Analyse fonctionnelle TD no 2

THÉORÈME DE HAHN-BANACH

Séance du 19 février 2018

Exercice 1. Échauffement : trois questions

- 1. Montrer qu'il existe une forme linéaire L sur l'ensemble des suites réelles bornées ℓ^{∞} , telle que pour toute telle suite $a = \{a_n\}_{n \in \mathbb{N}}$, on ait $\liminf_{n \to \infty} a_n \le L(a) \le \limsup_{n \to \infty} a_n$.
- 2. Montrer que ℓ^1 est le dual de c_0 , l'espace des suites de limite nulle, muni de la norme $\|\cdot\|_{\infty}$. Construire un élément $\varphi \in (\ell^{\infty})^*$ ne pouvant s'écrire

$$\varphi(v) = \sum_{n=0}^{\infty} u_n v_n$$

pour un certain $u \in \ell^1$.

Indication: On pourra commencer par construire φ sur un sous-espace, puis utiliser Hahn-Banach.

3. Montrer que dans un espace vectoriel topologique localement convexe séparé E, tout sous-espace F fermé strict est inclus dans un hyperplan fermé.

*

Exercice 2. Unicité du prolongement dans le théorème de Hahn-Banach

Soit E un espace vectoriel normé et $(E^*, \|\cdot\|)$ son dual topologique. Notons S la sphère unité de E^* .

1. On suppose que E^* est strictement convexe, c'est-à-dire :

$$\forall \ell_1, \ell_2 \in S, \quad \ell_1 \neq \ell_2 \Rightarrow \frac{1}{2}(\ell_1 + \ell_2) \notin S.$$

Soit F un sous-espace de E, ℓ une forme linéaire continue sur F de norme 1. Montrer qu'il existe une unique forme linéaire $\tilde{\ell}$ sur E, de norme 1, et prolongeant ℓ .

- 2. On suppose inversement qu'il existe $\ell_1 \neq \ell_2$ deux éléments de S, vérifiant $\frac{\ell_1 + \ell_2}{2} \in S$. Montrer qu'il existe alors une forme linéaire continue φ définie sur un sous-espace vectoriel F de E, qui admet deux prolongements linéaires continus distincts sur E ayant la même norme que φ .
 - 3. Trouver un exemple de prolongements multiples dans ℓ^1 , ainsi que dans ℓ^{∞} .

*

Exercise 3. Espaces L^p , $p \in]0,1[$

Soit $0 . On définit <math>L^p([0,1]) = \{f \mid \int_0^1 |f|^p < \infty\}$, puis on pose

$$d(f,g) := \int_0^1 |f(x) - g(x)|^p dx.$$

- 1. Montrer que d'éfinit une distance sur $L^p([0,1])$.
- 2. Soit V un voisinage ouvert de 0, que l'on suppose convexe. On veut montrer que $V = L^p([0,1])$. Soit donc $f \in L^p([0,1])$, et un entier $n \ge 1$.

(a) Montrer qu'il existe des points $0 = x_0 < x_1 < \cdots < x_n = 1$ tels que :

$$\forall i \in \{0, \dots, n-1\}, \quad \int_{x_i}^{x_{i+1}} |f|^p = \frac{1}{n} \int |f|^p.$$

- (b) On définit $g_i^n(x) := nf(x)\mathbbm{1}_{x \in [x_i, x_{i+1}]}$. En utilisant g_i^n , montrer que $f \in V$.
- 3. En déduire que $L^p([0,1])^* = \{0\}.$

*

Exercice 4. Applications du critère dual de densité

- 1. Soit $p \in [1, +\infty[$. Soit $\{\alpha_k\}_{k \in \mathbb{N}}$ une suite d'élements de]-1, 1[deux à deux distincts, et tendant vers 0. Pour $n \in \mathbb{N}$, on pose $u_k(n) = \alpha_k^n$. Montrer que les suites u_k , pour $k \in \mathbb{N}$, engendrent un sous-espace V dense dans $\ell^p(\mathbb{N})$.
- 2. Pour a > 1, on note f_a l'élément de $C^0([0,1])$ défini par $x \mapsto \frac{1}{x-a}$. Soit $\{a_n\}_{n \in \mathbb{N}}$ une suite de réels vérifiant $a_n > 1$ pour tout $n \in \mathbb{N}$, et $a_n \to +\infty$. Montrer que $W = \text{Vect}\{f_{a_n} \mid n \in \mathbb{N}\}$ est dense dans $(C^0([0,1]), \|\cdot\|_{\infty})$.

*

Exercice 5. Hahn-Banach en dimension finie

1. Soit $d \geq 1$, C un convexe quelconque de \mathbb{R}^d , et $x \in \mathbb{R}^d \setminus C$. Montrer qu'il existe une forme linéaire (continue) séparant x et C au sens large.

Indication : On pourra distinguer le cas $x \notin \overline{C}$ et $x \in \overline{C} \setminus C$. Dans le deuxième cas, approcher x par une suite $\{x_n\}$ d'éléments de $\mathbb{R}^d \setminus \overline{C}$.

2. Montrer que cela est faux en dimension infinie.

*

Exercice 6. Théorème de Hahn-Banach invariant

Soit E un espace normé réel, \mathcal{F} une collection d'endomorphismes continus de E commutant deux à deux, et $p:E\to\mathbb{R}$ une semi-norme \mathcal{F} -invariante. On se donne G un sous-espace de E, stable par tous les éléments de \mathcal{F} , et ℓ une forme linéaire sur G, qui est de plus \mathcal{F} -invariante, et telle que $\forall x\in G, \ell(x)\leq p(x)$. On veut prolonger ℓ à E tout entier, avec les mêmes propriétés.

1. On note \mathcal{C} l'enveloppe convexe du semi-groupe engendré par \mathcal{F} dans $\mathcal{L}(E)$, *i.e.* l'enveloppe convexe de l'ensemble formé de l'identité et des produits finis d'éléments de \mathcal{F} . Pour $x \in E$, on pose

$$q(x) := \inf_{u \in \mathcal{C}} \ p(u(x)).$$

Montrer qu'on définit bien ainsi une semi-norme, et que de plus $q \leq p$, et $\forall x \in G$, $\ell(x) \leq q(x)$.

2. Appliquer le théorème de Hahn-Banach à ℓ et q, et conclure.

Indication: Pour montrer que le prolongement obtenu est bien \mathcal{F} -invariant, on pourra montrer que pour tout $u \in \mathcal{F}$, et tout $x \in E$, $q(x - u(x)) \leq 0$.

*