
n : Dn → R.

First step. To take into account the discrete sampling Hn, we proceed recur-

sively and define for any τ ∈ [0, t]

Hn,τ (Z
ε
n([0, t])) :=

∏
θi≤τ

h(i)n (Zεn(θi))

∏
θj>τ

h(j)n (Zεn(τ))

 .

In particular, for τ ≤ θp ≤ · · · ≤ θ1, the function Hn,τ depends only on the

density at time τ so that

Eε
( ∑

i1,...,in
ij ̸=ik,j ̸=k

Hn,τ

(
zεi1([0, t]), . . . , z

ε
in([0, t])

))
= µnε

∫
F εn(τ, Z

∗
n)

p∏
j=1

h(j)n (Z∗
n)dZ

∗
n .

We then define the biased distribution

F̃ εn(τ, Z
∗
n) := F εn(τ, Z

∗
n)

p∏
j=1

h(j)n (Z∗
n) for τ ∈ [0, θp]

and then extend this biased correlation function F̃ εn(τ, Z
∗
n) on [0, t] so that

Eε
( ∑

i1,...,in
ij ̸=ik,j ̸=k

Hn,τ

(
zεi1([0, t]), . . . , z

ε
in([0, t])

))
= µnε

∫
F̃ εn(τ, Z

∗
n)dZ

∗
n .

In order to characterize F̃ εn(τ), we have to iterate the Duhamel for-

mula (3.1.5) in time slices [θi+1, θi] as in the proof of Proposition 2.4 of [10]

(see also [6, 9]). More precisely we start by writing the Duhamel for-

mula (3.1.5) on [θ1, t], and bias the data at time θ−1 by h
(1)
n . This gives, with

the notation introduced in Definition 3.2.2 for the pseudo-trajectories Zn,m(τ),

F̃ εn(t, Z
∗
n) =

∑
k1≥0

Qεn,n+k1(t− θ1)F̃
ε
n+k1

(
θ+1 , Zn,k1(θ1)

)
=
∑
k1≥0

Qεn,n+k1(t− θ1)h
(1)
n (Z∗

n(θ1))F̃
ε
n+k1

(
θ−1 , Zn,k1(θ1)

)
.

Similarly

F̃ εn+k1
(
θ−1 , Zn,k1

)
=
∑
k2≥0

Qεn+k1,n+k1+k2(θ1 − θ2)h
(2)
n (Z∗

n(θ2))F̃
ε
n+k1+k2

(
θ−2 , Zn,k1+k2(θ2)

)
.
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We obtain by iteration that

F̃ εn(t) =
∑

k1+···+kp+1≥0

Qεn,n+k1(t− θ1)h
(1)
n (Z∗

n(θ1))Q
ε
n+k1,n+k1+k2(θ1 − θ2)

. . . h(p)n (Z∗
n(θp))Q

ε
n+k1+···+kp,n+k1+···+kp+1

(θp)F
ε0
n+k1+···+kp+1

,(3.3.3)

which leads to (3.3.2) for discrete samplings.

Second step. More generally any function Hn on (Dn)p can be approximated

in terms of products of functions on Dn, thus (3.3.3) leads to

Eε
( ∑

i1,...,in
ij ̸=ik,j ̸=k

Hn

(
zεi1([0, t]), . . . , z

ε
in([0, t])

))

= µnε
∑

k1+···+kp+1≥0

Qεn,n+k1(t− θ1)Q
ε
n+k1,n+k1+k2(θ1 − θ2)

. . . Qεn+k1+···+kp,n+k1+···+kp+1
(θp)Hn(Z

∗
n(θ1), . . . , Z

∗
n(θp))F

ε0
n+k1+···+kp+1

,

where the Duhamel series is weighted by the n-particle pseudo-trajectories at

times θ1, . . . , θp.

Third step. For any 0 ≤ θp < · · · < θ1 < t, we denote by πθ1,...,θp the projection

from Dn([0, t]) to (Dn)p

(3.3.4) πθ1,...,θp(Zn([0, t])) = (Zn(θ1), . . . , Zn(θp)) .

The σ-field of Borel sets for the Skorokhod topology can be generated by the

sets of the form π−1
θ1,...,θp

A with A a subset of (Dn)p (see Theorem 12.5 in [8],

page 134). This completes the proof of Proposition 3.3.1.

To simplify notation, we are going to denote by Ψε
n the pseudo-trajectory

during the whole time interval [0, t], which is encoded by its starting points Z∗
n

and the evolution parameters (a, Tm,Ωm, Vm). Similarly we use the compressed

notation 1Gε for the constraint that the parameters (Tm,Ωm, Vm) should be

in Gεm(a, Z∗
n) as in Definition 3.2.2. The parameters (a, Tm,Ωm, Vm) are dis-

tributed according to the measure

(3.3.5)

dµ(Ψε
n) :=

∑
m

∑
a∈A±

n,m

dTmdΩmdVm1Gε(Ψ
ε
n)

m∏
k=1

(
sk
((
vk − vak(tk)

)
· ωk

)
+

)
.

The weight coming from the function Hn will be denoted by

(3.3.6) H
(
Ψε
n

)
:= Hn

(
Z∗
n([0, t])

)
.

Formula (3.3.1) can be rewritten

(3.3.7) F εn,[0,t](Hn) =

∫
dZ∗

n

∫
dµ(Ψε

n) H
(
Ψε
n

)
F ε0
(
Ψε0
n

)
,
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and F ε0
(
Ψε0
n

)
stands for the initial data evaluated on the configuration at time

0 of the pseudo-trajectory (containing n+m particles).

The series expansion (3.3.7) is absolutely convergent, uniformly in ε, for

times smaller than some TL > 0: this determines the time restriction in The-

orem 1 (see Remark 1.2.2).



CHAPTER 4

CUMULANTS FOR THE HARD-SPHERE

DYNAMICS

To understand the structure of dynamical correlations, we are going to de-

scribe how the collision trees introduced in the previous chapter (which are the

elementary dynamical objects) can be grouped into clusters. We shall identify

three different types of correlations (treated in Section 4.1, 4.2, 4.3 respec-

tively). Our starting point will be Formula (3.3.7). We will also need the

notation Ψε
n = Ψε

{1,...,n}, where a pseudo-trajectory is labeled by the ensemble

of its roots.

Notice that the two collision trees in Ψε
{1,2} do not scatter if Ψε

{1} and Ψε
{2}

keep a mutual distance larger than ε. We shall then write the latter exclusion

condition as the complement of an overlapping condition. The scattering,

disconnection and overlap situations are represented in Figure 4 (recall also

Figure 3), together with some nomenclature which is made precise below.

external recollision
disconnection

overlap

1∗ 1∗2∗ 2∗

1 ∼r 2 1 ∼o 2

1∗ 2∗

Figure 4. Different types of dynamical correlations between 2 particles.

4.1. External recollisions

A pseudo-trajectory Ψε
n is made of n collision trees starting from the

roots Z∗
n. These elementary collision trees will be indexed by the label of their
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root. The parameters (a, Tm,Ωm, Vm) associated with each collision tree are

independent, and can be separated into n subsets.

The corresponding pseudo-trajectories Ψε
{1}, . . .Ψ

ε
{n} evolve independently

until two particles belonging to different trees collide, in which case the corre-

sponding two trees get correlated. The next definition introduces the notion of

recollision and distinguishes whether the recolliding particles are in the same

tree or not.

Definition 4.1.1 (External/internal recollisions)

A recollision occurs when two pre-existing particles in a pseudo-trajectory

scatter. A recollision between two particles will be called an external recolli-

sion if the two particles involved are in different subtrees (see Figure 4). A

recollision between two particles will be called an internal recollision if the two

particles involved are in the same subtree.

Let us now decompose the integral (3.3.7) depending on whether subtrees

are correlated or not. Recall Definitions 2.3.1 and 2.3.2.

Notation 4.1.2. — We denote by

{j} ∼r {j′}

the condition: “there exists an external recollision between particles in the

subtrees indexed by j and j′”. Given λ ⊂ {1, . . . , n}, we denote by ∆∆λ the

indicator function that any two elements of λ are connected by a chain of

external recollisions. In other words

(4.1.1) ∆∆λ = 1 ⇐⇒ ∃G ∈ Cλ ,
∏

{j,j′}∈E(G)

1{j}∼r{j′} = 1 .

Notice that ∆∆λ depends only on Ψε
λ. We set ∆∆λ = 1 when |λ| = 1. We extend

∆∆λ to zero outside Gε(Z∗
λ). We therefore have the partition of unity

(4.1.2) 1Gε
(
Ψε
n

)
=

n∑
ℓ=1

∑
λ∈Pℓn

(
ℓ∏
i=1

∆∆λi 1Gε
(
Ψε
λi

))
Φℓ (λ1, . . . , λℓ)

where Φ1 = 1, and Φℓ for ℓ > 1 is the indicator function that the subtrees

indexed by λ1, . . . , λℓ keep mutual distance larger than ε. The function Φℓ is

defined on ∪iGε(Z∗
λi
).
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Using the notation (3.3.7), we can partition the pseudo-trajectories in terms

of the external recollisions

F εn,[0,t](H
⊗n)

=

∫
dZ∗

n

n∑
ℓ=1

∑
λ∈Pℓn

∫
dµ(Ψε

n)H
(
Ψε
n

) ( ℓ∏
i=1

∆∆λi

)
Φℓ
(
λ1, . . . , λℓ

)
F ε0
(
Ψε0
n

)
.

There is no external recollision between the subtrees indexed by λ1, . . . , λℓ,

so the pseudo-trajectories are defined independently; in particular, assuming

from now on that

Hn = H⊗n

with H a measurable function on the space of trajectories D([0, t]), the cross-

sections, the weights and the constraint imposed by Gε factorize

Φℓ
(
λ1, . . . , λℓ

)
H
(
Ψε
n

)
dµ
(
Ψε
n

)
= Φℓ

(
λ1, . . . , λℓ

)( ℓ∏
i=1

H
(
Ψε
λi

)
dµ
(
Ψε
λi

))
and we get

(4.1.3)
F εn,[0,t](H

⊗n) =

∫
dZ∗

n

n∑
ℓ=1

∑
λ∈Pℓn

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
×H

(
Ψε
λi

)
∆∆λi

)
Φℓ
(
λ1, . . . , λℓ

)
F ε0
(
Ψε0
n

)
.

The function Φℓ forbids any overlap between different subtrees λi in (4.1.3).

In particular, notice that Φℓ is equal to zero if |x∗i − x∗j | < ε for some i ̸= j

(compatibly with the definition of F εn,[0,t]) .

Although the subtrees Ψε
λ1
, . . . ,Ψε

λℓ
in the above formula have no external

recollisions, they are not yet fully independent as their parameters are con-

strained precisely by the fact that no external recollision should occur. Thus

we are going to decompose further the collision integral.

4.2. Overlaps

In order to identify all possible correlations, we now introduce a cumulant

expansion of the constraint Φℓ encoding the fact that no external recollision

should occur between the different λi.

Definition 4.2.1 (Overlap). — An overlap occurs between two subtrees if

two pseudo-particles, one in each subtree, find themselves at a distance less

than ε one from the other for some τ ∈ [0, t], crossing each other without

scattering (see Figure 4).
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Notation 4.2.2. — We denote by

λi ∼o λj

the relation: “there exists an overlap between two subtrees belonging to λi
and λj respectively”, and we denote by λi ̸∼o λj the complementary relation.

Therefore

(4.2.1) Φℓ
(
λ1, . . . , λℓ

)
=

∏
1≤i ̸=j≤ℓ

1λi ̸∼oλj .

The inversion formula (2.2.1) (for unrescaled cumulants) implies that

Φℓ
(
λ1, . . . , λℓ

)
=

ℓ∑
r=1

∑
ρ∈Prℓ

φρ ,

denoting

φρ :=

r∏
j=1

φρj .

The cumulants associated with the partition {λ1, . . . , λℓ} are defined for any

subset ρj of {1, . . . , ℓ} as

(4.2.2) φρj =

|ρj |∑
u=1

∑
ω∈Puρj

(−1)u−1(u− 1)! Φω ,

where ω is a partition in u subparts of ρj , and recalling the notation

Φω =
u∏
i=1

Φωi , Φωi = Φ|ωi|(λk; k ∈ ωi) .

Note that as stated in Proposition 2.3.3, the function φρ is supported on clus-

ters formed by overlapping collision trees, i.e.

(4.2.3) φρj =
∑
G∈Cρj

∏
{i1,i2}∈E(G)

(−1λi1∼oλi2 ) .

For now let us return to (4.1.3), which can thus be further decomposed as

(4.2.4)
F εn,[0,t](H

⊗n)

=

∫
dZ∗

n

n∑
ℓ=1

∑
λ∈Pℓn

ℓ∑
r=1

∑
ρ∈Prℓ

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
φρF

ε0
(
Ψε0
n

)
.

By abuse of notation, the partition ρ can be also interpreted as a partition

of {1, . . . , n}
(4.2.5) ∀j ≤ |ρ| , ρj =

⋃
i∈ρj

λi ,
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coarser than the partition λ. The relative coarseness (4.2.5) will be denoted

by

λ ↪→ ρ .

4.3. Initial clusters

In (4.2.4), the pseudo-trajectory is evaluated at time 0 on the initial dis-

tribution F ε0
(
Ψε0
n

)
. Thus the pseudo-trajectories {Ψε

ρj}j≤r remain correlated

by the initial data, so we are finally going to decompose the initial measure in

terms of cumulants.

Given ρ = {ρ1, . . . , ρr} a partition of {1, . . . , n} into r subsets, we define the

cumulants of the initial data associated with ρ as follows. For any subset σ̃ of

{1, . . . , r}, we set

(4.3.1) f ε0σ̃ :=

|σ̃|∑
u=1

∑
ω∈Puσ̃

(−1)u−1(u− 1)! F ε0ω ,

where ω is a partition of σ̃, and denoting as previously

F ε0ω =
u∏
i=1

F ε0ωi , F ε0ωi = F ε0(Ψε0
ρj ; j ∈ ωi) .

We will denote by ∥ρj∥ the total number of particles in ρj (not to be con-

fused with |ρj |, the number of forests in ρj). We recall that Ψε0
ρj represents

the pseudo-trajectories rooted in Z∗
ρj computed at time 0. They involve mj

new particles, so there are ∥ρj∥ + mj particles at play at time 0, with of

course
∑r

j=1(∥ρj∥+mj) = n+
∑r

j=1mj = n+m. We stress that the cumulant

decomposition depends on ρ (in the same way as (4.2.2) was depending on λ).

Given ρ = {ρ1, . . . , ρr}, the initial data can thus be decomposed as

F ε0
(
Ψε0
n

)
=

r∑
s=1

∑
σ∈Psr

f ε0σ , with f ε0σ =

s∏
i=1

f ε0σi .

By abuse of notation as above in (4.2.5), the partition σ can be also interpreted

as a partition of {1, . . . , n}

∀i ≤ |σ| , σi =
⋃
j∈σi

ρj ,

coarser than the partition ρ. Hence there holds ρ ↪→ σ.
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We finally get

F εn,[0,t](H
⊗n)

=

∫
dZ∗

n

n∑
ℓ=1

∑
λ∈Pℓn

ℓ∑
r=1

∑
ρ∈Prℓ

r∑
s=1

∑
σ∈Psr

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
φρ f

ε0
σ .

The n subtrees generated by Z∗
n have been decomposed into nested parti-

tions λ ↪→ ρ ↪→ σ (see Figure 5).

λ1 λ2 λ3 λ4 λ5
λ6

ρ2 ρ3

σ2σ1

ρ1

Figure 5. The figure illustrates the nested decomposition λ ↪→ ρ ↪→
σ in (4.3.2). The configuration Z∗

n at time t is represented by n = 14

black dots. Collision trees, depicted by grey triangles, are created

from each dots and all the trees with labels in a subset λi interact

via external recollisions, forming connected clusters (grey mountains).

These trees are then regrouped in coarser partitions ρ and σ in order

to evaluate the corresponding cumulants. Custers λ are called forests,

clusters ρ are called jungles, and clusters σ are called initial clusters.

Thus we can write

(4.3.2) F εn,[0,t](H
⊗n) =

∫
dZ∗

n

∑
λ,ρ,σ

λ↪→ρ↪→σ

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
φρ f

ε0
σ .

The order of the sums can be exchanged, starting from the coarser partition

σ: we obtain

(4.3.3)

F εn,[0,t](H
⊗n) =

∫
dZ∗

n

n∑
s=1

∑
σ∈Psn

s∏
j=1

∑
λ,ρ

λ↪→ρ↪→σj

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
φρf

ε0
σj

where the generic variables λ, ρ denote now nested partitions of the subset σj .
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4.4. Dynamical cumulants

Using the inversion formula (2.2.1), the cumulant of order n is defined as

the term in (4.3.3) such that σ has only 1 element {1, . . . , n}. We therefore

define the (scaled) cumulant, recalling notation (4.3.1),

f εn,[0,t](H
⊗n) =

∫
dZ∗

nµ
n−1
ε

n∑
ℓ=1

∑
λ∈Pℓn

ℓ∑
r=1

∑
ρ∈Prℓ

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
×φρ f ε0{1,...,r}(Ψε0

ρ1 , . . . ,Ψ
ε0
ρr) .(4.4.1)

In the simple case n = 2, the above formula reads

f ε2,[0,t](H
⊗2) =

∫
dZ∗

2 µε

{∫
dµ(Ψε

{1,2})1{1}∼r{2}H
(
Ψε

{1,2}
)
F ε0(Ψε0

{1,2})

−
∫ 2∏

i=1

[
dµ(Ψε

{i}) H
(
Ψε

{i}
)]
1{1}∼o{2}F

ε0
(
Ψε0

{1},Ψ
ε0
{2}

)
+

∫ 2∏
i=1

[
dµ(Ψε

{i})H
(
Ψε

{i}
)] (

F ε0
(
Ψε0

{1},Ψ
ε0
{2}

)
− F ε0

(
Ψε0

{1}

)
F ε0

(
Ψε0

{2}

))}
,

where we used (4.1.1), (4.2.3) and (4.3.1). The three lines on the right hand

side represent the three possible correlation mechanisms between particles 1∗

and 2∗ (i.e. between the subtrees 1 and 2): respectively the recollision, the

overlap and the correlation of initial data.

More generally, looking at Eq. (4.4.1), we are going to check that

f εn,[0,t](H
⊗n) is a cluster of order n, and identify a minimal structure in

the same spirit as the Penrose partition scheme recalled in Chapter 2.

— We start with n trees which are grouped into ℓ forests in the partition λ.

In each forest λi we shall identify |λi|−1 “clustering recollisions”. These

recollisions give rise to
∑ℓ

i=1(|λi| − 1) = n− ℓ constraints.

— The ℓ forests are then grouped into r jungles ρ and in each jungle ρi, we

shall identify |ρi|−1 “clustering overlaps”. These give rise to
∑r

i=1(|ρi|−
1) = ℓ− r constraints.

— The r elements of ρ are then coupled by the initial cluster, and this gives

rise to r − 1 constraints.

By construction n − 1 =
∑r

i=1(|ρi| − 1) +
∑ℓ

i=1(|λi| − 1) + r − 1. The

dynamical decomposition (4.4.1) implies therefore that the cumulant of order n

is associated with pseudo-trajectories with n−1 clustering constraints, and we

expect that each of these n−1 clustering constraints will provide a small factor

of order t/µε. To quantify rigorously this smallness, we need to identify n− 1

“independent” degrees of freedom. For clustering overlaps this will be an easy
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task. Clustering recollisions will require more attention, as they introduce a

strong dependence between different trees.

Let us now analyze Eq. (4.4.1) in more detail. The decomposition can be

interpreted in terms of a graph in which the edges represent all possible corre-

lations (between points in a tree, between trees in a forest and between forests

in a jungle). In these correlations, some play a special role as they specify

minimally connected subgraphs in jungles or forests: this is made precise in

the two following important notions.

Let us start with the easier case of overlaps in a jungle. The following

definition assigns a minimally connected graph (cf. Definition 2.3.2) on the set

of forests grouped into a given jungle.

Definition 4.4.1 (Clustering overlaps). — Given a jungle ρi = {λj1 , . . . , λj|ρi|}
and a pseudo-trajectory Ψε

ρi, we call “clustering overlaps” the set of |ρi| − 1

overlaps

(4.4.2) (λj1 ∼o λj′1), . . . , (λj|ρi|−1
∼o λj′|ρi|−1

)

such that {
{λj1 , λj′1}, . . . , {λj|ρi|−1

, λj′|ρi|−1
}
}
= E(Tρi),

where Tρi is the minimally connected graph on ρi constructed via the Penrose

algorithm. Given a pseudo-trajectory Ψε
ρi with clustering overlaps, we define

|ρi| − 1 overlap times as follows:

(4.4.3) τov,k := sup
{
τ ≥ 0 : min

q in Ψε
λjk

q′ in Ψε
λ
j′
k

|xq′(τ)− xq(τ)| < ε
}
.

Overlaps can be classified in two types :

— regular overlaps, for which the two overlapping particles exist at some

time τ > τov,k and are exactly at distance ε at τov,k;

— non-regular overlaps arising at time t or involving a particle q at its cre-

ation time tq : in this case, the distance between the overlapping particles

at τov,k satisfies only the inequality |xq(τov,k)− xq′(τov,k)| ≤ ε.

Remark 4.4.2. — Contrary to the case of clustering recollisions defined be-

low (Definition 4.4.3), there is no privileged way of extracting this minimally

connected graph, so we choose the Penrose algorithm (see the proof of Propo-

sition 2.3.1) for simplicity. Remark that the times τov,k are not ordered.

Each one of the |ρi|−1 overlaps is a strong geometrical constraint which will

be used in Part III to gain a small factor t/µε. More precisely, in Chapter 8 we

assign to each forest λjk a root z∗λjk
(chosen among the roots of Ψε

λjk
). Then,

it will be possible to “move rigidly” the whole pseudo-trajectory Ψε
λjk

, acting
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just on x∗λjk
. It follows that one easily translates the condition of “clustering

overlap” into |ρi| − 1 independent constraints on the relative positions of the

roots. In fact remember that the pseudo-trajectories Ψε
λjk
,Ψε

λj′
k

do not interact

with each other by construction. Therefore λjk ∼o λj′k means that the two

pseudo-trajectories meet at some time τov,k > 0 and, immediately after (going

backwards), they cross each other freely. This corresponds to a small measure

set in the variable x∗λj′
k

− x∗λjk
.

Contrary to overlaps, recollisions are unfortunately not independent from

one another. For this reason, the study of recollisions of trees in a forest needs

more care. In this case we need to fix the order of the recollision times. Then

we can identify an ordered sequence of relative positions (between trees) which

do not affect the previous recollisions. One by one and following the ordering,

such degrees of freedom are shown to belong to a small measure set. The

precise identification of degrees of freedom will be explained in Section 8.1 and

is based on the following notion.

Definition 4.4.3 (Clustering recollisions). — Given a forest λi =

{i1, . . . , i|λi|} and a pseudo-trajectory Ψε
λi
, we call “clustering recollisions” the

set of recollisions identified by the following iterative procedure.

- The first clustering recollision is the first external recollision in Ψε
λi

(going

backward in time); we rename the recolliding trees j1, j
′
1 and the recollision

time τrec,1.

- The k-th clustering recollision is the first external recollision in Ψε
λi

(going backward in time) such that, calling jk, j
′
k the recolliding trees,

{{j1, j′1}, . . . , {jk, j′k}} = E
(
G(k)

)
where G(k) is a graph with no cycles

(and no multiple edges). We denote the recollision time by τrec,k.

In particular,

(4.4.4)

τrec,1 ≥ · · · ≥ τrec,|λi|−1 and
{
{j1, j′1}, . . . , {j|λi|−1, j

′
|λi|−1}

}
= E(Tλi),

where Tλi is a minimally connected graph on λi.

If q, q′ are the particles realizing the k-th clustering recollision, we define the

corresponding recollision vector by

(4.4.5) ωrec,k :=
xq′(τrec,k)− xq(τrec,k)

ε
.

The important difference between Definition 4.4.3 and Definition 4.4.1 is

that we have given an order to the recollision times in Eq. (4.4.4) (which does

not exist in Eq. (4.4.3)).

From now on, in order to distinguish, at the level of graphs, between clus-

tering recollisions and clustering overlaps, we shall decorate edges as follows.
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Definition 4.4.4 (Edge sign). — An edge has sign + if it represents a clus-

tering recollision. An edge has sign − if it represents a clustering overlap.

Collecting together clustering recollisions and clustering overlaps, we ob-

tain r minimally connected clusters, one for each jungle. In particular, we can

construct a graph Gλ,ρ made of r minimally connected components. To each

e ∈ E(Gλ,ρ), we associate a sign (+ for a recollision and − for an overlap), and

a clustering time τ cluste .

Our main results describing the structure of dynamical correlations will be

proved in the third part of this paper. The major breakthrough in this work is

to remark that one can obtain uniform bounds for the cumulant of order n

for all n with a controlled growth. Indeed we recall that we expect each

clustering to produce a small factor t/µε, so that the (scaled) cumulant f εn(t)

of order n defined in (4.4.1) should be bounded in ε. Moreover the number of

minimally connected graphs with n vertices is nn−2 so we expect f εn(t) to grow

as (Ct)n−1n!. This is made precise in the following theorem, which provides

in particular sharp controls on the cumulant generating function Λε[0,t] from

which the large deviation estimates are derived in Chapter 7. The following

theorem will be proved in Section 8.2 as Theorem 10.

Theorem 4. — Consider the system of hard spheres under the initial mea-

sure (1.1.6), with f0 satisfying (1.1.5). Let H : D([0,∞[) 7→ R be a continuous

function such that

(4.4.6) |H⊗n(Zn([0, t]))| ≤ exp
(
αn+

β0
4

sup
s∈[0,t]

|Vn(s)|2
)

for some α ∈ R. Define the scaled cumulant f εn,[0,t](H
⊗n) by (4.4.1), with the

notation (3.3.5). Then there exists

(4.4.7) Tα ∼ e−αTL

and a positive constant C such that the following uniform a priori bound holds

for any t ≤ T0:

(4.4.8) |f εn,[0,t](H⊗n)| ≤ (Ceα)n
(
t+ ε

)n−1
n! .

In particular setting H = eh − 1, the series defining the cumulant generating

function is absolutely convergent on a time [0, Tα] :

(4.4.9)

∀t ≤ Tα , Λε[0,t](e
h) :=

1

µε
logEε

(
exp

( N∑
i=1

h
(
zεi ([0, t]

)))

=

∞∑
n=1

1

n!
f εn,[0,t]

(
(eh − 1)⊗n

)
.
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Note that (4.4.9) follows easily from the uniform bounds (4.4.8) on the

rescaled cumulants, recalling Proposition 2.1.3.

In the next chapter, we shall prove the existence of the limiting cumulant

generating function (Theorem 5) and the form of the limit will be characterized

explicitly (Theorem 6). As is known from the general theory [25, 22, 62] such

a result implies upper and lower large deviation bounds, which will be obtained

later on in Chapter 7 (see Sections 7.3.1 and 7.3.2).





CHAPTER 5

CHARACTERIZATION OF THE LIMITING

CUMULANTS

Thanks to the uniform bounds obtained in Theorem 4 we expect that, for

all n, there is a limit fn,[0,t](H
⊗n) for f εn,[0,t](H

⊗n) as µε → ∞. Our goal in

this chapter is first to obtain a description of fn,[0,t](H
⊗n) in terms of a series

expansion similar to (4.4.1), with a precise definition of the limiting pseudo-

trajectories (see Theorem 5 in Section 5.1 below): the main feature of those

pseudo-trajectories is that they correspond to minimally connected collision

graphs.

In Section 5.2 we derive a series expansion for the limiting cumulant generat-

ing function (Theorem 6) which is shown to satisfy a Hamilton-Jacobi equation

in Section 5.3 (Theorem 7); the fact that the limiting graphs have no cycles is

crucial for the derivation of this equation.

This Hamilton-Jacobi equation encodes all the dynamical correlations. In

particular, the convergence of the typical density to the Boltzmann equation

is recovered from the Hamilton-Jacobi equation in Section 5.4 as well as the

limit covariance in Section 5.5.

5.1. Limiting pseudo-trajectories and graphical representation of

limiting cumulants

In this section we characterize the limiting cumulants fn,[0,t](H
⊗n) by their

integral representation. This means that we have to specify both the limiting

pseudo-trajectories and the limiting measure.

We first describe the formal limit of (4.4.1). To this end, we start by giving a

definition of minimal pseudo-trajectories associated with cumulants for fixed ε.

Recall that the cumulant f εn,[0,t](H
⊗n) of order n corresponds to graphs of size

n which are completely connected, either by recollisions, or by overlaps, or by

initial correlations. It will be proved in Chapter 9 that
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— clusterings coming from the defect of factorization of the initial data, as

well as non-regular overlaps, are smaller by a factor O(ε) and thus will

not contribute to the limit,

— cycles are created by additional (non clustering) recollisions or overlaps

and have a vanishing contribution in the limit.

Thus only pseudo-trajectories corresponding to minimally connected graphs

and regular clusterings will be considered in this section.

Definition 5.1.1 (Minimal cumulant pseudo-trajectories)

Let m ≥ 0. Consider a minimally connected graph T ∈ T ±
n decorated with

edge signs
(
scluste

)
e∈E(T )

and a decorated collision tree a ∈ A±
n,m. Fix Z∗

n

and a collection of m creation times Tm in decreasing order, and parame-

ters (Ωm, Vm). The cumulant pseudo-trajectory Ψε
n,m associated with T, a, Z∗

n

and (Tm,Ωm, Vm) is constructed backward according to the following rules. At

each step the set of particles follows the backward free transport until two of

them approach at a distance ε or a time tk is reached.

— At a time tk, a new particle, labeled k, is adjoined at position xak(tk) +

skεωk and with velocity vk.

— If sk > 0 then the velocities vk and vak are changed to vk(t
−
k )

and vak(t
−
k ) according to the laws (3.2.1),

— then all particles are transported (backwards).

— When two particles, say {qe, q′e}, touch, we look at the roots j and j′ of

their respective subtrees.

— If e = {j, j′} is not an edge of T or if this edge has already appeared

before in the (backward) process, then the pseudo-trajectory is not

admissible.

— Otherwise we have a clustering recollision if scluste = + (particles are

scattered) or a clustering overlap if scluste = −. We say that {qe, q′e}
is a representative of the edge e, and we denote this by {qe, q′e} ≈ e.

The clustering time is denoted τ cluste , and the clustering angle can be

defined by

ωclust
e :=

xqe(τ
clust
e )− xq′e(τ

clust
e )

ε
∈ Sd−1 .

The pseudo-trajectory is admissible if at time 0 all edges of T have appeared

in the construction. We will order the clustering times, and the edges of T

accordingly, and we will denote by (Θclust
n−1 ,Ω

clust
n−1 ) the collection of clustering

times and angles.

Theorem 4 will be proved in Section 8.2 by establishing, in particular, the

uniform convergence of the series expansion (4.4.1) (on the number of created
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particles m, see (3.3.5)). We thus focus here on a fixed m and a fixed tree a

in A±
n,m.

The clustering constraints provide n − 1 conditions on the positions of the

roots (z∗i )1≤i≤n of the trees, so only one root will be free. We set this root to

be z∗n. We consider the clustering between the trees i, j involving the parti-

cles qe, q
′
e. Given V ∗

n and x∗i as well as collision parameters (a, Tm,Ωm, Vm),

since the trajectories are piecewise affine, one can perform the local change of

variables

(5.1.1) x∗j ∈ Td 7→ (τ cluste , ωclust
e ) ∈ (0, t)× Sd−1

with Jacobian µ−1
ε

(
(vqe(τ

clust+
e ) − vq′e(τ

clust+
e )) · ωclust

e

)
+
. This provides the

identification of measures

(5.1.2)
µεdx

∗
i dv

∗
i dx

∗
jdv

∗
j

= dx∗i dv
∗
i dv

∗
jdτ

clust
e dωclust

e

(
(vqe(τ

clust
e )− vq′e(τ

clust
e )) · ωclust

e

)
+
.

We shall explain in Section 8.1 how to identify a good sequence of roots to

perform this change of variables iteratively (see Figure 6).

t

τe

x∗i = ? x∗j = ? x∗i − x∗j

Figure 6. On the left figure, two trees (with roots x∗i , x
∗
j ) are built

independently in the time interval [τe, t] and their roots are not fixed a

priori. On the right figure, the clustering condition at time τe imposes

a constraint on the relative position x∗i − x∗j of the roots : the trees

are shifted rigidly to satisfy the clustering. This procedure is applied

iteratively to determine all relative positions at time t. Only one root,

say x∗n, has to be prescribed.

For each tree a ∈ A±
n,m, and each minimally connected graph T ∈ T ±

n , the

cumulant pseudo-trajectories are then reparametrized by the root x∗n, the ve-

locities V ∗
n at time t, the sequence (qe, q

′
e)e∈E(T ) of clustering particles, the clus-

tering parameters (Θclust
n−1 ,Ω

clust
n−1 ) and the collision parameters (Tm,Ωm, Vm).

Now let us introduce the limiting cumulant pseudo-trajectories and measure.

Definition 5.1.2 (Limiting cumulant pseudo-trajectories)
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Let m ≥ 0. The limiting cumulant pseudo-trajectories Ψn,m associated with

the ordered trees T ∈ T ±
n and a ∈ A±

n,m are obtained by fixing x∗n, V
∗
n , and

— for each e ∈ E(T ), a representative {qe, q′e} ≈ e

— a collection of m ordered creation times Tm, and parameters (Ωm, Vm)

— a collection of clustering times and angles (Θclust
n−1 ,Ω

clust
n−1 ).

At each creation time tk, a new particle, labeled k, is adjoined at posi-

tion xak(tk) and with velocity vk:

— if sk = +, then the velocities vk and vak are changed to vk(t
−
k ) and vak(t

−
k )

according to the laws (3.2.1),

— then all particles follow the backward free flow until the next creation or

clustering time.

At each clustering time τ cluste the particles qe and q′e are at the same position:

— if scluste = +, then the velocities vqe and vq′e are changed according to the

scattering rule, with scattering vector ωclust
e ,

— then all particles follow the backward free flow until the next creation or

clustering time.

Note that, in Definition 5.1.1, positions X∗
n at time t were fixed and clus-

tering conditions were considered as admissibility constraints, while here the

positions X∗
n−1 at time t are not prescribed: they are determined to satisfy the

clustering conditions according to an algorithm devised in Section 8.1.

We can therefore define the limiting measure, with the notation introduced

above:

(5.1.3)

dµsing,T,a (Ψn,m) := dTmdΩmdVmdx
∗
ndV

∗
n dΘ

clust
n−1 dΩ

clust
n−1

m∏
i=1

si
(
(vi − vai(ti) · ωi

)
+

×
∏

e∈E(T )

∑
{qe,q′e}≈e

scluste

(
(vqe(τ

clust
e )− vq′e(τ

clust
e )) · ωclust

e

)
+
.

We stress the fact that this measure is supported on singular pseudo-

trajectories, in the sense that the pseudo-particles interact one with the other

at distance 0.

Equipped with these notations, we can now state the result that will be

proved in Chapter 9.

Theorem 5. — With the previous notation and the assumptions of Theo-

rem 4, for all t ≤ T0, the cumulant f εn,[0,t](H
⊗n) converges when µε → ∞
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to fn,[0,t](H
⊗n) given for all t ≤ T0 by

(5.1.4)

fn,[0,t](H
⊗n)

=
∑
T∈T ±

n

∞∑
m=0

∑
a∈A±

n,m

∫
dµsing,T,a(Ψn,m)H

(
Ψn,m

) (
f0
)⊗m+n

(Ψ0
n,m) .

In particular by Theorem 4 there exist a constant C > 0 and a time Tα intro-

duced in (4.4.7) such that

∀t ≤ Tα , |fn,[0,t](H⊗n)| ≤ Cntn−1n! ,

and the limiting cumulant generating function (4.4.9) has the form

(5.1.5) ∀t ≤ Tα , Λ[0,t](e
h) =

∞∑
n=1

1

n!
fn,[0,t]

(
(eh − 1)⊗n

)
= lim

µε→∞
Λε[0,t](e

h) .

5.2. Limiting cumulant generating function

The following result provides a graphical expansion of Λ[0,t](e
h).

Theorem 6. — Under the assumptions of Theorem 4, the limiting cumulant

generating function Λ[0,t] satisfies for all t ≤ Tα
(5.2.1)

Λ[0,t](e
h) + 1 =

∞∑
K=1

1

K!

∑
T̃∈T ±

K

∫
dµsing,T̃ (ΨK,0)(e

h)⊗K(ΨK,0)f
0⊗K(Ψ0

K,0) ,

where

(5.2.2) dµsing,T̃ := dx∗KdVK
∏

e={q,q′}∈E(T̃ )

se
(
(vq(τe)− vq′(τe)) · ωe

)
+
dτedωe .

Furthermore the series is absolutely convergent for t ∈ [0, Tα] :

(5.2.3)

∫
d|µsing,T̃ (ΨK,0)| (eh)⊗K(ΨK,0) f

0⊗K(Ψ0
K,0) ≤

(
Ct
)K−1

.

Compared to Theorem 5, all dynamical connections are dealt with in a

symmetric way, resorting to one connected graph T̃ ∈ T ±
K , rather than a

graph T ∈ T ±
n encoding recollisions and overlaps and a tree a ∈ A±

n,m encoding

collisions.

Proof. — By definition and thanks to Theorem 5,

Λ[0,t]

(
eh
)
=

∞∑
n=1

1

n!

∑
T∈T ±

n

∞∑
m=0

∑
a∈A±

n,m

∫
dµsing,T,a(Ψn,m)(e

h−1)⊗n
(
f0
)⊗(m+n)

.

Note that the trajectories of particles i ∈ {1, . . . ,m} can be extended on the

whole interval [0, t] just by transporting i without collision on [ti, t] : this
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is actually the only way to have a set of m + n pseudo-trajectories which

is minimally connected (any additional collision would add a non clustering

constraint, or require adding new particles). It can therefore be identified to

some Ψm+n,0 (see Figure 7).

Let us now fix K = n+m and symmetrize over all arguments :

Λ[0,t]

(
eh
)

=

∞∑
K=1

1

K!

K∑
n=1

K!

n!(K − n)!
(K − n)!

×
∑
T∈T ±

n

∑
a∈A±

n,K−n

∫
dµsing,T,a(Ψn,K−n)(e

h − 1)⊗n
(
f0
)⊗K

=

∞∑
K=1

1

K!

K∑
n=1

∑
η

|η|=n

∑
(ηc)≺

∑
T∈T ±

η

∑
a∈A±

η,(ηc)≺

∫
dµsing,T,a(Ψη,(ηc)≺)(e

h − 1)⊗η
(
f0
)⊗K

where η stands for a subset of {1∗, . . . , n∗, 1, . . . ,K − n} with cardinal n; ηc

denotes its complement and (ηc)≺ indicates that we have chosen an order on

the set ηc. We denote by A±
η,(ηc)≺ the set of signed trees with roots η and

added particles with prescribed order in (ηc)≺.

Note that the combinatorics of collisions a and recollisions or overlaps T

(together with the choice of the representatives {qe, q′e}e∈E(T )) can be described

by a single minimally connected graph T̃ ∈ T ±
K . In order to apply Fubini’s

theorem, we then need to understand the mapping

(a, T, {qe, q′e}e∈E(T )) 7→ (T̃ , η) .

It is easy to see that this mapping is injective but not surjective. Given

a pseudo-trajectory ΨK,0 compatible with T̃ and a set η of cardinality n, we

reconstruct (a, T, {qe, q′e}e∈E(T )) as follows. We color in black the n particles

belonging to η at time t, and in grey the K−n other particles. Then we follow

the dynamics backward. At each clustering, we apply the following rule

— if the clustering involves one black particle and one grey particle, then it

corresponds to a collision in the Duhamel pseudo-trajectory. The corre-

sponding edge of T̃ will be described by a. We then change the color of

the grey particle to black.

— if the clustering involves two black particles, then it corresponds to a

recollision or an overlap. The corresponding edge of T̃ is therefore an edge

e ∈ E(T ) and the two colliding particles determine the representative

{qe, q′e}.
— if the clustering involves two grey particles, then the pseudo-trajectory is

not admissible for (T̃ , η), as it is not associated to any (a, T, {qe, q′e}e∈E(T )).
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t
1 5 4 2 7 3 6

1 5 42 7 36

η = {1, 2, 3}
n = 3,m = 4, K = 7

T̃

1

2
4

6
7

5
3

Figure 7. A couple (η, T̃ ) and an associate pseudo-trajectory ΨK,0.

However the contribution of the non admissible pseudo-trajectories ΨK,0 to∑
T̃∈T ±

η

∫
dµsing,T̃ (Ψη,0)(e

h)⊗η
(
f0
)⊗K

is exactly zero. Indeed the grey parts of the trajectories are not weighted, so

that the overlap and the recollision terms associated with the first clustering

between two grey particles (i.e. the ± signs of the corresponding edge) exactly

compensate.

We therefore conclude that

Λ[0,t]

(
eh
)
=
∑
K≥1

1

K!

∑
T̃∈T ±

K

∫
dµsing,T̃ (ΨK,0)

(
f0
)⊗K K∑

n=1

∑
η∈PnK

(eh − 1)⊗η

=
∑
K≥1

1

K!

∑
T̃∈T ±

K

∫
dµsing,T̃ (ΨK,0)(e

h)⊗K
(
f0
)⊗K − 1

which is exactly (5.2.1). Note that the compensation mechanism described

above does not work for n = 0 and K = 1, which is the reason for the −1 in

the final formula.

The bound (5.2.3) comes from the definition of µsing,T̃ together with the

estimates used in the proof of Theorem 4 to control the collision cross-sections.
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5.3. Hamilton-Jacobi equations

We consider test functions on the trajectories which write as

(5.3.1) h(z([0, t])) = g
(
t, z(t)

)
−
∫ t

0
Dsg

(
s, z(s)

)
ds

recalling the notation Dsg := ∂sg + v · ∇xg. The effect of this specific choice

will be to integrate the transport term in the Hamilton-Jacobi equation. We

choose complex-valued functions here as we shall be using properties of analytic

functionals of g later; all the results obtained so far can easily be adapted to

this more general setting. To stress the dependence on g, we introduce a

specific notation for the corresponding exponential moment (5.1.5)

I(t, g) := Λ[0,t](e
g(t)−

∫ t
0 Dsg) .(5.3.2)

Note that g is defined here by its final value g(t) and its transport Dg =

(Dsg)0≤s≤t, and these two functions will be considered as two independent

variables.

The following statement specifies the functional framework in which I is

well defined as a convergent series, and identifies the equation it satisfies. We

define for some T ⋆ > 0 which will be fixed in Chapter 7

Bα :=
{
g ∈ C1([0, T ⋆]× D;C) : |g(t, z)| ≤ 1

2
(1− t

2T ⋆
)(α+

β0
8
|v|2) ,

sup
s∈[0,T ⋆]

|Dsg(s, z)| ≤
1

4T ⋆
(α+

β0
8
|v|2)

}
.(5.3.3)

Without loss of generality, taking α large enough, we assume that Tα ≤ T ⋆.

Let us translate Theorems 4 and 6 in terms of the functional I. For t in [0, T ⋆],

let h be defined as in (5.3.1) with g in Bα. One has

(5.3.4)

∣∣∣(eh(zi([0,t])) − 1
)⊗n∣∣∣ ≤ e

∑n
i=1

∣∣h(zi([0,t]))∣∣
≤ e

1
2
αn+

β0
16

(1− t
2T⋆

)|Vn(t)|2+β0
16

1
2T⋆

∫ t
0 |Vn(s)|2 ds

≤ e
1
2
αn+

β0
16

sups∈[0,t] |Vn(s)|2 ,

which is the assumption on H = eh− 1 of Theorem 4. In particular, the series

(5.3.5)

I(t, g) := −1 +

∞∑
K=1

1

K!

∑
T∈T ±

K

∫
dµsing,T (ΨK,0)

× (eg(t)−
∫ t
0 Dsg(s)ds)⊗K(ΨK,0)f

0⊗K(Ψ0
K,0)

is absolutely convergent for t ∈ [0, Tα] and g ∈ Bα. Note that (5.3.5) shows

that I is analytic with respect to g(t): in particular one can differentiate I(t, g)
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with respect to the final condition g(t), in a direction Υ and by term-wise

derivation of the series (5.3.5) we find:∫
D
dz
∂I(t, g)
∂g(t)

(z)Υ(z) =
∑
K

1

K!

∑
T̃∈T ±

K

K∑
i=1

∫
dµsing,T̃ (ΨK,0)Υ(zi(t))

×
(
eg(t)−

∫ t
0 Dsgds

)⊗K
(ΨK,0)

(
f0
)⊗K

(Ψ0
K,0) .(5.3.6)

We first state a regularity result on ∂I(t,g)
∂g(t) needed to define the singularity in

the Hamilton-Jacobi equation derived in Theorem 7 below. Additional results

on I in an appropriate functional setting will be derived later in Proposition

7.2.2 in order to obtain the uniqueness of the Hamilton-Jacobi equation.

Proposition 5.3.1. — For t ≤ Tα and g ∈ Bα, the functional derivative

(x, v) 7→ ∂I(t, g)
∂g(t)

(x, v) is a continuous function in x ∈ Td with values in the

space Mv(Rd) of weighted measures in v ∈ Rd: there is a constant C such that

for any g ∈ Bα,

∀t ≤ Tα ,∀x ∈ Td,
∥∥∥∂I(t, g)
∂g(t)

(x, v) exp(
β0
8
|v|2)(1 + |v|)

∥∥∥
Mv(Rd)

≤ C .

Proof. — Given K, we consider the associated integral in the series expansion

(5.3.6). The integrand is uniformly bounded by the assumption (1.1.5) on f0

and inequality (5.3.4)

(5.3.7)
ΓK(ΨK,0) :=

(
eg(t)−

∫ t
0 Dsgds

)⊗K
(ΨK,0)

(
f0
)⊗K

(Ψ0
K,0)

≤ eαK− 3β0
8

|VK(0)|2 .

The measure µsing,T̃ is invariant under global translations in x. Thanks to the

upper bound (5.3.7), each integral in (5.3.6) is uniformly bounded in terms of

∥ exp(−β0
8 |v|2)(1 + |v|)−1Υ∥L1

x(L
∞
v )

(5.3.8)∣∣∣ ∫ dµsing,T̃ (ΨK,0)ΓK(ΨK,0)Υ(zi(t))
∣∣∣ ≤ ∣∣∣ ∫ dµsing,T̃ (ΨK,0)e

αK−β0
8
|VK(0)|2

∣∣∣
× ∥ exp(−β0

8
|v|2)(1 + |v|)−1Υ∥L1

x(L
∞
v ) .

Furthermore, using the continuity of g and f0, we deduce that ΓK(ΨK,0) is

a continuous function of the root zi(t), as changing the position of the root

boils down to translating rigidly the whole pseudo-trajectory. Therefore, by

density approximation, one can extend the convergence and the bound (5.3.8)

to any Υ such that Υ exp(−β0
8 |v|2)(1+|v|)−1 ∈ Mx (L

∞
v ) whereMx is the space

of measures. Proposition 5.3.1 is proved by summing the expansion (5.3.6).



60 CHAPTER 5. CHARACTERIZATION OF THE LIMITING CUMULANTS

The next theorem is the key to derive the large deviation functional in

Chapter 7. As a byproduct, it will also allow us to prove that the limit first

cumulant f1 solves the Boltzmann equation, and to derive the equation on the

limit covariance.

Theorem 7 (Hamilton-Jacobi equation for the limit cumulant gener-

ating function)

For any α > 0, the functional I(t, g) is well defined on [0, Tα] × Bα, and

the series defining I(t, g) is a solution of the mild form of the Hamilton-Jacobi

equation on [0, Tα]× Bα :

(5.3.9)
I(t, g) = I(0, g)

+
1

2

∫ t

0
dτ

∫
∂I
∂g(τ)

(τ, g)(z1)
∂I
∂g(τ)

(τ, g)(z2)
(
e∆g(τ) − 1

)
dµ(z1, z2, ω)

I(0, g) =

∫
dz f0(z)(eg(0,z) − 1) ,

where we used the notation (1.3.7)-(1.3.8)

dµ(z1, z2, ω) := δx1−x2((v1 − v2) · ω)+dωdv1dv2dx1 ,

and

∆g(z1, z2, ω) := g(z′1) + g(z′2)− g(z1)− g(z2) .

We will see in Chapter 7 that this Hamilton-Jacobi equation provides a com-

plete characterization of I which will be crucial to identify the large deviation

functional by means of Legendre transform.

Proof. — At time 0, the exponential moment (5.3.5) reduces to the exponential

moment of independent particles thus only the term K = 1 remains

(5.3.10) I(0, g) = −1 +

∫
dzeg(0,z)f0(z) =

∫
dz f0(z)(eg(0,z) − 1) .

To recover the mild form of the Hamilton-Jacobi equation (5.3.9), we are

going to reparametrize each term of the series (5.3.5) of I(t, g) by singling

out the last clustering collision. Given a tree T in T ±
K with K ≥ 2, let τe :=

τ cluste ∈ [0, t] be the last clustering time (moving forward) which occurs at the

edge e and is associated with the scattering vector ωe := ωclust
e and the sign

se := scluste ∈ {−1, 1}. By removing the edge e, the tree T is split into two

trees T1 ∈ T ±
K1

and T2 ∈ T ±
K2

with sizes K1 + K2 = K and clustering times

belonging to [0, τe]. These trees generate two pseudo-trajectories ΨK1,0,ΨK2,0

on [0, t] which are then constrained to cluster at time τe. The whole pseudo-

trajectory ΨK,0 on [0, t] (generated by T ) is then recovered by merging the
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pseudo-trajectories ΨK1,0,ΨK2,0 at time τe and extending them on [0, t] with a

scattering, or not, according to the sign se. This procedure is abbreviated by

(5.3.11) ΨK,0 = ΨK1,0 ∧ΨK2,0 .

This leads to

(5.3.12)∑
T∈T ±

K

∫
dµsing,T (ΨK,0)(e

g(t)−
∫ t
0 Dsg(s)ds)⊗K(ΨK,0)f

0⊗K(Ψ0
K,0)

=
1

2

∑
K1,K2

K1+K2=K

K!

K1!K2!

∑
T1∈T ±

K1

T2∈T ±
K2

∫ t

0
dτe

∫
dµ

[0,τe]
sing,T1

(ΨK1,0)dµ
[0,τe]
sing,T2

(ΨK2,0)

× f0⊗K1(Ψ0
K1,0)f

0⊗K2(Ψ0
K2,0)

×
∑
i∈T1
j∈T2

∑
se=±1

∫
dωeseδxi(τe)−xj(τe)((vi(τ

−
e )− vj(τ

−
e )) · ωe)+(eg(t)−

∫ t
0 Dsg(s)ds)⊗K .

By construction the parameters associated with the pseudo-trajectories ΨK1,0

and ΨK2,0 are independent and the corresponding measures on [0, τe] factorize.

We used the notation µ
[0,τe]
sing,T1

to stress the fact that the clustering times of the

measure are restricted to [0, τe]. The last line of the identity (5.3.12) encodes

the clustering constraint at τe.

To recover the factorization of the Hamilton-Jacobi equation (5.3.9), we first

note that all the particles evolve in straight line in [τe, t], so that for any k ≤ K

g
(
t, zk(t)

)
−
∫ t

0
Dsg

(
s, zk(s)

)
ds = g

(
τe, zk(τ

+
e )
)
−
∫ τe

0
Dsg

(
s, zk(s)

)
ds.

If se = 1, a scattering occurs between the particles (i, j) forming the edge e

so that their velocities jump at time τe; if se = −1 on the other hand, the

trajectories are unchanged. With the notation (1.3.8), the discontinuity at the

collision can thus be rewritten as

(eg(t)−
∫ t
0 Dsg(s)ds)⊗K = (eg(τe)−

∫ τe
0 Dsg(s)ds)⊗K1 (eg(τe)−

∫ τe
0 Dsg(s)ds)⊗K2

×
(
1 + 1se=1

[
exp

(
∆g(τe) (zi(τ

−
e ), zj(τ

−
e ), ωe)

)
− 1
])

.(5.3.13)
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It follows that except for the interaction at time τe between particles i, j, the

test functions factorize. We can rewrite (5.3.12) as

(5.3.14)∑
T∈T ±

K

∫
dµsing,T (ΨK,0)(e

g(t)−
∫ t
0 Dsg(s)ds)⊗K(ΨK,0)f

0⊗K(Ψ0
K,0)

=
K!

2

K∑
K1=0

∑
T1∈T ±

K1

T2∈T ±
K2

∑
i∈T1
j∈T2

∫ t

0
dτe

×
∏
ℓ=1,2

[
1

Kℓ!

∫
dµ

[0,τe]
sing,Tℓ

(ΨKℓ,0)f
0⊗Kℓ(Ψ0

Kℓ,0
)(eg(τe)−

∫ τe
0 Dsg(s)ds)⊗Kℓ

]
×
∫
dωe δxi(τe)−xj(τe)((vi(τ

−
e )− vj(τ

−
e )) · ωe)+

×
[
exp

(
∆g(τe) (zi(τ

−
e ), zj(τ

−
e ), ωe)

)
− 1
]
,

where only the contribution se = 1 remains. Indeed the constant 1 in the last

line of (5.3.13) cancels out after summing over se = ±1.

Summing (5.3.14) over all K ≥ 1 in order to rebuild I(t, g), the product of

the functional derivatives
∂I(τe, g)
∂g(τe)

defined in (5.3.6) can be identified

I(t, g) = I(0, g)

+
1

2

∫ t

0
dτe

∫
∂I

∂g(τe)
(τe, g)(z1)

∂I
∂g(τe)

(τe, g)(z2)
(
e∆g(τe) − 1

)
dµ(z1, z2, ωe) .

Theorem 7 is proved.

5.4. The Boltzmann equation for the limit first cumulant

The Hamilton-Jacobi equation (5.3.9) encodes all the limiting correlations of

the microscopic dynamics. As a first consequence, we are going to recover the

convergence of the density to the solution of the Boltzmann equation already

stated in Theorem 1.

Let us denote the backward transport operator by Stϕ(x, v) := ϕ(x− tv, v),

for any test function ϕ.

Proposition 5.4.1. — In the Boltzmann-Grad limit, the rescaled one-particle

density converges in the time interval [0, T0] in the sense of measures

(5.4.1) lim
µε→∞

F ε1 (t) = f1(t) =
∂I(t, 0)
∂g(t)

·
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The limit f1 is a mild solution of the Boltzmann equation in a weak form

(5.4.2)

∫
D
f1(t, z)ψ(z) dz =

∫
D
Stf

0(z)ψ(z) dz

+

∫ t

0
ds

∫
St−s

(
f1(s, z

′
1)f1(s, z

′
2)− f1(s, z1)f1(s, z2)

)
× ψ(z1) dµ(z1, z2, ω) ,

for any continuous bounded test function ψ.

Proof. — We will consider only functional derivatives of I at g = 0, thus α can

be chosen arbitrarily small so that all the equations obtained from Theorem 7

are valid up to the time T0.

By definition (5.3.2) of I

(5.4.3)

I(t, g) =
∞∑
n=1

1

n!
fn,[0,t]

((
eh − 1

)⊗n)
with h

(
z([0, t])

)
= g(t, z(t))−

∫ t

0
Dsg(s, z(s)) ds ,

is a uniformly convergent series for t ≤ Tα and in particular it is analytic with

respect to g(t) for g in Bα. Given a test function ψ defined on D (and acting

at time t), the derivative at g = 0 is given by

(5.4.4)
〈∂I(t, 0)
∂g(t)

, ψ
〉
= f1,[0,t](ψ) =

∫
D
f1(t)ψ(z) dz ,

where ⟨ · , · ⟩ denotes the duality bracket. Theorem 5 implies that f ε1,[0,t] con-

verges to f1,[0,t]. As F
ε
1 (t) = f ε1 (t), this leads to (5.4.1).

The Hamilton-Jacobi equation (5.3.9) will enable us to obtain rather easily

that the equation satisfied by f1 is the Boltzmann equation. Let us start by

computing the derivative with respect to g(t) of I(0, g). First, we note that for
all s ∈ [0, t], g(s) is a function of g(t) and Dg through the Duhamel formula

g(t, x+ tv, v) = g(s, x+ sv, v) +

∫ t

s
Dσg(σ, x+ σv, v) dσ ,

which may be recast as follows:

(5.4.5) ∀s ∈ [0, t] , g(s) = Ss−tg(t)−
∫ t

s
Ss−σDσg(σ) dσ .

This formula will be key to track the impact of the variations of g(s) in the

functional derivatives under a perturbation of g at time t (or of Dg later on).

Recalling that

I(0, g) =
∫
f0(z)

(
eg(0,z) − 1

)
dz ,
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we therefore find that the derivative with respect to g(t) in the direction ψ is

given by

(5.4.6) ⟨∂I(0, g)
∂g(t)

, ψ⟩ =
∫
f0(z)

(
S−tψ

)
(z)eg(0,z) dz ,

hence in particular at g = 0

(5.4.7) ⟨∂I(0, 0)
∂g(t)

, ψ⟩ =
∫ (

Stf
0
)
(z)ψ(z) dz .

Next differentiating (5.3.9) with respect to g(t) in the direction ψ, we find

(5.4.8)

⟨∂I(t, g)
∂g(t)

, ψ⟩ =
∫ (

Stf
0
)
(z)ψ(z) dz

+

∫ t

0
ds

∫
∂I(s, g)
∂g(s)

(z1)
〈 ∂2I(s, g)
∂g(s)∂g(t)

, ψ
〉
(z2)

(
e∆g(s) − 1

)
dµ(z1, z2, ω)

+
1

2

∫ t

0
ds

∫
∂I(s, g)
∂g(s)

(z1)
∂I(s, g)
∂g(s)

(z2) ∆Ss−tψ e
∆g(s)dµ(z1, z2, ω).

Note that Proposition 5.3.1 allows us to handle the singularity of the measure

dµ.

Evaluating the result at g = 0 produces, thanks to (5.4.4), (5.4.5)

and (5.4.7),

⟨∂I(t, 0)
∂g(t)

, ψ⟩ =
∫ (

Stf
0
)
(z)ψ(z) dz

+
1

2

∫ t

0
ds

∫
f1(s, z1)f1(s, z2)∆Ss−tψ dµ(z1, z2, ω) .

Finally thanks to (5.4.4) again, we recover that for any smooth function ψ

⟨f1(t), ψ⟩ =
∫ (

Stf
0
)
(z)ψ(z) dz

+

∫ t

0
ds

∫ (
f1(s, z

′
1)f1(s, z

′
2)− f1(s, z1)f1(s, z2)

)
Ss−tψ dµ(z1, z2, ω)

=

∫ (
Stf

0
)
(z)ψ(z) dz

+

∫ t

0
ds

∫
St−s

(
f1(s, z

′
1)f1(s, z

′
2)− f1(s, z1)f1(s, z2)

)
ψ(z1) dµ(z1, z2, ω).

The proposition is proved.
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5.5. Equation for the limit covariance

The fluctuation field covariance is defined for any test functions ψ,φ on D
by

(5.5.1) ∀s ≤ t , Cε(t, s, ψ, φ) := Eε (ζεt (ψ)ζεs (φ)) .

The Hamilton-Jacobi equation (5.3.9) enables us to deduce dynamical equa-

tions characterizing the limit covariance. For this, we shall need the following

notations :

Definition 5.5.1. — The (adjoint) linearized operator is defined as

(5.5.2)

L∗
tφ(z) := v · ∇xφ(z) + L∗

tφ(z) , with

L∗
tφ(z) :=

∫
dµz(z2, ω)f(t, z2)∆φ(z, z2, ω) ,

with notation (1.2.2) for the measure dµz(z2, ω). We also set

(5.5.3) Covt(φ,ψ) :=
1

2

∫
dµ(z1, z2, ω) f(t, z1) f(t, z2) ∆ψ∆φ .

Proposition 5.5.2. — The covariance of the particle system converges to a

quadratic form C in the time interval [0, T0] in a weak sense, i.e. for any

bounded continuous functions φ,ψ

(5.5.4) ∀s ≤ t ≤ T0, lim
µε→∞

Cε(t, s, ψ, φ) = C(t, s, ψ, φ) .

The limit C is a solution of the system of equations for t ≤ T0
(5.5.5)

C(t, t, ψ, φ) = C(0, 0, S−tψ, S−tφ) +
∫ t

0
dsCovs(Ss−tψ, Ss−tφ)

+

∫ t

0
ds C(s, s, Ss−tψ,L∗

sSs−tφ) +

∫ t

0
ds C(s, s,L∗

sSs−tψ, Ss−tφ) ,∫ t

0
C(t, σ, ψ, ϕσ) dσ =

∫ t

0
dσ
(
C(σ, σ, Sσ−tψ, ϕσ)

+

∫ t

σ
ds C(s, σ,L∗

sSs−tψ, ϕσ)
)

where ψ, φ and (ϕσ)σ≤T0 are test functions on D.

It is shown in the appendix that (5.5.5) provides a complete characterization

of C(t, s, ψ, φ), at least for a short time: see Proposition A.3.1.

Proof. — The proof of the proposition is split into 2 steps.

Step 1. Convergence of the covariance (5.5.4).

Recall first that the covariance, for fixed ε, is determined by the first two

cumulants :
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∀s ≤ t, Cε(t, s, ψ, φ) = Eε

(
1

µε

∑
i

φ(zεi (s))ψ(z
ε
i (t))

)

+ Eε

 1

µε

∑
(i1,i2)

φ(zεi1(s))ψ(z
ε
i2(t))


− µεEε

(
1

µε

∑
i

φ(zεi (s))

)
× Eε

(
1

µε

∑
i

ψ(zεi (t))

)
= f ε1,[0,t](φ(s)ψ(t)) + f ε2,[0,t](φ(s)⊗ ψ(t))

where with slight abuse, we denote by f ε2,[0,t] = f ε2,[0,t] (ψ ⊗ φ) the bilinear form

obtained by polarization

f ε2,[0,t] (ψ ⊗ φ) :=
1

2

(
f ε2,[0,t]

(
(ψ + φ)⊗2

)
− f ε2,[0,t]

(
ψ⊗2

)
− f ε2,[0,t]

(
φ⊗2

) )
.

By the convergence of the cumulants proved in Theorem 5, the limit covariance

is

(5.5.6) ∀s ≤ t , C(t, s, ψ, φ) := f1,[0,t]
(
ψ(t)φ

(
s)
)
+ f2,[0,t]

(
ψ
(
t)⊗ φ(s)

)
.

Step 2. Derivation of the system of equations (5.5.5).

We start by establishing the equation for the covariance at a single time t.

As in (5.4.4), differentiating twice I with respect to g(t) in the direction ψ

provides 〈 ∂2I
∂2g(t)

, ψ ⊗ ψ
〉∣∣g=0

= f1,t(ψ
2) + f2,t(ψ ⊗ ψ) = C(t, t, ψ, ψ) .

The corresponding formula for C(t, t, φ, ψ) follows by polarization. Thanks

to (5.4.6), there holds〈∂2I(0, g)
∂2g(t)

, ψ ⊗ ψ
〉∣∣g=0

=

∫
f0(z)

(
S−tψ

)2
(z) dz = C(0, 0, S−tψ, S−tψ) .

By using the identity (5.4.5), the functional can be also differentiated at dif-

ferent times

(5.5.7)
〈 ∂2I(s, g)
∂g(s)∂g(t)

, ψ
〉
(z1) =

〈 ∂2I(s, g)
∂g(s)∂g(s)

, Ss−tψ
〉
(z1).
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Thus differentiating (5.4.8) one more time and computing the result at g = 0

provides

(5.5.8)
C(t, t, ψ, ψ) = C(0, 0, S−tψ, S−tψ)

+ 2

∫ t

0
ds

∫ 〈 ∂2I(s, 0)
∂g(s)∂g(s)

, Ss−tψ
〉
(z1)

∂I(s, 0)
∂g(s)

(z2) ∆Ss−tψ dµ(z1, z2, ω)

+
1

2

∫ t

0
ds

∫
∂I(s, 0)
∂g(s)

(z1)
∂I(s, 0)
∂g(s)

(z2)
(
∆Ss−tψ

)2
dµ(z1, z2, ω)

= C(0, 0, S−tψ, S−tψ)

+ 2

∫ t

0
ds

∫ 〈 ∂2I(s, 0)
∂g(s)∂g(s)

(z1), Ss−tψ
〉
f(s, z2) ∆Ss−tψ dµ(z1, z2, ω)

+
1

2

∫ t

0
ds

∫
f(s, z1)f(s, z2)

(
∆Ss−tψ

)2
dµ(z1, z2, ω) ,

where
∂I(s, 0)
∂g(s)

has been replaced by f(s) thanks to Proposition 5.4.1.

With these notations, (5.5.8) can be rewritten as

(5.5.9)

C(t, t, ψ, ψ) = C(0, 0, S−tψ, S−tψ)

+ 2

∫ t

0
ds C(s, s, Ss−tψ,L∗

sSs−tψ) +

∫ t

0
dsCovs(Ss−tψ, Ss−tψ) .

Thus the first equation of the system (5.5.5) is recovered by polarisation.

Now let us turn to the equation on the covariance at two different times.

Given ϕ a test function defined on [0, t]× D, the integrated covariance can be

recovered by differentiating with respect to Dg in the direction ϕσ = ϕ(σ), a

given smooth function. Setting

Φ(t, z([0, t])) :=

∫ t

0
ϕ(σ, z(σ)) dσ =

∫ t

0
ϕσ dσ ,

one has

⟨ ∂
2I(t, 0)

∂g(t)∂Dg
, ψ ⊗ Φ⟩ = −f1,[0,t](ψΦ)− f2,[0,t](ψ ⊗ Φ) = −

∫ t

0
C(t, s, ψ, ϕs) ds,

where the minus sign is due to the fact that the test function is g(t)−
∫ t

0
dsDsg.

We are now going to derive the second equation on the covariance at different

times, differentiating (5.4.8) again. We recall from (5.4.5) that the variations

of g(s) in the directions ψ and ϕ are given by

(5.5.10) ∀s ∈ [0, t] , δg(s) = Ss−tψ −
∫ t

s
Ss−σϕσ dσ.
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We start by observing that taking a second derivative in (5.4.6) leads to

〈 ∂2I(0, 0)
∂g(t)∂Dg

, ψ ⊗ Φ
〉
= −

∫
dzf0(z)S−tψ(z)

∫ t

0
S−σϕ(σ, z)dσ

= −
∫ t

0
C
(
0, 0, S−tψ, S−σϕσ

)
dσ .

Taking the derivative at intermediate times s ∈ [0, t] on I(s, g) with respect

to Dg is more delicate as there is a contribution of the variation of δg(s)

by (5.5.10) and another contribution accounting for the variations on [0, s]:

recalling (5.4.3),

(5.5.11) ⟨∂I(s, 0)
∂Dg

,Φ⟩ = −
∫ t

s

〈∂I(s, 0)
∂g(s)

, Ss−σϕσ

〉
dσ−

∫ s

0

〈∂I(s, 0)
∂Dσg

, ϕσ

〉
dσ.

Differentiating (5.4.8) one more time and using (5.5.7), there holds

∫ t

0
C(t, σ, ψ, ϕσ) dσ =

∫ t

0
C(0, 0, S−tψ, S−σϕσ) dσ

+

∫ t

0
ds

∫ 〈 ∂2I(s, 0)
∂g(s)∂g(s)

, Ss−tψ
〉
(z1)

∂I(s, 0)
∂g(s)

(z2)(∆

∫ t

s
Ss−σϕσ dσ)dµ(z1, z2, ω)

−
∫ t

0
ds

∫
⟨ ∂

2I(s, 0)
∂g(s)∂Dg

,Φ⟩(z1)
∂I(s, 0)
∂g(s)

(z2)∆Ss−tψ dµ(z1, z2, ω)

+
1

2

∫ t

0
ds

∫
∂I(s, 0)
∂g(s)

(z1)
∂I(s, 0)
∂g(s)

(z2)
(
∆Ss−tψ

)
(∆

∫ t

s
Ss−σϕσ dσ)dµ(z1, z2, ω) .

Using that ∂I(s,0)
∂g(s) = f(s) by Proposition 5.4.1, the adjoint linearized operator

(5.5.2) and the covariance (5.5.3), we get

∫ t

0
C(t, σ, ψ, ϕσ) dσ

=

∫ t

0
C(0, 0, S−tψ, S−σϕσ)dσ +

∫ t

0
ds

∫ t

s
dσ
〈 ∂2I(s, 0)
∂g(s)∂g(s)

, Ss−tψ ⊗ L∗
sSs−σϕσ

〉
−
∫ t

0
ds⟨ ∂

2I(s, 0)
∂g(s)∂Dg

,L∗
sSs−tψ ⊗ Φ⟩+

∫ t

0
ds

∫ t

s
dσCovs

(
Ss−tψ, Ss−σϕσ

)
.
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From identity (5.5.11), we finally obtain∫ t

0
C(t, σ, ψ, ϕσ) dσ =

∫ t

0
C(0, 0, S−tψ, S−σϕσ) dσ

+

∫ t

0
ds

∫ t

s
dσ
〈 ∂2I(s, 0)
∂g(s)∂g(s)

, Ss−tψ ⊗ L∗
sSs−σϕσ

〉
+

∫ t

0
ds

∫ t

s
dσ
〈 ∂2I(s, 0)
∂g(s)∂g(s)

,L∗
sSs−tψ ⊗ Ss−σϕσ

〉
+

∫ t

0
ds

∫ s

0
dσ
〈 ∂2I(s, 0)
∂g(s)∂Dg

,L∗
sSs−tψ ⊗ ϕσ

〉
+

∫ t

0
ds

∫ t

s
dσ Covs

(
Ss−tψ, Ss−σϕσ

)
.

Noticing that

C(s, σ, ψ, ϕ) =
〈 ∂2I(s, 0)
∂g(s)∂Dσg

, ψ ⊗ ϕ
〉
,

this can be rewritten in terms on the covariance C.∫ t

0
C(t, σ, ψ, ϕσ) dσ =

∫ t

0
dσ C(0, 0, S−tψ, S−σϕσ)

+

∫ t

0
ds

∫ t

s
dσ C

(
s, s, Ss−tψ,L

∗
sSs−σϕσ

)
+

∫ t

0
ds

∫ t

s
dσ C

(
s, s,L∗

sSs−tψ, Ss−σϕσ

)
+

∫ t

0
ds

∫ s

0
dσ C

(
s, σ,L∗

sSs−tψ, ϕσ

)
+

∫ t

0
ds

∫ t

s
dσ Covs

(
Ss−tψ, Ss−σϕσ

)
.

Finally swapping the integrals in s, σ by Fubini’s Theorem, we get∫ t

0
C(t, σ, ψ, ϕσ) dσ =

∫ t

0
dσ C(0, 0, S−tψ, S−σϕσ)

+

∫ t

0
dσ

∫ σ

0
ds C

(
s, s, Ss−tψ,L

∗
sSs−σϕσ

)
+

∫ t

0
dσ

∫ σ

0
ds C

(
s, s,L∗

sSs−tψ, Ss−σϕσ

)
+

∫ t

0
dσ

∫ t

σ
ds C

(
s, σ,L∗

sSs−tψ, ϕσ

)
+

∫ t

0
dσ

∫ σ

0
ds Covs

(
Ss−tψ, Ss−σϕσ

)
.
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Noticing that (5.5.9) implies

C(σ, σ, Sσ−tψ, ϕσ) = C(0, 0, S−tψ, S−σϕσ)

+

∫ σ

0
ds C(s, s, Ss−tψ,L∗

sSs−σϕσ)

+

∫ σ

0
ds C(s, s,L∗

sSs−tψ, Ss−σϕσ)

+

∫ σ

0
dsCovs(Ss−tψ, Ss−τϕσ) ,

the formula for the covariance simplifies∫ t

0
C(t, σ, ψ, ϕσ)dσ =

∫ t

0
dσ
(
C(σ, σ, Sσ−tψ, ϕσ) +

∫ t

σ
dsC(s, σ,L∗

sSs−tψ, ϕσ)
)
.

This completes the derivation of the system of equations (5.5.5).



PART II

FLUCTUATIONS AROUND THE

BOLTZMANN DYNAMICS





CHAPTER 6

FLUCTUATING BOLTZMANN EQUATION

The goal of this chapter is to prove Theorem 2, describing the limit of the

fluctuation field (ζεt )t, of which we recall the definition:

ζεt
(
φ
)
:=

1√
µε

( N∑
i=1

φ
(
zεi (t)

)
− µεEε

(
πεt (φ)

))
on test functions φ. Namely we prove that, in the Boltzmann-Grad limit, ζεt
converges to a process ζt which solves, in a weak sense clarified below (see

Section 6.1), the fluctuating Boltzmann equation

(6.0.1) dζ̂t = Lt ζ̂t dt+ dηt .

We recall that f is the solution of the Boltzmann equation on [0, TL], that

the linearized Boltzmann operator is defined as Lt := −v · ∇x + Lt with the

collision part

(6.0.2)
Lt φ(z1) :=

∫
dµz1(z2, ω)

(
f(t, z′2)φ(z

′
1) + f(t, z′1)φ(z

′
2)

− f(t, z2)φ(z1)− f(t, z1)φ(z2)
)
,

and that dηt(x, v) is a Gaussian noise with zero mean and covariance given

in (5.5.3), which we recall

(6.0.3) Covt(ψ,φ) :=
1

2

∫
dµ(z1, z2, ω) f(t, z1) f(t, z2) ∆ψ∆φ .

where the scattering measures are defined as in (1.3.7) and (1.2.2)

dµz1(z2, ω) = δx1−x2
(
(v1 − v2) · ω

)
+
dωdv2,

dµ(z1, z2, ω) = δx1−x2 ((v1 − v2) · ω)+ dω dx1dv1dv2 ,
and we recall the notation

(6.0.4) ∆ψ(z1, z2, ω) = ψ(z′1) + ψ(z′2)− ψ(z1)− ψ(z2) .
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The limiting Gaussian process (6.0.1) will be characterized by its covariance

in Section 6.1.

In order to obtain the convergence of the fluctuation field, we shall proceed

in two steps, establishing first the convergence of the characteristic function in

Section 6.2.1, and then some tightness in Section 6.2.2.

6.1. Weak solutions for the limit process

A solution ζ̂t to (6.0.1) is a Gaussian process: its law is therefore completely

characterized by its covariance. In this section we study the equation governing

this covariance

(6.1.1) Ĉ(t, s, ψ, φ) := E
(
ζ̂t(ψ)ζ̂s(φ)

)
and prove that it is precisely the equation obtained Proposition 5.5.2,

namely (5.5.5). Since there is a unique solution to (5.5.5) (see Proposi-

tion A.3.1), the limiting covariance C(t, s, ψ, φ) is equal to Ĉ(t, s, ψ, φ), at least
for short times.

6.1.1. Equation for the covariance. — Denote by U(t, s) the semigroup

associated with Lτ between times s < t, meaning that

∂tU(t, s)φ− LtU(t, s)φ = 0 , U(s, s)φ = φ ,

and

∂sU(t, s)φ+ U(t, s)Lsφ = 0 , U(t, t)φ = φ .

By definition, U∗(t, s)φ satisfies

(6.1.2) ∂sU∗(t, s)φ+ L∗
sU∗(t, s)φ = 0 , U∗(t, t)φ = φ ,

and

∂tU∗(t, s)φ− U∗(t, s)L∗
tφ = 0 , U∗(s, s)φ = φ ,

where we recall that L∗
s = v · ∇x + L∗

s with

(6.1.3) L∗
s ψ(z1) :=

∫
dµz1(z2, ω)f(s, z2)∆ψ(z1, z2, ω) .

Formally, a solution of the limit process (6.0.1) satisfies for any test function φ

ζ̂t(φ) = ζ0(U∗(t, 0)φ) +

∫ t

0
dηs(U∗(t, s)φ) .
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For any t ≥ s and test functions φ,ψ, the covariance is then given by

E
(
ζ̂t(ψ)ζ̂s(φ)

)
= E

(
ζ0
(
U∗(t, 0)ψ

)
ζ0
(
U∗(s, 0)φ

))
+ E

(∫ t

0

∫ s

0
dησ dησ′

(
U∗(t, σ)ψ

)(
U∗(s, σ′)φ

))
+ E

(
ζ0
(
U∗(t, 0)ψ

) ∫ s

0
dησ′

(
U∗(s, σ′)φ

))
+ E

(
ζ0
(
U∗(s, 0)φ

) ∫ t

0
dησ
(
U∗(t, σ)ψ

))
so that according to (6.0.3) and (6.1.1)

(6.1.4)

Ĉ(t, s, ψ, φ) = E
(
ζ0
(
U∗(t, 0)ψ

)
ζ0
(
U∗(s, 0)φ

))
+

∫ s

0
dσ Covσ (U∗(t, σ)ψ,U∗(s, σ)φ) .

Definition 6.1.1. — A weak solution to (6.0.1) is a Gaussian process with

covariance satisfying (6.1.4).

Let us take formally the time derivative of (6.1.4) for t > s. This gives

∂tĈ(t, s, ψ, φ) = E
(
ζ0
(
U∗(t, 0)L∗

tψ
)
ζ0
(
U∗(s, 0)φ

))
+

∫ s

0
dσCovσ

((
U∗(t, σ)L∗

tψ
)
,
(
U∗(s, σ)φ

))
= Ĉ(t, s,L∗

tψ,φ) .

For s = t, the time derivative is

∂tĈ(t, t, ψ, φ) = Ĉ(t, t,L∗
tψ,φ) + Ĉ(t, t, ψ,L∗

tφ) +Covt(ψ,φ) .

We recognize here the equation (5.5.5) satisfied by the limit covari-

ance C(s, t, φ, ψ) (see Proposition 5.5.2), written in infinitesimal form:

(6.1.5)

∀s ≤ t,


∂tC(t, s, ψ, φ) = C(t, s,L∗

tψ,φ),

∂tC(t, t, ψ, φ) = C(t, t,L∗
tψ,φ) + C(t, t, ψ,L∗

tφ) +Covt(ψ,φ) ,

C(0, 0, ψ, φ) =
∫
dzφ(z)ψ(z)f0(z) .

The link between (5.5.5) and (6.1.4) is made rigorous in Lemma 6.1.5 below.

The set of equations (6.1.5) is used in the physics literature to describe correla-

tions at equal and unequal times: we refer to [26] which includes a comparison

of several equivalent formulations of the right-hand side.

Remark 6.1.2. — The equilibrium case (when f0 = M is a Maxwellian) is

much simpler. The linear operator Leq := −v · ∇x + Leq, where Leq is the

(autonomous) linearized operator around M , generates indeed a semigroup Ueq



76 CHAPTER 6. FLUCTUATING BOLTZMANN EQUATION

of self-adjoint contractions on L2(Mdvdx). By the method of [38], one can

construct a martingale solution of the generalized Ornstein-Uhlenbeck equation

(6.1.6) dζ̂t = Leq ζ̂t dt+ dηt .

Moreover, the covariance structure is such that the fluctuations exactly com-

pensate the dissipation : using the symmetry of the equilibrium measure

M(z′1)M(z′2) =M(z1)M(z2) and denoting by U∗
eq the adjoint of Ueq in L2(D),

one gets ∫ t

0
duCov

(
U∗
eq(t, σ)φ,U∗

eq(t, σ)φ
)

= −2

∫ t

0
dσ

∫
U∗
eq(t, σ)φML∗

eq U∗
eq(t, σ)φ

= −2

∫ t

0
dσ

∫
U∗
eq(t, σ)φM(−∂σ − v · ∇x) U∗

eq(t, σ)φ

=

∫
M |φ|2 −

∫
M |U∗

eq(t, 0)φ|2 .

Out of equilibrium the structure of the linearized operator is lost: it is no longer

autonomous, and the semigroup generated by Lt is no longer a contraction.

6.1.2. Functional setting for (6.1.4). — Let us define a functional setting

for the semi-group U∗(t, s), and check that in this setting the right-hand side

of (6.1.4) is well defined. By a Cauchy-Kovalevskaya type argument (see Theo-

rem A.1 and Section A.1) one can prove that there is a time TL ∼ C−1
0 β

(d+1)/2
0

such that there is a unique solution f to the Boltzmann equation on the time

interval [0, TL] which satisfies

(6.1.7) ∥f(t)∥L∞
−β0/2

≤ 4C0 ,

with

(6.1.8) L∞
β :=

{
φ = φ(x, v) : ∥φ∥L∞

β
:= sup

D
exp

(
− β

2
|v|2
)
|φ(x, v)| < +∞

}
.

For any β > 0, we introduce the weighted L2 space

(6.1.9)

L2
β :=

{
φ = φ(x, v) : ∥φ∥2L2

β
:=
(∫

D
exp

(
− β

2
|v|2
)
φ2(x, v)dxdv

) 1
2
< +∞

}
.

In particular, (L2
β)β>0 is an increasing sequence of Hilbert spaces and an ap-

plication of Theorem A.1 leads to the following result: we refer to Section A.2

of the appendix for the proof.
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Proposition 6.1.3. — There is a time T ∈ (0, TL] with T ∼ C−1
0 β

(d+1)/2
0 ,

such that for any φ in L2
β0/4

and any s ≤ t ≤ T , U∗(t, s)φ is well defined and

belongs to L2
3β0/8

.

This proposition implies that the covariance is well defined, as stated in the

next proposition.

Proposition 6.1.4. — There exists a time T ∈ (0, TL] with T ∼ C−1
0 β

(d+1)/2
0 ,

such that for any φ and ψ in L2
β0/4

and all times 0 ≤ s ≤ t ≤ T , the covariance

Ĉ(t, s, ψ, φ) is well defined by (6.1.4).

Proof of Proposition 6.1.4. — Denote ψ(σ) = U∗(t, σ)ψ and φ(σ) = U∗(s, σ)φ.

Then by the definition of the covariance (5.5.3) and by (6.1.7), for any φ

and ψ ∈ L2
β0/4

there holds ∀s ≤ t ≤ T∫ s

0
dσCovσ

((
U∗(t, σ)ψ

)
,
(
U∗(s, σ)φ

))
≤ 2

∫ s

0

∫
dµ(z1, z2, ω)f(σ, z1)f(σ, z2)

(
(∆ψ(σ))2 + (∆φ(σ))2

)
≤ C

∫ s

0

∫
dµ(z1, z2, ω) exp(−

β0
4
(|v1|2 + |v2|2))

(
ψ2(σ, z1) + φ2(σ, z1)

)
which is finite since ψ(σ), φ(σ) belong to L2

3β0/8
by Proposition 6.1.3. There-

fore,

∀s ≤ t ≤ T ,

∫ s

0
dσCovσ

((
U∗(t, σ)ψ

)
,
(
U∗(s, σ)φ

))
< +∞ .(6.1.10)

Similarly, the first term in the right-hand side of (6.1.4) is bounded by applying

Proposition 6.1.3, and since∣∣∣Ĉ(0, 0, ψ, φ)∣∣∣ = ∣∣∣ ∫ dzφ(z)ψ(z)f0(z)
∣∣∣ <∞

thanks to (1.1.5). This concludes the proof of Proposition 6.1.4.

6.1.3. Identification with the limit covariance. — We now prove that

the covariance Ĉ(t, s, ψ, φ) constructed above satisfies the same equation (5.5.5)

as the limiting covariance C(t, s, ψ, φ).

Lemma 6.1.5. — Under the assumptions of Proposition 6.1.4, the covariance

Ĉ(t, s) defined by (6.1.4) satisfies (5.5.5) for (s, t) ∈ [0, T ]2. As a consequence,

the covariance Ĉ coincides on [0, T ]2 with the limit covariance C of the hard

sphere system defined by (5.5.4).
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Proof of Lemma 6.1.5. — By definition (see Section A.2 of the appendix),

(6.1.11) ∀s ≤ t , U∗(t, s)ψ = Ss−tψ +

∫ t

s
duU∗(u, s)L∗

uSu−tψ .

Similarly

U∗(t, s)ψ ⊗ U∗(t, s)φ = Ss−tψ ⊗ Ss−tφ

+

∫ t

s
duU∗(u, s)L∗

uSu−tψ ⊗ U∗(u, s)Su−tφ

+

∫ t

s
duU∗(u, s)Su−tψ ⊗ U∗(u, s)L∗

uSu−tφ .

We consider first the case t = s in (6.1.4) which we recall

(6.1.12)

Ĉ(t, t, ψ, φ) =
∫

U∗(t, 0)ψ U∗(t, 0)φ f0

+

∫ t

0
dσ Covσ (U∗(t, σ)ψ,U∗(t, σ)φ) ,

and we want to prove that it satisfies (5.5.5), namely (omitting the integration

parameters dz to lighten notation)

Ĉ(t, t, ψ, φ) =
∫
S−tψ S−tφ f

0 +

∫ t

0
dσ Ĉ(σ, σ,L∗

σSσ−tψ, Sσ−tφ)

+

∫ t

0
dσ Ĉ(σ, σ, Sσ−tψ,L∗

σSσ−tφ) +

∫ t

0
dσCovσ(Sσ−tψ, Sσ−tφ) .

Noting that Covu(ψ,φ) is a linear operator on the tensor product ψ ⊗ φ, we

find from (6.1.12) that

Ĉ(t, t, ψ, φ) =
∫
S−tψ S−tφ f

0 +

∫ t

0
dσ

∫
U∗(σ, 0)L∗

σSσ−tψ ⊗ U∗(σ, 0)Sσ−tφf
0

+

∫ t

0
dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)L∗

σSσ−tφf
0 +

∫ t

0
dσ Covσ (Sσ−tψ, Sσ−tφ)

+

∫ t

0
dσ

∫ t

σ
dσ′Covσ

(
U∗(σ′, σ)L∗

σ′Sσ′−tψ,U∗(σ′, σ)Sσ′−tφ
)

+

∫ t

0
dσ

∫ t

σ
dσ′Covσ

(
U∗(σ′, σ)Sσ′−tψ,U∗(σ′, σ)L∗

σ′Sσ′−tφ
)
.
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To conclude we notice that thanks to (6.1.12) again∫ t

0
dσ Ĉ(σ, σ,L∗

σSσ−tψ, Sσ−tφ) +

∫ t

0
dσ Ĉ(σ, σ, Sσ−tψ,L∗

σSσ−tφ)

=

∫ t

0
dσ

∫
U∗(σ, 0)L∗

σSσ−tψ ⊗ U∗(σ, 0)Sσ−tφf
0

+

∫ t

0
dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)L∗

σSσ−tφf
0

+

∫ t

0
dσ

∫ t

σ
dσ′Covσ

(
U∗(σ′, σ)L∗

σ′Sσ′−tψ,U∗(σ′, σ)Sσ′−tφ
)

+

∫ t

0
dσ

∫ t

σ
dσ′Covσ

(
U∗(σ′, σ)Sσ′−tψ,U∗(σ′, σ)L∗

σ′Sσ′−tφ
)
,

and the result follows.

We now study the case of two different times. Consider ψ, (φσ)σ∈[0,t] in L
2
β0/4

:

recalling

(6.1.13)

Ĉ(t, σ, ψ, φσ) =
∫

U∗(t, 0)ψ ⊗ U∗(σ, 0)φσf
0

+

∫ σ

0
dσ′ Covσ′

(
U∗(t, σ′)ψ,U∗(σ, σ′)φσ

)
,

we want to prove that it satisfies (5.5.5) namely

(6.1.14)∫ t

0
Ĉ(t, σ, ψ, φσ) dσ

=

∫ t

0
dσ

(
Ĉ(σ, σ, Sσ−tψ,φσ) +

∫ t

σ
dσ′ Ĉ

(
σ′, σ,L∗

σ′Sσ′−tψ,φσ

))
.

Note that by the semi-group property in Corollary A.2.1,

(6.1.15) ∀s ≤ σ ≤ t , U∗(t, s)ψ = U∗(σ, s)Sσ−tψ +

∫ t

σ
duU∗(u, s)L∗

uSu−tψ ,

so identity (6.1.13) can be written∫ t

0
Ĉ(t, σ, ψ,φσ) dσ =

∫ t

0
dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)φσf

0

+

∫ t

0
dσ

∫ t

σ
dσ′
∫

U∗(σ′, 0)L∗
σ′Sσ′−tψ ⊗ U∗(σ, 0)φσf

0

+

∫ t

0
dσ

∫ σ

0
dσ′Covσ′

(
U∗(σ, σ′)Sσ−tψ,U∗(σ, σ′)φσ

)
+

∫ t

0
dσ

∫ σ

0
dσ′
∫ t

σ
duCovσ′

(
U∗(u, σ′)L∗

uSu−tψ,U∗(σ, σ′)φσ
)
.
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Now we note that the first term on the right-hand side adds up to the third to

produce ∫ t

0
dσ

∫
U∗(σ, 0)Sσ−tψ ⊗ U∗(σ, 0)φσf

0

+

∫ t

0
dσ

∫ σ

0
dσ′Covσ′

(
U∗(σ, σ′)Sσ−tψ,U∗(σ, σ′)φσ

)
=

∫ t

0
dσ Ĉ(σ, σ, Sσ−tψ,φσ) .

Finally exchanging the role of u and σ′ in the last term on the right-hand side,

we find that the two remaining terms add up to∫ t

0
dσ

∫ t

σ
dσ′ Ĉ

(
σ′, σ,L∗

σ′Sσ′−tψ,φσ

)
.

The result follows. By Proposition A.3.1 stating the uniqueness of the solution

to (5.5.5), we deduce that Ĉ(t, s) = C(t, s) for 0 ≤ s ≤ t ≤ T . Lemma 6.1.5 is

proved.

6.2. Convergence of the process

The limiting covariance has been characterized in the previous section. Let

θ1, . . . , θℓ be a collection of times in [0, T ]. Given a collection of smooth

bounded test functions {φj}j≤ℓ, we consider the discrete sampling

H
(
z([0, T0])

)
=

ℓ∑
j=1

φj
(
z(θj)

)
.

Let us define

(6.2.1)
〈〈
ζε, H

〉〉
:=

1√
µε

ℓ∑
j=1

[ N∑
i=1

φj
(
zεi (θj)

)
− µε

∫
F ε1 (θj , z)φj

(
z
)
dz

]
.

The convergence of the fluctuation field ζε is obtained by proving

— the convergence of the characteristic function Eε
(
exp

(
i
〈〈
ζε, H

〉〉))
which

implies that the limiting process is a weak solution of (6.0.1) in the sense

of Definition 6.1.1

— and the tightness of the fluctuation field.

This will complete the proof of Theorem 2.

6.2.1. Convergence of the characteristic function. — We are going to

prove the convergence of time marginals of the process (ζεt )t≥0.

Proposition 6.2.1. — The characteristic function Eε
(
exp

(
i
〈〈
ζε, H

〉〉))
con-

verges to the characteristic function of the Gaussian process with covariance

given by (6.1.4).
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Proof. — The characteristic function can be rewritten in terms of the empirical

measure

(6.2.1)

Eε
(
exp

(
i
〈〈
ζε, H

〉〉)
= Eε

(
exp

(
i
√
µε
〈〈
πε, H

〉〉))
exp

−i
√
µε

ℓ∑
j=1

∫
F ε1 (θj , z)φj(z) dz

 .

Thanks to Proposition 2.1.3, we get

logEε
(
exp

(
i
〈〈
ζε, H

〉〉) )
= µε

∞∑
n=1

1

n!
f εn,[0,t]

((
e

iH√
µε − 1

)⊗n)− i
√
µε

ℓ∑
j=1

∫
F ε1 (θj , z)φj(z) dz .

As H is bounded, the series converges uniformly on [0, T0] for any µε large

enough. At leading order, only the terms n = 1 and n = 2 will be relevant in

the limit since by Theorem 10∣∣∣f εn,[0,t]((e iH√
µε − 1

)⊗n) ∣∣∣ ≤ (C∥H∥∞√
µε

)n
n! .

Expanding the exponential with respect to µε, we notice that the term of

order
√
µε cancels so

logEε
(
exp

(
i
〈〈
ζε, H

〉〉))
= −1

2
f ε1,[0,t]

(
H2
)
− 1

2
f ε2,[0,t]

(
H⊗2

)
+O

(∥H∥3∞√
µε

)
.

As the cumulants f ε1,[0,t]
(
H2
)
, fε2,[0,t]

(
H⊗2

)
converge (see Theorem 5), the

characteristic function has a limit

lim
µε→∞

Eε
(
exp

(
i
〈〈
ζε, H

〉〉))
= exp

−1

2

∑
i,j≤ℓ

C(θi, θj , φi, φj)

 ,

where the limiting covariance is given by (5.5.6) and thus by (6.1.4) thanks to

Lemma 6.1.5. Proposition 6.2.1 is proved.

Remark 6.2.2. — The moments of the fluctuation field can be obtained by

computing derivatives of (6.2.1). As a byproduct of our analysis, one then

verifies Wick’s pairing rule: for all n ≥ 1, the moments of order 2n+1 vanish

in the limit µε → ∞ and

lim
µε→∞

∣∣∣∣∣∣∣∣Eε
 2n∏
j=1

ζεθj (φj)

−
∑
σ∈Pn2n
|σk|=2

∏
{i,j}∈σ

Eε
(
ζεθi(φi)ζ

ε
θj
(φj)

)∣∣∣∣∣∣∣∣ = 0 .

We omit the details of this computation, which is not to be used in this paper.
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6.2.2. Tightness and proof of Theorem 2. — In this section we prove a

tightness property for the law of the process (ζεt )t∈[0,T0]. This is made possible

by considering test functions in a space with more regularity than L2
β0
. In

order to construct a convenient function space let us consider a Fourier-Hermite

basis of D: let {ẽj1(x)}j1∈Zd be the Fourier basis of Td and {ej2(v)}j2∈Nd be

the Hermite basis of L2(Rd) constituted of the eigenmodes of the harmonic

oscillator −∆v + |v|2. This provides a basis
{
hj(z) = ẽj1(x)ej2(v)

}
j=(j1,j2)

of Lipschitz functions on D, exponentially decaying in v, such that for all

j = (j1, j2)

(6.2.2)

∥hj∥∞ ≤ c ,

∥∇hj∥∞ = ∥∇vhj∥∞ + ∥∇xhj∥∞ < c(1 + |j|) ,
∥v · ∇xhj∥∞ < c(1 + |j|) 3

2 ,

with |j| := |j1| + |j2| and for some constant c (see [35]). Then we define for

any real number k ∈ R the Sobolev-type space Hk(D) by the norm

(6.2.3) ∥φ∥2k :=
∑

j=(j1,j2)

(1 + |j|2)k
(∫

D
dz φ(z)hj(z)

)2

.

Following [8] (Theorem 13.2 page 139), the tightness of the law of the pro-

cess in D
(
[0, T0],H−k(D)

)
(for some large positive k) is a consequence of the

following proposition.

Proposition 6.2.3. — There is k > 0 large enough such that

∀δ′ > 0 , lim
δ→0

lim
µε→∞

Pε
(

sup
|s−t|≤δ
s,t∈[0,T0]

∥∥ζεt − ζεs
∥∥
−k ≥ δ′

)
= 0 ,(6.2.4)

lim
A→∞

lim
µε→∞

Pε
(

sup
t∈[0,T0]

∥∥ζεt ∥∥−k ≥ A
)
= 0 .(6.2.5)

The identification of the limit Gaussian law in Proposition 6.2.1 together

with the above tightness property complete the characterization of the limiting

process and therefore the proof of Theorem 2.

The proof of Proposition 6.2.3 relies on the following modified version of the

Garsia, Rodemich, Rumsey inequality [75] which will be used to control the

modulus of continuity (its derivation is postponed to Section 6.3).

Proposition 6.2.4. — Given b ≥ 4, choose two functions Ψ(u) = ub and

p(u) = uγ/b with γ belonging to ]2, 3[. Let φ : [0, T0] → R be a given function

and define for a > 0

(6.2.6) Ba :=

∫ T0

0

∫ T0

0
dsdt Ψ

( |φt − φs|
p(|t− s|)

)
1|t−s|>a .
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The modulus of continuity of φ is controlled by

(6.2.7) sup
0≤s,t≤T0
|t−s|≤δ

∣∣φt − φs
∣∣ ≤ 2 sup

0≤s,t≤T0
|t−s|≤2a

∣∣φt − φs
∣∣ + C B1/b

a δ
γ−2
b ,

for some constant C depending only on b and γ.

In the standard Garsia, Rodemich, Rumsey inequality, (6.2.6) is assumed

to hold with a = 0 leading to a stronger conclusion as φ is then proved to be

Hölder continuous. The cut-off a > 0 allows us to consider functions φ which

may be discontinuous.

Proof of Proposition 6.2.3. — At time 0, all the moments of ζε0 are bounded,

so (6.2.5) can be deduced from the control of the initial fluctuations and the

bound (6.2.4) on the modulus of continuity. Thus it is enough to prove (6.2.4).

For this, we are going to show that

∀δ′ > 0 , lim
δ→0

lim
µε→∞

Pε

∑
j

1

(1 + |j|2)k sup
|s−t|≤δ
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

 = 0 ,

(6.2.8)

where {hj(z)}j=(j1,j2) is the family of test functions introduced above.

Fix δ > 0. We are going to apply Proposition 6.2.4 to the functions t 7→
ζεt (hj) with b = 4 and a time scale cut-off a vanishing as αε = µ

−7/3
ε . In order

to do so, the short time fluctuations have first to be controlled. This will be

achieved thanks to the following lemma.

Lemma 6.2.5. — The time scale cut-off will be denoted by αε = µ
−7/3
ε . For

the basis of functions introduced in (6.2.2), there is k > 0 large enough so that

∀δ′ > 0 , lim
µε→∞

Pε

∑
j

1

(1 + |j|2)k sup
|s−t|≤2αε
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

 = 0 .

(6.2.9)

To control the fluctuations on time scales of order δ, it will be enough to

combine Proposition 6.2.4 with averaged estimates of the following type.

Lemma 6.2.6. — There exists a constant C such that for any function h and

for any ε > 0 and s, t in [0, T0]

(6.2.10)

Eε
((
ζεt (h)− ζεs (h)

)4) ≤ C ∥h∥2∞(∥∇h∥2L∞ + ∥h∥2∞)

×
(
|t− s|2 + 1

µε
|t− s|

)
.
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We postpone the proofs of the two previous statements and conclude first

the proof of (6.2.8).

Notice that Lemma 6.2.6 implies that the random variable associated with

any function hj satisfying (6.2.2)

(6.2.11) Bαε(hj) :=

∫ T0

0

∫ T0

0
ds dt

∣∣ζεt (hj)− ζεs (hj)
∣∣4

|t− s|γ 1|t−s|>αε

has finite expectation. Indeed

(6.2.12)

Eε
(
Bαε(hj)

)
≤ C(1+|j|)2

∫ T0

0

∫ T0

0
dsdt

(
|t− s|2−γ + 1

µε
|t− s|1−γ1|t−s|>αε

)
,

so setting γ = 7/3, we get an upper bound uniform with respect to ε for

αε = µ
−7/3
ε

(6.2.13) Eε
(
Bαε(hj)

)
≤ C(1 + |j|)2

(
1 +

α2−γ
ε

µε

)
≤ C ′(1 + |j|)2 .

From Proposition 6.2.4, a large modulus of continuity of t 7→ ζεt (hj) induces

a deviation of the random variable Bαε(hj). This implies that on average

(6.2.14)

Pε
(∑

j

1

(1 + |j|2)k sup
|s−t|≤δ
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

)
≤ Pε

(∑
j

1

(1 + |j|2)k sup
|s−t|≤2αε
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′

16

)

+ Pε
(∑

j

√
Bαε(hj)

(1 + |j|2)k ≥ δ′

C δ
γ
2
−1

)
.

The first term in (6.2.14) tends to 0 by Lemma 6.2.5 and the second one can

be estimated by the Markov inequality and by the upper bound (6.2.13), along

with the Cauchy-Schwarz inequality

Pε
(∑

j

√
Bαε(hj)

(1 + |j|2)k ≥ δ′

C δ
γ
2
−1

)
≤ C1

δγ−2

δ′2

∑
j

1

(1 + |j|2)kEε
(
Bαε(hj)

)
≤ C2

δ′2
δγ−2 ,

for some constants C1, C2 and k large enough. As γ = 7/3, the limit (6.2.8)

holds and Proposition 6.2.3 is proved.

6.2.3. Averaged time continuity. — We prove now Lemma 6.2.6. Denot-

ing

H(z([0, t])) := h(z(t))− h(z(s)) ,
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the moments can be recovered by taking derivatives of the exponential moments

(6.2.15) Eε
((
ζεt (h)− ζεs (h)

)4)
=

(
∂4

∂λ4
Eε
(
exp

(
iλ
〈〈
ζε, H

〉〉)))
|λ=0

.

We recall from Proposition 2.1.3 that

logEε
(
exp

(
iλ
〈〈
ζε, H

〉〉))
= µε

∞∑
n=1

1

n!
f εn,[0,t]

((
e

iλH√
µε − 1

)⊗n)−√
µε iλF

ε
1 (H)

= O(λ2).

Thus expanding the exponential moment at the 4th order leads to

Eε
(
exp

(
iλ
〈〈
ζε, H

〉〉))
=1 + µε

∞∑
n=1

1

n!
f εn,[0,t]

((
e

iλH√
µε − 1

)⊗n)−√
µεiλF

ε
1 (H)

− λ4

2

(
1

2
f ε1,[0,t]

(
H2
)
+

1

2
f ε2,[0,t]

(
(H)⊗2

))2

+ o(λ4) .

The fourth moment can be recovered by taking the 4th derivative with respect

to λ

E
((
ζεt (h)− ζεs (h)

)4)
= 3

(
f ε1,[0,t]

(
H2
)
+ f ε2,[0,t]

(
H⊗2

))2
+

1

µε

4∑
n=1

∑
κ1+···+κn=4

Cκ f
ε
n,[0,t](H

κ1 ⊗ · · · ⊗Hκn)(6.2.16)

denoting abusively by f εn,[0,t] the n-linear form obtained by polarization.

Point 3. of Theorem 10 applied with δ = t− s implies∣∣∣f ε1,[0,t] (H2
)
+ f ε2,[0,t]

(
H⊗2

)∣∣∣ ≤ C (∥∇h∥∞ + ∥h∥∞) ∥h∥∞ |t− s| (t+ ε) .

Furthermore for any κ1 + · · ·+ κn = 4, Point 3. of Theorem 10 implies also∣∣∣f εn,[0,t](Hκ1 ⊗ · · · ⊗Hκn)
∣∣∣ ≤ C ∥h∥3∞ (t+ ε)3(t− s)(∥∇h∥∞ + ∥h∥∞) .

Combined with (6.2.16), this leads to

(6.2.17)

E
((
ζεt (h)− ζεs (h)

)4) ≤ C(t+ ε)2∥h∥2∞(∥∇h∥2∞ + ∥h∥2∞)

× |t− s|
(
|t− s|+ t+ ε

µε

)
.

This concludes the proof of Lemma 6.2.6.

Remark 6.2.7. — Notice that since the assumption (8.0.3) is satisfied, the

norms ∥h exp(−β0v2/4)∥L∞ and ∥∇h exp(−β0v2/4)∥L∞ could have been used

instead of ∥h∥L∞ and ∥∇h∥L∞.
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6.2.4. Control of small time fluctuations. — We are now going to prove

Lemma 6.2.5 by localizing the estimates into short time intervals. For this

divide [0, T0] into overlapping intervals Ii := [iαε, (i+2)αε] of size 2αε. Define

also the set of trajectories such that at least two distinct collisions occur in the

particle system during the time interval Ii

(6.2.18)
Ai :=

{
At least two collisions occur

in the Newtonian dynamics {zεℓ(t)}ℓ≤N during Ii

}
.

We are going to show that the probability of A = ∪iAi vanishes in the limit

(6.2.19) lim
ε→0

Pε(A) = 0.

Assuming the validity of (6.2.19) for the moment, let us first conclude the

proof of Lemma 6.2.5 by restricting to the event Ac. By construction for any

trajectory in Ac, there is at most one collision during each time interval Ii.

Then, except for at most 2 particles, the particles move in straight lines as

their velocities remain unchanged and it is enough to track the variations of

the test functions with respect to the positions. Thus, for any t, s in Ii and a

smooth function hj , we get

√
µε
(
ζεt
(
hj
)
− ζεs

(
hj
))

=

N∑
ℓ=1

(
hj
(
zεℓ(t)

)
− hj

(
zεℓ(s)

))
−µε

∫
dz
(
F ε1 (t, z)− F ε1 (s, z)

)
hj(z)

=
N∑
ℓ=1

∫ t

s
du vεℓ(u) · ∇hj

(
zεℓ(u)

)
(6.2.20)

−µε
∫
dz
(
F ε1 (t, z)− F ε1 (s, z)

)
hj(z) +O(∥hj∥∞) ,

where the error occurs from the fact that at most two particles may have

collided in the time interval [s, t] ⊂ Ii. Using the Duhamel formula, the particle

density (at fixed ε) can be also estimated by the free transport up to small

corrections which may occur from the collision operator Cε1,2F
ε
2

(6.2.21)

µε

∫
dz
(
F ε1 (t, z)− F ε1 (s, z)

)
hj(z)

= µε

∫ t

s
du

∫
dzF ε1 (u, z) v · ∇hj(z) + µεαεO(∥hj∥∞) .
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Recall that µεαε → 0 when µε tends to infinity. Setting h̄j(z) := v · ∇hj(z),
the time difference can be rewritten for any trajectory in Ac as a time integral

ζεt
(
hj
)
− ζεs

(
hj
)
=

1√
µε

∫ t

s
du

(
µε⟨πεu, h̄j⟩ − µε

∫
F ε1 (u, z)h̄j(z)dz

)
+

1√
µε
O(∥hj∥∞)

=

∫ t

s
du ζεu(h̄j) +

1√
µε
O(∥hj∥∞) .

Thus thanks to (6.2.22), we get

U := Pε

Ac
⋂∑

j

1

(1 + |j|2)k sup
|s−t|≤2αε
s,t∈[0,T0]

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′




≤ Pε

Ac
⋂∑

j

1

(1 + |j|2)k sup
i≤ T0

αε

sup
s,t∈Ii

∣∣ζεt (hj)− ζεs (hj)
∣∣2 ≥ δ′




≤ Pε

Ac
⋂∑

j

1

(1 + |j|2)k sup
i≤ T0

αε

sup
s,t∈Ii

∣∣∣ ∫ t

s
du ζεu(h̄j)

∣∣∣2 ≥ δ′

2


 ,

where the error term in (6.2.22) was controlled by choosing k large enough and

ε small enough so that 1√
µε

≪ δ′/2. At this stage, the constraint Ac can be

dropped and by the Bienaymé-Tchebichev inequality there holds

U ≤
∑
j

1

δ′(1 + |j|2)kEε

 sup
i≤ T0

αε

sup
s,t∈Ii

∣∣∣ ∫ t

s
du ζεu(h̄j)

∣∣∣2
(6.2.22)

≤
T0
αε∑
i=1

∑
j

1

δ′(1 + |j|2)kEε
(

sup
s,t∈Ii

∣∣∣ ∫ t

s
du ζεu(h̄j)

∣∣∣2) .
Using the Cauchy-Schwarz inequality and then the fact that t, s belong to

Ii = [iαε, (i+ 1)αε], we get

(6.2.23)

Eε

(
sup
s,t∈Ii

∣∣∣ ∫ t

s
du ζεu(h̄j)

∣∣∣2) ≤ Eε

(
sup
s,t∈Ii

|t− s|
∫ t

s
du |ζεu(h̄j)|2

)

≤ αε

∫ (i+1)αε

iαε

du Eε
(
ζεu
(
h̄j
)2) ≤ c α2

ε(1 + |j|)3.

In the last inequality, an argument similar argument to (6.2.17) leads to the

control of the second moment of ζεu
(
h̄j
)
by ∥h̄j∥2∞ ≤ c(1+ |j|)3 as h̄j = v ·∇xhj

(see (6.2.2)).
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Combining (6.2.22) and (6.2.23), we deduce that for k large enough

U ≤
T0
αε∑
i=1

∑
j

c α2
ε(1 + |j|)3

δ′(1 + |j|2)k ≤ C

δ′
αε

ε→0−−−→ 0.(6.2.24)

Thus to complete the proof of Lemma 6.2.5, it remains only to show (6.2.19),

i.e. that the probability concentrates on Ac. To the estimate the probability

of the set Ai introduced in (6.2.18), we distinguish two cases :

— A particle has at least two collisions during Ii. This event will be denoted

by A1
i if the corresponding particle has label 1, and can be separated

into two subcases: either particle 1 encounters two different particles

during Ii, or it encounters the same one due to space periodicity.

— Two collisions occur involving different particles. This event will be

denoted by A1,2
i if the corresponding particles are 1 and 2.

The occurrence of two collisions in a time interval of length αε has a proba-

bility which can be estimated by using Proposition 3.3.1 with n = 1, 2, which

allows to reduce to an estimate on pseudo-trajectories thanks to the Duhamel

formula: noticing that the space-periodic situation leads to an exponentially

small contribution, since it forces the velocity of the colliding particles to be

of order 1/αε, we find

(6.2.25) Pε (Ai) ≤ µεPε
(
A1
i

)
+ µ2εPε

(
A1,2
i

)
≤ C

(
µε + µ2ε

)
α2
ε ≤ Cαεµ

−1/3
ε ,

where we used that αε = µ
−7/3
ε . Summing over the T0

αε
time intervals, we

deduce that Pε (A) ≤ CT0µ
−1/3
ε . Thus the probability of A vanishes as ε tends

to 0. This completes the proof of (6.2.19) and thus of Lemma 6.2.5.

Remark 6.2.8. — Remark that the proof of Lemma 6.2.5 still holds for se-

quences of functions (hj)j≥1 satisfying

∥hj∥∞ ≪ µ1/2ε (1 + j2) , Eε
(
ζεu
(
v · ∇hj

)2) ≤ c (1 + |j|)3 .

6.3. The modified Garsia, Rodemich, Rumsey inequality

Proposition 6.2.4 is a slight adaptation of [75]. For simplicity we suppose

that T0 = 1 and set

(6.3.1) Ba :=

∫ 1

0

∫ 1

0
dsdt Ψ

( |φt − φs|
p(|t− s|)

)
1|t−s|>a .
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Step 1:

We are first going to show that there exists w,w′ ∈ [0, 2a] such that

(6.3.2)

∣∣φ1−w′ − φw
∣∣ ≤ 8

∫ 1

0
Ψ−1

(
4Ba
u2

)
dp(u)

≤ 8(4Ba)
1/b

∫ 1

0

d(u
γ
b )

u2/b
≤ C B1/b

a .

Define

(6.3.3) Ba(t) =

∫ 1

0
ds Ψ

(
φt − φs
p(|t− s|)

)
1|t−s|>a with Ba =

∫ 1

0
dtBa(t) .

There is t0 ∈ (0, 1) such that Ba(t0) ≤ Ba. Suppose that t0 > 2a, then we are

going to prove that there is w ∈ [0, 2a] such that

(6.3.4)
∣∣φw − φt0

∣∣ ≤ 4

∫ 1

a
Ψ−1

(
4Ba
u2

)
dp(u) .

If t0 < 1− 2a, we can show the reverse inequality∣∣φ1−w′ − φt0
∣∣ ≤ 4

∫ 1

a
Ψ−1

(
4Ba
u2

)
dp(u) .

Combining both inequalities, will be enough to complete (6.3.2).

Let us assume that t0 > 2a, we are going to build a sequence {tn, un}n
t0 > u1 > t1 > u2 > . . .

such that tn−1 > 2a and un is defined by

(6.3.5) p(un) =
1

2
p(tn−1), i.e. un =

1

24/γ
tn−1 .

The sequence will be stopped as soon as tn < 2a.

Initially t0 > 2a and u1 is defined by (6.3.5). Suppose that the sequence has

been built up to tn−1. By construction

tn−1 − un =

(
1− 1

24/γ

)
tn−1 > a since tn−1 > 2a .

Thus∫ un

0
ds Ψ

( |φtn−1 − φs|
p(|tn−1 − s|)

)
=

∫ un

0
ds Ψ

( |φtn−1 − φs|
p(|tn−1 − s|)

)
1|tn−1−s|>a ≤ Ba(tn−1) .

Furthermore ∫ un

0
dtBa(t) ≤ Ba ,

thus there is tn ∈ [0, un] such that

Ba(tn) ≤
2Ba
un

and Ψ

( |φtn−1 − φtn |
p(|tn−1 − tn|)

)
≤ 2Ba(tn−1)

un
≤ 4Ba
un−1 un

≤ 4Ba
u2n

.
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We deduce that

|φtn−1 − φtn | ≤ Ψ−1

(
4Ba
u2n

)
p(|tn−1 − tn|) ≤ Ψ−1

(
4Ba
u2n

)
p(tn−1) .

Suppose that tn > 2a then using that

un > tn ⇒ p(un) > p(tn) = 2p(un+1) ,

we get

p(tn−1) = 2p(un) = 4
(
p(un)− p(un)/2

)
≤ 4
(
p(un)− p(un+1)

)
and also

(6.3.6)

|φtn−1 − φtn | ≤ 4Ψ−1

(
4Ba
u2n

)(
p(un)− p(un+1)

)
≤ 4

∫ un

un+1

Ψ−1

(
4Ba
u2

)
dp(u) .

We then iterate the procedure to define tn+1.

If tn < 2a, we set w = tn and we stop the procedure at step n with the

inequality

(6.3.7) |φtn−1 − φw| = |φtn−1 − φtn | ≤ 4

∫ un

0
Ψ−1

(
4Ba
u2

)
dp(u) ,

where we used that

p(tn−1) = 2p(un) ≤ 4
(
p(un)− p(0)

)
.

Summing the previous inequalities of the form (6.3.6), we deduce (6.3.4) from

(6.3.8) |φt0 − φw| ≤
n∑
i=1

|φti−1 − φti | ≤ 4

∫ u1

0
Ψ−1

(
4Ba
u2

)
dp(u) .

This completes the proof of (6.3.2).

Step 2: proof of (6.2.7).

We are going to proceed by a change of variables. Given x < y such that

y − x > 4a, we set py−x(u) = p((y − x)u) and ψt = φ(x+ (y − x)t)

B
(ψ)
a

y−x
:=

∫ 1

0

∫ 1

0
dsdt Ψ

( |φt − φs|
py−x(|t− s|)

)
1{|t−s|> a

|y−x|}

=
1

|y − x|2
∫ y

x

∫ y

x
ds′dt′ Ψ

( |ψt′ − ψs′ |
p(|t′ − s′|)

)
1{|t′−s′|>a} ≤

Ba
|y − x|2 .
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Applying (6.3.2) to the function ψ, there exists w,w′ ∈ [0, 2a] such that

∣∣ψ
1− w′

y−x
− ψ w

y−x

∣∣ ≤ 8

∫ 1

0
Ψ−1

4B
(ψ)
a

y−x

u2

 dpy−x(u)

≤ 8

∫ 1

0
Ψ−1

(
4Ba

|y − x|2u2
)
dpy−x(u) .

Changing again variables, we get for some constant C depending only on γ, b∣∣φy−w′ − φx+w
∣∣ ≤ 8 (y − x)

γ
b
− 2
b

∫ 1

0
Ψ−1

(
4Ba
u2

)
dp(u) ≤ CB1/b

a (y − x)
γ−2
b .

By bounding
∣∣φy − φy−w′

∣∣ and ∣∣φx+w − φy
∣∣ by the supremum of the local

fluctuations in a time interval less than 2a, we obtain (6.2.7). The proposition

is proved.

6.4. Spohn’s formula for the covariance

For the sake of completeness, we are going to show that the covariance

Ĉ of the Ornstein-Uhlenbeck process computed in (6.1.4) coincides with the

formula obtained by Spohn in [67] and recalled below in (6.4.1). Formula

(6.4.1) is striking as the recollision operator R1,2 emphasizes the contribution

to the covariance of the recollisions in the microscopic dynamics.

Proposition 6.4.1. — Recall that U(t, s) stands for the semi-group associ-

ated with the time dependent operator Lτ for τ between times s < t. Given two

times t ≥ s, there holds

C(s, t, φ, ψ) =
∫
dz U∗(t, s)ψ(z) φ(z) f(s, z)

(6.4.1)

+

∫ t

0
dτ

∫
dxdvdwR1,2 (f(τ), f(τ)) (x, v, w) (U∗(t, τ)ψ) (x, v) (U∗(s, τ)φ) (x,w)

where the recollision operator R1,2 is defined by

(6.4.2) R1,2(g, g)(z1, z2) :=

∫ (
g(z′1)g(z

′
2)− g(z1)g(z2)

)
dµz1,z2(ω) .

Proof. — The covariance at time t = s = 0 is indeed given by

E (ζ0(φ)ζ0(ψ)) =

∫
dzφ(z)f0ψ(z) =

∫
dzφ(z)ψ(z)f(0, z) .

We will simply derive (6.4.1) when s = t and the case s < t can be easily

deduced. The covariance Covt introduced in (5.5.3) can be rewritten in terms
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of the operator Σt

(6.4.3) Σtψ(z1) := −
∫
dµz1(z2, ω)

[
f(t, z1)f(t, z2) + f(t, z′1)f(t, z

′
2)
]
∆ψ ,

with the notation dµz1 as in (1.2.2) and ∆ψ as in (6.0.4). Indeed, one can

check that for any functions φ,ψ, the covariance can be recovered as follows∫
φΣtψ(z1)dz1

= −1

2

∫
dµ(z1, z2, ω)

[
f(t, z1)f(t, z2) + f(t, z′1)f(t, z

′
2)
]
∆ψ(φ(z1) + φ(z2))

=
1

2

∫
dµ(z1, z2, ω)f(t, z1)f(t, z2)(∆ψ)(∆φ) = Covt(φ,ψ) .

The covariance Ĉ of the Ornstein-Uhlenbeck process computed in (6.1.4) reads

(6.4.4)

C(t, t, φ, ψ) =
∫
dz1 U∗(t, 0)ψ(z1) f

0 U∗(t, 0)φ(z1)

+

∫ t

0
du

∫
dz1 φ(z1)

[
U(t, u) Σu U∗(t, u)ψ

]
(z1) .

The following identity is the key to identify (6.4.4) and (6.4.1)

(6.4.5)

Σtφ(z1) = −
(
ftL∗

t + Ltft
)
φ(z1)

+ ∂tf(t, z1)φ(z1) +

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)φ(z2) .

Let us postpone for a while the proof of this identity and complete first the

proof of (6.4.1).

Replacing the expression (6.4.5) of Σu in the second term of (6.4.4) and

recalling that U(t, t)φ = φ, we get that∫ t

0
du

∫
dz1 φ(z1)

[
U(t, u) Σu U∗(t, u)ψ

]
(z1)

=

∫ t

0
du

∫
dz1 φ(z1)

[
U(t, u)

(
−
(
Lufu + fuL∗

u

)
+ ∂uf(u)

)
U∗(t, u)ψ

]
(z1)

+

∫ t

0
du

∫
dz1dz2 U∗(t, u)φ(z1) R

1,2
(
f(u), f(u)

)
(z1, z2) U∗(t, u)ψ(z2) .

Noticing that the time derivative is given by

∂u

[
U(t, u) fu U∗(t, u)

]
= U(t, u)

(
−
(
Lufu + fuL∗

u

)
+ ∂uf(u)

)
U∗(t, u) ,
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we conclude that∫ t

0
du

∫
dz1 φ(z1)

[
U(t, u) Σu U∗(t, u)ψ

]
(z1)

=

∫
dz1

(
φ(z1) ftψ(z1)− φ(z1) U(t, 0)f0 U∗(t, 0)ψ(z1)

)
+

∫ t

0
du

∫
dz1dz2 U∗(t, u)φ(z1) R

1,2
(
f(u), f(u)

)
(z1, z2) U∗(t, u)ψ(z2) .

Finally the covariance (6.4.4) reads

C(t, t, φ, ψ) =
∫
dzφ(z) ftψ(z)

+

∫ t

0
du

∫
dz1dz2 U∗(t, u)φ(z1)R

1,2
(
f(u), f(u)

)
(z1, z2) U∗(t, u)ψ(z2) .

This completes the proof of Proposition 6.4.1. It remains then to establish the

identity (6.4.5). Let us write the decomposition Σt = Σ+
t +Σ−

t with

Σ+
t ψ(z1) := −

∫
dµz1(z2, ω)f(t, z

′
1)f(t, z

′
2)∆ψ ,

Σ−
t ψ(z1) := −

∫
dµz1(z2, ω)f(t, z1)f(t, z2)∆ψ .

Recall that L∗
T was computed in (6.1.3). We get

f(t)L∗
tφ(z1) = f(t) v1 · ∇φ(z1) +

∫
dµz1(z2, ω)f(t, z1)f(t, z2)∆φ

= f(t) v1 · ∇φ(z1)− Σ−
t φ(z1) .

and

Ltf(t)φ(z1)

= −v1 · ∇[f(t)φ](z1) +

∫
dµz1(z2, ω)

(
f(t, z′1)f(t, z

′
2)
(
φ(z′1) + φ(z′2)

)
− f(t, z1)f(t, z2)

(
φ(z2) + φ(z1)

))
= −v1 · ∇[f(t)φ](z1) +

∫
dµz1(z2, ω)

(
f(t, z′1)f(t, z

′
2)∆φ

+
[
f(t, z′1)f(t, z

′
2)− f(t, z1)f(t, z2)

](
φ(z1) + φ(z2)

))
= −v1 · ∇[f(t)φ](z1)− Σ+

t + φ(z1)

+

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)

(
φ(z1) + φ(z2)

)
,
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where we used the notation (6.4.2). As a consequence, we get that

f(t)L∗
tφ(z1) + Ltf(t)φ(z1) = −φ v1 · ∇f(t, z1)− Σtφ(z1)

+

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)

(
φ(z1) + φ(z2)

)
.

As f solves the Boltzmann equation, we have

∂tf(t, z1) = −v1 · ∇f(t, z1) +
∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2) .

This leads to further simplifications as

f(t)L∗
tφ(z1) + Ltf(t)φ(z2) = φ ∂tf(t, z1)− Σtφ(z1)

+

∫
dz2R

1,2
(
f(t), f(t)

)
(z1, z2)φ(z2) ,

thus (6.4.5) holds. Proposition 6.4.1 is proved.



CHAPTER 7

LARGE DEVIATIONS

This chapter is devoted to the study of large deviations, and to the proof

of Theorem 3. We are going to evaluate the probability of an atypical event,

namely that the empirical measure remains close to a probability density φ

(which is different from the solution to the Boltzmann equation f) during a

short time interval.

It is well known, see e.g. [22, 25], that the large deviation functional can

be deduced from the exponential moments by Legendre transform. We recall

the definition (5.3.2) of the limiting cumulant generating function

I(t, g) := Λ[0,t](e
g(t)−

∫ t
0 Dsg) = lim

µε→∞
Λε[0,t](e

g(t)−
∫ t
0 Dsg) ,(7.0.1)

which is well defined (see Theorem 5 and (5.3.4)) in the set

Bα :=
{
g ∈ C1([0, T ⋆]× D;C) : |g(t, z)| ≤ 1

2(1− t
2T ⋆ )(α+ β0

8 |v|2) ,

sups∈[0,T ⋆] |Dsg(s, z)| ≤ 1
4T ⋆ (α+ β0

8 |v|2)
}
,(7.0.2)

as long as t ≤ min{T ⋆, Tα}. The time T ⋆ is defined in (7.0.7) below, and for

simplicity, α is chosen large enough so that Tα ≤ T ⋆. The Legendre transform

of I defines implicitly the large deviation functional (see (7.0.9) below), and

one of the goals of this chapter is to identify it with the following functional,

as previously conjectured by Rezakhanlou [63] and Bouchet [16]:

F̂(t, φ) := F̂(0, φ0) + sup
p

{〈〈
p,Dφ

〉〉
−
∫ t

0
H
(
φ(s), p(s)

)
ds

}
,(7.0.3)

where the supremum is taken over bounded measurable functions p on [0, t]×D,
and the Hamiltonian is given by

(7.0.4) H(φ, p) :=
1

2

∫
dµ(z1, z2, ω)φ(z1)φ(z2)

(
exp

(
∆p
)
− 1
)
.
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We have denoted as in (6.2.1) the duality on [0, t]× D by〈〈
φ,ψ

〉〉
:=

∫ t

0
ds

∫
D
dz φ(s, z) ψ(s, z) .

We will be able to prove that F̂ describes indeed the large deviations only

for a restricted class of functions, constructed as follows. Consider the biased

Boltzmann equation already introduced in (1.4.6) :

(7.0.5)
Dφ =

∫ (
φ(z′)φ(z′2) exp(−∆p)− φ(z)φ(z2) exp(∆p)

)
dµz(z2, ω)

with φ(0) = f0ep(0) ,

where p is a Lipschitz function in space and time. For any r > 0, we set

(7.0.6) T ⋆ = min{T0, TLe−5r}

and for T ≤ T ⋆, we define the set

Rr,T :=
{
φ : [0, T ]× D 7→ R+ : φ is a strong solution of (7.0.5) on [0, T ]

for some p such that ∥p∥W 1,∞([0,T ]×D) < r
}
.(7.0.7)

We shall prove the following theorem in Section 7.1 :

Theorem 8. — For any r > 0, there is α > 0 (depending on r, C0 and β0),

and a time T ∈ (0, Tα] such that

(7.0.8) ∀φ ∈ Rr,T , ∀t ≤ T , F̂(t, φ) = F(t, φ) ,

where F is the Legendre transform of I

(7.0.9) F(t, φ) := sup
g∈Bα

{
−
〈〈
φ,Dg

〉〉
+ ⟨φ(t), g(t)⟩ − I(t, g)

}
.

Building on Theorem 5 and standard methods of the large deviation theory

[22], we shall then prove the following large deviation principle in Section 7.3.

Theorem 9. — Consider a system of hard spheres initially distributed accord-

ing to the grand canonical measure (1.1.6) where f0 satisfies (1.1.5). Let r > 0

be fixed, as well as the associate parameters α > 0 and T > 0 of Theorem 8.

In the Boltzmann-Grad limit µε → ∞, the empirical measure satisfies the fol-

lowing large deviation estimates :

— For any closed set F ⊂ D([0, T ],M(D)),

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

φ∈F
F(T, φ) .(7.0.10)
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— For any open set O ⊂ D([0, T ],M(D)),

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ − inf

φ∈O∩Rr,T

F(T, φ) ,(7.0.11)

recalling notation (7.0.7) of Rr,T .

7.1. Identification of the large deviation functional

In this section, we prove Theorem 8. From now on, we fix a real number r >

0. The main step of the proof will be to provide a more explicit formula

for I(t, g) by using that the Hamilton-Jacobi equation (5.3.9) has a unique

solution.

7.1.1. Mild solutions of the Hamilton-Jacobi equation. — For

any α > 0, fix a function g in Bα. At the formal level, the Hamilton-Jacobi

equation (5.3.9) states that for any t ∈ [0, Tα]

(7.1.1)

∂tI(t, g) = H
(∂I(t, g)
∂g(t)

, g(t)
)

with H
(
φ, p

)
=

1

2

∫
φ(z1)φ(z2)

(
e∆p − 1

)
dµ(z1, z2, ω) ,

with initial condition

(7.1.2) I(0, g) =
〈
f0, (eg(0) − 1)

〉
.

As noticed before, all the limiting cumulants at time 0, except the first one,

equal zero so that I(0, g) coincides with the exponential moment of indepen-

dent variables distributed according to f0 and tilted by the function g(0).

We would like to use a method of characteristics to obtain a mild solu-

tion Î(t, g) of (7.1.1)-(7.1.2). Given t in [0, Tα], define the Hamiltonian system

on the time interval [0, t]

Dsφt =
∂H
∂p

(φt, pt) , with φt(0) = f0ept(0) ,(7.1.3)

Ds(pt − g) = −∂H
∂φ

(φt, pt) , with pt(t) = g(t) .(7.1.4)

The subscript t stresses the fact that the functions φt(s), pt(s) depend on t.

As customary, the boundary conditions are prescribed in terms of the initial

time (for (7.1.3)) and the final time t (for (7.1.4)). The condition (7.1.3) is

identical to the biased Boltzmann equation (7.0.5) used to define Rr,T . Note
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that (7.1.4) reads

Ds(pt − g) = −
∫
φt(z2)

(
exp(∆pt)− 1

)
dµz(z2, ω) with pt(t) = g(t) .

(7.1.5)

The local well-posedness of the Hamiltonian equations (7.1.3)-(7.1.4) will be

obtained by a Cauchy-Kovalevskaya argument after recasting the system in

more symmetric variables (see Section 7.2 and Appendix A.4).

Let us now explain how the functions φt, pt can be used to build a more

explicit representation of the functional I. For g ∈ Bα and (φt, pt) the solution

to (7.1.3)-(7.1.4), define the action associated with the Hamiltonian system

(7.1.3)-(7.1.4) by

Î(t, g) := ⟨f0, (ept(0) − 1)⟩+
〈〈
Ds(pt − g), φt

〉〉
+

∫ t

0
H(φt(s), pt(s))ds .(7.1.6)

Proposition 7.1.1. — Let α > 0 and g ∈ Bα. Assume that the Hamilto-

nian system (7.1.3)-(7.1.4) admits a unique continuous solution on [0, T ] for

any forcing g̃ in a neighborhood of g in Bα. Denote by (φt, pt) the solution

on [0, T ] associated with g. Then the functional Î defined by (7.1.6) satisfies

the Hamilton-Jacobi equation (5.3.9) on [0, T ] and the following identities:

(7.1.7)
∂Î
∂g(t)

(t, g) = φt(t) ,
∂Î
∂Dg

(t, g) = −φt .

Proof. — Let us first compute the time derivative of Î(t, g) for a fixed function

g

∂tÎ(t, g) =⟨f0, ept(0)δpt(0)⟩+ ⟨Dt(pt − g)(t), φt(t)⟩+H(φt(t), pt(t))(7.1.8)

+
〈〈
Dsδpt, φt

〉〉
+
〈〈
Ds(pt − g), δφt

〉〉
+
〈〈
δφt,

∂H
∂φ

(φt, pt)
〉〉
+
〈〈
δpt,

∂H
∂p

(φt, pt)
〉〉
,

where δ stands for the derivative with respect to the variations of the final

time; for example

∀s ≤ t, δpt(s) = lim
u→0

pt+u(s)− pt(s)

u
·

In particular, we will prove that

(7.1.9) δpt(t) = −∂t(pt(t)− g(t)) = −Dt(pt(t)− g(t)) ,
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where the time derivative is only with respect to the argument s 7→ pt(s)−g(s).
The first part of (7.1.9) follows by

pt+u(t)− pt(t)

u
=
pt+u(t)− pt+u(t+ u) + pt+u(t+ u)− pt(t)

u

=
pt+u(t)− pt+u(t+ u) + g(t+ u)− g(t)

u
−−−→
u→0

−∂t(pt(t)− g(t))

thanks to the boundary condition (ps − g)(s) = 0. Using once again the

boundary condition, we deduce that v · ∇x(pt − g)(t) = 0 so that the second

equality in (7.1.9) is proved.

Integrating by parts the first term in the second line of (7.1.8), we get〈〈
Dsδpt, φt

〉〉
= −

〈〈
δpt, Dsφt

〉〉
+ ⟨δpt(t), φt(t)⟩ − ⟨δpt(0), φt(0)⟩

= −
〈〈
δpt, Dsφt

〉〉
− ⟨Dt(pt(t)− g(t)), φt(t)⟩ − ⟨δpt(0), f0ept(0)⟩ ,

where we used the boundary conditions φt(0) = f0ept(0) and the identity

(7.1.9). From the equations (7.1.3)-(7.1.4), we deduce that the integral con-

tributions of δpt and δφt vanish. Therefore Î satisfies the Hamilton-Jacobi

equation

(7.1.10) ∂tÎ(t, g) = H(φt(t), pt(t)) .

The mild form (5.3.9) is then a consequence of identities (7.1.7) by time inte-

gration.

It remains to check (7.1.7). Let us now fix t and differentiate (7.1.6) with

respect to g(t) and Dsg. The corresponding variations δg(t) and δDsg are

independent. We get

∂Î(t, g) =⟨f0, ept(0)δpt(0)⟩+
〈〈
Dsδpt, φt

〉〉
−
〈〈
δDsg, φt

〉〉
+
〈〈
Ds(pt − g), δφt

〉〉
+
〈〈
δφt,

∂H
∂φ

(φt, pt)
〉〉
+
〈〈
δpt,

∂H
∂p

(φt, pt)
〉〉
.

By integration by parts and using the boundary conditions φt(0) = f0ept(0)

and pt(t) = g(t), we obtain〈〈
Dsδpt, φt

〉〉
= −

〈〈
δpt, Dsφt

〉〉
+ ⟨δpt(t), φt(t)⟩ − ⟨δpt(0), φt(0)⟩

= −
〈〈
δpt, Dsφt

〉〉
+ ⟨δg(t), φt(t)⟩ − ⟨δpt(0), f0ept(0)⟩ .

Thus

∂Î(t, g) =⟨f0, ept(0)δpt(0)⟩ −
〈〈
δDsg, φt

〉〉
−
〈〈
δpt, Dsφt

〉〉
+ ⟨δg(t), φt(t)⟩ − ⟨δpt(0), f0ept(0)⟩

+
〈〈
Ds(pt − g), δφt

〉〉
+
〈〈
δφt,

∂H
∂φ

(φt, pt)
〉〉
+
〈〈
δpt,

∂H
∂p

(φt, pt)
〉〉
.
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Combining this identity and equations (7.1.3)-(7.1.4) to simplify the Hamilto-

nian contribution, this completes the statement (7.1.7)

∂Î(t, g) = ⟨δg(t), φt(t)⟩ −
〈〈
δDsg, φt

〉〉
.

Proposition 7.1.1 is proved.

As a consequence of Theorem 7 page 60 and Proposition 7.1.1, the func-

tionals I, Î are both solutions of the Hamilton-Jacobi equation (7.1.1) and

we are going to deduce that they coincide on some short time interval. The

proof of the following result is postponed to Section 7.2.1 as this requires to

reparametrize the Hamiltonian variables in order to show the uniqueness of

the Hamilton-Jacobi equation.

Proposition 7.1.2. — Let α > 0 be given. There exists a time T ⋆α∈]0, Tα]
such that the functional Î is well defined on [0, T ⋆α] × Bα and the functionals

I, Î coincide on [0, T ⋆α]× Bα:

I(t, g) = Î(t, g) for any t ≤ T ⋆α , g ∈ Bα .

7.1.2. Identification of the Legendre transform F . — In this section,

we prove Theorem 8. Fix a function φ̄ satisfying the biased Boltzmann equa-

tion (7.0.5) for some p̄ such that

(7.1.11) ∥p̄∥W 1,∞([0,T ⋆]×D) < r .

Noticing that

∂H
∂p

(φ̄, p̄) =

∫ (
φ̄(z′)φ̄(z′2) exp(−∆p̄)− φ̄(z)φ̄(z2) exp(∆p̄)

)
dµz(z2, ω) ,

this biased Boltzmann equation can be rewritten in the more compact

form (7.1.3) which we recall

Dtφ̄ =
∂H
∂p

(φ̄, p̄) , with φ̄(0) = f0ep̄(0).(7.1.12)

Since T ⋆ ≤ TLe
−5r by (7.0.6), then by Appendix A.1 (see (A.1.4)), Equa-

tion (7.1.12) has a unique solution on [0, T ⋆] such that

(7.1.13) sup
t∈[0,T ⋆]

∥∥∥φ̄(t) exp(β0
4

|v|2
)∥∥∥

∞
≤ 4C0e

r .

Note that φ̄ is smooth, non-negative and that the conservation of mass, mo-

mentum and energy are satisfied :

(7.1.14) ⟨Dsφ̄, 1⟩ = ⟨Dsφ̄, vi⟩ = ⟨Dsφ̄, |v|2⟩ = 0 .
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Remark 7.1.3. — It has been shown in [37, 4] that the functional F̂ is not

relevant to describe the large deviations of some functions φ which are weak

solutions of the homogeneous Boltzmann equation but do not conserve energy.

Such functions are much more irregular than those in Rr,T ⋆ (see e.g. (7.1.14)),

thus the counterexample in [37] does not contradict Theorem 8.

Equation (7.1.12) implies that p̄ is a critical point of the variational prob-

lem (7.0.3), which we recall:

F̂(t, φ̄) := F̂
(
0, φ̄(0)

)
+ sup

p

{〈〈
p,Dsφ̄

〉〉
−
∫ t

0
H
(
φ̄(s), p(s)

)
ds

}
,

where the supremum is taken over bounded p on [0, t]×D. Indeed since φ̄ ≥ 0,

the function p 7→ H(φ̄, p) is convex and one can check that for any bounded p

and for all t ∈ [0, T ⋆],

(7.1.15)〈〈
p,Dsφ̄

〉〉
−
∫ t

0
H
(
φ̄(s), p(s)

)
ds

≤
〈〈
p̄, Dsφ̄

〉〉
−
∫ t

0
H
(
φ̄(s), p̄(s)

)
ds+

〈〈
p− p̄, Dsφ̄− ∂H

∂p

(
φ̄, p̄

)〉〉
≤
〈〈
p̄, Dsφ̄

〉〉
−
∫ t

0
H
(
φ̄(s), p̄(s)

)
ds ,

where the last term in the first inequality is equal to 0 thanks to (7.1.12)

and the fact that p, p̄ are bounded. The previous inequality implies that the

supremum F̂ is reached at p̄:

∀t ∈ [0, T ⋆] , F̂(t, φ̄) = F̂
(
0, φ̄(0)

)
+
〈〈
p̄, Dsφ̄

〉〉
−
∫ t

0
H
(
φ̄(s), p̄(s)

)
ds .

(7.1.16)

We turn now to the analysis of F(t, φ̄). By identification of I and Î in Propo-

sition 7.1.2, the variational problem (7.0.9) can be rewritten, for any α and

all t ≤ T ⋆α, as

(7.1.17) F(t, φ̄) := sup
g∈Bα

{
−
〈〈
φ̄,Dsg

〉〉
+ ⟨φ̄(t), g(t)⟩ − Î(t, g)

}
.

Let us first build a critical point ḡ for this variational problem. Given p̄ satist-

fying (7.1.11) and φ̄ solving (7.1.12), we define ḡ as the solution of

(7.1.18) Dsḡ = Dsp̄+
∂H
∂φ

(φ̄, p̄) with ḡ(t) = p̄(t) .

By assumption (7.1.11) on p̄, we get∣∣Dsp̄
∣∣ ≤ (1 + |v|)∥p̄∥W 1,∞ ≤ (1 + |v|)r
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and there holds∣∣∣∣∂H∂φ (φ̄, p̄)

∣∣∣∣ = ∣∣∣∣∫ φ̄(z2)
(
exp(∆p̄)− 1

)
dµz(z2, ω)

∣∣∣∣
≤
∣∣∣∣∫ φ̄(z2)

∣∣∆p̄∣∣ exp (∣∣∆p̄∣∣)dµz(z2, ω)∣∣∣∣
≤ CC0r exp(5r)β

− d
2

0

(
|v|+ β

− 1
2

0

)
,

where we used the weighted estimate (7.1.13) on φ̄ to control the divergence

of the cross section. The constant C is universal and depends only on the

dimension. Thus we deduce from (7.1.18) that

(7.1.19)

∣∣Dsḡ(s, x, v)
∣∣ ≤ CC0r exp(5r)β

− d
2

0

(
|v|+ β

− 1
2

0

)
+ (1 + |v|)r

and
∣∣ḡ(t, x, v)∣∣ ≤ r .

Given r > 0 which quantifies the size of the observables in the large deviation

principle, the parameter α is then chosen large enough by using the estimates

(7.1.19) so that ḡ belongs to Bα defined in (7.0.2). We then set

T := min(T ⋆, T ⋆α) ≤ Tα .

Note that the larger α is chosen, the smaller Tα∼ e−αTL will be, and hence

also the time of validity of Theorem 8.

By construction φ̄ belongs to Rr,T and (φ̄, p̄, ḡ) satisfy the Hamiltonian

system (7.1.3)-(7.1.4) on [0, T ], so from Proposition 7.1.1, the following holds

∂Î
∂g(t)

(t, ḡ) = φ̄(t) ,
∂Î
∂Dg

(t, ḡ) = −φ̄ .

This implies that ḡ is a critical point of

(7.1.20) (g(t), Dsg) 7→ −
〈〈
φ̄,Dsg

〉〉
+ ⟨φ̄(t), g(t)⟩ − Î(t, g) .

Since Î(t, g) = I(t, g) = Λ[0,t]

(
eg(t)−

∫ t
0 Dsg

)
is strictly convex with respect to

(g(t), Dg), the supremum in (7.1.17) is reached at ḡ. Thus

(7.1.21)

F(t, φ̄) = ⟨φ̄(t), ḡ(t)⟩ −
〈〈
φ̄,Dsḡ

〉〉
− Î(t, ḡ)

= ⟨φ̄(t), ḡ(t)⟩ − ⟨f0, (ep̄(0) − 1)⟩ −
〈〈
Dsp̄, φ̄

〉〉
−
∫ t

0
H(φ̄(s), p̄(s))ds ,

where Î(t, ḡ) is replaced by its explicit representation (7.1.6) in the second line.

As ḡ(t) = p̄(t) and φ̄(0) = f0ep̄(0), an integration by parts leads to

F(t, φ̄) = ⟨φ̄(0), p̄(0)⟩+ ⟨f0 − φ̄(0)⟩+
〈〈
p̄, Dsφ̄

〉〉
−
∫ t

0
H(φ̄(s), p̄(s))ds .
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As the initial large deviation functional is given by

F̂(0, φ(0)) =
〈
φ0 log

(
φ0

f0

)
− φ0 + f0

〉
and F̂(t, φ̄) by (7.1.16), this shows that F(t, φ̄) = F̂(t, φ̄) on [0, T ]. The proof

of Theorem 8 is complete, provided that we can construct solutions of the

Hamiltonian equations to define Î, and prove the uniqueness of solutions to

the Hamilton-Jacobi equation.

7.2. Symmetrization of the Hamiltonian system: proof of I = Î
This section is devoted to the proof of Proposition 7.1.2. In order to prove

the two missing statements, i.e. the local well-posedness of the Hamiltonian

equations (7.1.3)-(7.1.4), and the uniqueness for the Hamilton-Jacobi equa-

tion (5.3.9), the idea is to apply Theorem A.1, which requires to define suit-

able functional settings in which we have loss continuity estimates of the type

(A.0.2).

To do so, it will be convenient to reparametrize the Hamiltonian variables

and to perform the canonical change of variable

(7.2.1) (ψ, η) := (φe−p, ep) .

In these new variables, the Hamiltonian (7.0.4) is rewritten in a more symmet-

ric form

H′(ψ, η) :=
1

2

∫
ψ(z1)ψ(z2)

(
η(z′1)η(z

′
2)− η(z1)η(z2)

)
dµ(z1, z2, ω)

(7.2.2)

= −1

4

∫ (
ψ(z′1)ψ(z

′
2)− ψ(z1)ψ(z2)

)(
η(z′1)η(z

′
2)− η(z1)η(z2)

)
dµ(z1, z2, ω).

7.2.1. Uniqueness for the Hamilton-Jacobi equation. — Setting γ :=

eg(t) and ϕ(s) := Dsg(s) for s ∈ [0, t], the functional I(t, g) becomes then

J (t, ϕ, γ) := Λ[0,t]

(
γe−

∫ t
0 ϕ
)
.(7.2.3)

Consistently we characterize g on [0, t] using the variables γt(s) := eg(s) and

ϕ(s) := Dsg(s) which are related by the continuity equation

(7.2.4) ∀s ≤ t , Dsγt(s)− ϕ(s)γt(s) = 0, with γt(t) = γ .

The Hamilton-Jacobi equation (5.3.9) can be rewritten in terms of the new

Hamiltonian H′

(7.2.5) J (t, ϕ, γ) = J (0, ϕ, γt(0)) +

∫ t

0
F (J (s, ϕ, γt(s))) ds ,
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when ϕ and γt are related by (7.2.4) and where

F
(
J (s, ϕ, γ)

)
:= H′

(
∂J
∂γ

(s, ϕ, γ), γ(s)

)
=

1

2

∫
∂J
∂γ

(s, ϕ, γ)(z1)
∂J
∂γ

(s, ϕ, γ)(z2)
(
γ(z′1)γ(z

′
2)

− γ(z1)γ(z2)
)
dµ(z1, z2, ω) ,

with initial condition (7.1.2)

(7.2.6) J (0, ϕ, γ) = ⟨f0, (γ − 1)⟩ .
Inspired by Appendix A, we define the scale of function spaces

Bα,β,t :=
{
(ϕ, γ) ∈ C0([0, T ⋆]× D;C)× C0(D;C) :

|γ(x, v)| ≤ exp
((

1− t

2T ⋆

)
(α+

β

8
|v|2)

)
,

sup
s∈[0,T ⋆]

|ϕ(s, x, v)| ≤ 1

2T ⋆
(α+

β

8
|v|2)

}
.

Finally let us set

(7.2.7) ∥J (t)∥α,β,t := sup
(ϕ,γ)∈Bα,β,t

∣∣J (t, ϕ, γ)
∣∣ .

Proposition 7.2.1. — Let α > 0 be given. There exists THJ
α ∈ (0, Tα] such

that the Hamilton-Jacobi equation (7.2.5) has locally a unique solution J in

[0, THJ
α ], in the class of functionals which satisfy:

— for any α/2 ≤ α′ < α′′ ≤ α, β0/2 ≤ β′ < β′′ ≤ β0, t ∈ [0, Tα] and

(ϕ, γ) ∈ Bα′,β′,t

(7.2.8)

∥∥∥∂J (t, ϕ, γ)

∂γ

∥∥∥
M

(
(1+|v|) exp

((
1− t

2T⋆

)
(α′+β′

8
|v|2)
)
dxdv

)
≤ C

(
1

α′′ − α′ +
1

β′′ − β′

)
∥J (t)∥α′′,β′′,t;

— the derivative
∂J (t, ϕ, γ)

∂γ
is a continuous function on D, and there is a

constant C such that for for any t ≤ Tα and any (ϕ, γ) ∈ Bα,β0,t,

(7.2.9)
∥∥∥∂J (t, ϕ, γ)

∂γ
(1 + |v|) exp(β0

8
|v|2)

∥∥∥
C0(D)

≤ C .

Proof. — The proof of Proposition 7.2.1 follows the same strategy as in The-

orem A.1. It relies on a fixed point argument based on a contraction estimate

in the metric :

(7.2.10) M [J ] := sup
1/2≤ρ<1

0≤t<2Tα(1−ρ)

∥J (t)∥ρα,ρβ0,t
(
1− t

2Tα(1− ρ)

)
.
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We therefore have to prove that for all α/2 ≤ α′ < α′′ ≤ α, β0/2 ≤ β′ < β′′ ≤
β0 and s ∈ [0, t]

(7.2.11)

∥F (J (s))− F (J ′(s))∥α′,β′,s ≤ C

(
1

α′′ − α′ +
1

β′′ − β′

)
∥(J − J ′)(s)∥α′′,β′′,s .

It suffices to prove that (7.2.11) holds if J satisfies (7.2.8)-(7.2.9). Let us write

F (J (s, ϕ, γ))− F (J ′(s, ϕ, γ)) =
1

2

∫
∂(J − J ′)

∂γ
(s, ϕ, γ)(z1)

∂(J + J ′)

∂γ
(s, ϕ, γ)(z2)

×
(
γ(z′1)γ(z

′
2) − γ(z1)γ(z2)

)
dµ(z1, z2, ω) .

If (ϕ, γ) belongs to Bα′,β′,t and satisfies the continuity equation (7.2.4), then

∀s ≤ t ,
∣∣γt(s, x, v)∣∣ ≤ exp

((
1− s

2T ⋆
)(
α′ +

β′

8
|v|2)

)
,

so we deduce that for all α/2 ≤ α′ < α′′ ≤ α, β0/2 ≤ β′ < β′′ ≤ β0∣∣∣F (J (s, ϕ, γ))− F (J ′(s, ϕ, γ))
∣∣∣

≤ C
∥∥∥∂(J (s)− J ′(s)

)
∂γ

∥∥∥
M

(
(1+|v|) exp

((
1− s

2T⋆

)
(α′+β′

8
|v|2)
)
dxdv

)
×
∥∥∥∂(J (s, ϕ, γ) + J ′(s, ϕ, γ)

)
∂γ

(1 + |v|) exp(β0
8
|v|2)

∥∥∥
C0(D)

≤ C

(
1

α′′ − α′ +
1

β′′ − β′

)
∥J (s)− J ′(s)∥α′′,β′′,s

where C is a generic constant depending only on α, β0. Taking the supremum

on all couples (ϕ, γ) in Bα′,β′,s, we obtain that∥∥∥F (J (s))−F (J ′(s))
∥∥∥
α′,β′,s

≤ C

(
1

α′′ − α′ +
1

β′′ − β′

)∥∥∥J (s)−J ′(s)
∥∥∥
α′′,β′′,s

.

Proposition 7.2.1 is proved.

Having in mind to use the uniqueness criterion of Proposition 7.2.1 to es-

tablish Proposition 7.1.2, we now need to rewrite I and Î in the new variables

and to prove some regularity estimates.

7.2.2. Regularity of the limiting function J . —

Proposition 7.2.2. — Let α > 0 be fixed. For t ≤ Tα, the functional

J (t, ϕ, γ) defined by (7.2.3) is an analytic function of γ, on Bα,β0,t. For

all α/2 ≤ α′ < α′′ ≤ α, β0/2 ≤ β′ < β′′ ≤ β0 and all (ϕ, γ) ∈ Bα′,β′,t, the

derivative
∂J (t, ϕ, γ)

∂γ
satisfies the loss continuity estimate (7.2.8). Moreover,
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the derivative
∂J (t, ϕ, γ)

∂γ
is a continuous function on D satisfying the estimate

(7.2.9).

Proof. — Thanks to (5.3.6) we find that
∂J (t, ϕ, γ)

∂γ
is a function on D, for

which we are going to establish properties (7.2.8) and (7.2.9).

Step 1. Proof of (7.2.8). Let (ϕ, γ) be in Bα′,β′,t and let Υ be a continuous

function on D satisfying

|Υ(x, v)| ≤ (1 + |v|) exp
((

1− t

2T ⋆
)
(α′ +

β′

8
|v|2)

)
.

It is easy to check that for a suitable choice of λ > 0, the couple (ϕ, γ+λeiθΥ)

belongs to Bα′′,β′′,t. Indeed it suffices to notice that∣∣∣γ + λeiθΥ
∣∣∣ < (1 + λ(1 + |v|)

)
exp

((
1− t

2T ⋆
)
(α′ +

β′

8
|v|2)

)
≤ exp

((
1− t

2T ⋆
)
(α′ +

β′

8
|v|2) + 2λ+

λ

2
|v|2
)

≤ exp
((

1− t

2T ⋆
)
(α′′ +

β′′

8
|v|2)

)
,

provided that λ ≤ min
(α′′ − α′

4
,
β′′ − β′

4

)
. Then by analyticity, choosing λ =

min
(α′′ − α′

4
,
β′′ − β′

4

)
, the derivative can be estimated by a contour integral

∫
D
dz
∂J (t, ϕ, γ)

∂γ
(z) Υ(z) =

1

2πλ

∫ 2π

0
J
(
t, ϕ, (γ + λeiθΥ)

)
e−iθdθ ,

and we conclude that for all (ϕ, γ) in Bα′,β′,t,∥∥∥∂J (t, ϕ, γ)

∂γ

∥∥∥
M

(
(1+|v|) exp

((
1− t

2T⋆

)
(α′+β′

8
|v|2)

))
≤ C

(
1

α′′ − α′ +
1

β′′ − β′

)
∥J (t)∥α′′,β′′,t .

This completes (7.2.8).

Step 2. Proof of (7.2.9). For the second estimate, we use the series expansion

(5.3.6). The measure µsing,T̃ is invariant under global translations, and since Υ

depends only on one variable in D, (5.3.6) still makes sense if exp(−β0
8 |v|2)Υ

is only a measure. Up to changing the parameter of the weights, we get the

result.

Proposition 7.2.2 is proved.
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7.2.3. Definition and regularity of Ĵ . — The same change of variables

is used to define Ĵ (t, ϕ, γ(t)) which is the counterpart of Î(t, g) introduced

in (7.1.6) :

(7.2.12)

Ĵ (t, ϕ, γ) :=⟨f0, (ηt(0)− 1)⟩+
〈〈
Dηt, ψt

〉〉
−
〈〈
ϕ, ψt ηt

〉〉
+

∫ t

0
H′
(
ψt(s), ηt(s)

)
ds,

where (ψ, η) = (φe−p, ep).

In these new variables, the Hamiltonian equations (7.1.3)-(7.1.4) on the time

interval [0, t] can be rewritten

(7.2.13)

Dsψt + ψt ϕ =
∂H′

∂η
(ψt, ηt), ψt(0) = f0,

Dsηt − ηt ϕ = −∂H
′

∂ψ
(ψt, ηt), ηt(t) = γ(t) .

Note that the structure of this Hamiltonian system is more symmetric than

(7.1.3)-(7.1.4) and it can be interpreted as a system of modified Boltzmann

equations. Indeed (7.2.13) can be written

(7.2.14)
Dsψt = −ψt ϕ+

∫
dµz1(z2, ω) ηt(z2)

(
ψt(z

′
1)ψt(z

′
2)− ψt(z1)ψt(z2)

)
,

ψt(0) = f0,

Dsηt = ηt ϕ−
∫
dµz1(z2, ω)ψt(z2)

(
ηt(z

′
1)ηt(z

′
2)− ηt(z1)ηt(z2)

)
,

ηt(t) = γ .

In particular contrary to (7.1.3), the boundary conditions in (7.2.14) are time

independent.

We are now going to check that the modified Hamiltonian equations (7.2.14)

admit unique solutions. From this, we will deduce that Ĵ is well defined and

satisfies the regularity assumptions of Proposition 7.2.1.

Proposition 7.2.3. — Let α > 0 be fixed. There exists a time TH′
α ∈ (0, Tα]

such that for any t in [0, TH′
α ] and (ϕ, γ) in Bα,β0,t, there is a unique solu-

tion (ψt, ηt) to the system of modified Hamiltonian equations (7.2.14) on [0, t].

Furthermore, for the norm introduced in (6.1.8), the solution satisfies

(7.2.15) sup
s∈[0,t]

∥ψt(s)∥L∞
−3β0/4

≤ C, sup
s∈[0,t]

∥ηt(s)∥L∞
β0/2

≤ C .

If (ϕ, γ) take real values and γ > 0 then (ψt, ηt) are both positive functions.

For any t ∈ [0, TH′
α ], the functional Ĵ (t, ϕ, γ) is well defined and depends ana-

lytically on γ. Furthermore, it satisfies estimates (7.2.8) and (7.2.9).
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Proof. —

Step 1. Well-posedness of the system of modified Hamiltonian equations

(7.2.14).

This is once again a consequence of the Cauchy-Kovalevskaya argument of

Appendix A. The proof is therefore postponed to Appendix A.4. Let us

just point out here that to implement the strategy, it is more convenient to

rewrite (7.2.14) in a mild form, denoting Ss the transport operator in D:

(7.2.16) ∀s ≤ t,

ψt(s) = Ssf
0 +

∫ s

0
Ss−σF1

(
ϕ(σ), ηt(σ), ψt(σ)

)
dσ ,

ηt(s) = Ss−tγt −
∫ t

s
Ss−σF2

(
ϕ(σ), ηt(σ), ψt(σ)

)
dσ ,

with

F1(ϕ, η, ψ) = −ψ ϕ+

∫
dµz1(z2, ω) η(z2)

(
ψ(z′1)ψ(z

′
2)− ψ(z1)ψ(z2)

)
,

F2(ϕ, η, ψ) = η ϕ−
∫
dµz1(z2, ω)ψ(z2)

(
η(z′1)η(z

′
2)− η(z1)η(z2)

)
.

The positivity of (ψt, ηt) is proved by rewriting (7.2.13) in the form
Dsψt + ψt

(
ϕ+K1(ψt, ηt)

)
=
∫
dµz1(z2, ω) ηt(z2)ψt(z

′
1)ψt(z

′
2),

ψt(0) = f0,

Dsηt + ηt
(
− ϕ+K2(ψt, ηt)

)
= −

∫
dµz1(z2, ω)ψt(z2)ηt(z

′
1)ηt(z

′
2),

ηt(t) = γ.

The first equation is a transport equation with a (nonlinear) damping term

ϕ + K1(ψt, ηt) and a source term which is nonnegative (as long as ψt, ηt are

positive). It therefore preserves the positivity. The second equation is a back-

ward transport equation with a damping term −ϕ + K2(ψt, ηt) and a source

term which is nonpositive (as long as ψt, ηt are positive). It also preserves the

positivity. The solution (ψt, ηt) obtained by iteration (using the fixed point

argument) is therefore positive.

Step 2. Regularity estimates on Ĵ (t, ϕ, γ).

Since the solution (ψt, ηt) to the Hamiltonian equations is obtained as a fixed

point of a contracting (polynomial) map depending linearly on γ (see (7.2.16)),

it is straightforward to check that (ψt, ηt) depends analytically on γ (for in-

stance using the iterated Duhamel series expansion). Starting from (7.2.12)

and proceeding as in Proposition 7.1.1, we can show

∂Ĵ (t, ϕ, γ)

∂γ
= ψt(t) .
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The estimates (7.2.15) on ψt lead directly to (7.2.9). The inequality (7.2.8) can

be obtained by a contour estimate as in the derivation of Proposition 7.2.2.

Proposition 7.2.3 is proved.

7.2.4. Conclusion of the proof of Proposition 7.1.2. — By Proposition

7.2.3, the functional Ĵ is well defined on some time interval [0, TH′
α ], so Î is also

well defined and the formal computations in Proposition 7.1.1 are justified. By

implementing a proof similar to the one of Proposition 7.1.1, Ĵ is a solution

of the Hamilton-Jacobi equation (7.2.5) in [0, TH′
α ]

∀t ≤ TH′
α , ∂tĴ (t, ϕ, γ(t)) = H′

(
∂Ĵ
∂γ

, γ(t)

)
.

The assumptions of Proposition 7.2.1 hold for J (see Proposition 7.2.2) and

for Ĵ (see Proposition 7.2.3), thus J and Ĵ coincide on [0, T ⋆α]× Bα, choosing

(7.2.17) T ⋆α := min(TH′
α , THJ

α ) ≤ Tα ,

Given g, the functions (ψ, η) are positive by Proposition 7.2.3, so that φ =

ψη and p = log η are well defined. Going back to the original variables, we

conclude that I and Î coincide on [0, T ⋆α]× Bα.

7.3. The large deviation estimates

In this section, we fix α according to (7.1.19), and T as in Theorem 8. Recall

that M(D) stands for the set of positive measures with finite mass on D. We

are now going to prove the large deviation estimates of Theorem 9 in terms of

the functional F given by the Legendre transform for φ ∈ D([0, T ],M(D))

F(T, φ) := sup
g∈Bα

{
−
〈〈
φ,Dg

〉〉
+ ⟨φ(T ), g(T )⟩ − I(T, g)

}
.

The method of the proof is standard (see e.g. the textbook [22] or [25]) as

the difficult work has been achieved already in Theorems 4 and 5 to derive the

convergence of the cumulant generating function of the particle system to the

limiting functional I(t, g). For the sake of completeness, we sketch the main

steps of the proof.

We first start by proving upper and lower large deviation bounds in

a topology weaker than the Skorokhod topology. This weak topology
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on D([0, T ],M(D)) is generated by open sets of the form below, for any

ν ∈ D([0, T ],M(D)) and for test functions g in Bα and δ > 0:

(7.3.1)
Oδ,g(ν) :=

{
ν ′ ∈ D([0, Tα],M(D)) :∣∣(〈〈ν ′, Dg〉〉− ⟨ν ′T , gT ⟩

)
−
(〈〈
ν,Dg

〉〉
− ⟨νT , gT ⟩

)∣∣ < δ/2
}
.

Then, in Section 7.3.3, the topology will be enhanced to the Skorokhod topol-

ogy by a tightness argument.

7.3.1. Upper bound. — We are going to prove the large deviation upper

bound (7.0.10) for any compact set F of D([0, T ],M(D)) in the weak topology

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

φ∈F
F(T, φ) .(7.3.2)

General closed sets will be considered in Section 7.3.3.

We are first going to show that for any density φ in F and δ > 0, there

exists g ∈ Bα and an open set Oδ,g(φ) of φ such that

lim sup
µε→∞

1

µε
logPε (πε ∈ Oδ,g(φ)) ≤ −F(T, φ) + δ .(7.3.3)

Then by compactness, for any δ > 0, a finite covering of F ⊂ ∪i≤KOδ,gi(φi)

can be extracted so that

lim sup
µε→∞

1

µε
logPε (πε ∈ F) ≤ − inf

i≤K
F(T, φi) + δ ≤ − inf

φ∈F
F(T, φ) + δ .

Letting δ → 0, we recover the upper bound (7.3.2).

We turn now to the derivation of (7.3.3). For any density φ in F, we know

from (7.0.9) that there exists g ∈ Bα such that

F(T, φ) ≤ −
〈〈
φ,Dg

〉〉
+ ⟨φ(T ), g(T )⟩ − I(T, g) + δ/2 .

This leads to the upper bound

Pε (πε ∈ Oδ,g(φ)) ≤ exp
(
µε
δ

2
+ µε

〈〈
φ,Dg

〉〉
− µε⟨φ(T ), g(T )⟩

)
× Eε

(
exp

(
− µε

〈〈
πε, Dg

〉〉
+ µε⟨πεT , g(T )⟩

))
≤ exp

(
µε
δ

2
+ µε

〈〈
φ,Dg

〉〉
− µε⟨φ(T ), g(T )⟩+ µε Iε(T, g)

)
,

with

Iε(t, g) := Λε[0,t]
(
eg−

∫ t
0 Dg

)
.

Passing to the limit thanks to Theorem 5, this completes (7.3.3)

lim sup
µε→∞

1

µε
logPε

(
πε ∈ Oδ,g(φ)

)
≤ I(T, g) +

〈〈
φ,Dg

〉〉
− ⟨φ(T ), g(T )⟩+ δ/2

≤ −F(T, φ) + δ .
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Remark 7.3.1. — Note that the proof of the upper bound only depends on

the convergence of Iε to I, and actually holds up to time Tα. The restriction

to time T will appear in the proof of the lower bound when using the fact that

the supremum in (7.0.9) is reached for some g ∈ Bα.

7.3.2. Lower bound. — We are going to prove the large deviation lower

bound (7.0.11) for any open set O in the weak topology

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ − inf

φ∈O∩Rr,T

F(T, φ) ,(7.3.4)

where the restricted set Rr,T of trajectories was defined in (7.0.7) (see also

Theorem 3).

Contrary to the proof of the upper bound which was a direct consequence

of the convergence to I of the cumulant generating function (Theorem 5), the

derivation of the lower bound follows from the Gärtner-Ellis method [22] and

it requires an additional regularity assumption on F . For this, we consider

observables φ such that the supremum in (7.0.9) is reached for some g ∈ Bα

F(T, φ) = ⟨φ(T ), g(T )⟩ −
〈〈
φ,Dg

〉〉
− I(T, g) .(7.3.5)

It was shown in (7.1.21) that identity (7.3.5) is valid for any φ in Rr,T choosing

g a solution of (7.1.18). Even though (7.3.5) should be valid for a larger class

of functions, we restrict to functions φ in O ∩Rr,T for simplicity.

Let us fix φ ∈ O ∩ Rr,T and denote by g the associated test function as in

(7.3.5). There exists a collection of test functions g(1), . . . , g(ℓ) in Bα such that

the following open neighborhood of φ

(7.3.6)

Oδ,{g(i)}(φ) :=
{
ν ∈ D([0, T ],M(D)) : ∀i ≤ ℓ ,∣∣∣〈〈ν,Dg(i)〉〉− ⟨ν(T ), g(i)(T )⟩ −

(〈〈
φ,Dg(i)

〉〉
− ⟨φ(T ), g(i)(T )⟩

)∣∣∣ < δ
}

is included in O for any δ > 0 small enough. We impose also that g is one of

the test functions g(1), . . . , g(ℓ). To complete the lower bound

lim inf
µε→∞

1

µε
logPε (πε ∈ O) ≥ −F(T, φ) ,

it is enough to show that

lim inf
δ→0

lim inf
µε→∞

1

µε
logPε

(
πε ∈ Oδ,{g(i)}(φ)

)
≥ −F(T, φ) .(7.3.7)
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We start by tilting the measure

Pε
(
Oδ,{g(i)}(φ)

)
≥ exp

(
− δµε + µε

〈〈
φ,Dg

〉〉
− µε⟨φ(T ), g(T )⟩

)
× Eε

(
exp

(
− µε

〈〈
πε, Dg

〉〉
+ µε⟨πεT , g(T )⟩

)
1O

δ,{g(i)}(φ)

)
≥ exp

(
− δµε + µεIε(T, g) + µε

〈〈
φ,Dg

〉〉
− µε⟨φ(T ), g(T )⟩

)
Eε,g

(
1O

δ,{g(i)}(φ)

)
,

where we defined the tilted measure for any function Ψ on the particle trajec-

tories as

Eε,g (Ψ(πε)) := exp (−µεIε(T, g))

× Eε
(
exp

(
− µε

〈〈
πε, Dg

〉〉
+ µε⟨πεT , g(T )⟩

)
Ψ(πε)

)
.

If we can show that the trajectory φ is typical under the tilted measure

∀δ > 0 , lim
µε→∞

Pε,g
(
πε ∈ Oδ,{g(i)}(φ)

)
= 1 ,(7.3.8)

this will complete the proof of (7.3.7).

Let g̃ be one of the functions g(1), . . . , g(ℓ) used to define the weak neighbor-

hood Oδ,{g(i)}(φ). Choose u ∈ C in a neigborhood of 0 so that the function

below is analytic

u ∈ C 7→ I(T, ug̃ + g) = lim
µε→∞

Iε(T, ug̃ + g) .

As a consequence the derivative and the limit as µε → ∞ commute, so that

taking the derivative at u = 0, we get

−
〈〈

∂I
∂Dg

(T, g), Dg̃

〉〉
+

〈
∂I

∂g(T )
(T, g), g̃(T )

〉
= lim

µε→∞
Eε,g

(
−
〈〈
πε, Dg̃

〉〉
+ ⟨πεT , g̃(T )⟩

)
.

Note that in the above equation, the functional derivative is taken over both

coordinates Dg, g(T ) of the functional I(T, g). As the supremum in (7.0.9) is

reached at g, we deduce from (7.3.5) that

−
〈〈

∂I
∂Dg

(T, g), Dg̃

〉〉
+

〈
∂I

∂g(T )
(T, g), g̃(T )

〉
= ⟨φ(T ), g̃(T )⟩ −

〈〈
φ,Dg̃

〉〉
.

(7.3.9)

This allows us to characterize the mean under the tilted measure

lim
µε→∞

Eε,g
(
⟨πεT , g̃(T )⟩ −

〈〈
πε, Dg̃

〉〉)
= ⟨φ(T ), g̃(T )⟩ −

〈〈
φ,Dg̃

〉〉
.(7.3.10)
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Taking twice the derivative, we obtain

lim
µε→∞

µεEε,g
([(

⟨πεT , g̃(T )⟩ −
〈〈
πε, Dg̃

〉〉)
− Eε,g

(
⟨πε(T ), g̃(T )⟩ −

〈〈
πε, Dg̃

〉〉)]2)
<∞ .

Combined with (7.3.10), this implies that the empirical measure concentrates

to φ in a weak sense

lim
µε→∞

Eε,g
([(

⟨πεT , g̃(T )⟩ −
〈〈
πε, Dg̃

〉〉)
−
(
⟨φ(T ), g̃(T )⟩ −

〈〈
φ,Dg̃

〉〉)]2)
= 0 .

In particular, this holds for any test functions g(1), . . . , g(ℓ) defining the neigh-

borhood Oδ,{g(i)}(φ) in (7.3.6). This completes (7.3.8).

7.3.3. Tightness. — In this section, we are going to prove a tightness prop-

erty in the Skorokhod topology which will enhance the large deviations proven

so far in a coarser topology (see Corollary 4.2.6 of [22]).

Let (hj)j≥0 denote the basis of Fourier-Hermite functions (as in (6.2.2)). We

define a distance on the set of measures M(D) by

(7.3.11) d(µ, ν) :=
∑
j

2−j
∣∣∣∣∫ dz hj(z)

(
dµ(z)− dν(z)

)∣∣∣∣ .
Proposition 7.3.2. — The norm of the empirical measure is concentrated in

compact sets

lim
A→∞

lim
µε→∞

1

µε
logPε

(
sup

t∈[0,T0]
d(πεt , 0) ≥ A

)
= −∞(7.3.12)

and the modulus of continuity is controlled by

∀δ′ > 0, lim
δ→0

lim
µε→∞

1

µε
logPε

 sup
|t−s|≤δ
t,s∈[0,T0]

d(πεt , π
ε
s) > δ′

 = −∞ .(7.3.13)

Thus the sequence of measures (πεt ) is exponentially tight.

Before proving Proposition 7.3.2, let us first show that it implies large de-

viation estimates in the Skorokhod space of trajectories D([0, T ],M(D)) (for

a definition see Section 12 in [8]). First of all notice that the upper bound

(7.0.10) holds for closed sets F and not only compact sets as the sequence of

measures (Pε) is tight and the closed sets for the Skorokhod topology are also

closed for the weak topology.

We consider now an open set O for the strong topology and φ a trajectory

in O ∩ Rr,T , recalling that Rr,T is defined in (7.0.7). We would like to apply

the same proof as in Section 7.3.2 and to reduce the estimates to sample paths
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in a weak open set of the form (7.3.6). We proceed in several steps. First note

that there exists δ > 0 such that{
ν : sup

t≤T
d(νt, φt) < 2δ

}
⊂ O .

Since φ belongs to Rr,T , the density φ is continuous in time. Choosing a time

step γ > 0 small enough, we can restrict to computing the distance at discrete

timesν : sup
i∈N
iγ≤T

d(νiγ , φiγ) < δ

⋂
{
ν : sup

|t−s|≤γ
d(νt, νs) < δ

}
⊂ O .

Since φ is continuous in time and we consider only T/γ times, the first set

above can be approximated by a set of the form Oδ(φ) as in (7.3.6). As a

consequence we have shown that there is an open set Oδ(φ) such that

Pε (πε ∈ O) ≥ Pε

(
πε ∈ Oδ(φ)

⋂{
sup

|t−s|≤γ
d(πεt , π

ε
s) < δ

})

≥ Pε (πε ∈ Oδ(φ))− Pε

({
sup

|t−s|≤γ
d(πεt , π

ε
s) > δ

})
.

By Proposition 7.3.2 the last term can be made arbitrarily small for γ small.

Thus the proof of the lower bound reduces now to the one of weak open sets

as in Section 7.3.2.

Proof of Proposition 7.3.2. — To prove (7.3.12), let us first note that the test

functions used for defining the distance in (7.3.11) are uniformly bounded, thus

the distance is bounded in terms of the total number N of particles

d(πεt , 0) ≤ C
N
µε

·

As the number of particles is fixed only by the initial distribution, it is simple

to obtain the exponential decay claimed in (7.3.12)

Pε
(

sup
t∈[0,T0]

d(πεt , 0) ≥ A
)
≤ Pε

(
N ≥ A

µε
C

)
≤ c1 exp

(
− c2µεA

)
.(7.3.14)

By the inequality (7.3.14) and the boundedness of the test functions used

in (7.3.11), it is enough to consider a finite number of test functions. Indeed,

for any δ′ there is K = K(δ′) such that

d(µ, ν) > δ′ ⇒
∑
|j|≤K

2−j
∣∣∣∣∫ dz hj(z)

(
dµ(z)− dν(z)

)∣∣∣∣ > δ′

2
·
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By the union bound, we can then reduce (7.3.13) to controlling a single test

function h

∀δ′ > 0 , lim
δ→0

lim
ε→0

1

µε
logPε

(
sup

|t−s|≤δ

∣∣⟨πεt , h⟩ − ⟨πεs, h⟩
∣∣ > δ′

)
= −∞ ,(7.3.15)

where t, s are restricted to [0, T0]. Next, we localize the constraint on the time

interval [0, T0] to smaller time intervals

(7.3.16)

Pε

(
sup

|t−s|≤δ

∣∣⟨πεt , h⟩ − ⟨πεs, h⟩
∣∣ > δ′

)

≤
T0/δ∑
i=2

Pε

(
sup

t,s∈[(i−2)δ,iδ]

∣∣⟨πεt , h⟩ − ⟨πεs, h⟩
∣∣ > δ′

)
.

By assumption (1.1.5), the initial density f0 is bounded, up to a multi-

plicative constant C0(2π/β0)
d/2 by the MaxwellianMβ0 (uniformly distributed

in x). By modifying the weights W ε0
N in (1.1.6), we deduce that the proba-

bility of any event A under Pε can be bounded from above in terms of the

probability P̃ε with initial density Mβ0 (its expectation is denoted by Ẽε)

Pε(A) ≤ Z̃ε

Zε
Ẽε(CN 1A) ≤

Z̃ε

Zε
Ẽε(C2N )

1
2 Ẽε(1A)

1
2 ≤ exp(Cµε) P̃ε(A)

1
2 ,

for some constant C and Z̃ε stands for the partition function of this new

density. Using the fact that the probability P̃ε is time invariant, we can reduce

the estimate of the events in (7.3.16) to a single time interval. Thus (7.3.15)

will follow if one can show that

∀δ′ > 0 , lim
δ→0

lim
ε→0

1

µε
log P̃ε

(
sup

t,s∈[0,2δ]

∣∣⟨πεt , h⟩ − ⟨πεs, h⟩
∣∣ > δ′

)
= −∞ .(7.3.17)

By the Markov inequality and using the notation Lδ = log | log δ|, we get

(7.3.18)

P̃ε

(
sup

t,s∈[0,2δ]

∣∣⟨πεt , h⟩ − ⟨πεs, h⟩
∣∣ > δ′

)

≤ e−δ
′ Lδ µεẼε

(
exp

(
sup

t,s∈[0,2δ]
Lδ

∣∣∣ N∑
i=1

h
(
zεi (t)

)
− h
(
zεi (s)

)∣∣∣))
≤ e−δ

′ Lδ µεẼε
(
exp

( N∑
i=1

sup
t,s∈[0,2δ]

Lδ
∣∣h(zεi (t))− h

(
zεi (s)

)∣∣)) .
The last inequality is very crude, but it is enough for the large deviation

asymptotics and it allows us to reduce to a sum of functions depending only
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on the trajectory of each particle via

h̃
(
z([0, 2δ])

)
:= sup

t,s∈[0,2δ]
Lδ
∣∣h(z(t))− h

(
z(s)

)∣∣ .
Thanks to Proposition 2.1.3, the last expectation in (7.3.18) can be rewritten

in terms of the cumulants

(7.3.19)

1

µε
log Ẽε

(
exp

( N∑
i=1

h̃
(
zεi ([0, 2δ])

)))
=

∞∑
n=1

1

n!

∣∣∣f̃ εn,[0,2δ](( exp(h̃)− 1
)⊗n)∣∣∣ ,

where f̃ εn stands for the dynamical cumulant under the new distribution.

For n ≥ 2, the statement 1 of Theorem 10 page 119 can be applied∣∣∣f̃ εn,[0,2δ](( exp(h̃)− 1
)⊗n)∣∣∣ ≤ n!

(
C(2δ + ε)

)n−1 | log δ|2n∥h∥∞ ,

since Lδ = log | log δ|. The term n = 1 is controlled thanks to the statement

3 of Theorem 10∣∣∣f̃ ε1,[0,2δ]( exp(h̃)− 1
)∣∣∣ ≤ δ (∥∇h∥∞Lδ + 1) eLδ∥h∥∞ .

Thus (7.3.19) converges to 0 as ε → 0, then δ tends to 0. Furthermore Lδ
diverges to ∞ as δ vanishes, one deduces from (7.3.18) that (7.3.17) holds for

any δ′ > 0. This completes the proof of (7.3.15) and therefore of Proposi-

tion 7.3.2.

7.4. Proof of the large deviation theorem

Theorem 3 is derived by combining Theorems 9 and 8. Indeed given φ ∈
Rr,T , the upper bound is obtained by considering in (7.0.10) the closed sets

{d[0,T ](πε, φ) ≤ δ}, where d[0,T ] stands for the distance metrizing the Skorokhod

topology. Since F is lower semi-continuous (by property of the Legendre trans-

form) there holds

lim
δ→0

inf
ψ,

d[0,T ](ψ,φ)≤δ

F(T, ψ) ≥ F(T, φ) ,

which gives the result since F(T, φ) = F̂(T, φ) thanks to Theorem 8. The

lower bound is obtained directly thanks to (7.0.11) and Theorem 8.
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CHAPTER 8

CLUSTERING CONSTRAINTS AND

CUMULANT ESTIMATES

In this chapter we consider the cumulants f εn,[0,t](H
⊗n), whose definition

(Eq. (4.4.1)) we recall:

f εn,[0,t](H
⊗n) =

∫
dZ∗

nµ
n−1
ε

n∑
ℓ=1

∑
λ∈Pℓn

ℓ∑
r=1

∑
ρ∈Prℓ

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
×φρ f ε0{1,...,r}(Ψε0

ρ1 , . . . ,Ψ
ε0
ρr) .(8.0.1)

We prove the upper bound stated in Theorem 4 page 48 which is a consequence

of the following more general statement :

Theorem 10. — Consider the system of hard spheres under the initial mea-

sure (1.1.6), with f0 satisfying (1.1.5). Let Hn : D([0,∞[) 7→ R be a continuous

factorized function:

Hn

(
Zn([0,∞[

)
=

n∏
i=1

H(i)
(
zi([0,∞[)

)
and define the scaled cumulant f εn,[0,t](Hn) by polarization of the n linear form

(4.4.1). Then there exists a positive constant C and a time T0 such that the

following uniform a priori bounds hold:

1. If Hn is bounded, then on [0, T0]

|f εn,[0,t](Hn)| ≤ n!

(
CC0

β
(d+1)/2
0

)n
(t+ ε)n−1

n∏
i=1

∥H(i)∥∞ .

2. If Hn has a controlled growth

(8.0.2)
∣∣Hn(Zn([0, t]))

∣∣ ≤ exp
(
α n+

β0
4

sup
s∈[0,t]

|Vn(s)|2
)
,



120 CHAPTER 8. CLUSTERING CONSTRAINTS AND CUMULANT ESTIMATES

then on [0, T0]

|f εn,[0,t](Hn)| ≤
(
CC0e

α

β
(d+1)/2
0

)n
(t+ ε)n−1n! .

3. Fix δ > 0. If, in addition of (8.0.2), Hn measures the time regularity in

the time interval [t− δ, t], i.e. if for some i ∈ {1, . . . , n}

(8.0.3)

∣∣Hn(Zn([0, t]))
∣∣ ≤CLipmin

(
sup
t′

|t−t′|≤δ

|zi(t)− zi(t
′)|, 1

)
× exp

(
αn+

β0
4

sup
s∈[0,t]

|Vn(s)|2
)
,

then on [0, T0]

(8.0.4) |f εn,[0,t](Hn)| ≤ CLipδ

(
CC0 e

α

β
(d+1)/2
0

)n
(t+ ε)n−1n! .

The key idea behind this result is that the clustering structure of the cu-

mulant f εn,[0,t](H
⊗n) imposes strong geometric constraints on the integration

parameters (Z∗
n, Tm, Vm,Ωm) (where we recall that m is the size of the collision

tree), which imply that the integral defining f εn,[0,t](H
⊗n) involves actually only

a set of parameters with small measure of size O((t/µε)
n−1). More precisely,

what we prove is that:

— there are n − 1 “independent” geometric constraints (clustering condi-

tions) and each of them provides a small factor O(t/µε);

— the integration measure (which is unbounded because of possibly large

velocities in the collision cross-sections) does not induce any divergence.

Section 8.1 is devoted to characterizing the small measure set. Actually

we only provide necessary conditions for the parameters (Z∗
n, Tm, Vm,Ωm) to

belong to such a set (which is enough to get an upper bound). This char-

acterization can be expressed as a succession of geometric conditions on the

positions x∗1, . . . , x
∗
n of the n particles at time t.

Section 8.2 then explains how to control the integral defining f εn,[0,t](H
⊗n).

Recall that, by (4.4.6) and by conservation of the energy,

|H(Ψε
n)| = |Hn

(
Z∗
n([0, t])

)
| ≤ eαn+

β0
4
|V ∗
n (0)|2+

β0
4
|Vm(0)|2 .

Since the initial data satisfy a Gaussian bound

(f0)⊗n+m(Ψε0
n ) ≤ Cn+m0 e−

β0
2
|V ∗
n (0)|2−

β0
2
|Vm(0)|2 ,
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the growth of |H(Ψε
n)| is easily controlled, so the main difficulty is to control

the cross-sections

(8.0.5) C
(
Ψε
n

)
:=

m∏
k=1

sk

((
vk − vak(tk)

)
· ωk

)
+

in the measure dµ
(
Ψε
n

)
. In order for this term not to create any divergence for

large m, we need a symmetry argument as in the classical proof of Lanford,

but intertwined here with the estimates on the size of the small measure set. A

similar procedure is used in Section 8.1 to cure high energy singularities arising

from the geometric constraints themselves.

8.1. Dynamical constraints

Let λ ↪→ ρ be a nested partition of {1∗, . . . , n∗}. We fix the velocities V ∗
n

at time t, as well as the collision parameters (m, a, Tm, Vm,Ωm) of the pseudo-

trajectories. We recall that Vm = (v1, . . . , vm) where vi is the velocity of

particle i at the moment of its creation.

We denote by

V2 := (V ∗
n )

2 + V 2
m =

n∑
i=1

(v∗i )
2 +

m∑
i=1

v2i

(twice) the total energy of the whole pseudo-trajectory Ψε
n appearing in (8.0.1),

and by K = n + m its total number of particles. We also indicate by V2
i

(resp. V2
λ for any λ ⊂ {1∗, . . . , n∗}) andKi (resp.Kλ) the corresponding energy

and number of particles of the collision tree with root at z∗i (resp. Z∗
λ), that is:

(8.1.1)

V2
i = (v∗i )

2 +
∑

j created in Ψε
{i}

v2j ,

Ki = 1 +#
(
particles created in Ψε

{i}

)
and

(8.1.2)

V2
λ =

∑
i tree in λ

V2
i ,

Kλ =
∑

i tree in λ

Ki .

Note that V2 =
∑n

i=1V2
i and K =

∑n
i=1Ki = n+m.

In what follows, it will be important to remember the notations and defini-

tions introduced in Chapter 4, as well as the rules of construction of pseudo-

trajectories explained in Section 3.2. In particular we recall that, because of

these rules, V2/2 is the energy at time zero of the configuration Ψε0
n , while

V2
i /2 is not, in general, the energy of Ψε0

{i} (because of external recollisions
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which can perturb the velocities of the particles inside the tree), unless Ψε
{i}

does not recollide with the other Ψε
{j}, j ̸= i.

– Clustering recollisions. We first study the constraints associated with clus-

tering recollisions in the pseudo-trajectory of the generic forest Ψε
λ1
. Up to

renaming the integration variables, we can assume that

λ1 = {1, . . . , ℓ1} .
We call x∗λ1 := x∗ℓ1 the root of the forest.

Proposition 8.1.1. — The set of configurations Z∗
ℓ1

at time t compatible with

the forest λ1 = {1, . . . , ℓ1} on [0, t] satisfies the following estimate :

(8.1.3)

∫
dX∗

ℓ1−1∆∆λ1 1Gε
(
Ψε
λ1

)
≤
(

Ct

β
1/2
0 µε

)ℓ1−1 ∑
T∈Tλ1

∏
j∈λ1

(
β0V2

j +Kj

)dj(T )
where dj(T ) is the degree of the vertex j in the graph T .

By definition of ∆∆λ1 and by Definition 4.4.3 of clustering recolli-

sions, there exist ℓ1 − 1 clustering recollisions occurring at times τrec,1 ≥
τrec,2 ≥ · · · ≥ τrec,ℓ1−1. Moreover, the corresponding chain of recolliding

trees {j1, j′1}, . . . , {jℓ1−1, j
′
ℓ1−1} is a minimally connected graph T ∈ Tλ1 ,

equipped with an ordering of the edges. We shall denote by T≺ a minimally

connected graph equipped with an ordering of edges, and by T ≺
λ1

the set of all

such graphs on λ1. Hence we have

∆∆λ1 =
∑

T≺∈T ≺
λ1

∆∆λ1,T≺

almost surely, where ∆∆λ1,T≺ is the indicator function that the clustering rec-

ollisions for the forest λ1 are given by T≺. We also recall that, by definition,

∆∆λ1 is equal to zero whenever two particles find themselves at mutual distance

strictly smaller than ε.

It will be convenient to represent the set of graphs T ≺
λ1

in terms of sequences

of merged subforests. The subforests are obtained following the dynamics of

the pseudo-trajectory Ψε
λ1

backward in time, and putting together the groups

of trees that recollide. An example is provided by Figure 8.

More precisely, we define the map which associates to any ordered tree the

sequence of merging clusters

T ≺
λ1

∋ T≺ 7→
(
λ(k), λ

′
(k)

)
k

by the following iteration :

— start from λ1 = {1, . . . , ℓ1};
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z∗2 z∗3 z∗4 z∗7z∗1 z∗5 z∗6

τrec,1
τrec,2

τrec,3
τrec,4
τrec,5
τrec,6

1

2 3

5

6

7

1

2

3 4

5

6

λ1 = {1, 2, 3, 4, 5, 6, 7}

T≺ ∈ T ≺λ1 4T ∈ Tλ1

1

2 3

4

5
7

6

1

2

3

4

5 7

6

c1

c2

c3

c4
c5

c6

λ(1) = {7} λ′(1) = {6} → c1

λ(2) = {4} λ′(2) = {3} → c2

λ(3) = {2} λ′(3) = {1} → c3

λ(4) = {6, 7} λ′(4) = {5} → c4
λ(5) = {5, 6, 7} λ′(5) = {3, 4} → c5

λ(6) = {3, 4, 5, 6, 7} λ′(6) = {1, 2} → c6

Figure 8. An example of pseudo-trajectory Ψε
λ1

(ℓ1 = 7) satisfying

the constraint ∆∆λ1,T≺ , together with its minimally connected graph

T , ordered graph T≺, and sequence ofmerged subforests
(
λ(k), λ

′
(k)

)
k
.

The roots of the trees z∗i = (x∗i , v
∗
i ) and the clustering recollision times

appear in the picture on the top.

— take the first edge {j1, j′1} of T≺, and set
(
λ(1), λ

′
(1)

)
= ({j1}, {j′1});

these two elements are merged into a single cluster c1; set L1 := c1 ∪
(λ1 \ {j1, j′1});

— at step k > 1, take
(
λ(k), λ

′
(k)

)
of Lk−1 in such a way that jk ∈ λ(k), j

′
k ∈

λ′(k) where {jk, j′k} is the k-th edge of T≺, and merge them into a single

cluster ck; set Lk := ck ∪
(
Lk−1 \ {λ(k), λ′(k)}

)
. We can assume without

loss of generality that maxλ′(k) < maxλ(k).

The last step is given by
(
λ(ℓ1−1), λ

′
(ℓ1−1)

)
, which merges the two remaining

clusters.

However this map is not a bijection, because the merged subforests do not

specify which vertices of jk ∈ λ(k) and j
′
k ∈ λ′(k) are connected by the edge. A
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bijection is therefore given by

(8.1.4) T ≺
λ1

∋ T≺ →
(
λ(k), λ

′
(k), jk ∈ λ(k), j

′
k ∈ λ′(k)

)
k
.

We define the root of the subforest λ(k) by

x∗λ(k) := x∗maxλ(k)
,

and same definition for the root of λ′(k). We can then define

x̂k := x∗λ′
(k)

− x∗λ(k) , k = 1, . . . , ℓ1 − 1

as the relative position between the two recolliding subforests at time t. It

is easy to see that, for any given root position x∗λ1 = x∗ℓ1 ∈ Td, the map of

translations

(8.1.5) X∗
ℓ1−1 =

(
x∗1, . . . , x

∗
ℓ1−1

)
7→ X̂ℓ1−1 := (x̂1, . . . , x̂ℓ1−1)

is one-to-one on Td(ℓ1−1) and such that

dX∗
ℓ1−1 = dX̂ℓ1−1 .

Thus (8.1.5) is a legitimate change of variables in (8.0.1).

Our purpose is to prove iteratively that, for k = ℓ1−1, . . . , 1, the variable x̂k
associated with the k-th clustering recollision has to be in a small set, the

measure of which is uniformly small of size O(1/µε).

We define Ψε
λ(k)

(respectively Ψε
λ′
(k)
) the pseudo-trajectory with starting par-

ticles λ(k) (λ
′
(k)). Since τrec,k ≥ (τrec,s)s>k, the collision trees in λ1\

(
λ(k) ∪ λ′(k)

)
do not affect the subforests λ(k), λ

′
(k) in the time interval (τrec,k, t). The cluster-

ing structure prescribed by T≺ implies that Ψε
λ′
(k)

and Ψε
λ(k)

, regarded as inde-

pendent trajectories, reach mutual distance ε at some time τrec,k ∈ (0, τrec,k−1).

Given (x̂s)s<k fixed by the previous recollisions, we are going to vary x̂k so

that an external recollision between the subforests occurs. This corresponds

to moving rigidly Ψε
λ′
(k)

and Ψε
λ(k)

by acting on their relative distance x̂k. In

fact, the recollision condition depends only on this distance.

Given a sequence of merged subforests
(
λ(k), λ

′
(k)

)
k
and a set of variables

(x̂s)s<k (with |x̂s| > ε), the k−th clustering recollision condition is defined by

x̂k ∈ Bk :=
⋃

q in the subforest λ(k)

q′ in the subforest λ′
(k)

Bqq′ ,

with

(8.1.6)

Bqq′ :=
{
x̂k ∈ Td : |xq′(τrec,k)−xq(τrec,k)| = ε for some τrec,k ∈ (0, τrec,k−1)

}
.
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Here xq(τ), xq′(τ) are the particle trajectories in the flows Ψε
λ(k)

,Ψε
λ′
(k)

(and τ

is of course restricted to their existence times). In other words there exists a

time τrec,k ∈ (0, τrec,k−1) and a vector ωrec,k ∈ Sd−1 such that

(8.1.7) xq′(τrec,k)− xq(τrec,k) = ε ωrec,k .

The particle trajectories xq(τ), xq′(τ) are piecewise affine (because there are

almost surely a finite number of collisions and recollisions within the trees

Ψε
λ(k)

,Ψε
λ′
(k)
). We will denote by v

(δτj)
q , v

(δτj)
q′ the velocities of q and q′ on the

interval δτj . Moreover, (xq(τ)−xq′(τ))−(x∗λ(k)−x
∗
λ′
(k)
) does not depend on x̂k :=

x∗λ′
(k)

− x∗λ(k) , because all positions in the collision tree are translated rigidly.

This means that x̂k has to be in a tube of radius ε around the parametric

curve (x∗λ(k) − x∗λ′
(k)
)− (xq(τ)− xq′(τ)). This tube is a union of cylinders, with

two spherical caps at both ends (see Figure 9). Note however that we have to

remove from this tube the ball corresponding to the exclusion at the creation

time (or at time t if q and q′ exist up to time t).

Figure 9. The tube Bqq′ leading to a recollision between particles q

and q′. The tube has section µ−1
ε .

Therefore

Bqq′ =
⋃
j

Bqq′(δτj)

for a suitable finite decomposition of (0, τrec,k−1) (depending on all the history).

We therefore end up with the estimate (see Figure 9)

|Bqq′ | ≤
C

µε

∑
j

|v(δτj)q − v
(δτj)
q′ | |δτj |

for some pure constant C > 0 depending only on the dimension d.
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We sum now over all q, q′ to obtain an estimate of the set Bk. To exploit

the conservation of energy, we exchange the sums over δτj and over q, q′. We

get

|Bk| ≤
C

µε

∑
j

|δτj |
∑
q,q′

|v(δτj)q − v
(δτj)
q′ | .

Applying the Cauchy-Schwarz inequality, the sum over q, q′ is bounded by

√∑
q

(
v
(δτj)
q

)2√
Kλ(k) Kλ′

(k)
+

√∑
q′

(
v
(δτj)
q′

)2√
Kλ′

(k)
Kλ(k)

≤ Vλ(k)
√
Kλ(k) Kλ′

(k)
+ Vλ′

(k)

√
Kλ′

(k)
Kλ(k)

where we use the notations for energy and mass of subforests introduced at

the beginning of this section. In the above inequality, we have used the in-

dependence of Ψε
λ(k)

and Ψε
λ′
(k)

on [τrec,k, t], and bounded their energies in δτj

with Vλ(k) and Vλ′
(k)

respectively (see Eq.s (8.1.1)-(8.1.2)). Therefore we infer

that

(8.1.8)

|Bk| ≤
C

β
1/2
0 µε

∫
dτrec,k1τrec,k≤τrec,k−1

(
β0V2

λ(k)
+Kλ(k)

)(
β0V2

λ′
(k)

+Kλ′
(k)

)
=

C

β
1/2
0 µε

∫
dτrec,k1τrec,k≤τrec,k−1

∑
jk∈λ(k)
j′k∈λ

′
(k)

(
β0V2

jk
+Kjk

)(
β0V2

j′k
+Kj′k

)
.

In this way we have obtained an estimate which depends only on the energy

and the number of particles enclosed in the trees Ψε
λ(k)

,Ψε
λ′
(k)
.

Coming back to Equation (8.0.1) we observe that, if ∆∆λ1 = 1, then there

exist merged subforests such that x̂k ∈ Bk for k = ℓ1−1, . . . , 1. Hence, iterating

the procedure leading to (8.1.8) for k = ℓ1 − 1, . . . , 1, leads to an upper bound
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on the cost of the clustering recollisions in λ1:

(8.1.9)

∫
dX∗

ℓ1−1∆∆λ1 1Gε
(
Ψε
λ1

)
≤

∑
(
λ(k),λ

′
(k)

)
∫
dx̂11B1

∫
dx̂2 . . .

∫
dx̂ℓ1−11Bℓ1−1

≤
(

C

β
1/2
0 µε

)ℓ1−1 ∫ t

0
dτrec,1 · · ·

∫ τrec,ℓ1−2

0
dτrec,ℓ1−1

×
ℓ1−1∏
k=1

∑
(
λ(k),λ

′
(k)

)
∑

jk∈λ(k)
j′k∈λ

′
(k)

(
β0V2

jk
+Kjk

) (
β0V2

j′k
+Kj′k

)

=

(
Ct

β
1/2
0 µε

)ℓ1−1
1

(ℓ1 − 1)!

×
ℓ1−1∏
k=1

∑
(
λ(k),λ

′
(k)

)
∑

jk∈λ(k)
j′k∈λ

′
(k)

(
β0V2

jk
+Kjk

) (
β0V2

j′k
+Kj′k

)
.

Using the bijection (8.1.4) and compensating the 1/(ℓ1− 1)! with the ordering

of the edges in T≺, we rewrite this result as∫
dX∗

ℓ1−1∆∆λ1 1Gε
(
Ψε
λ1

)
≤
(

Ct

β
1/2
0 µε

)ℓ1−1 ∑
T∈Tλ1

∏
{j,j′}∈E(T )

(
β0V2

j +Kj

) (
β0V2

j′ +Kj′
)
,

where E(T ) is the set of edges of T . Equivalently, we obtain (8.1.3).

– Clustering overlaps. We are now going to estimate the constraints associated

with clustering overlaps in the pseudo-trajectory of the generic jungle ρ1. Up

to a renaming of the summation variables, we can assume that

ρ1 = {λ1, . . . , λr1} .

The number of particles in the jungle at time t is ∥ρ1∥, and at time 0 is

Kρ1 = ∥ρ1∥ + mρ1 . We recall that each forest λi has a root x∗λi , which did

not play any role in the previous estimate of clustering recollisions. We call

x∗ρ1 := x∗λr1
the root of the jungle.

Proposition 8.1.2. — Consider some forests λ1, . . . , λr1 whose internal dy-

namics is fixed (prescribed by the velocities and relative positions at time t,

as well as the creation parameters). The set of configurations Z∗
ρ1 at time t
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compatible with the jungle ρ1 = {λ1, . . . , λr1} on [0, t] satisfies the following

estimate :

(8.1.10)

∫
dx∗λ1 · · · dx∗λr1−1

|φρ1 | ≤
(

C

β
1/2
0 µε

)r1−1

(t+ ε)r1−1

×
∑
T∈Tρ1

∏
λj∈ρ1

(
β0V2

λj
+Kλj

)dλj (T )
.

The argument is similar, but not identical, to the one just seen for clustering

recollisions. Below we shall indicate the differences, without repeating the

identical parts.

By definition of φρ1 , and by Definition 4.4.1, the clustering overlaps are ex-

tracted from the graph of all overlaps between the forests {λ1, . . . , λr1} via the

Penrose algorithm : we denote by (λj1 , λj′1), · · · , (λjr1−1 , λj′r1−1
) the (ordered)

edges of the resulting minimally connected graph T ∈ Tρ1 . Then, thanks to

the tree inequality stated in Proposition 2.3.3,

(8.1.11) |φρ1 | ≤
∑
T∈Tρ1

∏
{λj ,λj′}∈E(T )

1λj∼oλj′ .

Note that, as mentioned in Section 4.4, we have more flexibility when dealing

with overlaps than with recollisions, as
(
Ψε
λj

)
1≤j≤r1

are completely indepen-

dent trajectories, whatever the ordering of the overlap times. We therefore

have more freedom in choosing the integration variables.

We can then define

x̂k := x∗λ′
[k]

− x∗λ[k] , k = 1, . . . , r1 − 1

as the relative position between the two overlapping forests at time t. As in

the case of clustering recollisions, for any given root position x∗ρ1 := x∗λr1
∈ Td,

the map of translations

(8.1.12)
(
x∗λ1 , . . . , x

∗
λr1−1

)
7−→ X̂r1−1 := (x̂1, . . . , x̂r1−1)

is one-to-one on Td(r1−1) and it has unit Jacobian determinant. Thus (8.1.12)

is a legitimate change of variables in (8.0.1).

Given a graph T ∈ Tρ1 and the corresponding sequence
(
λ[k], λ

′
[k]

)
k
, the

k−th clustering overlap condition is dealt with independently from the other

overlap conditions. It is defined by

x̂k ∈ B̃k :=
⋃

q in the forest λ[k]

q′ in the forest λ′
[k]

B̃qq′ ,
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with

B̃qq′ =
{
x̂k ∈ Td : ∃τ ∈ [0, t] such that |xq(τ)− xq′(τ)| ≤ ε

}
where we used (4.4.3), and xq(τ), xq′(τ) are the particle trajectories in the

flows Ψε
λ[k]

,Ψε
λ′
[k]
. This set has small measure

(8.1.13) |B̃k| ≤
C

β
1/2
0 µε

(t+ ε)
(
β0V2

λ[k]
+Kλ[k]

)(
β0V2

λ′
[k]

+Kλ′
[k]

)
for some constant C > 0. Notice that the correction of O(ε) comes from the

extremal spherical caps of the tubes in Figure 9 (since 1λ[k]∼oλ′[k]
= 1 inside

those regions).

Remark 8.1.3. — Recalling Definition 4.4.1, note that overlaps can be clas-

sified in two types

— those arising at time t or involving a particle q at its creation time tq. In

this case, the distance between the overlapping particles at τov satisfies

only the inequality

|xq(τov)− xq′(τov)| ≤ ε .

This corresponds to one spherical end of the tube in Figure 9;

— and the regular ones, for which the two overlapping particles are exactly

at distance ε at τov. We then have the same parametrization as for

recollisions

(8.1.14) xq(τov)− xq′(τov) = εωov .

This corresponds to the tube in Figure 9 minus the spherical end.

We finally obtain (8.1.10).

– Initial clustering. Finally, we are going to estimate the non-overlap con-

straints in the initial data, which are encoded in (4.3.1).

Recall that f ε0{1,...,r}(Ψ
ε0
ρ1 , . . . ,Ψ

ε0
ρr) is a measure of the correlations between

all the different clusters of particles Ψε0
ρ1 , . . . ,Ψ

ε0
ρr at time zero, and its definition

has been adapted to reconstruct the dynamical cumulants. An estimate of this

correlation is obtained by integrating over the root coordinates of the jungles

x∗ρ1 , . . . , x
∗
ρr−1

, as stated in the following proposition.

We recall that Kρi := mρi + ∥ρi∥ denotes the number of particles in the

configuration Ψε,0
ρi at time 0, and that K :=

r∑
i=1

Kρi = m+ n.
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Proposition 8.1.4. — Under Assumption (1.1.5), there exists C > 0 (de-

pending only on the dimension d) such that, for ε small enough,∫
Td(r−1)

|f ε0{1,...,r}(Ψε0
ρ1 , . . . ,Ψ

ε0
ρr)| dx∗ρ1 . . . dx∗ρr−1

≤ (r − 2)! (CC0)
K exp

(
− β0

2
V2
)
εd(r−1)

for all Ψε0
ρi ∈ Dε

Kρi
at time 0. We have used the convention 0! = (−1)! = 1.

Recall that f ε0{1,...,r} is extended to DK \ Dε
K by setting F ε0ωi = 0 in (4.3.1)

wherever it is not defined.

The following proof is an application of known cluster expansion techniques,

see e.g. [55] and references therein.

Proof. — Set ZK := (Ψε0
ρ1 , . . . ,Ψ

ε0
ρr) with Ψε0

ρi ∈ Dε
Kρi

at time 0. To make

notation lighter we shall omit the superscript 0 and also omit to specify

the exclusion constraints inside each Ψε
ρi in the sequel. We define by Φr+p

the indicator function of the mutual exclusion between the elements of the

set {Ψε
ρ1 , . . . ,Ψ

ε
ρr , z̄1, . . . , z̄p} (where Ψε

ρ1 , . . . ,Ψ
ε
ρr form r clusters and z̄1, . . . , z̄p

are the configurations of p single particles):

Φr+p =
∏
h̸=h′

1ηh ̸∼ηh′ ,

with (η1, . . . , ηr+p) = (Ψε
ρ1 , . . . ,Ψ

ε
ρr , z̄1, . . . , z̄p) and “ηh ̸∼ ηh′” meaning that

the minimum distance between elements of ηh and ηh′ is larger than ε. So we

start from

(8.1.15)

F ε0K (ZK) =
(f0)⊗K(ZK)

Zε

∑
p≥0

µpε
p!

∫
Dp
(f0)⊗p(Z̄p) Φr+p(Ψ

ε
ρ1 , . . . ,Ψ

ε
ρr , Z̄p) dZ̄p .

We want to expand Φr+p in order to compensate the factor Zε whose definition

we recall

(8.1.16) Zε :=
∑
p≥0

µpε
p!

∫
Dp
(f0)⊗p(Z̄p) Φp(Z̄p) dZ̄p ,

and to identify the elements in the decomposition

F ε0K (Ψε
ρ1 , . . . ,Ψ

ε
ρr) =

r∑
s=1

∑
σ∈Psr

s∏
i=1

f ε0|σi|(Ψ
ε
σi) .

This will enable us to compute, and estimate, f ε0{1,...,r}(Ψ
ε
ρ1 , . . . ,Ψ

ε
ρr). To do

so, we naturally develop Φr+p into s clusters (each of them corresponding to

one connected graph containing at least one element of {Ψε
ρ1 , . . . ,Ψ

ε
ρr}), plus

a background σ̄0 of mutually excluding particles (for which we do not expand
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the exclusion condition). Such a partition can be reconstructed isolating first

the background component, and then splitting {Ψε
ρ1 , . . . ,Ψ

ε
ρr} in s parts, to

which we adjoin the remaining single particles (see Figure 10).

σ1

σ̄1

σ2

σ̄2

σ3

jungle clusters Ψρi

background particles z̄i

σ̄0

Figure 10. Initial configurations are decomposed in s clusters con-

taining at least one jungle Ψε
ρ1
, . . . ,Ψε

ρr
, plus a background of mu-

tually excluding particles (for which we do not expand the exclusion

condition).

This amounts to introducing truncated functions φ via the following formula:

(8.1.17)

Φr+p(Ψ
ε
ρ1 , . . . ,Ψ

ε
ρr , Z̄p)=

∑
σ̄0⊂{1,...,p}

Φ|σ̄0|(Z̄σ̄0)

×
r∑
s=1

∑
σ∈Psr

∑
σ̄1,...,σ̄s⊂{1,··· ,p}
∪si=0σ̄i={1,...,p}
σ̄k∩σ̄h=∅,k ̸=h

s∏
i=1

φ(Ψε
σi , Z̄σ̄i) .

Note that the σ̄i may be empty. In particular all σ̄i are empty if |σ̄0| = p. By

(2.3.1), we see that

φ(Ψε
ρ1 , . . . ,Ψ

ε
ρr , Z̄p) =

∑
G∈Cr+p

∏
(h,h′)∈E(G)

(−1ηh∼ηh′ ) ,

where the sum runs over the set of connected graphs with r+ p vertices; more

generally,

φ(Ψε
σi , Z̄σ̄i) =

∑
G∈C|σi|+|σ̄i|

∏
(h,h′)∈E(G)

(−1ηh∼ηh′ ) .

Using the symmetry in the exchange of particle labels, we get, denoting s̄i :=

|σ̄i|, (
p

s̄1

)(
p− s̄1
s̄2

)
. . .

(
p− s̄1 − · · · − s̄s−1

s̄s

)
=

p!

s̄0! s̄1! . . . s̄s!
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choices for the repartition of the background particles, so that∑
p≥0

1

p!

∫
Dp

Φr+p(Ψ
ε
ρ1 , . . . ,Ψ

ε
ρr , Z̄p) dZ̄p

=

r∑
s=1

∑
σ∈Psr

∑
p≥0

∑
s̄0,...,s̄s≥0∑

s̄i=p

∫
Dp

Φs̄0(Z̄s̄0)

s̄0!

s∏
i=1

φ(Ψε
σi , Z̄s̄i)

s̄i!
dZ̄p .

Therefore, plugging (8.1.17) into (8.1.15) first and then using (8.1.16), we

obtain

F ε0K (ZK) =
(f0)⊗K(ZK)

Zε

×
r∑
s=1

∑
σ∈Psr

∑
p≥0

∑
s̄0,...,s̄s≥0∑

s̄i=p

(
µs̄0ε
s̄0!

∫
(f0)⊗s̄0(Z̄s̄0)Φs̄0(Z̄s̄0)dZ̄s̄0

)

×
s∏
i=1

µs̄iε
s̄i!

∫
(f0)⊗s̄i(Z̄s̄i)φ(Ψ

ε
σi , Z̄s̄i)dZ̄s̄i

= (f0)⊗K(ZK)
r∑
s=1

∑
σ∈Psr

s∏
i=1

∑
s̄i≥0

µs̄iε
s̄i!

∫
(f0)⊗s̄i(Z̄s̄i)φ(Ψ

ε
σi , Z̄s̄i)dZ̄s̄i ,

hence finally

(8.1.18)
f ε0{1,...,r}(Ψ

ε
ρ1 , . . . ,Ψ

ε
ρr)

= (f0)⊗K(ZK)
∑
p≥0

µpε
p!

∫
(f0)⊗p(Z̄p)φ(Ψ

ε
ρ1 , . . . ,Ψ

ε
ρr , Z̄p)dZ̄p .

Applying again Proposition 2.3.3 implies that φ is bounded by

(8.1.19) |φ(Ψε
ρ1 , . . . ,Ψ

ε
ρr , Z̄p)| ≤

∑
T∈Tr+p

∏
(h,h′)∈E(T )

1ηh∼ηh′ ,

where Tr+p is the set of minimally connected graphs with r+p vertices labelled

by Ψε
ρ1 , . . . ,Ψ

ε
ρr , z̄1, . . . , z̄p.

By Lemma 2.4.1, the number of minimally connected graphs with specified

vertex degrees d1, . . . , dr+p is given by

(r + p− 2)!/

r+p∏
i=1

(di − 1)! .

On the other hand, the product of indicator functions in (8.1.19) is a sequence

of r + p − 1 constraints, confining the space coordinates to balls of size ε

centered at the positions of the clusters Ψε
ρ1 , . . . ,Ψ

ε
ρr , z̄1, . . . , z̄p. Such clusters
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have cardinality Kρ1 , . . . ,Kρr ≥ 1 with the constraint∑
i

Kρi = K .

We deduce that for some C > 0 depending only on the dimension d∫
Td(r−1)

|f ε0{1,...,r}(Ψε
ρ1 , . . . ,Ψ

ε
ρr)|dx∗ρ1 . . . dx∗ρr−1

≤ (CC0)
Kεd(r−1)e−

β0
2
V2
∑
p≥0

(r + p− 2)!

p!
(CC0ε

dµε)
p

∑
d1,...,dr+p≥1

∏r
i=1K

di
ρi∏r+p

i=1 (di − 1)!

≤ (CC0)
Kεd(r−1)e−

β0
2
V2
∑
p≥0

(r + p− 2)!

p!
(C0ε

dµε)
p e2K+p

≤ (CC0)
Kεd(r−1)e−

β0
2
V2
2r−2(r − 2)!

∑
p≥0

(CC0ε
dµε)

p e2K+p .

In the second inequality we used that

r∏
i=1

∑
di≥1

Kdi
ρi

(di − 1)!
≤

r∏
i=1

Kρie
Kρi ≤

r∏
i=1

e2Kρi = e2K .

Since Cεdµε is arbitrarily small with ε, this proves Proposition 8.1.4.

8.2. Decay estimate for the cumulants

We shall now prove the bound provided in Theorem 10. In the previous

section, we considered a nested partition λ ↪→ ρ ↪→ σ (with |σ| = 1) of the

set {1∗, . . . , n∗}. We fixed the velocities V ∗
n as well as the collision parame-

ters of the pseudo-trajectories (m, a, Tm, Vm,Ωm). We then exhibited n − 1

“independent” conditions on the positions X∗
n for the pseudo-trajectories to

be compatible with the partitions λ, ρ. Now we shall conclude the proof of

Theorem 10, by integrating successively on all the available parameters. The

order of integration is pictured in Figure 11.

For the proof of the first two statements in Theorem 10, we start by con-

trolling the weight, simply using the bounds

(8.2.1) |H(Ψε
n)| ≤

n∏
i=1

∥H(i)∥∞ or |H(Ψε
n)| ≤ eαn+

β0
4
V2
.

Then we use that nothing depends on the root coordinates of the jungles

x∗ρ1 , . . . , x
∗
ρr−1

inside the integrand in (8.0.1), except the initial datum f ε0{1,...,r}.
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x∗2 x∗3 x∗4 x∗7x∗1

λ1 λ2 λ3

x∗5 x∗6

ρ1
λ4 λ5 λ6

ρ2 ρ3
σ1

x∗8 x
∗
9 x∗10 x∗11 x∗12 x∗13 x

∗
14

Figure 11. In this contribution to the cumulant of order n = 14,

we integrate over the positions of the roots in the following order:

(i) first we integrate over the initial clustering x̂ρ2
= x∗10 − x∗14 and

x̂ρ1
= x∗7−x∗14; (ii) secondly over the clustering overlaps x̂λ4

= x∗9−x∗10
and x̂λ1

= x∗4 − x∗5 , x̂λ2
= x∗5 − x∗7; (iii) finally over the clustering

recollisions : x̂
(λ1)
3 = x∗2 − x∗3, x̂

(λ1)
2 = x∗1 − x∗2, x̂

(λ1)
1 = x∗3 −

x∗4, x̂
(λ3)
1 = x∗6−x∗7, x̂

(λ4)
1 = x∗8−x∗9, x̂

(λ6)
3 = x∗13−x∗14, x̂

(λ6)
2 =

x∗12 − x∗13, x̂
(λ6)
1 = x∗11 − x∗12. Notice that the variable x∗14 remains

free.

Therefore by Fubini and according to Proposition 8.1.4,

(8.2.2)

∫
Td(r−1)

|f ε0{1,...,r}(Ψε0
ρ1 , . . . ,Ψ

ε0
ρr)|dx∗ρ1 . . . dx∗ρr−1

≤ (r − 2)! (CC0)
K exp

(
− β0

2
V2
)
εd(r−1)

for some C > 0, uniformly with respect to all other parameters.

Next, the clustering condition on the jungles gives an extra smallness when

integrating over the roots of the forests (see (8.1.10))

(8.2.3)

r∏
i=1

∫
|φρi |

ri−1∏
j=1

dx∗λj ≤
(

C

β
1/2
0 µε

)ℓ−r
(t+ ε)ℓ−r

×
r∏
i=1

∑
T∈Tρi

∏
λj∈ρi

(
β0V2

λj
+Kλj

)dλj (T )
,

uniformly with respect to all other parameters, for some possibly larger con-

stant C.

The clustering condition on the forests gives finally an extra smallness when

integrating over the remaining variables x̂k, according to (8.1.3). Notice how-

ever that the latter inequality cannot be directly applied to (4.4.1), due to the

presence of the cross section factors (8.0.5) in the measure (3.3.5).

It is then useful to combine the estimate with the sum over trees a|λi . The

argument is depicted in Figure 12. We will present the arguments for λ1,
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assuming without loss of generality that λ1 = {1, . . . , ℓ1}. We will denote

by ã the restriction of the tree a to λ1 with fixed total numbers of particles

K1, · · · ,Kℓ1 , and by ãk, Ck the tree variables and the cross section factors

associated with the sk creations occurring in the time interval (τrec,k, τrec,k−1)

for 1 ≤ k ≤ ℓ1.

ã3

ã2

ã1

τrec,1

τrec,2
0

|ã1| = s1 = 5

|ã2| = s2 = 1

|ã3| = s3 = 1
number of creations per slice

Figure 12. Integration over time slices.

As in the first line of (8.1.9), we have that

(8.2.4)

∑
ã

∫
dX∗

ℓ1−1∆∆λ1 1Gε
(
Ψε
λ1

)
|C
(
Ψε
λ1

)
|

≤
∑

(
λ(k),λ

′
(k)

)
∑
ã1

|Cε1
(
Ψλ1

)
|
∫
dx̂11B1

∑
ã2

|C2
(
Ψε
λ1

)
|

×
∫
dx̂2 . . .

∫
dx̂ℓ1−11Bℓ1−1

∑
ãℓ1

|Cℓ1
(
Ψε
λ1

)
| .

We can therefore apply iteratively the inequality (8.1.8) and the classical

Cauchy-Schwarz argument used in Lanford’s proof. Denote by

Sk :=

k∑
i=1

si

the number of particles added before time τrec,k, so that

Sℓ1 = mλ1
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(denoting abusively τrec,ℓ1 = 0). We get

∑
ãk

∣∣Ck(Ψλ1

)∣∣ ≤
Sk∏

s=Sk−1+1

(
s−1∑
u=1

|vs − vu(ts)|+
ℓ1∑
u=1

|vs − v∗u(ts)|
)

≤
Sk∏

s=Sk−1+1

(
(ℓ1 + s− 1)|vs|+

s−1∑
u=1

|vu(ts)|+
ℓ1∑
u=1

|v∗u(ts)|
)

≤ 1

β
sk/2
0

Sk∏
s=Sk−1+1

(
(ℓ1 +mλ1)(1 + β

1/2
0 |vs|) + β0|Vλ1 |2

)
(8.2.5)

and

(8.2.6)∑
ã

∫
dX∗

ℓ1−1∆∆λ1 1Gε
(
Ψλ1

)
|C
(
Ψλ1

)
| ≤

(
C

β
1/2
0 µε

)ℓ1−1(
1

β0

)mλ1/2
(t+ ε)ℓ1−1

×
∑
T∈Tλ1

∏
j∈λ1

(
β0V2

j +Kj

)dj(T ) mλ1∏
s=1

(
(ℓ1 +mλ1)(1 + β

1/2
0 |vs|) + β0|Vλ1 |2

)
,

for some positive C.

Recall that

exp

(
− β0
16m

|V |2
)
β0|V |2 ≤ Cm.

Combining (8.2.6) with the bound (8.2.1) on H, (8.2.2) and (8.2.3) leads there-

fore to

(8.2.7)∫ ∣∣∣ ∑
a

ℓ∏
i=1

∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)
φρ f

ε0
{1,...,r}(Ψ

ε0
ρ1 , . . . ,Ψ

ε0
ρr)
∣∣∣ dX∗

n

≤ (r − 2)! (CC0)
K exp

(
αn− β0

8
V2
)
εd(r−1)

(
C

β
1/2
0 µε

)n−r
(t+ ε)n−r

×
( r∏
i=1

∑
T∈Tρi

∏
λj∈ρi

(
β0V2

λj
+Kλj

)dλj (T ) )( ℓ∏
i=1

∑
T∈Tλi

∏
j∈λi

(
β0V2

j +Kj

)dj(T ) )

× (m+ n)m
(

1

β0

)m/2 m∏
s=1

(1 + β
1/2
0 |vs|) ,

valid uniformly with respect to all other parameters. Here and below, we

indicate by C a large enough constant, depending only on the dimension d

and changing from line to line. The following step then consists in integrat-

ing (8.2.7) with respect to the remaining parameters (Tm,Ωm, Vm) and V ∗
n
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(with m fixed for the time being). Recalling the condition t1 ≥ t2 ≥ · · · ≥ tm,

we get∫ ∣∣∣ ∑
a

ℓ∏
i=1

∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)
φρ

× f ε0{1,...,r}(Ψ
ε0
ρ1 , . . . ,Ψ

ε0
ρr) dTmdΩmdVm

∣∣∣dZ∗
n

≤ (r − 2)! (CC0)
Kεd(r−1)

(
C

β
1/2
0 µε

)n−r

× (t+ ε)n−r
(CC0t)

m

m!
(m+ n)m

(
1

β0

)m/2
×
∑

T1∈Tρ1

. . .
∑

Tr∈Tρr

∑
T̃1∈Tλ1

. . .
∑

T̃ℓ∈Tλℓ

∫
eαn−

β0
16

V2
m∏
s=1

(1 + β
1/2
0 |vs|)dV ∗

n dVm

× sup
(
exp

(
− β0

16
V2
) ( r∏

i=1

∏
λj∈ρi

(
β0V2

λj
+Kλj

)dλj (Ti))

×
( ℓ∏
i=1

∏
j∈λi

(
β0V2

j +Kj

)dj(T̃i) )) .
Using the facts that∫

exp

(
−β0
16

|w|2
)
β
1/2
0 |w|dw ≤ Cβ

−d/2
0 ,

exp

(
−β0
16

|V |2
)(

β0|V |2 +K
)D ≤ CK (16D)D ,

for positive K,D, we arrive at

(8.2.8)∫ ∣∣∣ ∑
a

ℓ∏
i=1

∆∆λi C
(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)
φρ

× f ε0{1,...,r}(Ψ
ε0
ρ1 , . . . ,Ψ

ε0
ρr) dTmdΩmdVm

∣∣∣dZ∗
n

≤ (r − 2)!

(
Cβ

−1/2
0 (t+ ε)

µε

)n−r
εd(r−1)(CC0 β

− d+1
2

0 t)m(C0e
αβ

−d/2
0 )n

×

 r∏
i=1

∑
T∈Tρi

∏
λj∈ρi

(
dλj (T )

)dλj (T )
 ℓ∏
i=1

∑
T̃∈Tλi

∏
j∈λi

(
dj(T̃ )

)dj(T̃ ) .

For each forest (jungle) we ended up with a factor
∑

T∈Tk
∏k
i=1 (di(T ))

di(T )

where k is the cardinality of the forest (jungle). Applying again Lemma 2.4.1,
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and using that for any integer i

ii

(i− 1)!
≤ i exp(i− 1) ≤ exp(2i),

this number is bounded above by

(k − 2)!
∑

d1,··· ,dk
1≤di≤k−1∑
i di=2(k−1)

k∏
i=1

ddii
(di − 1)!

≤ (k − 2)! e4(k−1)
∑

d1,··· ,dk
1≤di≤k−1∑
i di=2(k−1)

1 .

The last sum is also bounded by Ck. Taking the sum over the number of

created particles m, we arrive at

(8.2.9)

∫ ∣∣∣ ∫ ℓ∏
i=1

[
µ(dΨε

λi
)∆∆λi C

(
Ψε
λi

)
1Gε
(
Ψε
λi

)
H
(
Ψε
λi

)]
× φρ f

ε0
{1,...,r}(Ψ

ε0
ρ1 , . . . ,Ψ

ε0
ρr)
∣∣∣dZ∗

n

≤ (r − 2)!

µn−1
ε

(
CC0e

α β
− d+1

2
0 (t+ ε)

)n(εr−1β
r/2
0

(t+ ε)r

)

×
r∏
i=1

(ri − 2)!
ℓ∏

j=1

(ℓj − 2)!
∑
m

(CC0 β
− d+1

2
0 t)m

valid uniformly with respect to all partitions λ ↪→ ρ, and for t small enough.

Finally, summing (8.2.9) over the partitions λ ↪→ ρ we find (recalling the

convention 0! = (−1)! = 1)

n∑
ℓ=1

∑
λ∈Pℓn

ℓ∑
r=1

∑
ρ∈Prℓ

(r − 2)!

r∏
i=1

(ri − 2)!

ℓ∏
j=1

(ℓj − 2)!

=
n∑
ℓ=1

∑
ℓ1,··· ,ℓℓ≥1∑

i ℓi=n

ℓ∑
r=1

∑
r1,··· ,rr≥1∑

i ri=ℓ

n!

ℓ!ℓ1! . . . ℓℓ!

ℓ!

r!r1! . . . rr!

× (r − 2)!

r∏
i=1

(ri − 2)!

ℓ∏
j=1

(ℓj − 2)!

≤ n!

1 +
∑
r≥2

1

r(r − 1)

2n

.

This concludes the proof of the first two estimates in Theorem 10.
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The third statement (8.0.4) is obtained in a very similar way. If the pseudo-

particle i has no collision nor recollision during [t− δ, t] then

sup
|t−t′|≤δ

|zi(t)− zi(t
′)| ≤ δ|vi(t)| ≤ δ|Vn(t)| .

This is enough to gain a factor δ from the assumption on Hn.

If a collision occurs during [t−δ, t], then by localizing the time integral of this

collision in Duhamel formula, one gets the additional factor δ (with a factor m

corresponding to the symmetry breaking in the time integration dTm).

Finally, it may happen that a recollision occurs during [t − δ, t]. This im-

poses an additional geometric constraint and the recollision time has to be

integrated now in [t − δ, t]. Thus an additional factor δ is also obtained (to-

gether with a factor n corresponding to the symmetry breaking in the time

integration dΘclust
n−1 ). This completes the proof of (8.0.4).

Remark 8.2.1. — Note that the sum over m in (8.2.9) is converging uni-

formly in ε, which means that the contribution of pseudo-trajectories involving

a large number m of created particles can be made as small as needed. In

particular, to study the convergence as ε → 0, it will be enough to look at

pseudo-trajectories with a controlled number of added particles.





CHAPTER 9

MINIMAL TREES AND CONVERGENCE OF

THE CUMULANTS

The goal of this chapter is to prove Theorem 5 p. 54, which can be restated

as follows.

Theorem 11. — Let Hn : (D([0,+∞[))n 7→ R be a continuous factorized

function Hn(Zn([0, t])) =
∏n
i=1H

(i)(zi([0, t])) such that

(9.0.1)
∣∣Hn(Zn([0, t]))

∣∣ ≤ exp
(
αn+

β0
4

sup
s∈[0,t]

|Vn(s)|2
)
,

with β0 defined in (1.1.5).

Then the scaled cumulant f εn,[0,t](Hn) converges for any t ≤ T0 to the limiting

cumulant introduced in (5.1.4)

fn,[0,t](Hn) =
∑
T∈T ±

n

∑
m

∑
a∈A±

n,m

∫
dµsing,T,a(Ψn,m)H(Ψn,m)f

0⊗(n+m)(Ψ0
n,m) .

After some preparation in Section 9.1, we present in Section 9.2 the lead-

ing order asymptotics of f εn,[0,t](H
⊗n) by eliminating all pseudo-trajectories

involving non clustering recollisions and overlaps. Section 9.3 is devoted to the

conclusion of the proof, by estimating the discrepancy between the remaining

pseudo-trajectories Ψε
n and their limits Ψn.

9.1. Truncation of cumulants

An inspection of the arguments in the previous chapter shows that initial

clusterings are negligible compared to dynamical clusterings. Indeed Esti-

mate (8.2.9) shows that the leading order term in the cumulant decomposition

(4.4.1) corresponds to choosing r = 1: this term is indeed of order

Cnn!(t+ ε)n−1
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while the error is smaller by one order of ε. We are therefore reduced to

studying

µn−1
ε

n∑
ℓ=1

∑
λ∈Pℓn

∫ ( ℓ∏
i=1

dµ
(
Ψε
λi

)
H
(
Ψε
λi

)
∆∆λi

)
φ{1,...,ℓ} f

ε0
{1}(Ψ

ε0
ρ1) .

We shall furthermore consider only trees of controlled size m ≤ m0 and

pseudo-trajectories with controlled energy V2 := (V ∗
n )

2 + V 2
m ≤ V2

0,

(9.1.1)
f ε,m0

n,[0,t](H
⊗n) := µn−1

ε

×
n∑
ℓ=1

∑
λ∈Pℓn

∫
dZ∗

n

∫
1V≤V0

ℓ∏
i=1

[
dµm0(Ψ

ε
λi
)∆∆λiH

(
Ψε
λi

)]
φ{1,...,ℓ} f

ε0
{1}(Ψ

ε0
ρ1) ,

where the measure on the pseudo-trajectories is defined as in (3.3.5) by

dµm0(Ψ
ε
λi
)

:=
∑

mi≤m0

∑
a∈A±

λi,mi

dTmidΩmidVmi 1Gε(Ψ
ε
λi
)

mi∏
k=1

(
sk
((
vk − vak(tk)

)
· ωk

)
+

)
.

Then by Remark 8.2.1, we have

(9.1.2) lim
m0→∞

∣∣f εn,[0,t](H⊗n)− f ε,m0

n,[0,t](H
⊗n)
∣∣ = 0 uniformly in ε .

Next let us define

f̃ εn,[0,t](H
⊗n)

:= µn−1
ε

n∑
ℓ=1

∑
λ∈Pℓn

∫
dZ∗

n

∫ ℓ∏
i=1

[
dµ(Ψε

λi
)∆̃∆λiH

(
Ψε
λi

)]
φ̃{1,...,ℓ} f

ε0
{1}(Ψ

ε0
ρ1),

where ∆̃∆λi is the characteristic function supported on the forests λi having

exactly |λi|−1 recollisions, and φ̃{1,...,ℓ} is supported on jungles having exactly

ℓ− 1 regular overlaps, so that

— all recollisions and overlaps are clustering;

— all overlaps are regular in the sense of Remark 8.1.3.

Since f̃ εn,[0,t](H
⊗n) is defined simply as the restriction of f εn,[0,t](H

⊗n) to some

pseudo-trajectories (with a special choice of initial data), the same estimates

as in the previous chapter show that

|f̃ εn,[0,t](H⊗n)| ≤ Cnn!(t+ ε)n−1 .
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Furthermore, defining its truncated counterpart

f̃ ε,m0

n,[0,t](H
⊗n)

:= µn−1
ε

n∑
ℓ=1

∑
λ∈Pℓn

∫
dZ∗

n

∫
1V≤V0

ℓ∏
i=1

[
dµm0(Ψ

ε
λi
)∆̃∆λiH

(
Ψε
λi

)]
φ̃{1,...,ℓ} f

ε0
{1}(Ψ

ε0
ρ1),

there holds

(9.1.3) lim
m0→∞

∣∣f̃ εn,[0,t](H⊗n)− f̃ ε,m0

n,[0,t](H
⊗n)
∣∣ = 0 uniformly in ε .

The limits (9.1.2) and (9.1.3) imply that it is enough to prove that the

truncated decompositions f ε,m0

n,[0,t](H
⊗n) and f̃ ε,m0

n,[0,t](H
⊗n) are close: we shall

indeed see in the next section that non clustering recollisions or overlaps as

well as non regular overlaps induce some extra smallness.

Note finally that the estimates provided in Theorem 10 show that the se-

ries f εn,[0,t](H
⊗n)/n! converges uniformly in ε for t ≤ Tα, so a termwise (in n)

convergence as ε → 0 is sufficient for our purposes. We therefore shall make

no attempt at optimality in the dependence of the constants in n, α,C0, β0 in

this chapter.

9.2. Removing non clustering recollisions/overlaps and non regular

overlaps

Let us now estimate |f ε,m0

n,[0,t](H
⊗n) − f̃ ε,m0

n,[0,t](H
⊗n)|. We first show how to

express non clustering recollisions/overlaps as additional constraints on the

set of integration parameters (Z∗
n, Tm, Vm,Ωm). This argument is actually very

similar to the argument used to control (internal) recollisions in Lanford’s proof

(which focuses primarily on the expansion of the first cumulant).

Proposition 9.2.1. — There is a constant C (depending on α,C0, β0,m0,V0)

such that ∣∣f ε,m0

n,[0,t](H
⊗n)− f̃ ε,m0

n,[0,t](H
⊗n)
∣∣ ≤ Cn(t+ 1)n+d−1n!ε1/8 .

In the coming section we discuss one elementary step, which is the estimate

of a given non clustering event, by treating separately different geometrical

cases – we shall actually only deal with non clustering recollisions, the case

of overlaps being simpler. Then in Section 9.2.2 we apply the argument to

provide a global estimate.
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9.2.1. Additional constraint due to non clustering recollisions and

overlaps. — We consider a partition λ of {1∗, . . . , n∗} in ℓ forests λ1, . . . , λℓ.

We fix the velocities V ∗
n , as well as the collision parameters (Tm, Vm,Ωm),

with m ≤ m0ℓ. As in Section 8.1 we denote by V2 := (V ∗
n )

2 + V 2
m (twice) the

total energy and by K = n+m the total number of particles, and by V2
i and

Ki the energy and number of particles of the collision tree Ψε
{i} with root at z∗i .

Let us consider a pseudo-trajectory (compatible with λ) involving a non

clustering recollision. We denote by trec the time of occurrence of the first

non clustering recollision (going backwards in time) and we denote by q, q′ ∈
{1∗, . . . , n∗} ∪ {1, . . . ,m} the labels of the two particles involved in that rec-

ollision. By definition, they belong to the same forest, say λ1, and we denote

by Ψε
{i} and Ψε

{i′} their respective trees (note that it may happen that i = i′

in the case of an internal recollision).

The recollision between q and q′ imposes strong constraints on the history

of these particles, especially on the first deflection of the couple q, q′, moving

up the forest (thus forward in time) towards the root. These constraints can

be expressed by different equations depending on the recollision scenario.

Self-recollision. Let us assume that moving up the tree starting at the recol-

lision time, the first deflection of q and q′ is between q and q′ themselves at

time t̄: this means that the recollision occurs due to periodicity in space.

q

q̄
q̄′

time trec

time t̄ = τk

q′

time t̄
C R

q̄

time trec

q
q′

Figure 13. The first deflection of q and q′ can be either the creation

of one of them (say q), or a clustering recollision.

This has a very small cost, as described in the following proposition (with

the notation of Section 8.1).

Proposition 9.2.2. — Let q and q′ be the labels of the two particles recolliding

due to space periodicity, and denote by t̄ the first time of deflection of q and q′,

moving up their respective trees from the recollision time. The following holds:

— If q is created next to q′ at time t̄ with collision parameters ω̄ and v̄, and

if v̄q is the velocity of q at time t̄+, then denoting by Ψε
{i} their collision

tree there holds∫
1Self-recollision with creation of q at time t̄

∣∣(v̄− v̄q
)
· ω̄
∣∣dt̄dω̄dv̄ ≤ C

µε
V2d+1
0 (1+ t)d+1 .
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— If t̄ corresponds to the k-th clustering recollision in Ψε
λ1
, between the

trees Ψε
{jk} and Ψε

{j′k}
, then∫

1Self-recollision with a clustering recollision at time t̄ dx̂k ≤
C

µ2ε
(V0(1 + t))d+1 .

Note that in the first case the admissible collision parameters (t̄, ω̄, v̄) belong

to a small set of size O(t/µε). In the second case, the condition is expressed in

terms of the root x̂k with the notation of Section 8.1: it is not independent of

the condition (8.1.6) defining Bqq′ , but it reinforces it as the estimate provides

a factor 1/µ2ε instead of 1/µε.

Generic non clustering recollision. Without loss of generality, we may assume

that the first deflection moving up the tree from time trec involves q. We denote

by t̄ the time of that first deflection and by c ̸= q, q′ the particle involved in

the collision with q (see Figure 14). The parent q̄ of q is the particle q or c

existing at time t̄+, and we denote by v̄q the velocity of q̄ at time t̄+ . Similarly

we denote by v̄q′ the velocity of particle q′ at time t̄.

time t̄

time trec

c

q

q′

q̄

C

c
q

q′

q̄
c̄

R

time trec

time t̄ = τk

Figure 14. The first deflection of q can be either a collision, or a

clustering recollision.

The result is the following.

Proposition 9.2.3. — Let q and q′ be the labels of the two particles involved

in the first non clustering recollision. Assume that the first deflection moving

up their trees from time trec involves q and a particle c ̸= q′, at some time t̄.

Then with the above notation

— If t̄ is the creation time of q (or c), denoting by ω̄ and v̄ the corresponding

collision parameters, by Ψε
{i} their collision tree and by Ψε

{i′} the collision

tree of q′, there holds∫
1Recollision with a creation at time t̄

∣∣(v̄ − v̄q(t̄)) · ω̄
∣∣dt̄dω̄dv̄

≤ CV2d+ 3
2

0 (1 + t)d+
1
2 min

(
1,

ε1/2

|v̄q − v̄q′ |

)
.
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— If t̄ corresponds to the k-th clustering recollision in Ψε
λ1
, between Ψε

{jk}
and Ψε

{j′k}
, and if Ψε

{i′} is the collision tree of q′, then∫
1Recollision with a clustering recollision at time t̄dx̂k ≤

C

µε
V

3
2
0 (1+t)

1
2 min

(
1,

ε1/2

|v̄q − v̄q′ |
)
.

Note that as in the periodic situation, the recollision condition in the first

case provides some smallness on the set of admissible parameters (t̄, ω̄, v̄), while

the recollision condition in the second case is expressed in terms of the root x̂k,

and reinforces the condition (8.1.6) defining Bqq′ by a factor ε1/2. However

in both cases the estimate involves a singularity in velocities that has to be

eliminated.

The geometric analysis of these scenarios and the proof of Propositions 9.2.2

and 9.2.3 are postponed to Section 9.4. The estimates in the first case were

actually already proved in [9], while the second one (the case of a clustering

recollision) requires a slight adaptation.

Elimination of the singularity. It finally remains to eliminate the singular-

ity 1/|v̄q − v̄q′ |, using the next deflection moving up the tree. Note that

this singularity arises only if the first non clustering recollision is not a

self-recollision, which ensures that the recolliding particles have at least two

deflections before the non clustering recollision. The result is the following.

Proposition 9.2.4. — Let q and q′ be the labels of two particles with veloci-

ties vq and vq′, and denote by t̄ the time of the first deflection of q or q′ moving

up their trees.

— If the deflection at t̄ corresponds to a collision in a tree Ψε
{i} with param-

eters ω̄, v̄, then∫
1Recollision with a creation at time t̄ min

(
1,

ε1/2

|vq − vq′ |

) ∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dv̄dω̄

≤ CtVd+1
0 ε

1
8 .

— if t̄ corresponds to the k-th clustering recollision in the tree Ψε
λ1
, be-

tween Ψε
{jk} and Ψε

{j′k}
, then∫

min

(
1,

ε1/2

|vq − vq′ |

)
dx̂k ≤

Cε
1
8V0t

µε
·

The proposition is also proved in Section 9.4 of this chapter.

9.2.2. Removing pathological cumulant pseudo-trajectories. —

Proof of Proposition 9.2.1. — We first consider the case of pathological

pseudo-trajectories involving a non regular clustering overlap. By definition
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(see Remark 8.1.3), this means that the corresponding τov has to be equal

either to t or to the creation time of one of the overlapping particles. In other

words, instead of being a union of tubes of volume O((t + ε)/µε), the set B̃k
describing the k-th clustering overlap (see (8.1.13)) reduces to a union of balls

of volume O(εd), so that

|B̃k| ≤ CεdKλ[k]Kλ′
[k]
.

The non clustering condition is therefore reinforced and we gain additional

smallness.

Let us now consider the case of pathological pseudo-trajectories involving

some non clustering recollision/overlap. We can assume without loss of gen-

erality that the first non clustering recollision (recall that we leave the case of

regular overlaps to the reader) occurs in the forest λ1 = {1, . . . , ℓ1}. The com-

patibility condition on the jungles gives smallness when integrating over the

roots of the jungles (see (8.2.3)). The compatibility condition on the forests

λ2, . . . , λℓ is obtained by integrating (8.2.4) as in Section 8.2. We now have to

combine the recollision condition with the compatibility conditions on λ1 to

obtain the desired estimate. As in the previous chapter, we denote by ã the

restriction of the tree a to λ1, and by ãk, Ck the tree variables and the cross

section factors associated with the sk creations occurring in the time interval

(τrec,k, τrec,k−1).

We start from (8.2.4), adding the recollision condition: we get∑
ã

∫
dx∗λ1,1 . . . dx

∗
λ1,ℓ1−1∆∆λ1 1G

(
Ψε
λ1

)
|C
(
Ψε
λ1

)
|1Ψελ1has a non clustering recollision

≤
∑
ã1

|C1
(
Ψε
λ1

)
|
∫
dx̂11B1

∑
ã2

|C2
(
Ψε
λ1

)
|
∫
dx̂2 . . .

×
∫
dx̂ℓ1−11Bℓ1−1

∑
ãℓ1

|Cℓ1
(
Ψε
λ1

)
|1Ψελ1has a non clustering recollision .

As shown in the previous section, the set of parameters leading to the addi-

tional recollision can be described in terms of a first deflection at a time t̄.

We then have to improve the iteration scheme of Section 8.2, on the time in-

terval [τrec,k, τrec,k+1] containing the time t̄. There are two different situations

depending on whether the time t̄ corresponds to a creation, or to a clustering

recollision.

If t̄ corresponds to a creation of a particle, say c, the condition on the

recollision can be expressed in terms of the collision parameters (t̄, v̄, ω̄) =

(tc, vc, ωc). We therefore proceed as follows
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— use (8.2.5) to control the collision cross sections
∣∣Cj(Ψε

λ1

)∣∣ for integration
variables indexed by s ∈ {c+ 1, . . . , Sj};

— use the integral with respect to t̄, ω̄, v̄ to gain a factor

C(1 + V0)
2d+3/2(1 + t)d+1/2min

(
1,

ε1/2

|v̄q − vq′ |

)
by Proposition 9.2.3. Note that the geometric condition for the recollision

between q and q′ does not depend on the parameters which have been

integrated already at this stage, and to simplify from now on all velocities

are bounded by V0;

— use (8.2.5) to control the collision cross sections
∣∣Cj(Ψε

λ1

)∣∣ for s ∈ {Sj−1+

1, . . . , c− 1};
— use the integral with respect to x̂j to gain smallness due to the clustering

recollision.

Note that, since t̄ is dealt with separately, we shall lose a power of t as well as

a factor m ≤ ℓm0 in the time integral. We shall also lose another factor K2

corresponding to all possible choices of recollision pairs (q, q′): at this stage

we shall not be too precise in the control of the constants in terms of n, m0

and V0, contrary to the previous chapter.

If t̄ = τrec,k corresponds to a clustering recollision, we use the same iteration

as in Section 8.2:

— use (8.2.5) to control the collision cross sections
∣∣Ck(Ψε

λ1

)∣∣;
— use the integral with respect to x̂k to gain some smallness due to the

clustering recollision, multiplied by the additional smallness due to the

non clustering recollision.

As in the first case, we shall lose a factor K2 corresponding to all possible

choices of recollision pairs.

After this first stage, we still need to integrate the singularity with respect

to velocity variables, which requires introducing the next deflection (moving

up the root).

We therefore perform the same steps as above, but integrate the singularity

min

(
1,

ε1/2

|vq − vq′ |

)
by using Proposition 9.2.4.

Remark 9.2.5. — Note that it may happen that the two deflection times used

in the process are in the same time interval [τrec,k, τrec,k+1], which does not bring

any additional difficulty. We just set apart the two corresponding integrals in

the collision parameters if both correspond to the creation of new particles.
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Integrating with respect to the remaining variables in (Tm,Ωm, Vm) and

following the strategy described above leads to the bound

(9.2.1)∣∣∣∣∣
∫ (

ℓ∏
i=1

∆∆λi C
(
Ψε
λi

)
1G
(
Ψε
λi

)
H
(
Ψλi

))
φ{1,...,ℓ}f

ε0
{1}1Bε dTmdΩmdVmdZ

∗
n

∣∣∣∣∣
≤ ℓ!ε

1
8 (ℓm0)

4Cn
(
(t+ ε)

µε

)n−1

(Ct)m(1 + t)d ,

denoting by Bε the set of integration parameters leading to pathological cu-

mulant pseudo-trajectories :

(9.2.2)

Bε :=
{
(Z∗

n,m, Tm,Ωm, Vm) : m ≤ ℓm0, V ≤ V0

and Ψε has a non clustering recollision/overlap or a non regular overlap
}
.

Finally summing over m ≤ ℓm0 and over all possible partitions, we find

∀n ≥ 1,
∣∣f ε,m0

n,[0,t](H
⊗n)− f̃ ε,m0

n,[0,t](H
⊗n)
∣∣ ≤ Cn(t+ 1)n+d−1n!ε1/8 ,

where C depends on C0, α, β0, m0 and V0. This concludes the proof of Propo-

sition 9.2.1.

9.3. Convergence of the cumulants

In order to conclude the proof of Theorem 11, we now have to compare

f̃ ε,m0

n,[0,t](H
⊗n) and fn,[0,t](H

⊗n) defined in (5.1.4) as

fn,[0,t](H
⊗n) =

∑
T∈T ±

n

∑
m

∑
a∈A±

n,m

∫
dµsing,T,a(Ψn,m)H(Ψn,m)

(
f0
)⊗(n+m)

(Ψ0
n,m) .

The comparison will be achieved by coupling the pseudo-trajectories and this

requires discarding the pathological trajectories leading to non clustering recol-

lisions/overlaps and non regular overlaps. Thus we define the modified limiting

cumulants by restricting the integration parameters to the set Gε, which avoids

internal overlaps in collision trees of the same forest at the creation times, and

by removing the set Bε introduced in (9.2.2)

f̃m0

n,[0,t](H
⊗n) :=

∑
T∈T ±

n

∑
m

∑
a∈A±

n,m

∫
dµm0

sing,T,a(Ψn,m)

×H(Ψn,m)1Gε\Bε
(
f0
)⊗(n+m)

(Ψ0
n,m) ,

where dµm0
sing,T,a stands for the measure with at most m0 collisions in each

forest. We stress the fact that f̃m0

n,[0,t](H
⊗n) depends on ε only through the sets
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Bε and Gε. We are going to check that

(9.3.1) lim
m0→∞

lim
ε→0

|fn,[0,t](H⊗n)− f̃m0

n,[0,t](H
⊗n)| = 0 .

The analysis of the two previous sections may be performed for the limiting

cumulants so that restricting the number of collisions to be less than m0 in

each forest and the integration parameters outside the set Bε leads to a small

error. The control of internal overlaps, associated with Gε, relies on the same

geometric arguments as discussed in Section 9.2.1: indeed, in order for an

overlap to arise when adding particle k at time tk, one should already have a

particle which is at distance less than 2ε from particle ak, which is a generalized

recollision situation (replacing ε by 2ε). This completes (9.3.1).

In order to compare f̃m0

n,[0,t](H
⊗n) and f̃ ε,m0

n,[0,t](H
⊗n), we first compare the

initial measures, namely f ε0{1} with (f0)⊗(n+m). This is actually an easy matter

as returning to (8.1.18) we see that the leading order term in the decomposition

of f ε0{1} is F 0
n+m, which is well known to tensorize asymptotically as µε goes to

infinity (for fixed n+m), as stated by the following proposition.

Proposition 9.3.1 ([28]). — If f0 satisfies (1.1.5), there exists C > 0 such

that

∀m,
∣∣∣ (F 0

m −
(
f0
)⊗m)

1Dmε (Zm)
∣∣∣ ≤ Cmε e−

3β0
8

|Vm|2 .

At this stage, we are left with a final discrepancy between f̃m0

n,[0,t](H
⊗n)

and f̃ ε,m0

n,[0,t](H
⊗n) which is due to the initial data and H being evaluated at

different configurations (namely Ψn and Ψε
n). We then need to introduce a

suitable coupling.

In Chapter 5, we used the change of variables (5.1.1) to reparametrize the

limiting pseudo-trajectories in terms of x∗n, V
∗
n and n−1 recollision parameters

(times and angles). In the same way, for fixed ε, we can use the parametriza-

tion of clustering recollisions (4.4.5) and of regular clustering overlaps (8.1.14)

to reparametrize the non pathological pseudo-trajectories in terms of x∗n, V
∗
n

and n − 1 recollision parameters (times and angles). The cumulant pseudo-

trajectories Ψε
n,m associated with the minimally connected graph T ∈ T ±

n and

tree a ∈ A±
n,m are obtained by fixing x∗n and V ∗

n ,

— for each e ∈ E(T ), a representative {qe, q′e} ≈ e,

— a collection of m ordered creation times Tm, and parameters (Ωm, Vm);

— a collection of clustering times and angles (τ cluste , ωclust
e )e∈E(T ).

At each creation time tk, particle k is adjoined at position xak(tk) + εωk and

with velocity vk:

— if sk = +, then the velocities vk and vak are changed to vk(t
−
k ) and vak(t

−
k )

according to the laws (3.2.1),
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— then all particles follow the backward free flow until the next creation or

clustering time.

For Ψn,m to be admissible, at each time τ cluste the particles qe and q′e have to

collide with the following rules xqe(τ
clust
e )− xq′e(τ

clust
e ) = εωclust

e :

— if se = +, then the velocities vqe and vq′e are changed according to the

scattering rule, with scattering vector ωclust
e ;

— then all particles follow the backward free flow until the next creation or

clustering time.

As in (5.1.3), we define the measure for each tree a ∈ A±
n,m and each mini-

mally connected graph T ∈ T ±
n

(9.3.2)

dµεsing,T,a := dTmdΩmdVmdx
∗
ndV

∗
n dΘ

clust
n−1 dω

clust
n−1

m∏
i=1

si
(
(vi − vaj (ti) · ωi

)
+

×
∏

e∈E(T )

∑
{qe,q′e}≈e

scluste

(
(vqe(τ

clust
e )− vq′e(τ

clust
e )) · ωclust

e

)
+
1Gε\Bε

denoting by Θclust
n−1 and Ωclust

n−1 the n− 1 clustering times τ cluste and angles ωclust
e

for e ∈ E(T ).

We can therefore couple the pseudo-trajectories Ψn and Ψε
n by their (iden-

tical) collision and clustering parameters. The error between the two configu-

rations Ψε
n and Ψn is due to the fact that collisions, recollisions and overlaps

become pointwise in the limit but generate a shift of size O(ε) for fixed ε. We

then have

|Ψε
n(τ)−Ψn(τ)| ≤ C(n+m) ε for all τ ∈ [0, t] .

Such discrepancies concern only the positions, as the velocities remain equal

in both flows.

It follows that∣∣∣ (f0)⊗(n+m)
(Ψε0

n )−
(
f0
)⊗(n+m)

(Ψ0
n)
∣∣∣ ≤ Cn,m0εe

− 3β
8
|Vm+n|2 ,

having used the Lipschitz continuity (1.1.5) of f0. Using the same reasoning

for H (assumed to be continuous), we find finally that for all n,m0

lim
ε→0

|f̃ ε,m0

n,[0,t](H
⊗n)− f̃m0

n,[0,t](H
⊗n)| = 0 .

This result, along with Proposition 9.2.1, Estimates (9.1.2), (9.1.3) and (9.3.1)

proves Theorem 11.

9.4. Analysis of the geometric conditions

In this section we prove Propositions 9.2.2 to 9.2.4. Without loss of gener-

ality, we will assume that V0t is larger than 1.
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Self-recollision: proof of Proposition 9.2.2. Denote by q, q′ the recol-

liding particles. By definition of a self-recollision, their first deflection (going

forward in time) involves both particles q and q′. It can be either a creation

(say of q without loss of generality, in the tree Ψε
{i} of q′), or a clustering

recollision between two trees (say Ψε
{jk} and Ψε

{j′k}
in Ψε

λ1
) (see Figure 13).

If the first deflection corresponds to the creation of q, we denote by (t̄, ω̄, v̄)

the parameters encoding this creation. We also denote by v̄q the velocity of

the parent q̄ just before the creation in the backward dynamics, and by Ψε
{i}

the collision tree of q′ (and q). Denoting by vq and vq′ the velocities of q and q
′

after adjunction of q (in the backward dynamics) there holds

(9.4.1) εω̄ + (vq − vq′)(trec − t̄) = εωrec + ζ with ζ ∈ Zd \ {0}
which implies that vq − vq′ has to belong to the intersection Kζ of a cone of

opening ε with a ball of radius 2V0.

Note that the number of ζ’s for which the sets are not empty is at

most O
(
Vd0td

)
.

— If the creation of q is without scattering, then vq − vq′ = v̄ − v̄q has to

belong to the union of the Kζ ’s, and∫
1Self-recollision with creation at time t̄ without scattering

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄

≤ CVd0td sup
ζ

∫
1v̄−v̄q∈Kζ

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄ ≤ Cεd−1V0

d(Vd+1
0 t) .

— If the creation of q is with scattering, then vq−vq′ = v̄−v̄q−2(v̄−v̄q)·ω̄ ω̄
has to belong to the union of the Kζ ’s. Equivalently v̄ − v̄q lies in the

union of the Sω̄Kζ ’s (obtained from Kζ by symmetry with respect to ω̄),

and there holds∫
1Self-recollision with creation at time t̄ with scattering

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄

≤ CVd0td sup
ζ

∫
1v̄−v̄q∈Sω̄Kζ

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄ ≤ Cεd−1Vd0(Vd+1

0 t) .

If the first deflection corresponds to the k-th clustering recollision between

Ψε
{jk} and Ψε

{j′k}
in the forest Ψε

λ1
for instance, in addition to the condition

x̂k ∈ Bqq′ which encodes the clustering recollision (see Section 8.1), we obtain

the condition

(9.4.2)
εωrec,k + (vq − vq′)(trec − τrec,k) = εωrec + ζ with ζ ∈ Zd

and vq − vq′ = v̄q − v̄q′ − 2(v̄q − v̄q′) · ωrec,k ωrec,k

denoting by v̄q, v̄q′ the velocities before the clustering recollision in the back-

wards dynamics, and by ωrec,k the impact parameter at the clustering recolli-

sion. We deduce from the first relation that vq − vq′ has to be in a small cone
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Kζ of opening ε, which implies by the second relation that ωrec,k has to be in

a small cone Sζ of opening ε.

Using the change of variables (5.1.1), it follows that∫
1Self-recollision with clustering at time t̄ dx̂k

≤ Cεd−1t
∑
ζ

∫
1ωrec,k∈Sζ

(
(v̄q − v̄q′) · ωrec,k

)
dωrec,k

≤ Cε2(d−1) (tV0)
d+1 .

This concludes the proof of Proposition 9.2.2.

Non clustering recollision: proof of Proposition 9.2.3

Denote by q, q′ the recolliding particles. Without loss of generality, we can

assume that the first deflection (when going up the tree) involves only particle

q, at some time t̄. It can be either a creation (with or without scattering), or

a clustering recollision.

If the first deflection of q corresponds to a creation, we denote by (t̄, ω̄, v̄)

the parameters encoding this creation, and by (x̄q, v̄q) the position and velocity

of the parent q̄ before the creation in the backward dynamics. Note that locally

in time (up to the next deflection) v̄q is constant, and x̄q is an affine function. In

the same way, denoting by (x̄q′ , v̄q′) the position and velocity of the particle q′,

we have that v̄q′ is locally constant while x̄q′ is affine.

There are actually three subcases :

(a) particle q is created without scattering : vq = v̄ ;

(b) particle q is created with scattering : vq = v̄ + (v̄ − v̄q) · ω̄ ω̄ ;

(c) another particle is created next to q, and q is scattered :

vq = v̄q + (v̄ − v̄q) · ω̄ ω̄.

The equation for the recollision states

(9.4.3)
x̄q(t̄) + εω̄ − x̄q′(t̄) + (vq − v̄q′)(trec − t̄) = εωrec + ζ in cases (a)-(b),

x̄q(t̄)− x̄q′(t̄) + (vq − v̄q′)(trec − t̄) = εωrec + ζ in case (c) .

We fix from now on the parameter ζ ∈ Zd∩BV0t encoding the periodicity, and

the estimates will be multiplied by Vd0td at the very end. Define

δx :=
1

ε
(x̄q′(t̄)− εω̄ − x̄q(t̄) + ζ) =: δx⊥ +

1

ε
(v̄q′ − v̄q)(t̄− t0) in cases (a)-(b) ,

δx :=
1

ε
(x̄q′(t̄)− x̄q(t̄) + ζ) =: δx⊥ +

1

ε
(v̄q′ − v̄q)(t̄− t0) in case (c) ,

τrec := (trec − t̄)/ε and τ := (t̄− t0)/ε ,



154 CHAPTER 9. MINIMAL TREES AND CONVERGENCE OF THE CUMULANTS

where δx⊥ is orthogonal to v̄q′ − v̄q (this constraint defines the parameter t0).

Then (9.4.3) can be rewritten

(9.4.4) vq − v̄q′ =
1

τrec

(
ωrec + δx⊥ + τ(v̄q′ − v̄q)

)
.

We know that vq − v̄q′ belongs to a ball of radius V0. If |τ(v̄q′ − v̄q)| ≥ 2, the

triangular inequality gives

1

2τrec

∣∣τ(v̄q′ − v̄q)
∣∣ ≤ 1

τrec

∣∣∣ωrec + δx⊥ + τ(v̄q′ − v̄q)
∣∣∣ = |vq − v̄q′ | ≤ V0

and we deduce that

1

τrec
≤ 2V0

|τ ||v̄q′ − v̄q|

hence, by (9.4.4), vq − v̄q′ belongs to a cylinder of main axis δx⊥ +

τ(v̄q′ − v̄q) and of width 2V0/|τ ||v̄q − v̄q′ |. In any case, (9.4.4) forces

vq − v̄q′ to belong to a cylinder Rζ of main axis δx⊥ + τ(v̄q′ − v̄q) and of

width CV0min
(

1
|τ ||v̄q−v̄q′ |

, 1
)
. In any dimension d ≥ 2, the volume of this

cylinder is less than CVd0 min
(

1
|τ ||v̄q−v̄q′ |

, 1
)
.

Case (a). Since vq = v̄, Equation (9.4.4) forces v̄ − v̄q′ to belong to the cylin-

der Rζ . Recall that τ is a rescaled time, with

|(v̄q − v̄q′)τ | ≤
t

ε
|v̄q − v̄q′ |+ |δx∥| ≤

C

ε
(V0t+ 1) .

Then ∫
|v̄|≤V0

1v̄−v̄q′∈Rζ

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄

≤ CVd+1
0

∫ C(V0t+1)/ε

−C(V0t+1)/ε
min

(
1

|u| , 1
)
ε

du

|v̄q − v̄q′ |

≤ CVd+1
0

ε
(
| log(V0t+ 1)|+ | log ε|

)
|v̄q − v̄q′ |

·

Cases (b) and (c). By definition, vq belongs to the sphere of diameter [v̄, v̄q].

The intersection I of this sphere and of the cylinder v̄q′ + R is a union of

spherical caps, and we can estimate the solid angles of these caps.

A basic geometrical argument shows that ω̄ has therefore to be in a union

of solid angles of measure less than Cmin
(( V0

|τ ||v̄q−v̄q′ ||v̄q−v̄|
)1/2

, 1
)
. Integrating
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θ ≤ θmax ≤ C
(
η
R

)1/2

η

R

θmax

Figure 15. Intersection of a cylinder and a sphere. The solid angle

of the spherical caps is less than Cd min(1, (η/R)1/2).

first with respect to ω̄ and v̄, then with respect to t̄, we obtain∫
|v̄|≤V0

1vq∈I
∣∣(v̄ − v̄q) · ω̄

∣∣dt̄dω̄dv̄
≤ CVd+1

0

∫ C(V0t+1)/ε

−C(V0t+1)/ε
min

( 1

|u|1/2 , 1
)
ε

du

|v̄q − v̄q′ |

≤ CVd+
3
2

0

ε1/2t
1
2

|v̄q − v̄q′ |
·

We obtain finally that∫
1Recollision of type (a)(b)(c)

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄ ≤ CV2d+ 3

2
0 (1 + t)d+

1
2

ε
1
2

|v̄q − v̄q′ |
·

If the first deflection of q corresponds to a clustering recollision. With the

notation of Section 8.1 we assume the clustering recollision is the k-th rec-

ollision in Ψε
λ1

between the trees Ψε
jk

and Ψε
j′k
, involving particles q ∈ Ψε

{jk}
and c ∈ Ψε

{j′k}
(with c ̸= q′) at time t̄ = τrec,k. Then in addition to the condition

x̂k ∈ Bqc

which encodes the clustering recollision (see Section 8.1), we obtain the condi-

tion

(9.4.5)

(
x̄q(τrec,k)− xq′(τrec,k)

)
+ (vq − v̄q′)(trec − τrec,k) = εωrec + ζ ,

and vq = v̄q − (v̄q − v̄c) · ωrec,k ωrec,k
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denoting by (x̄q, v̄q) and (x̄c, v̄c) the positions and velocities of q and c before the

clustering recollision (in the backward dynamics). Note that, as previously, v̄q
and v̄c are locally constant. Defining as above

δx :=
1

ε
(x̄q(τrec,k)− xq(τrec,k) + ζ) =: δx⊥ + (v̄q′ − v̄q)(τrec,k − t0)/ε

with δx⊥ ⊥ (v̄q′ − v̄q) ,

and the rescaled times

τrec := (trec − τrec,k)/ε and τ =: (τrec,k − t0)/ε ,

we end up with the equation (9.4.4), which forces vq − v̄q′ to belong to a

cylinder R of main axis δx⊥−τ(v̄q− v̄q′) and of width CV0min
(

1
|τ(v̄q−v̄q′ )|

, 1
)
,

where Ψε
{i′} is the collision tree of q′. Then vq has to be in the intersection of

the sphere of diameter [v̄q, v̄c] and of the cylinder v̄q′ + R. This implies that

ωrec,k has to belong to a union of spherical caps S, of solid angle less than

Cmin
(( V0

|τ ||v̄q−v̄q′ ||v̄q−v̄c|
)1/2

, 1
)
. Using the (local) change of variables x̂k 7→

(τrec,k, εωrec,k), it follows that∫
1Recollision of type (d)dx̂k ≤

C

µε

∫
1ωrec,k∈S |(v̄q − v̄c) · ωrec,k|dωrec,kdτrec,k

≤ C

µε
V0

3
2 (1 + t)

1
2

ε1/2

|v̄q − v̄q′ |
·

This concludes the proof of Proposition 9.2.3.

Integration of the singularity in velocities: proof of Proposition 9.2.4

We start with the obvious estimate

(9.4.6) min
(
1,

ε1/2

|vq − vq′ |
)
≤ ε

1
4 + 1|vq−vq′ |≤ε1/4 .

Thus we only need to control the set of parameters leading to small relative

velocities.

Without loss of generality, we shall assume that the first deflection (when

going up the tree) involves particle q. It can be either a creation (with or

without scattering), or a clustering recollision, say between q ∈ Ψε
{jk} and

c ∈ Ψε
{j′k}

.

If the first deflection of q corresponds to a creation, we denote by (t̄, ω̄, v̄)

the parameters encoding this creation, and by (x̄q, v̄q) and (x̄q′ , v̄q′) the posi-

tions and velocities of the pseudo-particles q and q′ before the creation.

There are actually four subcases :

(a) particle q′ is created next to particle q in the tree Ψε
{i}: |vq−vq′ | = |v̄−v̄q|;

(b) particle q′ is not deflected and particle q is created without scattering

next to q̄ in the tree Ψε
{i}: |vq − vq′ | = |v̄ − v̄q′ | ;
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(c) particle q′ is not deflected and particle q is created with scattering next

to q̄ in the tree Ψε
{i}: vq = v̄ − (v̄ − v̄q) · ω̄ ω̄ ;

(d) particle q′ is not deflected, another particle is created next to q in the

tree Ψε
{i}, and q is scattered so vq = v̄q + (v̄ − v̄q) · ω̄ ω̄ .

In cases (a) and (b), we obtain that v̄ has to be in a small ball of radius ε1/4.

Then, ∫
1Small relative velocity of type (a)(b)

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄ ≤ CV0tε

d/4 .

In cases (c) and (d), we obtain that vq has to be in the intersection of a small

ball of radius ε1/4 and of the sphere of diameter [v̄, v̄q]. This condition imposes

that ω̄ has to be in a spherical cap of solid angle less than ε
1
8 /|v̄ − v̄q|1/2 (see

Figure 15). We find that∫
1Small relative velocity of type (c)(d)

∣∣(v̄ − v̄q) · ω̄
∣∣dt̄dω̄dv̄ ≤ CVd+

1
2

0 tε
1
8 .

Combining these two estimates with (9.4.6), we get∫
min

(
1,

ε1/2

|vq − vq′ |
)∣∣(v̄ − v̄q) · ω̄

∣∣dt̄dω̄dv̄ ≤ CVd+1
0 tε

1
8 .

If the first deflection of q corresponds to the k-th clustering recollision in

Ψε
λ1

between q ∈ Ψε
{jk} and c ∈ Ψε

{j′k}
at time t̄ = τrec,k, in addition to the

condition x̂k ∈ Bqc which encodes the clustering recollision (see Section 8.1),

we obtain a condition on the velocity.

There are actually two subcases :

(e) q′ = c and |vq − vq′ | = |v̄q − v̄q′ | ;
(f) q′ is not deflected, and vq = v̄q − (v̄q − v̄c) · ωrec,k ωrec,k .

In case (e), there holds∫
1Small relative velocity of type (e)dx̂k

≤ C

µε

∫
1|v̄q−v̄q′ |≤ε1/4

∣∣(v̄q − v̄q′) · ω
∣∣dωdτrec,k ≤ Ctε

1
4

µε
·

In case (f), we obtain that vq has to be in the intersection of a small ball of

radius ε1/4 and of the sphere of diameter [v̄q, v̄c]. This condition imposes that

ωrec,k has to be in a spherical cap of solid angle less than ε
1
8 /|v̄q − v̄c|1/2 (see

Figure 15). We find∫
1Small relative velocity of type (f)dx̂k ≤

C

µε
ε

1
8

∫ ∣∣v̄q − v̄c
∣∣1/2dτrec,k ≤ CtV

1
2
0 ε

1
8

µε
·
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Combining these two estimates with (9.4.6), we get∫
min

(
1,

ε1/2

|vq − vq′ |1/2
)
dx̂k ≤

CV0tε
1
8

µε
·

This concludes the proof of Proposition 9.2.4.



APPENDIX A

THE ABSTRACT CAUCHY-KOVALEVSKAYA

THEOREM

In this appendix we recall the well-known Cauchy-Kovalevskaya theorem,

in a generalized Banach framework as devised namely by F. Treves [71], L.

Nirenberg [52], T. Nishida [53]. This result is used to prove the existence

and uniqueness of a solution for short times for the Boltzmann equation (Sec-

tion A.1), for the linearized Boltzmann equation (proof of Proposition 6.1.3

in Section A.2), for the covariance equation (5.5.5) (Proposition A.3.1 in Sec-

tion A.3), and for the modified Hamiltonian equations (7.2.16) (proof of Propo-

sition 7.2.3 in Section A.4).

We state the result as proved in [45] (Théorème A (1)).

Theorem A.1 ([45]). — Let (Xρ)ρ>0 be a decreasing sequence of Banach

spaces with increasing norms ∥ · ∥ρ. Consider the equation

(A.0.1) u(t) = u0(t) +

∫ t

0
F
(
t, s, u(s)

)
ds , t ≥ 0

where

— there are A0 > 0, ρ0 > 0 such that t 7→ u0(t) is continuous for t ∈
[0, A0(ρ0− ρ)[ with values in Xρ for all ρ < ρ0, and there is R0 > 0 such

that

∀t ∈ [0, A0(ρ0 − ρ)[ , ∥u0(t)∥ρ ≤ R0 ;

— F (·, ·, 0) = 0, and there are R > R0 > 0, T > 0 such that F is continuous

from [0, T ] × [0, T ] × BR(Xρ′) to Xρ for all ρ < ρ′ ≤ ρ0, with BR the

open ball of radius R. Moreover there is a constant CR such that for

all u, v ∈ BR(Xρ′), for all (t, s) ∈ [0, T ],

(A.0.2) ∥F (t, s, u)− F (t, s, v)∥ρ ≤ CR
ρ0

ρ′ − ρ
∥u− v∥ρ′ , ρ0/2 ≤ ρ < ρ′ ≤ ρ0 .

1. The (suboptimal) estimate on the existence time, as well as the estimates as stated in

Theorem A.1, follow from a simple adaptation of the argument in [45], pages 367-368.
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Then there exists a constant c (not depending on any of the previous param-

eters) such that (A.0.1) has a unique solution on the time interval [0, T ] with

T = c/C4R0, which is continuous in time and satisfies

sup
ρ0/2≤ρ<ρ0

0≤t<4T (1−ρ/ρ0)

∥u(t)∥ρ
(
1− t

4T (1− ρ/ρ0)

)
≤ 2R0

and in particular

∥u(t)∥ρ0/2 ≤ 4R0 , t ∈ [0, T ] .

The proof relies on a contraction estimate for the mapping u 7→ F(u) defined

by

F(u)(t) = u0(t) +

∫ t

0
F
(
t, s, u(s)

)
ds ,

in the metric

M [u] := sup
ρ0/2≤ρ<ρ0

0≤t<4T (1−ρ/ρ0)

∥u(t)∥ρ
(
1− t

4T (1− ρ/ρ0)

)
.

The existence follows then from a simple approximation scheme.

A.1. Local well-posedness for the biased Boltzmann equation

The local well-posedness of the Boltzmann equation (1.2.1) can be deduced

directly from the previous theorem (as pointed out first in [74]). In this section,

we are going to consider the well-posedness of the biased Boltzmann equation

(1.4.6) recalled below

(A.1.1)
Dtφ =

∫ (
φ(t, z′)φ(t, z′2)e

−∆p − φ(t, z)φ(t, z2)e
∆p
)
dµz(z2, ω)

with φ(0) = f0ep(0),

with ∥p∥W 1,∞([0,T ⋆]×D) ≤ r and T ⋆ ≤ TLe
−5r.

We first define the weighted L∞ spaces

L∞
β :=

{
φ = φ(x, v) : ∥φ∥L∞

β
:= sup

D

(
exp

(
− β

2
|v|2
)
|φ(x, v)|

)
< +∞

}
.

Note that, by assumption (1.1.5), the initial data f0 belongs to L∞
−β0 so that

∥φ(0)∥L∞
−β0

≤ C0e
r .

Note also that these functional spaces are invariant by the free transport op-

erator St over D.
The mild formulation of (A.1.1) states

(A.1.2) φ(t) = Stφ(0) +

∫ t

0
St−sQp(φ(s), φ(s))ds
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where the collision term

Qp(φ,φ)(z) :=

∫ (
φ(t, z′)φ(t, z′2)e

−∆p − φ(t, z)φ(t, z2)e
∆p
)
dµz(z2, ω)

satisfies the following loss continuity estimate for β0/2 ≤ β < β′ ≤ β0
(A.1.3)

∥Qp(φ,φ)∥L∞
−β

≤ 2∥φ∥2L∞
−β′

e4r

× sup
v

(∫
exp

(
−β

′ − β

2
|v|2
)
exp

(
−β

′

2
|w|2)

)
|v − w|dwdω

)
≤ cd∥φ∥2L∞

−β′
e4r

β0
β′ − β

β
−(d+1)/2
0 ,

where the constant cd depends only on the dimension d.

By Theorem A.1, we obtain that the mild formulation of the Boltzmann

equation (A.1.2) has a unique solution φ which is continuous on [0, T ⋆] and

satisfies

sup
β0/2<β<β0

0≤t<4T⋆(1−β/β0)

∥φ(t)∥L∞
−β

(
1− t

4T ⋆(1− β/β0)

)
≤ 2C0 ,

and

(A.1.4) ∥φ(t)∥L∞
−β0/2

≤ 4C0e
r , t ∈ [0, T ⋆] .

A.2. Well-posedness of the linearized Boltzmann (adjoint) equation.

We prove now Proposition 6.1.3. Let us recall the definition (6.1.9) of the

function spaces

L2
β :=

{
φ = φ(x, v) : ∥φ∥2L2

β
:=

∫
D
exp

(
− β

2
|v|2
)
φ2(x, v)dxdv < +∞

}
.

We need to prove that if φ is in L2
β0/4

, then U∗(t, s)φ belongs to L2
3β0/8

for

any s ≤ t ≤ T for T small enough. We get from (6.1.2)-(6.1.3) the backward

Duhamel formula

(A.2.1) U∗(t, s)φ = Ss−tφ+

∫ t

s
Ss−σL

∗
σ U∗(t, σ)φdσ .

Using the uniform bound (A.1.4)

∥f∥L∞
−β0/2

≤ 4C0 ,

we first establish a loss continuity estimate for the operator L∗
s defined by

(6.1.3). By the Cauchy-Schwarz inequality, for any function φ and any β0
4 ≤
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β′ < β ≤ 3β0
8 ,

(A.2.2)

∥L∗
s φ∥2L2

β
≤
∫
dxdv exp(−β

2
|v|2)

(∫
|v − w|2f2(s, x, w) exp(β

′

2
|w|2)dwdω

)
×
(∫

(∆φ)2(s, x, w) exp(−β
′

2
|w|2)dwdω

)
≤ cdC

2
0∥φ∥2L2

β′
β
−d/2
0

× sup
v

(
exp(−β − β′

2
|v|2)

∫
|v − w|2 exp(−5β0

16
|w|2)dw

)
≤ cdC

2
0β

−(d+1)
0

β0
β − β′

∥φ∥2L2
β′
,

where cd denotes a constant depending only on the dimension d which may

change from line to line.

Since the transport Ss preserves the spaces L2
β, we are in position to apply

Theorem A.1. The only difference is that (A.2.1) defines a backward evolution,

rather than a forward one, and that the L2
β spaces are increasing rather than

decreasing. Up to these slight adaptations, Theorem A.1 provides the existence

of T ≤ T0, also of the form T = cdβ
(d+1)/2
0 /C0, such that for any φ ∈ L2

β0/4
,

(A.2.1) has a unique solution satisfying U∗(t, s)φ ∈ L2
3β0/8

for any s ≤ t ≤ T .

Proposition 6.1.3 is proved.

Notice that, for the linear equation (A.2.1), the fixed point argument leading

to the Cauchy-Kovalevskaya theorem provides in particular a convergent series

representation for the solution, of the form

(A.2.3) U∗(t, s)φ = Ss−tφ+
∑
n≥1

∫ t

s
dσ1 · · ·

∫ t

σn−1

dσnSs−σ1L
∗
σ1 · · ·L∗

σnSσn−tφ .

In particular, the following properties are easily verified.

Corollary A.2.1. — For T ≤ T0 as in Proposition 6.1.3 and for any s ≤ t ≤
T , U∗(t, s) is a semigroup satisfying

U∗(t, s) = U∗(σ, s)U∗(t, σ) , σ ∈ [s, t]

and

U∗(t, s)φ = Ss−tφ+

∫ t

s
dσ U∗(σ, s)L∗

σSσ−tφ .
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A.3. Well-posedness of the covariance equation

Proposition A.3.1. — There exists a time T ∼ β
(d+1)/2
0 /C0 such that the

system (5.5.5) has a unique solution C on [0, T ]2, which is defined as a bilinear

form on L2
β0/4

.

Proof. — System (5.5.5) consists in two equations. Let us start by solving the

first one, namely

(A.3.1)

C(t, t, ψ, φ) = C(0, 0, S−tψ, S−tφ) +
∫ t

0
dsCovs(Ss−tψ, Ss−tφ)

+

∫ t

0
ds C(s, s, Ss−tψ,L∗

sSs−tφ) +

∫ t

0
ds C(s, s,L∗

sSs−tψ, Ss−tφ) .

We are going to apply Theorem A.1, with the family of spaces Xβ of bilinear

forms defined by

Xβ :=
{
C := C(ψ,φ) / ∥C∥Xβ <∞

}
, ∥C∥Xβ := sup

∥ψ∥
L2
β
≤1,∥φ∥

L2
β
≤1

∣∣C(ψ,φ)∣∣ .
Notice that, since the spaces L2

β are increasing, the spaces Xβ are decreasing.

Given β ≤ β0 and ψ,φ in L2
β of norm smaller than 1, there holds∣∣C(0, 0, S−tψ, S−tφ)∣∣ ≤ ∫ f0(z)|S−tψ(z)||S−tφ(z)| dz

≤ C0

∫
e(
β
2
−β0

2
)|v|2e−

β
4
|v|2 |S−tψ(z)|e−

β
4
|v|2 |S−tφ(z)| dxdv

so by the Cauchy-Schwarz inequality we infer∥∥C(t = 0, t = 0)
∥∥
Xβ/2

≤ C0 .

Similarly, as in the proof of Proposition 6.1.4 page 77, we find that∣∣Covs(Ss−tψ, Ss−tφ)
∣∣

≤ 1

2

∫
dµ(z1, z2, ω)f(s, z1)f(s, z2)|∆Ss−tψ||∆Ss−tφ|

≤ C C2
0

∫
dµ(z1, z2, ω)e

(β
2
−β0

4
)(|v1|2+|v2|2)

×
(
e−

β
2
|v1|2ψ2(s, z1) + e−

β
2
|v1|2φ2(s, z1)

)
e−

β
2
|v2|2

≤ cdC
2
0β

−(d+1)/2
0

if ψ,φ belong to L2
β for β ≤ 3β0/8, and norm bounded by 1.

Finally setting

F (t, s, C(s, s, ·, ·)) := C(s, s, Ss−t·,L∗
sSs−t·) + C(s, s,L∗

sSs−t·, Ss−t·)
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let us prove the loss estimate (A.0.2). There holds, for β0/4 ≤ β′ < β ≤ 3β0/8,∣∣F (t, s, C(s, s, ψ, φ))∣∣ ≤ 2∥C(s, s)∥Xβ∥Ss−tψ∥L2
β
∥L∗

sSs−tφ∥L2
β

≤ cdC0β
−(d+1)/2
0

β0
β − β′

∥C(s, s)∥Xβ∥ψ∥L2
β′
∥φ∥L2

β′

where we have used the fact that the spaces L2
β are increasing, along with

the loss estimate (A.2.2). Thanks to Theorem A.1, we find that there exists

a time T > 0, proportional to β
(d+1)/2
0 /C0, such that (A.3.1) has a unique

solution which is continuous on [0, T ], with values in Xβ0/4.
The argument is the same for the second equation of (5.5.5), namely

(A.3.2)

∫ t

0
C(t, σ, ψ, ϕσ) dσ =

∫ t

0
dσ
(
C(σ, σ, Sσ−tψ, ϕσ)

+

∫ t

σ
ds C

(
s, σ,L∗

sSs−tψ, ϕσ

))
applying Theorem A.1 to

K(t, ψ,Φ) :=

∫ t

0
C(t, σ, ψ, ϕσ) dσ

which satisfies, thanks to the Fubini theorem,

K(t, ψ,Φ) =

∫ t

0
dσ C(σ, σ, Sσ−tψ, ϕσ) +

∫ t

0
dsK(s,L∗

sSs−tψ,Φ) .

Note that K(t) is now a bilinear form on L2
β × L∞((0, t);L2

β). The same esti-

mates as above allow to conclude.

A.4. Well-posedness of the modified Hamiltonian equations

We are now going to check the well-posedness of the modified Hamiltonian

equations (7.2.16) which are recalled below

(A.4.1) ∀s ≤ t,

ψt(s) = Ssf
0 +

∫ s

0
Ss−σF1

(
ϕ(σ), ηt(σ), ψt(σ)

)
dσ ,

ηt(s) = Ss−tγt −
∫ t

s
Ss−σF2

(
ϕ(σ), ηt(σ), ψt(σ)

)
dσ ,

with ψt(0) = f0, ηt(t) = γ and

F1(ϕ, η, ψ) = −ψ ϕ+

∫
dµz1(z2, ω) η(z2)

(
ψ(z′1)ψ(z

′
2)− ψ(z1)ψ(z2)

)
,

F2(ϕ, η, ψ) = η ϕ−
∫
dµz1(z2, ω)ψ(z2)

(
η(z′1)η(z

′
2)− η(z1)η(z2)

)
.

This is a coupled system and ηt satisfies a backward equation, so this is not

exactly the standard formulation to apply Theorem A.1.
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Let us fix α > 0 and a time t ≤ Tα. Using the fact that (ϕ, γ) belongs

to Bα,β0,Tα , we have in particular that

sup
s∈[0,t]

∣∣ϕ(s, x, v)∣∣ ≤ C(1 + |v|2) and γ(t) ∈ L∞
β0/4

,

where the constant C depends on α, β0, C0. Recall moreover that f0 belongs

to L∞
−β0 , so let us define

C̄ := 4
(
∥γ∥L∞

β0/4
+ ∥f0∥L∞

−β0

)
.

By a computation as in (A.1.3), one can check that for any 3β0/4 < β1 < β′1 ≤
β0 and β0/4 ≤ β′2 < β2 < β0/2 there are constants C1 and C2 such that

∥F1(ϕ, η, ψ)∥L∞
−β1

≤ C1β0
β′1 − β1

∥ψ∥L∞
−β′1

(
1 + ∥ψ∥L∞

−β′1
∥η∥L∞

β0/2

)
,(A.4.2)

∥F2(ϕ, η, ψ)∥L∞
β2

≤ C2β0
β2 − β′2

∥η∥L∞
β′2

(
1 + ∥ψ∥L∞

−3β0/4
∥η∥L∞

β′2

)
.(A.4.3)

The second equation in (A.4.1) evolves backward so that as in Section A.2, the

regularity in (A.4.3) is coded in the opposite direction of the forward flow.

By the method of Theorem A.1, a fixed point argument can be implemented

(by solving at each iteration both the forward and backward equations). In

this way, we find a time TH′
α > 0 such that there exists a unique solution (ψt, ηt)

to (A.4.1) on [0, t] for any t ≤ TH′
α , satisfying

sup
s∈[0,t]

∥ηt(s)∥L∞
β0/2

≤ C̄ , sup
s∈[0,t]

∥ψt(s)∥L∞
−3β0/4

≤ C̄ .

Step 1 of the proof of Proposition 7.2.3 is now complete.
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NOTATION INDEX

An,m tree with n roots and m
branching points, p.33

A±
n,m tree with n roots and m

branching points, and edge signs, p.34

Bα space of test functions, p.58

Bα,β,t space of test functions in sym-
plectic variables, p.104

Cn set of connected graphs with n
vertices, p.26

CV set of connected graphs with V
as vertices, p.26

C
(
Ψε
n

)
product of cross-sections as-

sociated to Ψε
n, p.121

Ci,εn,n+1 collision operator in the
BBGKY hierarchy, p.32

∂Dε±
N (i, j) boundary of the domain

for the dynamics of N hard spheres of
diameter ε, p.2

Dε
N domain for the dynamics of N

hard spheres of diameter ε, p.2

D([0, T ∗],M) Skorokhod space,
p.11

Dn([0, t]) space of right-continuous
with left limits functions on Dn, p.35

DN , extended N -particle space, p.2

∆∆λ indicator function that trees in
λ are connected by a chain of exter-
nal recollisions (thus forming a forest),
p.40

dµ(z1, z2, ω) singular collision mea-
sure, p.7

dµzi(zn+1, ω) singular collision mea-
sure with particle i fixed, p.4

dµ(Ψε
n) measure on the pseudo-

trajectories, p.37

dµsing,T,a limit singular measure,
p.54

dµsing,T̃ limit singular measure, p.55

E(G) set of edges of the graph G,
p.26

Eε(X) expectation of an event X
with respect to the measure (1.1.6),
p.3

ζεt fluctuation field at time t, p.6

ζt limit fluctuation field at time t,
p.7

F limiting large deviation func-
tional, p.11

F̂ large deviation functional, p.10
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F εn(t) rescaled n-particle correlation
function at time t, p.4

F ε0n rescaled n-particle initial corre-
lation function, p.3

F εn,[0,t](Hn) averages over trajecto-

ries, p.35

f ε0σ initial cumulants, p.43

f εn,[0,t](H
⊗n) cumulant of order n,

p.45

fn,[0,t](H
⊗n) limiting cumulant of

order n, p.54

Gεm(a, Z∗
n) set of collision parame-

ters such that the pseudo-trajectory
exists up to time 0, p.33

Gε compressed notation for the
set of admissible collision parameters,
p.37

H
(
z([0, t])

)
test functions on the

trajectories, p.41

H
(
Ψε
n

)
product of test functions as-

sociated to the pseudo-trajectory Ψε
n,

p.37

I(t, g) limiting cumulant generating
series, p.58

Î(t, g) solution of the variational
problem, p.98

J (t, φ, γ) limiting exponential mo-
ment, p.58

Ĵ (t, φ, γ) solution of the variational
problem, p.107

Lt linearized Boltzmann collision
term, p. 73

Lt linearized Boltzmann operator
with transport, p.7

{λi ∼r λj} there exists an exter-
nal recollision between trees λi and λj ,
p.40

{λi ∼o λj} there exists an overlap
between trees λi and λj , p.42

Λεt cumulant generating functional,
p.10

Λε[0,t] dynamical exponential mo-

ment, p.48

Λ[0,t] limiting dynamical exponen-
tial moment, p.55

L2
β weighted L2 space, p.76

L∞
β weighted L∞ space, p.160

M set of probability measures on
D, p.11

Ps
n set of partitions of {1, · · · , n} in

s parts, p.21

Pε(X) probability of an event X
with respect to the measure (1.1.6),
p.3

πεt empirical measure at time t, p.5

Qεn,n+m(t) elementary operators in
Duhamel series expansion, p.32

Sεn group associated with free trans-
port with specular reflection in Dε

n,
p.32

TL time of validity of the Lanford
theorem, p.5

Tα existence time of the cumulant
generating function, p.48

T ⋆α identification time of I and Î,
p.100

THJ
α time of uniqueness for the

Hamilton-Jacobi equation, p.104

TH′
α existence time for Î, p.107

TV set of minimally connected
graphs with V as vertices, p.26

T ≺
V set of minimally connected

graphs with V as vertices, equipped
with an ordering of edges, p.122
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Tn set of minimally connected
graphs with n vertices, p.26

(Tm,Ωm, Vm) collision parameters,
p.33

τ clust clustering times, p.150

U(t, s) semi-group associated
with Lτ between times s and t, p.74

W ε
N probability density of the sys-

tem of N hard spheres, p.2

Zε partition function, p.3

Z
′i,j
n scattered configuration of n

particles after collision of i and j, p.2

Z∗
n([0, t]) sample pseudo-trajectory

of n particles 1 to n, p.35

Zn,m(τ) =
(
Z∗
n(τ), Zm(τ)

)
coordi-

nates of the particles in a pseudo-
trajectory with n roots and m added
particles, p.33

Zεn(τ) coordinates of the particles in
a physical trajectory with n particles,
p.3

Zεn([0, t]) sample path of n particles,
p.33.

Φℓ
(
λ1, . . . , λℓ

)
indicator function

that trees λ1, . . . , λℓ keep mutual dis-
tance larger than ε, p.40

φρ cumulants associated with Φℓ,
p.42

Ψε
n generic pseudo-trajectory, p.37

Ψε
n,m generic pseudo-trajectory

with m added particles, p.52

Ψn limiting pseudo-trajectory, p.53

ωclust scattering vectors at cluster-
ing times, p.150


