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Abstract. In this article, we investigate spectral properties of the sublaplacian −∆G on the
Engel group, which is the main example of a Carnot group of step 3. We develop a new approach
to the Fourier analysis on the Engel group in terms of a frequency set.

This enables us to give fine estimates on the convolution kernel satisfying F (−∆G)u = u⋆kF ,
for suitable scalar functions F , and in turn to obtain proofs of classical functional embeddings,
via Fourier techniques.

This analysis requires a summability property on the spectrum of the quartic oscillator, which
we obtain by means of semiclassical techniques and which is of independent interest.
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1. Introduction and statement of the main results

1.1. The Engel group. Analysis on Lie groups is nowadays a rich and independent research field,
with applications and intersections with many fields of mathematics, from PDEs to geometry [29,
39]. A particular class of such groups receiving increasing attention is given by the so-called
Carnot groups. These groups, playing the role of local models in sub-Riemannian geometry as the
Euclidean Rd does for Riemannian geometry, are nilpotent Lie groups diffeomorphic to Rd and
homogeneous with respect to a family of dilations, which are automorphisms of the Lie algebra.
The most renowned examples of such groups are Heisenberg groups, which are Carnot groups of
step 2.

The Lie algebra g of a Carnot group admits a stratification g = ⊕si=1gi where the grading is
compatible with the dilations, and the first layer g1 is Lie bracket generating, i.e., the smallest
Lie algebra containing g1 is g itself, satisfying gi+1 = [g1, gi] with the convention gs+1 = 0. The
(smallest) integer s satisfying this property is then called the step of the Carnot group.

While the analysis on Carnot groups of step 2 is now quite well understood (see for instance
the monographs [3, 5, 32, 34, 38, 77, 78, 79] and the references therein), much less can be said for
Carnot groups of higher steps. The main example of a Carnot group of step 3, which is the focus
of the present paper, is the so-called Engel group.

The Engel group G is a nilpotent 4-dimensional Lie group which is connected and simply con-
nected, and whose Lie algebra g satisfies the following decomposition

g = g1 ⊕ g2 ⊕ g3,

with
dim g1 = 2 , g2

def= [g1, g1] , g3
def= [g1, g2] .

This group is described in detail in Section 3. Let us recall that it is homogeneous of degree Q = 7,
and one can define a sub-Riemannian distance on G, and the sub-Riemannian gradient ∇Gf . One
can then consider the sublaplacian operator

∆Gf
def= div(∇Gf) ,

where div denotes the divergence with respect to the Haar measure on G.

1.2. Spectral analysis of the sublaplacian. One of our goals in this paper is to provide an
effective analysis of the spectral properties of the sublaplacian ∆G, having in mind the following
version of the classical spectral theorem for selfadjoint operators (see [67, Theorem VIII.4 p. 260]
or [57, Théorème 4.5 p. 117]).

Theorem 1.1. Let (A,D(A)) be a selfadjoint operator on a separable Hilbert space H. Then,
there exists:

• a Borel set B ⊂ Rd, d ≥ 1, endowed with a locally finite Borel measure m on B,
• a locally bounded real valued function a ∈ L∞

loc(B;R, dm),
• an isometry U : H → L2(B, dm),

such that UAU∗ = Ma, the operator of multiplication by the function a, with UD(A) = D(Ma).

Any such Borel set B can be seen as a “frequency space” for the operator A, and the uni-
tary operator U : H → L2(B, dm) can be understood as a “Fourier transform” adapted to the
operator A.

Let us discuss the spirit of this theorem on two main examples: the Euclidean space Rd (which
is a commutative Lie group) and the Heisenberg group Hd, which is a non commutative, nilpotent
Lie group, whose Lie algebra h satisfies h = h1 ⊕ h2 with h2 = [h1, h1] and [h1, h2] = 0.
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(1) The Euclidean space Rd. In this case for the (opposite of the) classical Laplace opera-
tor A = −∆ the standard Fourier identity

(1.1) F(−∆u)(ξ) = |ξ|2F(u)(ξ), ξ ∈ Rd ,

can be reinterpreted in terms of Theorem 1.1 by choosingH = L2(Rd) and B = Rd endowed
with the Lebesgue measure, where U = F is the Fourier transform and a(ξ) = |ξ|2.

(2) The Heisenberg group Hd. In this case the (opposite of the) sublaplacian −∆Hd becomes
after non commutative Fourier transform a rescaled version of the harmonic oscillator
acting on L2(Rd)

(1.2) H def= −∆z + |λ|2|z|2 , z ∈ Rd, λ ∈ R∗ ,

whose spectrum is given by the set
{
|λ|(2|m| + d), λ ∈ R∗,m ∈ Nd}. A formulation

of Theorem 1.1 for the operator A = −∆Hd can be given for H = L2(Hd, dw) and U
a Heisenberg Fourier transform FHd . An explicit description has been provided in [4]
where B = Nd × Nd × R∗ (writing elements of B as triplets ŵ = (n,m, λ)) is the space
of frequencies endowed with the measure δ(n)δ(m)|λ|ddλ, where δ(n)δ(m) denotes the
counting measure on N2d. The function a is given by a(n,m, λ) = |λ|(2|m|+ d).

Notice that this translates into the analogue to the Fourier identity (1.1) for A = −∆Hd

as follows

(1.3) FHd(−∆Hdu)(n,m, λ) = |λ|(2|m|+ d)FHd(u)(n,m, λ) .

We highlight that the function a in the case of the Heisenberg group does not depend
on n: this is related to the fact that the operator −∆Hd diagonalizes the Hermite basis of
eigenfunctions of H.

In this paper our first aim is to identify a family of objects (B,m, a, U) as presented in Theorem 1.1
for the sublaplacian ∆G on the Engel group, acting on the Hilbert space L2(G, dx) (as we shall see
in Section 3, the Haar measure on G can be identified with the Lebesgue measure dx in suitable
coordinates), that is useful in applications. In the case of the Engel group it is known that the
non commutative Fourier transform exchanges (the opposite of) the sublaplacian −∆G with an
operator acting on L2(R), which turns out to be the (family of conveniently rescaled) quartic
oscillator

(1.4) Pµ
def= − d2

dθ2 +
(θ2

2 − µ
)2
, θ ∈ R ,

where µ ∈ R is a real parameter (see (4.9)-(4.10) below). To the best of our knowledge, this operator
appeared for the first time in relation with hypoelliptic operators in the paper by Pham The Lai
and Robert [66] (but had already been studied before that in relation to quantum mechanics).
Since then it has received enduring attention and has been extensively studied under different
perspectives: more references on the spectral theory for Pµ are provided in Section 2.

In order to state our first result, we need to recall that Pµ can be endowed with the domain

D(Pµ) =
{
u ∈ L2(R) , − d2

dθ2 +
(θ2

2 − µ
)2
u ∈ L2(R)

}
,(1.5)

and that its spectrum consists in countably many real eigenvalues {Em(µ)}m∈N of multiplicity 1
and satisfying

0 < E0(µ) < E1(µ) < · · · < Em(µ) < Em+1(µ)→ +∞ .

We also define, for (ν, λ) ∈ R× R∗, the rescaled eigenvalues

(1.6) Em(ν, λ) def= |λ| 23 Em
( ν

|λ| 43

)
·

Theorem 1.2. Set Ĝ def= N × N × R × R∗, write elements of Ĝ as x̂ = (n,m, ν, λ), and define a
measure on Ĝ by dx̂

def= δ(n)δ(m)dνdλ, recalling that δ(n)δ(m) is the counting measure on N2.
Then define on Ĝ the function

x̂ 7−→ a(x̂) def= Em(ν, λ) .
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There exists a unitary operator U : L2(G, dx)→ L2(Ĝ, dx̂) such that

(1.7) U(−∆G)U∗ = Ma , UD(−∆G) = D(Ma) ,

where Ma denotes the operator given by multiplication by the function a.

The set Ĝ will be understood in the following as the frequency set of the Engel group. The
operator U will be a Fourier transform F (a function acting on elements x̂ = (n,m, ν, λ) of Ĝ)
which we construct explicitly, see (4.17)–(4.18). We recall that the Fourier transform on non
commutative Lie groups is classically defined as a family of bounded operators on some Hilbert
space. That notion of Fourier transform enjoys the same properties (in terms of operators) as
the Fourier transform on Rd, such as inversion and Fourier-Plancherel formulae. As we show in
Section 4, our new approach is equivalent to the classical Engel Fourier transform which as already
mentioned above converts −∆G into Pµ, up to scaling. The Fourier transform given by Theorem 1.2
consists in considering the classical Engel Fourier transform (as a family of operators) by means
of its coefficients in the basis of the eigenfunctions of Pµ, and as we shall see, the difficulty of the
classical Engel Fourier transform is shifted to the frequency set Ĝ which turns out to be discrete
with respect to a part of the variables and continuous with respect to the other part, and thus it
cannot be identified with G as in the Euclidean setting; in Section 6, we attempt to equip it with
a topology which takes into account the basic principles of the Fourier transform, namely that
regularity of functions on G is converted into decay of the Fourier transform on Ĝ. Contrary to the
Heisenberg setting investigated in [4], the study of topological properties of Ĝ such as determining
its completion, computing the measure on its unit sphere and providing the spectral decomposition
of −∆G prove to be a challenging task requiring refined spectral analysis of Pµ.

As in the case of the Heisenberg group described above, notice that the function a involved in
Theorem 1.2 does not depend on n. Again this is related to the fact that the Engel sublaplacian
is diagonal on the basis of eigenfunctions of Pµ.

The explicit representation of the Fourier transform in terms of a basis allows us to make effective
computations. Once the Fourier transform is well understood, it is natural to try to recover via
this tool well-known functional inequalities on G, such as Sobolev embeddings, and to analyze
evolution equations involving the sublaplacian. This requires estimating quantities involving the
operator F (−∆G), for suitable functions F defined on R+. For such F there holds (for all u in the
Schwartz space S(G) which is nothing else than the Schwartz space S(R4))

(1.8) F(F (−∆G)u)(x̂) = F (Em(ν, λ))F(u)(x̂) ,

hence we are led to computing integrals of the form∑
m∈N

∫
R×R∗

F (Em(ν, λ)) dλdν ,

which can be rewritten as
∫
Ĝ

F (a(x̂))δn,mdx̂, for x̂ = (n,m, ν, λ) ∈ Ĝ and a(x̂) = Em(ν, λ).

Contrary to the Euclidean case, or to the harmonic oscillator (1.2) appearing in the Heisenberg
group, the eigenvalues of Pµ are not explicitly known. However the spectral analysis we conduct in
this paper leads to the following theorem, which enables us to generalize (with some technicalities)
to the Engel group many results in real analysis, such as classical functional inequalities and
Bernstein inequalities. Our second main result is indeed the following.

Theorem 1.3. With the notation of Theorem 1.2, the following result holds. For all measur-
able functions F : R+ → R, the function F ◦ a belongs to L1(Ĝ, δn,mdx̂) if and only if F ∈
L1(R+, r

5/2dr), and there holds

(1.9)
∫
Ĝ

F (a(x̂))δn,mdx̂ =
(∑
m∈N

∫
R

3
Em(µ) 7

2
dµ

)∫ ∞

0
r5/2F (r)dr .

Moreover

(1.10)
∑
m∈N

∫
R

1
Em(µ)γ dµ <∞ ⇐⇒ γ > 2 .
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To better understand the content of the previous theorem, let us reconsider our two basic
examples:

(1) In the Euclidean space Rd we have a(x̂) = a(ξ) = |ξ|2 with dx̂ = dξ so that the left-hand
side of (1.9) can be computed using spherical coordinates

(1.11)
∫
B

F (a(x̂))dx̂ =
∫
Rd

F
(
|ξ|2
)
dξ = |Sd−1|

∫
R+

F (r)r
d−2

2 dr .

(2) On the Heisenberg group Hd, we have a(x̂) = a(n,m, λ) = |λ|(2|m| + d) and δn,mdx̂ =
δ(m)|λ|ddλ so that

(1.12)

∫
B

F (a(x̂))δn,mdx̂ =
∑
m∈Nd

∫
R∗
F
(
|λ|(2|m|+ d)

)
|λ|ddλ

=
( ∑
m∈Nd

2
(2|m|+ d)d+1

)∫
R+

rdF (r) dr ,

where the last equality follows from a change of variables. Note that the power of r
is d = (Q−2)/2 where Q = 2d+2 is the homogeneous dimension of Hd, so the summability
conditions have the same homogeneity on Rd and on Hd, and are exactly the same as that
given by (1.9) since Q = 7 for the Engel group.

Remark 1.4 (On the explicit constants). It is interesting to notice that the prefactor in the
right-hand side of (1.12)

CHd
def=

∑
m∈Nd

2
(2|m|+ d)d+1

corresponds to the measure of the dual unit sphere of the Heisenberg group (see [37]), when one
endows the dual of the Heisenberg group by its natural metric structure and volume form. The
same property appears also in the Euclidean case, by Formula (1.11) and recalling that the dual
of the Euclidean space coincides in fact with the space itself.

The next proposition shows that this is not a coincidence and is valid also in the Engel group,
suggesting perhaps a more general pattern.

Proposition 1.5. The constant CG defined by

(1.13) CG
def=
∑
m∈N

∫
R

3
Em(µ) 7

2
dµ

coincides with the volume of the dual unit sphere of the Engel group, when endowed with its
natural metric structure and volume form.

We refer the reader to Section 4.3 for precise definitions and the proof of this result; we stress
here that the fact that the integral (1.13) is finite is part of the statement of Theorem 1.3.

1.3. Functions of the sublaplacian and their convolution kernel. Let us go further in the
analysis of operators of the type F (−∆G) by considering their convolution kernel. To this end we
define the space of functions of polynomial growth O∞(R+) def=

⋃
m∈N
O∞
m (R+), with

F ∈ O∞
m (R+)⇐⇒ ⟨·⟩−mF ∈ L∞(R+) ,

and recall the following rather classical result (which holds for any left-invariant sublaplacian on a
Carnot group; the proof is recalled in Section 4.4 for the sake of completeness).

Proposition 1.6. For any F ∈ O∞(R+), the operator F (−∆G) : S(G) → L2(G) is well-defined
(via spectral theory) and there is kF ∈ S ′(G) such that

(1.14) F (−∆G)u = u ⋆ kF , for all u ∈ S(G) ,

where ⋆ is the natural convolution product on G (see (3.11) and (3.15) below).
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The Fourier transform defined in the present article allows to generalize the set of functions F
for which the functional calculus is well-defined and to characterize the regularity of the kernel in
terms of properties of F . We define the space O1,s(R+) def=

⋃
m∈N
O1,s
m (R+), where

F ∈ O1,s
m (R+)⇐⇒ ⟨·⟩−mF ∈ L1(R+, r

sdr) ,

where O1,s
m (R+) is endowed with the norm

∥F∥O1,s
m (R+)

def=
∥∥⟨·⟩−mF∥∥

L1(R+,rsdr) =
∫
R+

rs⟨r⟩−m|F (r)|dr .

The space O1,s(R+) is endowed with the associated Fréchet topology.

Theorem 1.7. Assume F ∈ O1,5/2(R+). For any function u ∈ S(G), one can define in L∞(G)
the inverse Fourier transform of the function (n,m, ν, λ) 7→ F (Em(ν, λ))F(u)(n,m, ν, λ) and the
operator F (−∆G) : S(G)→ L∞(G) is thus well-defined by

F (−∆G)u def= F−1(F (Em(ν, λ))F(u)(x̂)
)
.

Moreover, there is a distribution kF in S ′(G) such that (1.14) is satisfied and the map

O1,5/2(R+) −→ S ′(G)
F 7−→ kF

is continuous.

Remark 1.8. For a function θ : Ĝ→ C, sufficient conditions to have a well-defined inverse Fourier
transform are given in Proposition 4.8.

We next give a sufficient condition for continuity/boundedness of the kernel kF in terms of
properties of F .

Theorem 1.9. If F ∈ L1(R+, r
5/2dr), the kernel kF given by Theorem 1.7 belongs to (C0∩L∞)(G)

(where the distribution kF is identified with a function using the Haar measure of G) and there
holds

∥kF ∥L∞(G) ≤ (2π)−3CG
∫ ∞

0
r5/2|F (r)|dr and

kF (0) = (2π)−3CG
∫ ∞

0
r5/2F (r)dr ,

where CG is the volume of the dual unit sphere defined by (1.13).

Remark 1.10. The proof shows that if F ∈ L1(R+, r
5/2+ℓdr) for some ℓ ∈ N, then ∆ℓ

GkF belongs
to C0(G) ∩ L∞(G) and there holds

∥∆ℓ
GkF ∥L∞(G) ≤ (2π)−3CG

∫ ∞

0
r5/2+ℓ|F (r)|dr ,

where CG is defined in (1.13).

It is known [60, Proposition 4.1] that the map

k : F ∈ (L1 ∩ L∞)(R+, r
5/2dr) 7−→ kF ∈ (C0 ∩ L∞)(G)

is continuous on general connected Lie groups of polynomial growth. Theorem 1.9 expresses in
particular that k is in fact continuous from L1(R+, r

5/2dr) to (C0 ∩ L∞)(G), with an explicit
constant that we have interpreted geometrically.

We can also recover (through a different approach based on the Engel Fourier transform) in this
context the “Plancherel identity” of [21, Proposition 3] (see also [75, Lemma 1], [58, Theorem 3.10]
or [60, Equation (1.1)]). The latter is known on general nilpotent Lie groups but we provide
here with an explicit constant and slightly relaxed assumption on F (F is supposed to belong to
L∞(R+) in the above references).
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Proposition 1.11. Assume F ∈ O1,5/2(R+). Then, kF ∈ L2(G) if and only if F ∈ L2(R+, r
5/2dr)

and there holds
∥kF ∥2

L2(G) = (2π)−3CG
∫ ∞

0
r5/2|F (r)|2dr ,

where CG is defined in (1.13).

Interpolation between Theorem 1.9 and Proposition 1.11 implies that, for any p ∈ [1, 2], if F
belongs to Lp(R+, r

5/2dr) then kF belongs to Lp′(G) with

∥kF ∥Lp′ (G) ≤
(
(2π)−3CG

) 1
p ∥F∥Lp(R+,r5/2dr) .

Note finally that the constant
(
(2π)−3CG

) 1
p obtained from the Riesz-Thorin theorem is not ex-

pected to be optimal for p ∈ (1, 2), although it is in cases p = 1 and p = 2 (according to Theorem 1.9
and Proposition 1.11 respectively).

Remark that it was shown in [33, 52] that the kernel kF belongs to S(G) in the case when F
belongs to S(R+). Here, the assumption on F is much weaker, and the regularity we deduce is
accordingly weaker. However, the regularity of kF described in Theorem 1.9 is the appropriate one
for many applications in analysis. As will be discussed in Section 4.2, the Fourier transform of the
kernel kF satisfies U(kF )(x̂) = F (Em(ν, λ))δm,n (see (4.54) below). Taking for instance F (r) =
Ft(r) = exp(−tr), t > 0, one recovers the fact that the Engel heat kernel at the origin satisfies (for
further details see (5.13))

kF (0) =
CGΓ(Q2 )
(2π)3t

Q
2

,

where Γ denotes the Gamma function and CG the volume of the dual unit sphere defined by (1.13).
Finally, let us also recall that the investigation of necessary and sufficient conditions for operators

of the form F (−∆) to be bounded on Lp (or, more generally from Lp to Lq) for some p ̸= 2 in
terms of properties of the spectral multiplier F is a traditional and very active area of research of
harmonic analysis. For related results when working with sublaplacians ∆G we refer the reader to
[21, 62, 59, 60, 61] and references therein.

1.4. Layout. In Section 2 we establish the summability property (1.10), thanks to a semiclassical
analysis of the operator Pµ. This property is at the core of our work, but is independent from the
rest of this text, and its proof can be skipped altogether by a reader interested only in applications
to the Engel group.

In Section 3 we recall some basic facts about the Engel group. Section 4 is dedicated to the
study of the Fourier transform on the Engel group. In Paragraph 4.1, we give a brief description of
the standard Engel Fourier transform, using irreducible representations. Then in Paragraph 4.2,
we start the proof of Theorem 1.2 by revisiting this Fourier transform in the spirit of [4] providing
a new, equivalent, functional point of view which consists in looking at the Fourier transform as
a complex valued function that is defined on the frequency set Ĝ. This is based on the spectral
analysis of the quartic oscillator Pµ. Granted with this new approach, we furnish in Paragraph 4.3
a convenient expression for the spectral decomposition of −∆G. In Paragraph 4.4 we achieve the
proof of Theorem 1.2 and prove Theorems 1.7 and 1.9 as well as Propositions 1.6 and 1.11.

Section 5 is dedicated to some applications of our Fourier decomposition. In Paragraph 5.1,
taking advantage of (1.9), we recover many functional inequalities due to Folland [33] using the
approach based on the Engel Fourier transform, while in Paragraph 5.2, we define the notion
of spectral localization and establish Bernstein inequalities as well as their inverse version. In
Paragraph 5.3 we highlight once again the efficiency of (1.9) by analyzing the heat kernel on the
Engel group.

Finally in Section 6, we endow the frequency set Ĝ with a distance linked to its Lie structure.
We deal in two appendices with several complements for the sake of completeness, as we strive for a
self-contained paper. In Appendix A, we recall the construction of the irreducible representations.
In Appendix B, we relate the spectral theory of a family of operators Pν,λ with that of our reference
quartic oscillator Pµ and recall basic facts of spectral theory.

To avoid heaviness, all along this article C will denote a positive constant which may vary from
line to line. We also use f ≲ g to denote an estimate of the form f ≤ Cg.
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2. Summability of eigenvalues of the operator Pµ
In this section, we study some spectral properties of the operator (Pµ, D(Pµ)) introduced

in (1.4)–(1.5).
This operator appears in different contexts:

• in quantum mechanics, see Simon [76] (see also [68]);
• in the study of irreducible representations of certain nilpotent Lie groups (see for example

[66, 42] with focus on analytic hypoellipticity of hypoelliptic operators, see also [19]),
which is the application we have in mind here (see also [25] for the analysis of a related
sublaplacian);
• in the study of Schrödinger operators with magnetic fields on compact manifolds and in

superconductivity (see e.g. Montgomery [64] or [45, 65, 48]).
Properties of the first eigenvalue of Pµ have also been investigated in [43].

Here, motivated by the study of functions of the Engel sublaplacian ∆G, the ultimate goal of
the section is to prove (1.10). Before this, we recall basic spectral properties of this operator. The
following proposition serves as a definition for the eigenvalue Em(µ) and the associated eigenfunc-
tion φµm for m ∈ N, and a proof is given in Appendix B.1 for the convenience of the reader.

Proposition 2.1. For any µ ∈ R, the following statements hold true. The operator (Pµ, D(Pµ))
is selfadjoint on L2(R), with compact resolvent. Its spectrum consists in countably many real
eigenvalues with finite multiplicities, accumulating only at +∞. Moreover,

(1) all eigenvalues are simple and positive, and we may thus write Sp(Pµ) = {Em(µ),m ∈ N}
with

0 < E0(µ) < E1(µ) < · · · < Em(µ) < Em+1(µ)→ +∞ ,

dim ker(Pµ − Em(µ)) = 1 ,

(2) all eigenfunctions are real-analytic and decay exponentially fast at infinity (as well as all
their derivatives),

(3) for all m ∈ N, functions in ker(Pµ − Em(µ)) have the parity of m,
(4) for all m ∈ N, there is a unique function φµm in ker(Pµ − Em(µ)) such that

φµm is real-valued, ∥φµm∥L2(R) = 1, φµm(0) > 0 if m is even, d

dθ
φµm(0) > 0 if m is odd,

(5) the family
(
φµm
)
m∈N forms a Hilbert basis of L2(R).

The aim of this section is now to prove (1.10), that is to say, discuss (in terms of the parameter γ)
convergence of

Iγ
def=
∑
k∈N

∫
R

1
Ek(µ)γ dµ , for γ > 0 .

We rewrite the integral in consideration as

Iγ =
∫
R×N

1
Ek(µ)γ dµdδ(k) ,

where dδ(k) is the counting measure on N. As will appear in the proof of (1.10) in Theorem 1.3,
there are three main regimes to be considered in the analysis of the eigenvalues Ek(µ) in terms
of (µ, k) ∈ R×N. In each of these regimes, we will use a semiclassical reformulation of the problem
with a single (small) parameter h related either to a power of k−1 or a power of µ−1. The three
main regimes in the study of convergence of Iγ are as follows:

(1) |µ| ≲ 1 or |µ| ≪
√

Ek(µ) (classical and perturbative classical regime) that is, µ bounded
or going to ±∞ not too fast,
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(2) µ→ −∞ and Ek(µ) ≲ µ2 (Semiclassical Harmonic oscillator/single well regime),
(3) µ→ +∞ and Ek(µ) ≲ µ2 (Semiclassical double well regime).

We shall then split Iγ accordingly, for some ε > 0 (small) and µ0 > 0 (large) as

Iγ = I−
γ (ε, µ0) + I0

γ(ε, µ0) + I+
γ (ε, µ0), with(2.1)

I•
γ(ε, µ0) def=

∫
E•(ε,µ0)

dµdδ(k)
Ek(µ)γ , with • = −, 0,+, and(2.2)

E0(ε, µ0) def= {(µ, k) ∈ R× N, |µ| ≤ µ0 or |µ|2 ≤ ε2Ek(µ)},(2.3)

E−(ε, µ0) def= {(µ, k) ∈ R× N, µ ≤ −µ0 and |µ|2 ≥ ε2Ek(µ)},(2.4)

E+(ε, µ0) def= {(µ, k) ∈ R× N, µ ≥ µ0 and |µ|2 ≥ ε2Ek(µ)}.(2.5)
In each region, we shall make use of scaling operators in R. We define for α > 0 the following

unitary (dilation) operator

(2.6) Tα : L2(R) → L2(R) ,
u(x) 7→ α

1
2u(αx) ,

having adjoint/inverse T ∗
α = T−1

α = Tα−1 .
Note that the (necessary and sufficient) condition γ > 2 for having Iγ < ∞, as stated in

Theorem 1.3, comes from the third (double well) region, see Corollary 2.11 below.

2.1. Classical and perturbative classical regime 1. In the regime 1 we consider Pµ as a
“small” perturbation of the quartic oscillator P0 = − d2

dθ2 + θ4

4 and look at the asymptotics k → +∞.

Lemma 2.2. There exist two continuous nondecreasing functions Γ± : R+ → R+ such that Γ±(ε0) >
0 for ε0 > 0 and Γ±(0) = 0 satisfying the following statements.

For all ε > 0 and µ ∈ R such that |µΛ−1/2| ≤ ε, we have

Λ3/4 (Vol1−Γ−(ε) + o(1)) ≤ 2π♯{k ∈ N,Ek(µ) ≤ Λ} ≤ Λ3/4 (Vol1 +Γ+(ε) + o(1)) ,(2.7)

as Λ→ +∞, where

Vol1
def=
∫

{ξ2+ θ4
4 ≤1}

dθ dξ > 0 .

For all ε, µ0 > 0 and for all (µ, k) ∈ R× N such that |µEk(µ)−1/2| ≤ ε or |µ| ≤ µ0, we have

Ek(µ) ≥
(

2π
Vol1 +Γ+(ε)k

)4/3
(1 + o(1)) , as k → +∞ .

For all ε > 0 such that Vol1−Γ−(ε) > 0 (that is, ε small enough), for all (µ, k) ∈ R × N such
that |µEk(µ)−1/2| ≤ ε,

Ek(µ) ≤
(

2π
Vol1−Γ−(ε)k

)4/3
(1 + o(1)) , as k → +∞ .

In the end, the first term in the decomposition (2.2) can be estimated as follows.

Corollary 2.3. There is ε0 > 0 such that for all ε ∈ (0, ε0) and for all µ0 > 0, I0
γ(ε, µ0) < +∞ if

and only if γ > 5
4 .

Proof. Fix ε0 > 0 such that Vol1−Γ±(ε0) > 0 (and take any µ0 > 0). For all ε ∈ (0, ε0), there
is k0 ∈ N such that if |µ|√

Ek(µ)
≤ ε or |µ| ≤ µ0, then |µ| ≤ max(Cεk4/3, µ0) and C−1

ε k4/3 ≤ Ek(µ) ≤

Cεk
4/3 for all k ≥ k0. As a consequence, using that Ek(µ) > 0 on R together with Lemma 2.2 for

all fixed k ∈ N, we have

I0
γ(ε, µ0) =

∫
|µ|≤ε
√

Ek(µ) or |µ|≤µ0

dµdδ(k)
Ek(µ)γ ≤

∫
|µ|≤µ0,k≤k0

dµdδ(k)
Ek(µ)γ +

∫
|µ|≤Cε

√
k4/3,k≥k0

dµdδ(k)
(C−1

ε k4/3)γ

≤ C(µ0, k0) + C̃ε
∑
k∈N∗

k2/3

(k4/3)γ
= C(µ0, k0) + C̃ε

∑
k∈N∗

1
(k2/3)2γ−1 <∞,
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if and only if γ > 1
2 (1 + 3

2 ) = 5
4 . Finally, Lemma 2.2 also yields the associated lower bound∫

|µ|≤ε
√

Ek(µ)

dµdδ(k)
Ek(µ)γ ≥ c̃ε

∑
k∈N

1
(k2/3)2γ−1 ·

Corollary 2.3 is proved. □

Proof of Lemma 2.2. We use the dilation operator Tα defined in (2.6) to recast the problem as k →
+∞ in a semiclassical setup. We have

Pµψ = Ek(µ)ψ ⇐⇒ TαPµTα−1Tαψ = Ek(µ)Tαψ ,

where

TαPµTα−1 = −α−2 d
2

dθ2 +
(
α2 θ

2

2 − µ
)2

.

We deduce that

Pµψ = Ek(µ)ψ ⇐⇒

[
−α−6 d

2

dθ2 +
(
θ2

2 − µα
−2
)2]

Tαψ = α−4Ek(µ)Tαψ .

We now choose h def= α−3, i.e. α = h−1/3, so that

Pµψ = Ek(µ)ψ ⇐⇒ P (h)(Th−1/3ψ) = h4/3Ek(µ)(Th−1/3ψ) ,

with

P (h) = −h2 d
2

dθ2 +
(
θ2

2 − µh
2/3
)2

.

As a consequence of the simplicity of the spectrum, we obtain that Sp(P (h)) = {h4/3Ek(µ), k ∈ N},
and that these eigenvalues are sorted increasingly. We may now apply Proposition B.7 for L = 1,
yielding existence of the functions Γ± satisfying the following statement. For all ε > 0 and µ ∈ R
such that |µh2/3| ≤ ε, we have

Vol1−Γ−(ε) + o(1) ≤ (2πh)♯{k ∈ N, h4/3Ek(µ) ≤ 1} ≤ Vol1 +Γ+(ε) + o(1)

as h → 0+. Setting Λ = h−4/3 → +∞, i.e. h = Λ−3/4, we have obtained that for all ε > 0
and µ ∈ R such that |µΛ−1/2| ≤ ε, (2.7) is satisfied.

Finally, we deduce an asymptotics of the Ek(µ) from an asymptotics of the counting function.
We recall from Proposition B.1 that the eigenvalues are ordered increasingly, Ek(µ) < Ek+1(µ) and
we set

k(Λ) def= sup{k ∈ N,Ek(µ) ≤ Λ} .

By definition (forgetting temporarily the dependence in µ) and simplicity of eigenvalues, we thus
have

Ek(Λ) ≤ Λ < Ek(Λ)+1, and ♯{k ∈ N,Ek(µ) ≤ Λ} = k(Λ) + 1 .

As a consequence, (2.7) rewrites,

Λ3/4 (Vol1−Γ−(ε) + o(1)) ≤ 2π(k(Λ) + 1) ≤ Λ3/4 (Vol1 +Γ+(ε) + o(1)) , as Λ→ +∞ ,

whence, assuming |µE−1/2
k(Λ) | ≤ ε (which then implies |µΛ−1/2| ≤ ε),

E3/4
k(Λ) (Vol1−Γ−(ε) + o(1)) ≤ 2π(k(Λ) + 1) ≤ E3/4

k(Λ)+1 (Vol1 +Γ+(ε) + o(1)) , as Λ→ +∞ .

Since Λ 7→ k(Λ) is nondecreasing, tending to infinity and onto from R+ → N, we deduce that,
assuming |µEk(µ)−1/2| ≤ ε,

E3/4
k (Vol1−Γ−(ε) + o(1)) ≤ 2πk ≤ E3/4

k (Vol1 +Γ+(ε) + o(1)) , as k → +∞ ,

which implies the last two statements. □
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2.2. Semiclassical Harmonic oscillator/single well regime 2. In this region, we only need
rather loose properties. First notice that, for all m ∈ N,

(2.8) for all µ < 0 , Em(µ) ≥ |µ|2 .

Indeed starting from the eigenvalue equation(
− d2

dθ2 +
(
θ2

2 − µ
)2)

φµm = Em(µ)φµm ,

and taking the inner product with φµm yields

∥∂θφµm∥2
L2(R) − µ∥θφ

µ
m∥2

L2 + 1
4∥θ

2φµm∥2
L2 + µ2 = Em(µ) ,

which implies the bound (2.8). We further need a Weyl-type asymptotics.

Lemma 2.4. For all L > 0, one has

♯{k ∈ N,Ek(µ) ≤ L|µ|2} = (2π)−1|µ|3/2(VolL +o(1)
)
, as µ→ −∞ ,(2.9)

where VolL is defined by

VolL
def=
∫

{p(x,ξ)≤L}
dxdξ , with p(x, ξ) = ξ2 + V (x) , V (x) =

(
x2

2 + 1
)2

,(2.10)

=
∫ x+(L)

x−(L)

√
L−

(
x2

2 + 1
)2
dx, with

(
x±(L)2

2 + 1
)2

= L, for L > 1 .

In the end, this is helpful to estimate the second term in the decomposition (2.2).

Corollary 2.5. For any ε > 0, there is µ̃0 > 0 such that for all µ0 ≥ µ̃0, I−
γ (ε, µ0) < +∞ if γ > 5

4 .

Proof of Corollary 2.5 from Lemma 2.4. The set of integration is µ ≤ −ε
√

Ek(µ) and µ ≤ −µ0 <
0. Then, the integral can be estimated as: given ε > 0, there is µ0 = µ0(ε) > 0 such that for
all µ ≤ −µ0, the number of eigenvalues in µ ≤ −ε

√
Ek(µ) is according to (2.9)

♯{k ∈ N,Ek(µ) ≤ 1
ε2 |µ|

2} ≤ (2π)−1|µ|3/2(Volε−2 +1
)
, for µ ≤ −µ0(ε) .

Since Ek(µ) ≥ |µ|2 for µ < −µ0(ε), there is Cε such that

I−
γ (ε, µ0) =

∫
µ≤−ε

√
Ek(µ),|µ|≥µ0

dµdδ(k)
Ek(µ)γ ≤

∫
µ≤−ε

√
Ek(µ),|µ|≥µ0

dµdδ(k)
|µ|2γ

≤
∫
µ<−µ0

(2π)−1|µ|3/2(Volε−2 +1
) dµ

|µ|2γ
≤ Cε <∞ ,

as soon as 2γ − 3
2 > 1 that is γ > 5

4 · □

Proof of Lemma 2.4. We set η def= −µ and study for η → +∞,

P−η = − d2

dθ2 +
(
θ2

2 + η

)2

.

We choose α = √η in the rescaling

TαP−ηTα−1 = −α−2 d
2

dθ2 +
(
α2 θ

2

2 + η

)2

= −α−2 d
2

dθ2 + α4
(
θ2

2 + 1
)2

.

As a consequence

P−ηψ = Ek(−η)ψ ⇐⇒ TαP−ηTα−1Tαψ = Ek(−η)Tαψ

⇐⇒

[
−α−6 d

2

dθ2 +
(
θ2

2 + 1
)2]

Tαψ = α−4Ek(−η)Tαψ .
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We set h = α−3 = η−3/2 and obtain

P−ηψ = Ek(−η)ψ ⇐⇒
[
−h2 d

2

dθ2 +
(
θ2

2 + 1
)2]

Tαψ = h4/3Ek(−η)Tαψ .(2.11)

The Weyl Law (B.9) applied to the operator −h2 d2

dθ2 +
(
θ2

2 + 1
)2

then reads: for all L > 0 fixed,

♯{k ∈ N, h4/3Ek(µ) ≤ L} = (2πh)−1(VolL +o(1)
)
, as h→ 0 ,

with VolL defined by (2.10). Recalling that h = η−3/2 then yields

♯{k ∈ N, η−2Ek(−η) ≤ L} = (2π)−1η3/2(VolL +o(1)
)
, as η → +∞ ,

and then we write back µ = −η to obtain (2.9). □

2.3. Semiclassical double well regime 3. We want to estimate the last term in the decompo-
sition (2.2), namely I+

γ (ε, µ0). To this aim, we study for µ→ +∞, the operator Pµ and as above
rescale it with h = α−3 = µ−3/2, as

Pµψ = Ek(µ)ψ ⇐⇒
[
−h2 d

2

dθ2 +
(
θ2

2 − 1
)2]

Tαψ = h4/3Ek(µ)Tαψ = µ−2Ek(µ)Tαψ .(2.12)

We thus need to study the spectrum of the operator

(2.13) Ph
def= −h2 d

2

dθ2 + V (θ), with V (θ) =
(
θ2

2 − 1
)2

for energies 0 ≤ E ≤ M for M = ε−2 (fixed by Corollary 2.3). Remark that this is a symmetric
double well problem, which has been much studied [46, 70, 47, 40, 27].

In this section, we only work in a semiclassical regime; we thus reformulate completely the
problem with h = µ−3/2, and Ek(h) = h4/3Ek(µ) the k-th eigenvalue of Ph. In the integral I+

γ (ε, µ0)
in (2.2), we set µ = h−2/3, dµ = 2

3h
−5/3dh, and obtain with h0 = µ

−3/2
0

(2.14)

I+
γ (ε, µ0) = 2

3

∫
Ek(h)≤ε−2,0<h≤h0

h−5/3dhdδ(k)
(h−4/3Ek(h))γ

= 2
3

∫
Ek(h)≤ε−2,0<h≤h0

h(4γ−5)/3

Ek(h)γ dhdδ(k) .

To prove convergence of this integral, we split the energy region [0,M ] where M = ε−2 is large
into three different regions as

[0,M ] = [0, βh] ∪ [βh, α] ∪ [α,M ] ,

where β > 0, α ∈ (0, 1),M > α are fixed (independent of h). Concerning the energy window [α,M ],
a counting estimate will be enough for our needs: the following is a rewriting of (B.9) in the present
context.

Lemma 2.6. For V (θ) =
(
θ2

2 − 1
)2

and p(θ, ξ) = ξ2 + V (θ), for any α ≤M , we have

♯{j ∈ N, Ej(h) ∈ [α,M ]} = (2πh)−1
(

Vol p−1([α,M ]) + oα,M (1)
)
, as h→ 0+ .

Concerning the energy window [βh, α], we shall use the following much more precise result
from [47, p294-295].

Lemma 2.7. For E ∈ [0, 1), we set

Φ(E) def= 1
4π

∫
p(θ,ξ)≤E

dθdξ , with p(θ, ξ) = ξ2 +
(
θ2

2 − 1
)2

.(2.15)

There are β > 0 and Nβ ∈ N such that for all α < 1, there are K,h0 > 0 such that for all h ∈
(0, h0), there exist N±(h) ∈ N with |N+(h) − N−(h)| ≤ 1 and N±(h) ≤ Kh−1, and two finite
sequences E±

j (h) ∈ [βh, α] for j ∈ {Nβ , · · · , N±(h)} with

Φ
(
E±
j (h)

)
= (j + 1/2)h+Oα,β(h2), as h→ 0+,
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such that we have
Sp(Ph) ∩ [βh, α] =

⋃
j∈{Nβ ,··· ,N+(h)}

E+
j (h) ∪

⋃
j∈{Nβ ,··· ,N−(h)}

E−
j (h) .

Note that here, E±
j (h) is not the j-th eigenvalue of Ph. However, the E±

j (h)’s exhaust the
spectrum of Ph in the energy window [βh, α] as h→ 0.

Concerning the bottom of the spectrum, that is the energy window [0, βh], we shall need a
precise description of the eigenvalues [46]. We recall that V ′(θ) = 2θ( θ

2

2 − 1) and V ′′(θ) = 3θ2− 2.

In particular at the two minima V ′′(±
√

2) = 4 and ω :=
√

V ′′(±
√

2)
2 =

√
2. The following result

is a consequence of [46], see also [70] and [40, pp 55–60], and states that the low-lying eigenvalues
are close to those of the Harmonic oscillator −h2 d2

dθ2 + ω2θ2.

Lemma 2.8 (Bottom of the spectrum for the double well problem). For all β > 0, there are Nβ ∈
N, h0 > 0 such that

Sp(Ph) ∩ (−∞, βh) =
{
En(h), n ∈ {0, . . . , Nβ}

}
, uniformly for h ∈ (0, h0),

with 0 < En(h) < En+1(h) < βh for all n ∈ {0, . . . , Nβ−1} and h ∈ (0, h0). Moreover, as h→ 0+,
we have

(1) E2k(h) = (2k + 1)ωh+Oβ(h2) is simple and associated to an even eigenfunction ψ2k(h),
(2) E2k+1(h) = (2k+1)ωh+Oβ(h2) is simple and associated to an odd eigenfunction ψ2k+1(h).

The regimes of Lemmata 2.7 and 2.8 overlap (depending on the choice of the constant β in these
two statements) and we now check that the two asymptotics as h→ 0+ coincide.

Lemma 2.9. The function Φ : [0, 1) → R+ defined in (2.15) is continuous, of class C1 on (0, 1),
and we have, for E ∈ (0, 1),

Φ′(E) = 1
2π

∫ x+(E)

x−(E)

1√
E − V (x)

dx > 0 , with x±(E) =
√

2± 2
√
E .

Moreover, the function Φ is differentiable at E = 0+ with Φ′(0+) = (2
√

2)−1 > 0.

Remark 2.10. A consequence of Lemma 2.9 is that the asymptotics given by Lemmata 2.7 and 2.8
coincide in the regime in which they overlap. Indeed, for all eigenvalues belonging to both regimes,
we have, using Lemmata 2.7 and 2.9

(j + 1/2)h ∼ Φ
(
E±
j (h)

)
∼ Φ′(0+)E±

j (h) = (2
√

2)−1E±
j (h) ,

that is to say E±
j (h) ∼

√
2(2j + 1)h as h→ 0+, which is consistent with Lemma 2.8.

The proof of Lemma 2.9 is postponed to the end of the section. As a corollary of these four
lemmata, we prove that I+

γ (ε, µ0) is finite.

Corollary 2.11. For all M = ε−2 > 0, there exists µ0 > 0 such that I+
γ (ε, µ0) < +∞ if γ > 2.

If γ ≤ 2, I+
γ (ε, µ0) = +∞ for all ε > 0 and µ0 > 0.

Proof of Corollary 2.11. We let β be fixed by Lemma 2.7, fix α = 1
2 in this lemma and split the

integral in (2.14) according to
3
2I

+
γ (ε, µ0) = I1 + I2 + I3 ,

with, writing h0 = µ
−3/2
0 sufficiently small,

I1 =
∫
Ek(h)∈[0,βh],0<h≤h0

, I2 =
∫
Ek(h)∈[βh,1/2],0<h≤h0

, I3 =
∫
Ek(h)∈[ 1

2 ,M ],0<h≤h0

.

Concerning I3, we use Lemma 2.6 (which applies for h0 sufficiently small) to estimate

I3 =
∫
Ek(h)∈[ 1

2 ,M ],0<h≤h0

h(4γ−5)/3

Ek(h)γ dhdδ(k) ≤ 2γ
∫
Ek(h)∈[ 1

2 ,M ],0<h≤h0

h(4γ−5)/3dhdδ(k)

≤ 2γ
∫ h0

0
h(4γ−5)/3 ♯{k ∈ N, Ek(h) ∈ [1/2,M ]} dh ≤ C

∫ h0

0
h(4γ−5)/3 h−1 dh <∞ ,
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as soon as (4γ − 5)/3− 1 > −1, that is γ > 5
4 .

Concerning I2, we need an additional information on the function Φ in (2.15). Lemma 2.9
implies that Φ′ is continuous (and positive) on [0, 1/2], and we may thus set MΦ

def= max[0,1/2] Φ′.
We therefore obtain

MΦE ≥ Φ(E), for all E ∈ [0, 1/2] .(2.16)

According to Lemma 2.7, we have

Sp(Ph) ∩ [βh, 1/2] =
⋃

j∈{Nβ ,··· ,N+(h)}

E+
j (h) ∪

⋃
j∈{Nβ ,··· ,N−(h)}

E−
j (h)

with, for all j ∈ {Nβ , · · · , N±(h)}

MΦE
±
j (h) ≥ Φ

(
E±
j (h)

)
= (j + 1/2)h+Oα,β(h2) ≥ (j + 1

4)h, for h ≤ h0 ,

where the inequality comes from (2.16). As a consequence, we have

I2 =
∫
Ek(h)∈[βh,1/2],0<h≤h0

h(4γ−5)/3

Ek(h)γ dhdδ(k) =
∫ h0

0
h(4γ−5)/3

∑
±

N±(h)∑
j=Nβ

1
E±
j (h)γ

dh

≤ C
∫ h0

0
h(4γ−5)/3

max{N−(h),N+(h)}∑
j=Nβ

1(
(4j + 1)h

)γ dh ≤ C
∫ h0

0
h(4γ−5)/3 h−γ

∑
j≤Kh−1

1
(4j + 1)γ dh

≤ C
∫ h0

0
h(4γ−5)/3 h−γ dh <∞,

as soon as γ > 1 and (4γ− 5)/3− γ > −1, that is to say γ > 2. The term I3 is estimated similarly
but using Lemma 2.8:

I3 =
∫
Ek(h)∈[0,βh],0<h≤h0

h(4γ−5)/3

Ek(h)γ dhdδ(k) ≤ C
∫ h0

0
h(4γ−5)/3

Nβ∑
j=0

1
((2j + 1)h)γ dh

≤ C
∫ h0

0
h(4γ−5)/3h−γ dh ,

which is finite as soon as γ > 2 for the same reason.
To conclude the proof, we simply notice that Lemma 2.8 also implies

I3 =
∫
Ek(h)∈[0,βh],0<h≤h0

h(4γ−5)/3

Ek(h)γ dhdδ(k) ≥ c
∫ h0

0
h(4γ−5)/3h−γ dh = +∞

if γ ≤ 2. □

For the proof to be complete, we now prove Lemma 2.9.

Proof of Lemma 2.9. We have Φ(0) = 0 and, for E ∈ (0, 1),

Φ(E) = 1
4π

∫
{p(θ,ξ)≤E}

dθdξ = 1
2π

∫
{ξ2+V (θ)≤E,θ>0}

dθdξ = 1
π

∫{
0<ξ≤

√
E−V (θ),θ>0

} dθdξ
= 1
π

∫ θ+(E)

θ−(E)

√
E − V (θ)dθ ,

with V (θ) =
(
θ2

2 − 1
)2

and

θ±(E) are such that V (θ±(E)) = E and 0 < θ−(E) <
√

2 < θ+(E) ,
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that is, θ±(E) =
√

2± 2
√
E. As a consequence, Φ is a continuous and strictly increasing function

on [0, 1) with Φ(0) = 0. The functions E 7→ θ±(E) are smooth on (0, 1) and

πΦ′(E) = θ′
+(E)

√
E − V (θ+(E))− θ′

−(E)
√
E − V (θ+(E)) +

∫ θ+(E)

θ−(E)

1
2
√
E − V (θ)

dθ

= 1
2

∫ θ+(E)

θ−(E)

1√
E − V (θ)

dθ .

Moreover, recalling ω =
√

V ′′(
√

2)
2 =

√
2, we have

V (θ) = ω2(θ −
√

2)2 +O((θ −
√

2)3), as θ →
√

2 .

Hence, setting y = ω√
E

(θ −
√

2), we have

πΦ(E) =
∫ θ+(E)

θ−(E)

√
E − V (θ)dθ =

√
E

ω

∫ ω√
E

(θ+(E)−
√

2)

ω√
E

(θ−(E)−
√

2)

√√√√E − V

(
√

2 +
√
E

ω
y

)
dy,

with the following asymptotic properties as E → 0+

1 = V (θ±(E))
E

← ω2

E
(θ±(E)−

√
2)2, whence ω√

E
(θ±(E)−

√
2)→ ±1,

V

(
√

2 +
√
E

ω
y

)
= Ey2 +O(E3/2), uniformly for y bounded.

As a consequence, as E → 0+ we have,

πΦ(E) =
√
E

ω

∫ 1

−1

√
E − Ey2 +O(E3/2)dy + o(E) = E

ω

∫ 1

−1

√
1− y2dy + o(E),

with
∫ 1

−1

√
1− y2dy = π

2 . As a consequence, recalling that Φ(0) = 0, we deduce that Φ is differen-
tiable at E = 0+ with Φ′(0+) = 1

2ω = 1
2

√
2 . Lemma 2.9 is proved. □

3. Basic facts on the Engel group

As recalled in the introduction, the Engel group G is a nilpotent 4-dimensional Lie group which
is connected and simply connected, and whose Lie algebra g satisfies the following decomposition

g = g1 ⊕ g2 ⊕ g3

with gi+1 = [g1, gi] for i = 1, 2, 3 with the properties dim g1 = 2 and [g1, g3] = 0.
Notice that the subspace g1 is bracket-generating in the Lie algebra g and if g1 is endowed with

an inner product, we can define on G a left-invariant sub-Riemannian structure. In this way G
belongs to the class of the so-called Carnot groups [1, 14]. There exists a unique Carnot group
satisfying the above properties, up to isomorphisms [2, 13], called the Engel group (cf. also the
discussion in [63, Section 6.11]).

It is well known that the exponential map exp : g→ G is a global diffeomorphism and defining
for x, y ∈ g

(3.1) x · y def= exp−1(exp(x) · exp(y))

the Lie group G can be identified with g ≃ R4 endowed with a polynomial group law [14]. Indeed
using the Baker-Campbell-Hausdorff formula and the fact that the Engel group G is nilpotent we
can write for x, y ∈ g the identity

(3.2) exp(x) · exp(y) = exp
(
x+ y + 1

2[x, y] + 1
12([x, [x, y]− [y, [x, y]])

)
.
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Fixing a basis X1, X2, X3, X4 of g (which we can identify with left-invariant vector fields on G)
such that

g1 = span{X1, X2} , g2 = span{X3} , g3 = span{X4} ,(3.3)

X3
def= [X1, X2] , X4

def= [X1, X3](3.4)

one can define a set coordinates x = (x1, x2, x3, x4) on G by the identity

(3.5) g = exp
( 4∑
i=2

xiXi

)
exp(x1X1) .

After some computations exploiting (3.2), one gets
x1
x2
x3
x4

 ·

y1
y2
y3
y4

 =


x1 + y1
x2 + y2

x3 + y3 + x1y2

x4 + y4 + x1y3 + x2
1

2 y2

 .(3.6)

With this choice of coordinates, a basis of left-invariant vector fields is given by

X1
def= ∂x1 ,(3.7)

X2
def= ∂x2 + x1∂x3 + x2

1
2 ∂x4 ,(3.8)

and thus
X3 = ∂x3 + x1∂x4 and X4 = ∂x4 .

Notice that the inverse of an element x = (x1, x2, x3, x4) in the coordinates (3.5) is given by

(3.9) (x1, x2, x3, x4)−1 =
(
− x1,−x2,−x3 + x1x2,−x4 + x1x3 −

1
2x

2
1x2
)
.

One can define a sub-Riemannian structure on the Engel group G by introducing the bracket-
generating distribution D spanned by the vector fields in g1 and defining an inner product ⟨·, ·⟩ on D
such that X1 and X2 define an orthonormal frame. Thanks to the bracket generating condition,
we have the following well-known connectivity property through the so-called horizontal curves for
the distribution, which is a consequence of the classical Rashevski-Chow theorem: for every pair
of points x, y ∈ G there exists an absolutely continuous curve γ : [0, T ]→ G such that γ̇(t) ∈ Dγ(t)
and γ(0) = x, γ(T ) = y. We denote by Ωx,y the set of absolutely continuous horizontal curves
joining x and y. If γ : [0, T ]→ G belongs to Ωx,y we set

ℓG(γ) def=
∫ T

0
⟨γ̇(t), γ̇(t)⟩1/2dt .

This enables one to introduce the sub-Riemannian (also called Carnot-Carathéodory) distance dG
on G which is defined as follows

(3.10) dG(x, y) def= inf
{
ℓG(γ) | γ ∈ Ωx,y

}
·

This is a well-defined distance inducing the Euclidean topology, moreover the metric space (G, dG)
is complete. In particular all closed balls BG(x, r) are compact [1].

By construction, the sub-Riemannian distance on the Engel group is invariant with respect to
left-invariant multiplications τz : G→ G defined by τz(x) def= z · x, namely

dG(τzx, τzy) = dG(x, y) .

Moreover, being a Lie group, G can be endowed with a Haar measure which turns out to be a scalar
multiple of the Lebesgue measure in R4 in the coordinate set we have chosen; we shall therefore
denote in what follows for simplicity by dx the Haar measure on G. The corresponding Lebesgue
spaces Lp(G) are thus the set of measurable functions u : G→ C such that

∥u∥Lp(G)
def=
(∫

G

|u(x)|pdx
) 1

p

<∞, if 1 ≤ p <∞ ,

with the standard modification if p =∞.
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The convolution product of any two integrable functions u and v is defined by

(3.11) u ⋆ v(x) def=
∫
G

u(x · y−1)v(y) dy =
∫
G

u(y)v(y−1 · x) dy ,

and even though it is not commutative, the following Young inequalities hold true:

(3.12) ∥u ⋆ v∥Lr(G) ≤ ∥u∥Lp(G)∥v∥Lq(G), whenever 1 ≤ p, q, r ≤ ∞ and 1
r

= 1
p

+ 1
q
− 1 .

Moreover if X is a left-invariant vector field on G, then we have for all C1 functions u and v with
sufficient decay at infinity:

(3.13) X (u ⋆ v) = u ⋆ (X v) .

We also define the left translation by

(3.14) (Lxu)(y) def= u(τxy) = u(x · y) .

According to (3.11), we may also define the convolution between T ∈ S ′(G) and u ∈ S(G) (where
we recall that the Schwartz space S(G) is nothing else than the Schwartz space S(R4)): as

(3.15)
(T ⋆ u)(x) def= ⟨T, ǔx⟩S′(G),S(G), with ǔx(y) def= u(y−1 · x) = (Ly−1u)(x) ,

(u ⋆ T )(x) def= ⟨T, ǔx⟩S′(G),S(G), with ǔx(y) def= u(x · y−1) = (Lxu)(y−1) ,

which both satisfy T ⋆ u ∈ C∞(G) and u ⋆ T ∈ C∞(G). Note that this actually stands for the
definition of the convolution product in (1.14).

Recall also the following homogeneity property: the Haar measure |BG(x, r)| of the ball centered
at x ∈ G and of radius r satisfies

(3.16) |BG(x, r)| = crQ

where c def= |BG(0, 1)|, and Q is the homogeneous dimension of the Engel group which is given by

(3.17) Q
def=

3∑
j=1

j dim gj = 7 .

Identity (3.16) is related to the following crucial fact: defining the dilations

(3.18) ∀λ > 0 , δλ : G→ G , δλ(x1, x2, x3, x4) def= (λx1, λx2, λ
2x3, λ

3x4)

we have the following homogeneity

(3.19) dG(δλx, δλy) = λdG(x, y) .

Given u : G → R one can introduce its sub-Riemannian gradient ∇Gu defined as the unique
horizontal vector field satisfying

(3.20) ⟨∇Gu,X⟩
def= du(X)

for every horizontal vector field X ∈ D. This translates in terms of the vector fields in the identity

(3.21) ∇Gu = (X1u)X1 + (X2u)X2 .

One can then introduce a sublaplacian operator ∆G as follows:

(3.22) ∆Gu
def= div(∇Gu)

where div denotes the divergence with respect to the Haar measure of G. In terms of the vector
fields we have

(3.23) ∆Gu = (X2
1 +X2

2 )u

but the definition given above guarantees that ∆G is an operator which is canonically associ-
ated with the sub-Riemannian structure on G, i.e., independent of the choice of orthonormal
frame X1, X2.
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Remark 3.1. In a similar way one can build a right-invariant sub-Riemannian structure on the
Engel group, and build the corresponding right-invariant sub-Riemannian Laplacian. With respect
to the product law given by (3.6), a basis of right-invariant vector fields is given as follows

X̃1
def= ∂x1 + x2∂x3 + x3∂x4 ,(3.24)

X̃2
def= ∂x2 .(3.25)

This defines a right-invariant metric which in turns defines a right-invariant sublaplacian ∆̃G as
follows:

(3.26) ∆̃Gu
def= div(∇̃Gu) ,

where div denotes the divergence with respect to the Haar measure on G (which is indeed bi-
invariant since the group G is nilpotent) while the gradient is different since the metric has changed.
In terms of the vector fields we have

(3.27) ∆̃Gu = (X̃2
1 + X̃2

2 )u.

Remark 3.2. The Engel group can also be described as the set J2(R,R) of 2-jets of a real function
of a single real variable as follows: an element (x, y, p, q) ∈ R4 represents a 2-jet of a real function
if it is of the form (x, u(x), u′(x), u′′(x)) which is equivalent to the relations p = dy

dx , q = dp
dx . These

relations define a vector distribution (playing the role of g1) defined by the kernel of the differential
forms in R4

ω1 = dy − pdx, ω2 = dp− qdx.
For more details on sub-Riemannian structures on jet spaces one can see, for instance, [16, 81].

4. The Fourier transform on the Engel group: Proof of Theorems 1.2 and 1.3

4.1. The standard Fourier theory on the Engel group.

4.1.1. Definition. As recalled in the introduction, the standard way to define an Engel Fourier
transform consists in using irreducible unitary representations. The one that we shall use here
relies on the representations (Rν,λx )(ν,λ)∈R×R∗ introduced in Appendix A, and that are given for
all x in G and ϕ in L2(R), by

(4.1) Rν,λx ϕ(θ) def= exp
[
i

(
−ν
λ
x2 + λ

(
x4 + θx3 + θ2

2 x2
))]

ϕ(θ + x1) .

For any (ν, λ) ∈ R× R∗, the map

Rν,λ :
{
G −→ U(L2(R))
x 7−→ Rν,λx

is a group homomorphism between the Engel group and the unitary group U(L2(R)) of L2(R).
Actually (Rν,λ)(ν,λ)∈R×R∗ plays the same role as the map x 7→ ei⟨ξ,x⟩ in the Euclidean case, as
regards the definition of the Fourier transform.

Definition 4.1. The Fourier transform of an integrable function u on G is defined by

(4.2) ∀(ν, λ) ∈ R× R∗ , F (u)(ν, λ) def=
∫
G

u(x)Rν,λx dx .

4.1.2. Main properties. According to Definition 4.1, the Fourier transform of an integrable function
on G is a family, parametrized by (ν, λ) ∈ R×R∗, of bounded operators on L2(R): for all u in L1(G),
there holds

(4.3) ∀(ν, λ) ∈ R× R∗ , ∥F (u)(ν, λ)∥L (L2,L2) ≤ ∥u∥L1(G) .

Despite first appearances, this Fourier transform has many common features with the Fourier
transform on Rd. First, since Rν,λ is a group homomorphism, F (u)(ν, λ) transforms convolution
into composition, that is to say, for all integrable functions u and v,

(4.4) ∀(ν, λ) ∈ R× R∗ , F (u ⋆ v)(ν, λ) = F (u)(ν, λ) ◦F (v)(ν, λ) .
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Moreover as in the Euclidean case, the Fourier-Plancherel and inversion formulae hold true in that
setting, with dνdλ as Plancherel measure, resorting respectively to Hilbert-Schmidt norms and
trace-class operators (see for instance Corwin-Greenleaf [23]).

In order to state the Fourier-Plancherel formula, let us recall the definition of the Hilbert-
Schmidt norm. Denoting by (em)n∈N an orthonormal basis of L2(R), we define the Hilbert-Schmidt
norm ∥F (u)(ν, λ)∥HS on L2(R) (which is independent of the choice of the basis) by

∥F (u)(ν, λ)∥HS
def=
(∑
m∈N
∥F (u)(ν, λ)em∥2

L2(R)

) 1
2

.

The following result is very classical, see e.g. [23, Theorems 4.3.10 and 4.3.17]. In order to justify
the constant appearing in the formula and for the convenience of the reader, we provide a sketch
of proof below.

Proposition 4.2. A function u belongs to L2(G) if and only if F (u)(ν, λ) is a Hilbert-Schmidt
operator for almost every (ν, λ) in R× R∗, and there holds

(4.5) ∥u∥2
L2(G) = (2π)−3

∫
R×R∗

∥F (u)(ν, λ)∥2
HS dνdλ .

Proof. We prove that if u belongs to (L1 ∩ L2)(G), then for almost every (ν, λ) ∈ R × R∗ the
operator F (u)(ν, λ) defined by (4.2) is a Hilbert-Schmidt operator satisfying (4.5). The rest of the
argument is left to the reader. According to (4.1), for all (ν, λ) ∈ R× R∗ and ϕ in L2(R)

(F (u)(ν, λ)ϕ)(θ) =
∫
G

u(x) exp i
(
− ν

λ
x2 + λ

(
x4 + θx3 + θ2

2 x2
))
ϕ(θ + x1)dx

=
∫
R
û
(
x1,

ν

λ
− λθ

2

2 ,−λθ,−λ
)
ϕ(θ + x1)dx1 ,

where û denotes the Euclidean Fourier transform with respect to (x2, x3, x4). It follows that

∥F (u)(ν, λ)∥2
HS =

∫
R2

∣∣û(x1,
ν

λ
− λθ

2

2 ,−λθ,−λ)
∣∣2dx1dθ ,

hence ∫
R×R∗

∥F (u)(ν, λ)∥2
HS dνdλ =

∫
R3×R∗

∣∣û(x1, ξ2, ξ3, ξ4)
∣∣2dx1dξ2dξ3dξ4

where we have performed the change of variables (θ, ν, λ) 7→ (ξ1, ξ2, ξ3), of unit jacobian

ξ2 = ν

λ
− λθ

2

2 , ξ3 = −λθ , ξ4 = −λ .

The result follows from the Fourier-Plancherel formula on R3. □

The inversion formula requires introducing the trace of the operator Rν,λx−1F (u)(ν, λ). By defi-
nition, this operator is trace-class if∑

m∈N

∣∣∣(Rν,λx−1F (u)(ν, λ)em|em
)∣∣∣ <∞ ,

and, if so, its trace is defined as follows (and as the Hilbert-Schmidt norm it is independent of the
choice of the basis)

tr
(
Rν,λx−1F (u)(ν, λ)

) def=
∑
m∈N

(
Rν,λx−1F (u)(ν, λ)em|em

)
.

In particular if

(4.6)
∑
m∈N

∫
R×R∗

∥F (u)(ν, λ)em∥L2(R)dνdλ <∞ ,

then the operator Rν,λx−1F (u)(ν, λ) is of trace-class, and one has

(4.7) u(x) = (2π)−3
∫
R×R∗

tr
(
Rν,λx−1F (u)(ν, λ)

)
dνdλ .
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Let us emphasize that the hypothesis (4.6) is satisfied in the Schwartz space S(G) (see Proposi-
tion 4.11 below).

Remark 4.3. Observe that if u ∈ L1(G), then for all (ν, λ) ∈ R× R∗ and all x ∈ G,

(4.8) F (Lxu)(ν, λ) = Rν,λx−1 F (u)(ν, λ)
where Lx is the left-translation operator defined in (3.14). Indeed by definition of Lx, we have

F (Lxu)(ν, λ) =
∫
G

u(x · y)Rν,λy dy .

Using the left invariance of the Lebesgue measure, changing variable z = x ·y and taking advantage
of the fact that Rν,λ is a group homomorphism, we get

F (Lxu)(ν, λ) =
∫
G

u(z)Rν,λx−1·zdz

= Rν,λx−1

∫
G

u(z)Rν,λz dz

= Rν,λx−1F (u)(ν, λ)
which proves (4.8).

4.1.3. Action on the sublaplacian. A key point in the analysis of the Engel group consists in
studying the action of the Fourier transform on the sublaplacian ∆G defined by (3.23). Actually,
we check that, for any C2 function ϕ on R, for any (ν, λ) ∈ R× R∗ and any x in G, there holds

(4.9) −∆GRν,λx (ϕ) = Rν,λx Pν,λϕ and − ∆̃GRν,λx (ϕ) = Pν,λRν,λx ϕ ,

with1

(4.10) Pν,λ
def= − d2

dθ2 +
(
λ

2 θ
2 − ν

λ

)2
.

This shows, as explained in the introduction of this paper, that the Fourier transform on the Engel
group is strongly tied to the spectral analysis of the quartic oscillator. To obtain (4.9) we take
advantage of (4.1) to gather that

(4.11) X1Rν,λx (ϕ) = Rν,λx
dϕ

dθ
and X2Rν,λx (ϕ) = i

(λ
2
(
θ + x1

)2 − ν

λ

)
Rν,λx (ϕ) ,

which implies that −∆GRν,λx (ϕ) = Rν,λx Pν,λϕ. Along the same lines, one gets

(4.12) X̃1Rν,λx (ϕ) = d

dθ

(
Rν,λx (ϕ)

)
and X̃2Rν,λx (ϕ) = i

(λ
2 θ

2 − ν

λ

)
Rν,λx (ϕ) ,

which completes the proof of (4.9). Note also that
(4.13) X3Rν,λx (ϕ) = iλRν,λx (θϕ) , X4Rν,λx (ϕ) = iλRν,λx (ϕ)
and
(4.14) X̃3Rν,λx (ϕ) = iλθRν,λx (ϕ) , X̃4Rν,λx (ϕ) = iλRν,λx (ϕ) .

Remark 4.4. Let us give some insight on the parameters (ν, λ) ∈ R×R∗ involved in the definition
of the Fourier transform (4.2). By definition, λ belongs to the dual of the center of G, which in
accordance with the structure of the Lie algebra of G is associated to an operator of homogeneous
order 3. On the other hand the parameter ν is associated to the operator X4X2− 1

2X
2
3 which is an

operator of homogeneous order 4. This can be illustrated through the relations (4.11) and (4.13)
which give

(4.15)
(
X4X2 −

1
2X

2
3
)
Rν,λx (ϕ) = νRν,λx (ϕ) .

4.2. The Fourier transform seen as a function: proof of Theorem 1.2. This section is
dedicated to introducing an alternative definition of the Fourier transform on G introduced in
Section 4.1. This will provide the construction of the set Ĝ, the operator U and the function a
satisfying (1.7) of Theorem 1.2.

1As will be seen later, the operators Pν,λ and Pµ are, up to the factor |λ|2/3, unitarily equivalent.
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4.2.1. The frequency set. This new approach, initiated by H. Bahouri, J.-Y. Chemin and R. Danchin
in the setting of the Heisenberg group [4], is based on the spectral analysis of Pν,λ conducted in Ap-
pendix B.1, where it is in particular established that the operator Pν,λ is self-adjoint on its domain,
in L2(R), with compact resolvent (for any choice of the parameters). Thus it can be associated
with an orthonormal basis of eigenfunctions ψλ,νm associated to the eigenvalues Em(λ, ν) ∈ R∗

+ (see
Proposition B.1 for further details)

(4.16) Pν,λψ
ν,λ
m = Em(ν, λ)ψν,λm .

Then by projecting F (u)(ν, λ) on the basis (ψν,λm )m∈N, one can see the Fourier transform of u as the
mean value of umodulated by some oscillatory function in the following way: for all x̂ def= (n,m, ν, λ)
in Ĝ

def= N2 × R× R∗,

F(u)(n,m, ν, λ) def=
(
F (u)(ν, λ)ψν,λm |ψν,λn

)
L2(R) .

Now computing the right-hand side of the above formula, we discover that

(4.17) F(u)(n,m, ν, λ) =
∫
G

W
(
(n,m, ν, λ), x

)
u(x)dx ,

with

(4.18)
W
(
(n,m, ν, λ), x

) def=
(
Rν,λx ψν,λm |ψν,λn

)
L2(R)

= ei(λx4− ν
λx2)

∫
R
eiλ(θx3+ θ2

2 x2)ψν,λm (θ + x1)ψν,λn (θ)dθ .

It readily stems from (4.17) (and the Cauchy-Schwarz inequality in (4.18) and the fact that (ψν,λm )m∈N
is an orthonormal basis) that the following continuous mapping holds:

(4.19) F : L1(G)→ L∞(Ĝ) .

In the following Ĝ will be called the frequency set of G.

4.2.2. Proof of Theorem 1.2. With this point of view, the Fourier-Plancherel and inversion formu-
lae (4.5)-(4.7) may be expressed in a similar way as in the Euclidean case, namely

∥u∥2
L2(G) = (2π)−3∥F(u)∥2

L2(Ĝ)
(4.20)

(u, v)L2(G) = (2π)−3 (F(u),F(v))
L2(Ĝ)(4.21)

u(x) = (2π)−3
∫
Ĝ

W
(
(n,m, ν, λ), x−1)F(u)(x̂) dx̂ ,(4.22)

where the measure dx̂ is defined by

(4.23)
∫
Ĝ

θ(x̂) dx̂ def=
∫
R×R∗

∑
(n,m)∈N2

θ(n,m, ν, λ)dνdλ ,

and where x−1 is given by (3.9). Finally for any function u in the Schwartz class S(G) and
any x̂ ∈ Ĝ, combining (4.9) together with (4.17)-(4.18) along with an integration by parts, we get
according to (4.16)

(4.24)
F(−∆Gu)(n,m, ν, λ) = Em(ν, λ)F(u)(n,m, ν, λ) and

F(−∆̃Gu)(n,m, ν, λ) = En(ν, λ)F(u)(n,m, ν, λ) .

This construction proves Theorem 1.2. □
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4.2.3. Additional properties. First observe that the relations (4.24) lead in particular to the defi-
nition of the homogeneous Sobolev semi-norms as in the Euclidean case by means of the Fourier
transform:

(4.25) ∥u∥Ḣs(G)
def=
∥∥(−∆G) s

2u
∥∥
L2(G) = (2π)−3/2

(∫
Ĝ

Esm(ν, λ)
∣∣F(u)(x̂)

∣∣2 dx̂) 1
2
,

and along the same lines in the non homogeneous framework

(4.26) ∥u∥Hs(G)
def= ∥(Id−∆G) s

2u∥L2(G) = (2π)−3/2
(∫

Ĝ

(1 + Em(ν, λ))s|F(u)(x̂)|2 dx̂
) 1

2
.

Second note that in this new setting, the convolution identity (4.3) rewrites as follows, for all
integrable functions u and v and all x̂ = (n,m, ν, λ) ∈ Ĝ,

(4.27) F(u ⋆ v)(x̂) = (F(u) · F(v))(x̂) def=
∑
p∈N
F(u)(n, p, ν, λ)F(v)(p,m, ν, λ) .

Before going further, let us list some useful properties of the function W.

Proposition 4.5. For any x̂ = (n,m, ν, λ) in Ĝ and x in G, we have

W
(
(n,m, ν, λ), 0

)
= δn,m and |W

(
(n,m, ν, λ), x

)
| ≤ 1 ,(4.28)

W
(
(n,m, ν, λ), x

)
= W

(
(n,m, ν,−λ), x

)
,(4.29)

W
(
(n,m, ν, λ), x−1) = W

(
(m,n, ν, λ), x

)
,(4.30) ∑

n∈N
|W
(
(n,m, ν, λ), x

)
|2 = 1 ,(4.31)

W
(
(n,m, ν, λ), δr(x)

)
= W

(
(n,m, r4ν, r3λ), x

)
, ∀r > 0 .(4.32)

Proof. The first property follows from the fact that (ψν,λm )m∈N is an orthonormal basis and the
Cauchy-Schwarz inequality in (4.18). The second one is an immediate consequence of the fact that,
for all m ∈ N, thanks to the symmetry invariance2 of Pν,λ with respect to λ,

ψν,λm = ψν,−λm .

Identity (4.30) follows from (3.9), while Formula (4.31) stems from the fact that Rν,λx are unitary
operators and thus ∥Rν,λx ψν,λm ∥L2(R) = 1, which implies that for all m ∈ N∑

n∈N

∣∣(Rν,λx ψν,λm |ψν,λn )L2(R)
∣∣2 =

∑
n∈N

∣∣W((n,m, ν, λ), x
)∣∣2 = 1 .

In order to prove (4.32), we first observe that in view of (4.18), there holds

W
(
(n,m, ν, λ), δr(x)

)
= ei(λr

3x4− ν
λ rx2)

∫
R
eiλ(θr2x3+ θ2

2 rx2)ψν,λm (θ + rx1)ψν,λn (θ)dθ.

Then performing the change of variable θ = rz, we deduce that

W
(
(n,m, ν, λ), δr(x)

)
= ei(r

3λx4− r4ν
r3λ

x2)
∫
R
eir

3λ(zy3+ z2
2 y2)Trψ

ν,λ
m (z + y1)Trψν,λn (z)dz ,

where Tr is the unitary operator in L2(R) defined by (2.6).
Recalling that by (B.2), we have Trψν,λm (θ) = ψr

4ν,r3λ
m (θ), this completes the proof of (4.32),

hence of the proposition. □

Remark 4.6. Note that introducing, for all r > 0,

(4.33) δ̂r(n,m, ν, λ) def= (n,m, r4ν, r3λ) ,

it readily follows from (4.32) that

(4.34) F(u ◦ δr) = r−QF(u) ◦ δ̂r−1 .

2One has Pν,λ = Pν,−λ.
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We deduce that the frequency set Ĝ has the same homogeneous dimensionQ asG. Indeed according
to (4.23), we get for any integrable function θ on Ĝ,∫

Ĝ

(θ ◦ δ̂r)(x̂)dx̂ =
∫
R×R∗

∑
(n,m)∈N2

θ(n,m, r4ν, r3λ)dνdλ

= r−Q
∫
R×R∗

∑
(n,m)∈N2

θ(n,m, ν, λ)dνdλ .

In contrast with the Euclidean situation, when adopting the function point of view for the Engel
Fourier transform one has to take into account that somehow, we deal with infinite matrices asso-
ciated to bounded operators in L2(R). To better exploit the relation between the definitions (4.2)
and (4.17), let us introduce the following definition.

Definition 4.7. For p ∈ [1,∞], we define Lp,2F (Ĝ) as the set of functions θ on Ĝ equipped with
the norm

∥θ∥Lp,2
F (Ĝ)

def= ∥θ∥Lp
ν,λ,m

(R×R∗×N;ℓ2
n(N)) .

The following two statements are the analogues of the Hausdorff-Young inequality in Rd, which
we here have both for F and F−1. Recall that F−1(θ) is defined by (cf. also (4.22))

F−1(θ)(x) = (2π)−3
∫
Ĝ

W
(
(n,m, ν, λ), x−1)θ(x̂) dx̂ .

Proposition 4.8. For all 1 ≤ p ≤ 2, the following inequality holds: for all u in S(G),

(4.35) ∥F(u)∥Lp′,2
F (Ĝ) ≤ ∥u∥Lp(G) ,

where p′ is the dual exponent of p, and thus F extends as a continuous linear map F : Lp(G) →
Lp

′,2
F (Ĝ).
For all θ in L1,2

F (Ĝ), its inverse Fourier transform F−1(θ) belongs to L∞(G) ∩ C0(G) and the
map F−1 : L1,2

F (Ĝ)→ L∞(G) ∩ C0(G) is continuous.
For all 1 ≤ p ≤ 2 there is a positive constant C such that for any θ in Lp,2F (Ĝ), its inverse Fourier

transform F−1(θ) belongs to Lp′(G) and

(4.36) ∥F−1(θ)∥Lp′ (G) ≤ C∥θ∥Lp,2
F (Ĝ) .

Proof. Let us start by proving that if u ∈ L1(G) then F(u) ∈ L∞,2
F (Ĝ) and

(4.37) ∥F(u)∥L∞,2
F (Ĝ) ≤ ∥u∥L1(G) .

Note that (4.37) is more accurate than (4.19). By definition (4.17) followed by the Cauchy-Schwarz
inequality, there holds∣∣F(u)(x̂)

∣∣2 =
∣∣∣ ∫
G

W
(
(n,m, ν, λ), x

)
u(x)dx

∣∣∣2
≤
∫
G

|W
(
(n,m, ν, λ), x

)
|2|u(x)|dx

∫
G

|u(x)|dx

so according to Identity (4.31),∑
n∈N

∣∣F(u)(n,m, ν, λ)
∣∣2 ≤ ∥u∥2

L1(G) ,

which proves (4.37). Combining the Fourier-Plancherel formula (4.20) together with complex
interpolation, we deduce (4.35).

In light of (4.6)-(4.7), all functions θ ∈ L1,2
F (Ĝ) admit an inverse Fourier transform given by

F−1(θ)(x) = (2π)−3
∫
Ĝ

W
(
(n,m, ν, λ), x−1)θ(x̂) dx̂ .
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Invoking the continuity of the function W with respect to x together with the smoothness of the
group operations of multiplication and inversion on G, we infer that for all (n,m, ν, λ) ∈ Ĝ, the
function x 7→ W

(
(n,m, ν, λ), x−1)θ(n,m, ν, λ) is continuous. Since in view of (4.31), there holds∣∣∣∑

n∈N
W
(
(n,m, ν, λ), x−1)θ(n,m, ν, λ)

∣∣∣ ≤ ∥θ(·,m, ν, λ)∥ℓ2
n(N) ,

applying the Lebesgue dominated convergence theorem, we deduce that F−1(θ) belongs to L∞(G)∩
C0(G) and satisfies

∥F−1(θ)∥L∞(G) ≤ (2π)−3∥θ∥L1,2
F (Ĝ) ,

which implies Formula (4.36) by combining Fourier-Plancherel formula (4.20) together with com-
plex interpolation. □

Remark 4.9. Let us emphasize that with the Fourier function point of view, the action on
left translations (4.8) translates into the following property: if u ∈ L1(G), then for all x ∈ G

and x̂ = (n,m, ν, λ) ∈ Ĝ, there holds

(4.38) F(Lxu)(n,m, ν, λ) =
∑
p∈N
W
(
(p, n, ν, λ), x

)
F(u)(p,m, ν, λ) ,

the latter sum being finite according to (4.31) and (4.35). Indeed since for all (ν, λ) ∈ R×R∗ and
all y ∈ G, Rν,λy is a unitary operator of L2(R), it follows from (4.18) that for any integer n

(4.39) Rν,λy ψν,λn =
∑
p∈N
W
(
(p, n, ν, λ), y

)
ψν,λp with

∑
p∈N
|W
(
(p, n, ν, λ), y

)
|2 = 1 .

Then invoking (4.8) together with (4.17)-(4.18), we infer that

F(Lxu)(n,m, ν, λ) =
(
F (Lxu)(ν, λ)ψν,λm |ψν,λn

)
L2(R) =

(
Rν,λx−1 F (u)(ν, λ)|ψν,λn

)
L2(R)

=
(
F (u)(ν, λ)|Rν,λx ψν,λn

)
L2(R) ,

which thanks to (4.39) leads to (4.38).

Remark 4.10. It will be useful later to note that for all F ∈ O1,5/2(R+), the operator F (−∆G)
acting on S(G) is invariant by left translation. This can be proved by means of functional calculus
(see for instance [73, Section 5.3]), but can also be obtained easily from the above remark which
ensures according to (1.8) that, for all u ∈ S(G), F ∈ O1,5/2(R+), x ∈ G and x̂ = (n,m, ν, λ) ∈ Ĝ,
there holds

F(F (−∆G)(Lxu))(n,m, ν, λ) = F (Em(ν, λ))
∑
p∈N
W
(
(p, n, ν, λ), x

)
F(u)(p,m, ν, λ) ,

and
F(Lx(F (−∆G)u)(n,m, ν, λ) =

∑
p∈N
W
(
(p, n, ν, λ), x

)
F(F (−∆G)u)(p,m, ν, λ)

= F (Em(ν, λ))
∑
p∈N
W
(
(p, n, ν, λ), x

)
F(u)(p,m, ν, λ) .

Let us end this section by establishing that if u belongs to the Schwartz space S(G), then F(u)
belongs to L1,2

F (Ĝ), which according to Proposition 4.8 is a natural class to define the inverse
Fourier transform, hence to write

u(x) = (2π)−3
∫
Ĝ

W
(
(n,m, ν, λ), x−1)F(u)(x̂) dx̂ .

Proposition 4.11. For any ρ > 7
2 , there exists a positive constant C such that the following result

holds. For all u in S(G), its Fourier transform F(u) belongs to L1,2
F (Ĝ) and

∥F(u)∥L1,2
F (Ĝ) ≤ C

(
∥u∥L1(G) + ∥(−∆G)ρu∥L1(G)

)
.
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Proof. The proof is inspired from the proof of the corresponding result on the Heisenberg group
which can be found in [10]. In order to establish the result, let us consider u in S(G) and
split ∥F(u)∥L1,2

F (Ĝ) into two parts I1 + I2 where

I1
def=
∑
m∈N

∫
Em(ν,λ)≤1

∥F(u)(·,m, ν, λ)∥ℓ2 dνdλ .

Since by (4.35) (with p = 1), one has
∥F(u)∥L∞,2

F (Ĝ) ≤ ∥u∥L1(G) ,

we deduce that
I1 ≤ ∥u∥L1(G)

∑
m∈N

∫
Em(ν,λ)≤1

dνdλ .

Then performing the change of variables µ = ν

|λ|4/3 (for fixed λ), and recalling (1.6), we infer that

I1 ≤ ∥u∥L1(G)
∑
m∈N

∫
R

∫
|λ|≤ 1

Em(µ)3/2

|λ|4/3dλdµ

≲ ∥u∥L1(G)
∑
m∈N

∫
R

dµ

Em(µ)7/2
,

which according to (1.10) ensures that
I1 ≲ ∥u∥L1(G) .

On the other hand thanks to (4.24), and again (4.35) with p = 1, there holds

∥F(u)(·,m, ν, λ)∥ℓ2 ≤ E−k
m (ν, λ)∥(−∆G)ku∥L1(G)

for any integer k ∈ Z, and thanks to complex interpolation, we find that for all ρ ∈ R,
∥F(u)(·,m, ν, λ)∥ℓ2 ≤ E−ρ

m (ν, λ)∥(−∆G)ρu∥L1(G) .

We deduce that
I2 ≤ ∥(−∆G)ρu∥L1(G)

∑
m∈N

∫
Em(ν,λ)≥1

E−ρ
m (ν, λ)dνdλ .

Considering again the change of variables µ = ν

|λ|4/3 (for fixed λ), this leads to the following
estimate

I2 ≤ ∥(−∆G)ρu∥L1(G)
∑
m∈N

∫
R

Em(µ)−ρ
∫

|λ|≥ 1
Em(µ)3/2

|λ|4/3−2/3ρdλdµ

≲ ∥(−∆G)ρu∥L1(G)
∑
m∈N

∫
R

dµ

Em(µ)7/2

as soon as ρ > 7/2, which achieves the proof of the proposition. □

4.3. The spectral measure of −∆G. Let us start by recalling that the spectral measure of a
self-adjoint operator A on L2(Rd) is characterized for any continuous bounded function F by

⟨µu,v, F ⟩
def=
(
F (A)u, v

)
L2(Rd) , u, v ∈ L2(Rd) ,

and thus in particular when A = −∆, we get thanks to the Fourier-Plancherel formula

(4.40) ⟨µu,v, F ⟩ = (2π)−d
∫
R̂d
F (|ξ|2)û(ξ)v̂(ξ)dξ .

Using spherical coordinates in R̂
d
, we readily gather that

(4.41)
(−∆u, v)L2(Rd) = (2π)−d

∫ ∞

0
R2
∫
Ŝd−1

û(Rω)v̂(Rω)Rd−1dωdR

= (2π)−d
∫ ∞

0
R2
∫
Ŝd−1(R)

û(ξ)v̂(ξ)dŜd−1(R)dR .
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Then setting γ = R2, we infer that

(−∆u, v)L2(Rd) =
∫ ∞

0
γ(A(γ)u|v)dγ ,

with

(4.42)
(A(γ)u|v) def= (2π)−d

∫
Ŝd−1

û(√γω)v̂(√γω)(√γ)d−1 1
2√γ dω

= (2π)−d 1
2√γ

∫
Ŝd−1(√

γ)
û(ξ)v̂(ξ)dŜd−1(√γ) .

The above formula can be interpreted as the spectral decomposition of −∆

−∆u =
∫ ∞

0
γdPγu

and one has

(−∆u, v)L2(Rd) =
∫ ∞

0
γ(dPγu|v) with (dPγu|v) def= (A(γ)u|v)dγ .

We deduce that for any continuous bounded function F

(4.43) (F (−∆)v, v)L2(Rd) =
∫
R+

F (γ)(dPγv|v) = (2π)−d
∫
R̂d
F (|ξ|2)|v̂(ξ)|2dξ .

Arguing similarly for the Engel group, we infer that the spectral measure of the self-adjoint
operator −∆G is given, thanks to (4.21), by

(4.44)
⟨µu,v, F ⟩

def=
(
F (−∆G)u, v

)
L2(G)

= (2π)−3
∫
R×R∗

∑
n,m∈N

F
(
Em(ν, λ)

)
F(u)(n,m, ν, λ)F(v)(n,m, ν, λ)dνdλ ,

for any continuous bounded function F and all u, v in L2(G). Then performing the change of
variable µ = ν

|λ|4/3 (for fixed λ), we deduce that

(−∆Gu, v)L2(G) = (2π)−3
∑
m∈N

∫
R×R∗

∑
n∈N
F(u)(n,m, µ|λ|4/3, λ)F(v)(n,m, µ|λ|4/3, λ)

×|λ|2/3Em(µ)dµ|λ|4/3dλ.

Recalling that Em(ν, λ) = |λ|2/3Em(µ) plays the same role as |ξ|2 in the Euclidean framework, we
now consider the change of variables R2 = |λ|2/3Em(µ), which gives rise to

(−∆Gu, v)L2(G) = (2π)−3
∫ ∞

0
R2
∑
m∈N

∑
±

∫
R

3dµ
Em(µ) Q

2

∑
n∈N
F(u)

(
n,m,

µR4

Em(µ)2 ,
±R3

Em(µ) 3
2

)
×F(v)

(
n,m,

µR4

Em(µ)2 ,
±R3

Em(µ) 3
2

)
R6dR .

Analogously to (4.41), the above formula can be reinterpreted in terms of the dual sphere S
Ĝ

(R),
namely

(4.45) (−∆u, v)L2(G) = (2π)−3
∫ ∞

0
R2
∫
S

Ĝ
(R)
F(u)(x̂)F(v)(x̂)dS

Ĝ
(R)dR ,

where S
Ĝ

(R) def=
{

(n,m, ν, λ) ∈ Ĝ /Em(ν, λ) = R2} and

(4.46)
∫
S

Ĝ
(R)
|θ(x̂)|2dS

Ĝ
(R) def= 3

∑
m∈N

∑
±

∫
R

dµ

Em(µ) Q
2

∑
n∈N

∣∣∣θ(n,m, µR4

Em(µ)2 ,
±R3

Em(µ) 3
2

)∣∣∣2R6 ·

This definition is justified by the following proposition which is the analog of the classical integra-
tion formula in spherical coordinates.
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Proposition 4.12. For any function θ ∈ L2(Ĝ), we have∫
Ĝ

|θ(x̂)|2dx̂ =
∫ ∞

0

(∫
S

Ĝ
(R)
|θ(x̂)|2dσS

Ĝ
(R)

)
dR ,

where
∫
S

Ĝ
(R)
|θ(x̂)|2dσS

Ĝ
(R) is given by (4.46).

Proof. By definition of the measure on Ĝ, we have∫
Ĝ

|θ(x̂)|2dx̂ =
∫
R×R∗

∑
n,m∈N

|θ(n,m, ν, λ)|2dνdλ .

Then performing successively the change of variables µ = ν

|λ|4/3 (for fixed λ) andR = |λ|1/3
√

Em(µ)

(for fixed µ), we infer that∫
Ĝ

|θ(x̂)|2dx̂ =
∫ ∞

0
3
∑
m∈N

∑
±

∫
R

dµ

Em(µ) Q
2

∑
n∈N

∣∣∣θ(n,m, µR4

Em(µ)2 ,
±R3

Em(µ) 3
2

)∣∣∣2R6dR ,

which proves the proposition. □

Remark 4.13. As a byproduct of the above formula, we find that the measure of the dual unit
sphere S

Ĝ
is given by

(4.47) σ(S
Ĝ

) = 3
∑
m∈N

∫
R

dµ

Em(µ) Q
2
·

This proves Proposition 1.5.

Finally setting γ = R2, we deduce that

(−∆Gu, v)L2(G) =
∫ ∞

0
γ
(
A(γ)u|v

)
dγ

with

(4.48)
(
A(γ)u|v

)
= (2π)−3

2√γ

∫
S

Ĝ
(√
γ)

∑
n∈N
F(u)(n, ·)F(v)(n, ·)dS

Ĝ
(√γ)·

This shows that the spectral decomposition of −∆G takes the following form

−∆Gu =
∫ ∞

0
γdPγu where d(Pγu|v) def=

(
A(γ)u|v

)
dγ ,

and readily ensures that, for any continuous bounded function F and all functions v in L2(G),
there holds

(4.49) (F (−∆G)v, v)L2(G) =
∫
R+

F (γ)(dPγv|v) dγ = (2π)−3
∫
G̃

F (a(x̂))|Fv(x̂)|2dx̂ ,

where a denotes the function on Ĝ introduced in Theorem 1.2.

4.4. End of the proof of Theorems 1.3, 1.7, 1.9 and proof of Propositions 1.6 and 1.11.

Proof of Theorem 1.3. Recall that (1.10) has been proved in Section 2. Let us start by proving the
following identity, for F ∈ C0

c (R∗
+):

(4.50)
∑
m∈N

∫
R×R∗

F
(
Em(ν, λ)

)
dνdλ = 3

(∫
R+

r5/2F (r)dr
)∑
m∈N

∫
R

1
Em(µ)7/2 dµ .

Recalling that Pν,λ = Pν,−λ = Pν,|λ|, we have Em(ν, λ) = Em(ν,−λ) = Em(ν, |λ|) so it suffices to
prove that ∑

m∈N

∫
R×R∗

+

F
(
Em(ν, λ)

)
dνdλ = 3

2

(∫
R+

r5/2F (r)dr
)∑
m∈N

∫
R

1
Em(µ)7/2 dµ .
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Invoking Corollary B.4, and using changes of variables, the integral on λ > 0 rewrites∑
m∈N

∫
R×R∗

+

F
(
Em(ν, λ)

)
dνdλ =

∑
m∈N

∫
R×R∗

+

F
(
λ2/3Em

( ν

λ4/3 , 1
))

dνdλ

so setting µ = ν
λ4/3 (for fixed λ) and then r = λ2/3Em (µ) (for fixed µ) we find∑

m∈N

∫
R×R∗

+

F
(
Em(ν, λ)

)
dνdλ =

∑
m∈N

∫
R×R∗

+

F
(
λ2/3Em (µ)

)
λ4/3dλ dµ

=
(∫

R∗
+

3
2r

5/2F (r)dr
)∑
m∈N

∫
R

1
Em(µ)7/2 dµ .

This concludes the proof of the identity (4.50). The latter remains true (with equality in [0,+∞])
for all nonnegative measurable functions F . Applied to |F | instead of F , this implies that F ◦ a
belongs to L1(Ĝ, δn,mdx̂) if and only if F ∈ L1(R+, r

5/2dr), and, if so, then (1.9) (which is nothing
but (4.50)) holds. □

We now prove Theorem 1.7. Note that the Schwartz kernel theorem [51, Thm 5.2.1] or [80,
Equation (51.7) p 531] states that any continuous map S(G) → S ′(G) has a distribution kernel.
Here, left translation invariance of the operator F (−∆G) further implies that the operator is a
right convolution operator. Our proof of Theorem 1.7 is inspired by [49, Proof of Theorem 1.2
p 98] and does not rely on the kernel theorem.

Proof of Theorem 1.7. To prove that, for any function u ∈ S(G), one can define the inverse Fourier
transform of the function (n,m, ν, λ) 7→ F (Em(ν, λ))F(u)(n,m, ν, λ), it suffices according to Propo-
sition 4.8 to check that this function belongs to L1,2

F , that is to say

J
def= ∥F (Em(ν, λ))F(u)(n,m, ν, λ)∥L1,2

F
=
∑
m∈N

∫
R×R∗

∣∣F (Em(ν, λ))
∣∣∥F(u)(·,m, ν, λ)∥ℓ2dνdλ <∞ .

For this we reproduce the proof of Proposition 4.11, writing J = J1 + J2 with

J1
def=
∑
m∈N

∫
Em(ν,λ)≤1

∣∣F (Em(ν, λ))
∣∣∥F(u)(·,m, ν, λ)∥ℓ2dνdλ .

As in the estimate of I1 in the proof of Proposition 4.11, and thanks to (4.50), we find

J1 ≤ ∥u∥L1(G)
∑
m∈N

∫
R

∫
|λ|≤ 1

E
3/2
m (µ)

∣∣∣F (λ2/3Em (µ)
)∣∣∣ |λ|4/3dλdµ

≲ ∥u∥L1(G)

∫ 1

0
r5/2|F (r)|dr

≲ ∥u∥L1(G)∥F∥
O

1, 5
2

0 (R+)
.

On the other hand and again as in the estimate of I2 in the proof of Proposition 4.11

J2 ≤ ∥(Id−∆G)ℓu∥L1(G)

∫ ∞

1
⟨r⟩−ℓr5/2|F (r)|dr

≲ ∥(Id−∆G)ℓu∥L1(G)∥F∥
O

1, 5
2

ℓ
(R+)

.

This implies that for F ∈ O1,5/2
ℓ (R+) and u ∈ S(G),

J = ∥F (Em(ν, λ))F(u)(n,m, ν, λ)∥L1,2
F

≲ ∥u∥L1(G)∥F∥
O

1, 5
2

0 (R+)
+ ∥(Id−∆G)ℓu∥L1(G)∥F∥

O
1, 5

2
ℓ

(R+)
.

We have thus obtained that (n,m, ν, λ) 7→ F (Em(ν, λ))F(u)(n,m, ν, λ) belongs to L1,2
F . According

to Proposition 4.8, its inverse Fourier transform

F (−∆G)u def= F−1 (F (Em(ν, λ))F(u)(n,m, ν, λ))
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thus satisfies F (−∆G)u ∈ C0(G) ∩ L∞(G) together with

∥F (−∆G)u∥L∞(G) ≲ ∥u∥L1(G)∥F∥
O

1, 5
2

0 (R+)
+ ∥(Id−∆G)ℓu∥L1(G)∥F∥

O
1, 5

2
ℓ

(R+)
.(4.51)

In particular, the bilinear map

(4.52) O1, 5
2

ℓ (R+)× S(G)→ C, (F, u) 7→ (F (−∆G)u) (0)

is linear, continuous for the topology of O1, 5
2

ℓ (R+) × S(G). As a consequence, for a fixed F ∈
O1, 5

2
ℓ (R+), the partial map S(G)→ C given by u 7→ (F (−∆G)u) (0) belongs to S ′(G). That is to

say, there is T ∈ S ′(G) such that
(F (−∆G)u) (0) = ⟨T, u⟩S′(G),S(G), for all u ∈ S(G).

Now, there is Ť ∈ S ′(G) such that, with ǔ(y) = u(y−1), we have

⟨T, u⟩S′(G),S(G) = ⟨Ť , ǔ⟩S′(G),S(G) , for all u ∈ S(G) .

Recalling the definition of the convolution in (3.15), and noticing that ǔ = ǔ0 = ǔ0, the above two
lines rewrite

(F (−∆G)u) (0) = ⟨Ť , ǔ⟩S′(G),S(G) = (u ⋆ Ť )(0) , for all u ∈ S(G) .
Invoking Remark 4.10, we infer that, for all x ∈ G and u ∈ S(G),

(F (−∆G)u) (x) = (LxF (−∆G)u) (0) = (F (−∆G)Lxu) (0) = ((Lxu) ⋆ Ť )(0) = (u ⋆ Ť )(x)(4.53)

where, in the last equality, we have used again the definition of the convolution in (3.15). This
concludes the proof of Theorem 1.7 with kF

def= Ť . The continuity statement of the map F 7→ Ť =
kF follows from (4.52), (4.53) and the continuity of Lx as a map S(G)→ S(G). □

Notice that (4.53), joint with (4.22) and (4.24), imply the following useful identities:
(4.54) F(kF )(x̂) = F (Em(ν, λ))δm,n ,
and

(4.55) kF (x) = (2π)−3
∫
Ĝ

W
(
(n,m, ν, λ), x−1)F (Em(ν, λ))δm,n dx̂ .

For the sake of completeness, we also give here a proof of Proposition 1.6, which follows that of
Theorem 1.7 with a different starting point (the general functional calculus for selfadjoint operators
instead of the Fourier transform F), and would hold in any Carnot group.

Proof of Proposition 1.6. As it was emphasized in Section 4.3, spectral theory associates with −∆G

a spectral measure that we denoted by dPγ , and it is well-known (see for instance [67, Theorem
VIII.6] or [73, Section 5.3]) that if F is a locally bounded Borel function on R+, one can define on
the Hilbert space L2(G) the operator F (−∆G) by

D(F (−∆G)) def=
{
u ∈ L2(G),

∫
R
|F (γ)|2d(Pγu|u) <∞

}
,

F (−∆G)u def=
∫
R
F (γ)dPγu, for u ∈ D(F (−∆G)) .

Now if F is a function in O∞
m (R+) for some nonnegative real number m, then we have, for u ∈ S(G),

∥F (−∆G)u∥2
L2(G) =

∫
R
|F (γ)|2d(Pγu|u) ≤ C

∫
R
⟨γ⟩2md(Pγu|u) = C∥(Id−∆G)mu∥2

L2(G).

Therefore, D
(
(Id − ∆G)m

)
is embedded continuously in D(F (−∆G)). Next, since ∆G is a dif-

ferential operator with polynomial coefficients, we have (Id − ∆G)ku ∈ S(G) for any u ∈ S(G)
and k ∈ N, together with

∥(Id−∆G)kF (−∆G)u∥2
L2(G) ≤ C∥(Id−∆G)m+ku∥2

L2(G), for all u ∈ S(G).

As a consequence, we obtain

(4.56) u ∈ S(G) =⇒ F (−∆G)u ∈
⋂
k∈N

D((Id−∆G)k) =
⋂
k∈N

D(∆k
G).
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Now, local hypoellipticity of the operator ∆G proved in [50] (see also [72] for the expression
of ε) implies the existence of ε > 0 such that D(−∆G) ⊂ Hε

loc(G) with continuous embed-
ding, where Hε

loc(G) def= Hε
loc(R4) denotes the usual local Sobolev space defined by: v ∈ Hε

loc(R4)
if ⟨ξ⟩εF(χv)(ξ) ∈ L2(R4) for all χ ∈ C∞

c (R4), where F denotes the usual Euclidean Fourier trans-
form. A classical induction argument (see e.g. [56, Corollary B.2]) shows that D(−∆k

G) ⊂ Hkε
loc(G)

for all k ∈ N with continuous embedding. We thus deduce from (4.56) (and the usual rough Sobolev
embeddings in R4) that if u ∈ S(G), then F (−∆G)u ∈

⋂
k∈NH

kε
loc(G) = C∞(G) (and this map

is continuous). In particular, F (−∆G) maps continuously S(G) in C0(G) and, from this point
forward, we may follow the end of the proof of Theorem 1.7 line by line.

□

Let us turn to the proof of Theorem 1.9.

Proof of Theorem 1.9. First assume that F ∈ L1(R+, r
5/2dr). Thanks to formulae (4.28), (4.50)

and (4.55), we deduce that

|kF (x)| = (2π)−3
∣∣∣∣∫
Ĝ

W
(
(n,m, ν, λ), x−1)F (Em(ν, λ))δm,n dx̂

∣∣∣∣
≤ (2π)−3

∫
Ĝ

|F (Em(ν, λ))|δm,n dx̂ = (2π)−3

(∫
R∗

+

3
2r

5/2|F (r)|dr
)∑
m∈N

∫
R

1
Em(µ)7/2 dµ .

The continuity of kF under the hypothesis of Theorem 1.9 readily follows from the continuity
of W with respect to x, (4.28) and Lebesgue dominated convergence theorem. Finally the formula
for kF (0) simply comes from (4.55) and (4.28). □

Proof of Proposition 1.11. Assume F belongs to O1,5/2(R+). Then according to Theorem 1.7, kF
is well-defined, and (4.20) implies that kF belongs to L2(G) if and only if F(kF ) belongs to L2(Ĝ),
and

∥kF ∥2
L2(G) = (2π)−3∥F(kF )∥2

L2(Ĝ)
.

But using (4.54),

∥F(kF )∥2
L2(Ĝ)

=
∑

(n,m)∈N2

∫
R×R∗

|F(kF )(n,m, ν, λ)|2dνdλ

=
∑
m∈N

∫
R×R∗

F 2(Em(ν, λ))dνdλ .

Reproducing the computations leading to the proof of Theorem 1.3 page 27, we find

∥F(kF )∥2
L2(Ĝ)

=
∑
m∈N

∫
R×R∗

+

F 2
(
λ2/3Em (µ)

)
λ4/3dλ dµ

=
(∫

R∗
+

3
2r

5/2F 2(r)dr
)∑
m∈N

∫
R

1
Em(µ)7/2 dµ .

The result follows. □

5. Applications

5.1. Functional embeddings. Combining the Engel Fourier transform together with (1.9), we
recover in this section many functional inequalities, whose original proofs may be found in [33].

Let us start with the following result concerning Sobolev embeddings in Lebesgue spaces. Such
embeddings are known to hold in a variety of contexts (see for instance [7], [17], [18] [26], [31],[53]).
The proof conducted here is inspired from the paper of Chemin-Xu [20], and adapted previously
in other contexts (see for instance [6], [8] for the Heisenberg group).

Theorem 5.1. For any real number s in [0, Q/2[, there exists a constant Cs such that the following
inequality holds:

∀u ∈ Ḣs(G) , ∥u∥Lp(G) ≤ Cs∥u∥Ḣs(G) with p = 2Q
Q− 2s ·



ENGEL GROUP 31

Proof. Let us assume that ∥u∥Ḣs(G) = 1, and compute the Lp norm according to the Cavalieri
principle:

∥u∥pLp(G) = p

∫ ∞

0
βp−1∣∣(|u| > β)

∣∣dβ .
In order to go further, we shall use the technique of decomposition into low and high frequencies,
namely we shall decompose, for all A > 0, the function u into two parts as follows

(5.1) u = uℓ,A + uh,A with F(uℓ,A)(n,m, ν, λ) def= F(u)(n,m, ν, λ) 1Em(ν,λ)≤A2 .

From the inversion formula (4.22), the definition of the Sobolev norm (4.25) and the Cauchy-
Schwarz inequality, we get

∥uℓ,A∥L∞(G) ≤ C∥uℓ,A∥Ḣs(G)

(∫
Em(λ,ν)≤A2

|W((n,m, ν, λ), x−1)|2(Em(ν, λ))−s dx̂
) 1

2
.

In view of (4.31), we have∫
Em(λ,ν)≤A2

|W((n,m, ν, λ), x−1)|2(Em(ν, λ))−s dx̂ =
∑
m∈N

∫
Em(ν,λ)≤A2

(Em(ν, λ))−sdνdλ .

Then applying Formula (1.9) with F (r) = r−s1]0,A2](r), we deduce that

∥uℓ,A∥L∞(G) ≤ CA
Q
2 −s .

Thus, choosing A = Aβ = cβ
p
Q for some small enough positive real number c ensures that∣∣(|u| > β)

∣∣ ≤ ∣∣(|uℓ,Aβ
| > β/2)

∣∣+
∣∣(|uh,Aβ

| > β/2)
∣∣ =

∣∣(|uh,Aβ
| > β/2)

∣∣ ,
which thanks to Bienaymé-Tchebitchev inequality yields

∥u∥pLp(G) ≲
∫ ∞

0
βp−3 ∥uh,Aβ

∥2
L2(G) dβ .

Hence, by virtue of Fourier-Plancherel formula (4.20),

∥u∥pLp(G) ≲ C

∫ ∞

0
βp−3

∫
Em(ν,λ)≥A2

β

|F(u)(x̂)|2 dx̂ dβ ,

which completes the proof thanks to the Fubini theorem. □

Notice that refined versions of Sobolev embeddings (see [35, 36]) can be obtained by slightly
adapting the above proof. We shall not pursue this further here.

The following theorem is to be compared with the Poincaré inequality.

Theorem 5.2. Let s be a nonnegative real number and K a subset of G with finite measure.
There exists a positive constant C(s,K) such that for all functions u in the subspace Hs

K(G) of
functions in Hs(G) with support in K, we have

∥u∥Ḣs(G) ≤ ∥u∥Hs(G) ≤ C(s,K)∥u∥Ḣs(G) .

Proof. The first inequality is obvious, and in view of Fourier-Plancherel formula (4.20) the second
one amounts to prove that

∥F(u)∥
L2(Ĝ) ≤ (C|K|)

2s
Q ∥u∥Ḣs(G) .

To this end, let us again decompose u into low and high frequencies as in (5.1). We thus set ε > 0
and write
∥F(u)∥2

L2(Ĝ)
= ∥F(uh,ε)∥2

L2(Ĝ)
+ ∥F(uℓ,ε)∥2

L2(Ĝ)

=
∫
Em(ν,λ)≥ε2

Em(ν, λ)−2sEm(ν, λ)2s|F(u)(n,m, ν, λ)|2 dx̂+ ∥F(uℓ,ε)∥2
L2(Ĝ)

.

The first integral may be bounded by ε−4s∥u∥2
Ḣs(G). To handle the second one, we first take

advantage of (4.37) which since u is compactly supported gives rise to∑
n∈N
|F(u)(n,m, ν, λ)|2 ≤ ∥u∥2

L1(G) ≤ |K| ∥u∥
2
L2(G) = (2π)−3|K|∥F(u)∥2

L2(Ĝ)
.
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Thanks to Identity (1.9) with F (x) = 1]0,ε2](x), this implies that

∥F(uℓ,ε)∥2
L2(Ĝ)

≤ (2π)−3|K| ∥F(u)∥2
L2(Ĝ)

εQ .

We deduce that
∥F(u)∥2

L2(Ĝ)
≤ 1
ε4s ∥u∥

2
Ḣs(G) + C|K|εQ∥F(u)∥2

L2(Ĝ)
,

which achieves the proof of the result choosing εQ = 1/(2C|K|). □

Decomposing functions into low and high frequencies is a key tool to establish functional in-
equalities, but also to investigate nonlinear Partial Differential Equations. Let us showcase again
the efficiency of this method by establishing the Sobolev embedding corresponding to the critical
exponent s = Q/2. To this end, we introduce the space BMO(G) of locally integrable functions u
on G with Bounded Mean Oscillations:

∥u∥BMO(G)
def= sup

B

1
|B|

∫
B

|(u− uB)(x)| dx <∞ with uB
def= 1
|B|

∫
B

u(x) dx,

where the supremum is taken over all balls B of G, and where |B| denotes the Lebesgue measure
of the ball B.

Theorem 5.3. The space L1
loc(G) ∩ Ḣ

Q
2 (G) is included in BMO(G). Moreover, there exists a

constant C > 0 such that
∥u∥BMO(G) ≤ C∥u∥

Ḣ
Q
2 (G)

,

for all functions u in L1
loc(G) ∩ Ḣ

Q
2 (G).

Proof. As previously, we use the decomposition (5.1). Then applying the Cauchy-Schwarz inequal-
ity, we infer that for any ball B in G, we have∫

B

|(u− uB)(x)| dx
|B|
≤ ∥uℓ,A − (uℓ,A)B∥

L2
(
B, dx

|B|

) + 2
|B| 12

∥uh,A∥L2(G).

In order to estimate the low frequency part, we shall use the metric structure of the Engel group:
recall that for any (x, x′) of G×G, there exists a horizontal curve of Ωx,x′ joining x to x′. Using
the Carnot-Carathéodory distance dG defined in (3.10), we infer that, for any ball BR of G of
radius R, there holds
(5.2) ∥uℓ,A − (uℓ,A)BR

∥
L2
(
BR,

dx
|BR|

) ≲ RA∥u∥
Ḣ

Q
2 (G)

.

Indeed, by definition of (uℓ,A)BR
, we have

(uℓ,A − (uℓ,A)BR
)(x) = 1

|BR|

∫
BR

(uℓ,A(x)− uℓ,A(x′))dx′ .

Since for any curve γ =
p=J⋃
p=1

γp where γp : [0, Tp] −→ G belongs to Ωxp,xp+1 , namely

∂tγp(t) = ±Xi(γp(t)), γp(0) = xp, γp(Tp) = xp+1,

γ1(0) = x, γJ(TJ) = x′ for p = 1, . . . , J − 1 and i ∈ {1, 2} ,
there holds

uℓ,A(xp+1)− uℓ,A(xp) =
∫ Tp

0
∂t(uℓ,A(γp(t))) dt,

we readily gather that
(5.3) |uℓ,A(x)− uℓ,A(x′)| ≲ dG(x, x′) sup

i∈{1,2}
∥Xiuℓ,A∥L∞(G) .

We deduce that
∥uℓ,A − (uℓ,A)BR

∥
L2
(
BR,

dx
|BR|

) ≲ R sup
i∈{1,2}

∥Xiuℓ,A∥L∞(G) .

By the inversion formula (4.22), we have

∥Xiuℓ,A∥L∞(G) ≲
∫
Em(λ,ν)≤A2

|W((n,m, ν, λ), x−1)||F(Xiu)(x̂)|dx̂.
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Then combining the Cauchy-Schwarz inequality together with (1.9) and (4.31), we get

∥Xiuℓ,A∥L∞(G) ≲ A∥u∥
Ḣ

Q
2 (G)

,

which ensures that
∥uℓ,A − (uℓ,A)BR

∥
L2
(
BR,

dx
|BR|

) ≲ RA∥u∥
Ḣ

Q
2 (G)

·

To bound uh,A, we combine Identity (4.20) with Formula (1.9), which gives rise to

∥uh,A∥2
L2(G) ≤ CA

−Q ∥u∥2
Ḣ

Q
2 (G)

.

We know by (3.16) that |BR| = CRQ. Then, the latter estimate implies that

(5.4) 2
|BR|

1
2
∥uh,A∥L2(G) ≲ (AR)− Q

2 ∥u∥
Ḣ

Q
2 (G)

.

Gathering the estimates (5.2) and (5.4) and choosing A = R−1 completes the proof of the result. □

One can also prove, by a similar high-low decomposition technique, embeddings between Hölder
spaces and Sobolev spaces. To ease the notations, we denote in what follows X = (X1, X2) the
family of horizontal left-invariant vector fields on G, and we set for any multi-index α in {1, 2}k:

Xα =
k∏
j=1

Xαj
.

Then we denote by Ck,ρ(G), (for (k, ρ) in N×]0, 1]) the Hölder space on the Engel group, consisting
in functions u on G such that

∥u∥Ck,ρ(G)
def= sup

|α|≤k

(
∥Xαu∥L∞ + sup

x ̸=y

|Xαu(x)−Xαu(y)|
d̃(x, y)ρ

)
<∞.

We have the following result.

Proposition 5.4. If s > Q
2 and s− Q

2 is not an integer, then the space Hs(G) is included in the
Hölder space of index

(k, ρ) =
([
s− Q

2

]
, s− Q

2 −
[
s− Q

2

])
and we have for all u ∈ Hs(G),

∥u∥Ck,ρ(G) ≤ Cs∥u∥Hs(G).

Proof. We prove the result only in the case when the integer part of s−Q/2 is 0, namely the case
when s = Q

2 + ρ, with 0 < ρ < 1. Using again Decomposition (5.1), we infer, according to (5.3),
that the low frequency part of u satisfies

|uℓ,A(x)− uℓ,A(x′)| ≲ dG(x, y) sup
i∈{1,2}

∥Xiuℓ,A∥L∞(G) .

In view of Formula (1.9), one gets

∥Xiuℓ,A∥L∞(G) ≤ ∥u∥Ḣs(G)

( ∑
m∈N

∫
Em(λ,ν)≤A2

Em(ν, λ)−s+1dνdλ
) 1

2
≲ A1−(s− Q

2 )∥u∥Ḣs(G),

which implies that
|uℓ,A(x)− uℓ,A(x′)| ≲ dG(x, y)A1−(s− Q

2 )∥u∥Ḣs(G).

Along the same lines, we obtain

∥uh,A∥L∞(G) ≤ ∥u∥Hs(G)

(∑
m∈N

∫
Em(ν,λ)≥A2

Em(ν, λ)−sdνdλ
) 1

2
≲ A

Q
2 −s∥u∥Hs(G) .

Consequently

|u(x)− u(y)| ≲
(
dG(x, y)A1−ρ +A−ρ) ∥u∥Ḣs(G) .

Choosing A = dG(x, y)−1, we conclude the proof of the result. □
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5.2. Bernstein inequalities. Similarly to the Euclidean case, Formula (4.24) allows to give a
definition of a function whose Fourier transform is compactly supported, in the following way.

Definition 5.5. We say that a function u in L2(G) is frequency localized in a ball BΛ centered
at 0 of radius Λ > 0 if

SuppF(u) ⊂
{
x̂ = (n,m, ν, λ) ∈ Ĝ /Em(ν, λ) ≤ Λ2

}
.

Similarly we say that a function u on G is frequency localized in a ring CΛ centered at 0 of small
radius Λ/2 and large radius Λ if

SuppF(u) ⊂
{
x̂ = (n,m, ν, λ) ∈ Ĝ / Λ2

4 ≤ Em(ν, λ) ≤ Λ2
}
.

Remark 5.6. Equivalently, u in L2(G) is frequency localized in BΛ if there exists a function ψ
in D(R) supported in B1, valued in the interval [0, 1] and equal to 1 near 0 such that for any x̂ =
(n,m, λ, ν) in Ĝ,
(5.5) F(u)(n,m, ν, λ) = F(u)(n,m, ν, λ)ψ(Λ−2Em(ν, λ)) .
Similarly u is frequency localized in CΛ if there exists a function ϕ in D(R) \ {0} valued in the
interval [0, 1] and supported in C1 such that for any x̂ = (n,m, ν, λ) in Ĝ,
(5.6) F(u)(n,m, ν, λ) = F(u)(n,m, ν, λ)ϕ(Λ−2Em(ν, λ)) .

This definition allows classically to recover equivalent definitions of Sobolev and Hölder spaces
via the well-known Littlewood-Paley decomposition, and to define generalizations of those spaces
known as Besov spaces; these turn out to be very important tools, namely to refine Sobolev
inequalities, and to study nonlinear PDEs. For an introduction to this topic, we refer the reader
for instance to [9]. We shall not pursue further this line of investigation here, but only prove the
following proposition, known as the Bernstein inequalities. The proof of this result is inspired by
the corresponding result on the Heisenberg group in the monograph of Bahouri-Chemin-Danchin [3]
– we refer also to [8] for the easier case (5.7).

Proposition 5.7. With the above notation,
• if u is frequency localized in BΛ, then for all 1 ≤ p ≤ q ≤ ∞, k ∈ N and β ∈ N2 with |β| = k,

there exists a constant Ck depending only on k such that

(5.7) ∥X βu∥Lq(G) ≤ CkΛk+Q( 1
p − 1

q )∥u∥Lp(G) .

• if u is frequency localized in CΛ, then for all p ≥ 1, k ∈ N and β ∈ N2 with |β| = k, there
exists a constant Ck depending only on k such that

(5.8) ∥u∥Lp(G) ≤ CkΛ−k sup
|β|=k

∥X βu∥Lp(G) .

Remark 5.8. Spectral truncations are convenient means of approximating functions. Indeed
Proposition 5.7 shows that for any u ∈ L2(G) for instance, ψ(−Λ−2∆G)u belongs to Hs(G) for
any s ≥ 0, and, as a consequence of the Plancherel formula, ψ(−Λ−2∆G)u converges to u in L2(G).

Proof of Proposition 5.7. By density and to make sense of the next computations, we assume that u
belongs to S(G). First, we notice that (5.5) and (5.6) can be restated respectively as

u = ψ(−Λ−2∆G)u and u = ϕ(−Λ−2∆G)u .
In view of Hulanicki’s result [52], there exist functions hψ and hϕ in S(G) such that, for all u
in S(G), there holds

(5.9) ψ(−Λ−2∆G)u = u ⋆ ΛQ(hψ ◦ δΛ) and ϕ(−Λ−2∆G)u = u ⋆ ΛQ(hϕ ◦ δΛ) .
Let us prove that the functions hϕ and hψ are even, that is to say, for all x ∈ G,

hψ(x) = hψ(x−1) and hϕ(x) = hϕ(x−1) .
Since the analysis of hϕ is similar to that of hψ, we limit here ourselves to the case of hψ. By
definition
(5.10) F(hψ)(n,m, ν, λ) = ψ(Em(ν, λ))δm,n ,
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which in view of the inversion Fourier formula (4.22) implies that

hψ(x) = (2π)−3
∑
m∈N

∫
R×R∗

W
(
(m,m, ν, λ), x−1)ψ(Em(ν, λ)) dνdλ .

Also,

hψ(x−1) = (2π)−3
∑
m∈N

∫
R×R∗

W
(
(m,m, ν, λ), x

)
ψ(Em(ν, λ)) dνdλ .

But, in view of(4.29)-(4.30), we have
W
(
(m,m, ν, λ), x−1) =W

(
(m,m, ν,−λ), x

)
,

which gives the result since Em(ν,−λ) = Em(ν, λ).
Let us return to the proof of the proposition. We observe that by scale invariance, it is enough

to prove the proposition for Λ = 1. In order to establish (5.7), we first combine Definition 5.5 with
Identity (5.9) which implies that

u = u ⋆ hψ ,

with hψ ∈ S(G). Invoking (3.13), we infer that

X βu = u ⋆ X βhψ ,
which leads to the result, thanks to Young’s inequalities (3.12).

Let us turn to the case when u is frequency localized in a unit ring: we use (5.9) again, and
notice that

∆Ghϕ = ∆̃Ghϕ .

Moreover, since hϕ is frequency localized away from the origin, for any integer k, one has

(5.11) u = u ⋆ hϕ = u ⋆ (−∆G)khkϕ = u ⋆ (−∆̃G)khkϕ ,

where hkϕ is the even Schwartz class function defined by

F(hkϕ)(n,m, ν, λ) def=
(
Em(ν, λ)

)−k
ϕ
(
Em(ν, λ)

)
δn,m .

We claim that for any u, v ∈ S(G) and all i ∈ {1, 2}, one has

(5.12) Xiu ⋆ v = u ⋆ X̃iv .

Indeed by definition, one has

(X1u) ⋆ v(x) =
∫
G

(∂y1u)(y)v(y−1 · x) dy = −
∫
G

u(y)∂y1

(
v(y−1 · x)

)
dy

by integration by parts, and since

y−1 ·x =
(
−y1 +x1,−y2 +x2,−y3 +x3−y1(−y2 +x2),−y4 +x4−y1(−y3 +x3)+ 1

2y
2
1(−y2 +x2)

)
,

and by Remark 3.1
X̃1 = ∂x1 + x2∂x3 + x3∂x4

then we obtain
(X1u) ⋆ v(x) =

∫
G

u(y)(X̃1v)(y−1 · x) dy

whence (5.12) for i = 1. Along the same lines, since

(X2u) ⋆ v(x) =
∫
G

((
∂y2 + y1∂y3 + y2

1
2 ∂y4

)
u

)
(y)v(y−1 · x) dy ,

performing an integration by parts, we get

(X2u) ⋆ v(x) =
∫
G

u(y)(X̃2v)(y−1 · x) dy ,

from which (5.12) also follows for i = 2. Then invoking (5.11), we deduce that

u = u ⋆ (−∆̃G)khkϕ =
2∑
i=1

Xiu ⋆ X̃i(−∆̃G)k−1hkϕ .
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By induction, we obtain
u =

∑
|β|=k

X βu ⋆ Φβ,k ,

for some functions Φβ,k in S(G). This completes the proof of the proposition thanks to Young’s
inequalities (3.12). □

5.3. Application to the heat equation. The heat kernel of the sub-Riemannian Laplacian has
been object of several investigations in the last decades, both from the analytic and geometric
viewpoints. We refer the reader to [11, 12, 15, 74] and references therein for a complete discussion.
In this paragraph we show the efficiency of Formula (1.9) by analyzing the heat kernel on the Engel
group.

It is well-known that this kernel is a Schwartz class function; see for instance [24] and the
references therein. Here we show in an elementary way, thanks to (1.9), that it belongs to Hs(G)
for any s ≥ 0. As already mentioned in the introduction, the Fourier transform U given by
Theorem 1.2 allows to compute explicitly the solutions of evolution equations associated with −∆G.
For instance, if we consider the heat equation on G

(HG)
{
∂tu−∆Gu = 0

u|t=0 = u0 ,

applying the Engel Fourier transform and taking advantage of the identities (4.24), then integrating
in time the resulting ODE, we deduce that, for all x̂ = (n,m, ν, λ) in Ĝ,

F(u(t))(n,m, ν, λ) = e−tEm(ν,λ)F(u0)(n,m, ν, λ) .
Invoking the Fourier inversion formula (4.22) along with the convolution identity (4.27), we infer
that
(5.13) u(t, ·) = u0 ⋆ ht with F(ht)(n,m, ν, λ) = e−tEm(ν,λ)δn,m .

Then according to the scaling property (4.34), the heat kernel ht is given, for all t > 0, by

(5.14) ht = 1
t

Q
2

(h ◦ δ 1
t
) with h(x) = (2π)−3

∫
Ĝ

e−Em(ν,λ)W
(
(n,m, ν, λ), x−1)δm,ndx̂ .

Thanks to Formula (1.9), we deduce that the heat kernel on G belongs to ∩sHs(G). Indeed
combining (4.26) together with (5.14), we infer that for all s ∈ R,

∥h∥2
Hs(G) = (2π)−3

∑
m∈N

∫
R×R∗

Fs(Em(ν, λ))dνdλ ,

where Fs(r)
def= (1 + r)se−2r which ensures the result.

6. Metric structure on the frequency set Ĝ

The aim of this paragraph is to endow the frequency set Ĝ = N2 × R× R∗ with a distance. To
do so, we have to keep in mind that, as in the Euclidean setting, we expect the Fourier transform
to transform the regularity of functions on G into decay of the Fourier transform on Ĝ. So first
let us start by observing that in view of the relations (4.13), (4.15) and (4.24), one has

F(−∆Gu)(n,m, ν, λ) = Em(ν, λ)F(u)(n,m, ν, λ)
F(−∆̃Gu)(n,m, ν, λ) = En(ν, λ)F(u)(n,m, ν, λ)
F(X4u)(n,m, ν, λ) = −iλF(u)(n,m, ν, λ)

F
((
X4X2 −

1
2X

2
3
)
u
)
(n,m, ν, λ) = νF(u)(n,m, ν, λ) .

Our aim now is to endow Ĝ with a distance d̂ in accordance with the above relations and which is
moreover homogeneous of degree one with respect to the dilation δ̂a defined by (4.33). This moti-
vates our definition of the distance d̂ between two elements x̂ = (n,m, ν, λ) and x̂′ = (n′,m′, ν′, λ′)
of the set Ĝ as follows:

(6.1)
d̂(x̂, x̂′) def=

∣∣Em(ν, λ)− Em′(ν′, λ′)
∣∣ 1

2 +
∣∣(Em − En)(ν, λ)− (Em′ − En′)(ν′, λ′)

∣∣ 1
2

+ |ν − ν′| 14 + |λ− λ′| 13 .
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To check that d̂ is a distance on Ĝ, the main point consists in proving that

d̂(x̂, x̂′) = 0⇒ x̂ = x̂′ .

In view of (6.1), this amounts to showing that if for some integers k, k′, we have Ek(ν, λ) = Ek′(ν, λ),
then k = k′. This follows from the first item of Proposition B.1 which asserts that the energy levels
do not intersect. Now the fact that d̂ is homogeneous of degree one with respect to the dilation δ̂a,
namely for all a > 0

d̂(δ̂ax̂, δ̂ax̂′) = ad̂(x̂, x̂′) ,

follows from the scaling property Ek(ν, λ) = |λ|2/3Ek
(

ν
|λ|4/3

)
(see (B.6)).

Since λ belongs to R∗, the set (Ĝ, d̂) is not complete. Its completion is described by the following
proposition.

Proposition 6.1. The completion of the set Ĝ for the distance d̂ is the set

Ĝ∪Ĝ0 with Ĝ0
def=
(
R+×R×{0R2}

)
∪
{

((2m+1)
√

2ν, 2(m−n)
√

2ν, ν, 0), (n,m, ν) ∈ N2×R∗
+
}
.

Proof. We denote by S the completion of the set Ĝ for the distance d̂, that is to say the set of all
limits of Cauchy sequences (np,mp, νp, λp)p∈N in (Ĝ, d̂), and our goal is to prove that

S = Ĝ ∪ Ĝ0, with Ĝ0 = Ĝ0,0 ⊔ Ĝ0,1,

Ĝ0,0 = R+ × R× {0R2}, Ĝ0,1 =
{

((2m+ 1)
√

2ν, 2(m− n)
√

2ν, ν, 0), (n,m, ν) ∈ N2 × R∗
+
}
.

We first prove that S ⊂ Ĝ ∪ Ĝ0. Let (np,mp, νp, λp)p∈N be a Cauchy sequence in (Ĝ, d̂).
Then (νp)p∈N and (λp)p∈N are Cauchy sequences of real numbers, and thus they converge respec-
tively to some ν and λ in R. Moreover, Emp(νp, λp), Enp(νp, λp) are Cauchy sequences in R+ and
thus converge in R+: there exist ẋ ∈ R+ and ẏ ∈ R+ such that

(6.2) Emp(νp, λp)
p→∞−→ ẋ, Enp(νp, λp)

p→∞−→ ẏ.

Recalling the scaling relation (B.6), this reads |λp|2/3Emp(µp)
p→∞−→ ẋ and |λp|2/3Enp(µp)

p→∞−→ ẏ,
with µp = νp

|λp|4/3 · If λ ̸= 0, we have µp
p→∞−→ ν

|λ|4/3 ∈ R and |λp|2/3Emp
(µp)

p→∞−→ ẋ, |λp|2/3Enp
(µp)

p→∞−→

ẏ. As a consequence Emp
(µp)→ ẋ|λ|−2/3, Enp

(µp)→ ẏ|λ|−2/3 and, according to Item 1 in Propo-
sition 2.1, we infer that the sequences (mp)p∈N and (np)p∈N are constant after a certain index.
Therefore, there exist m and n in N such that

d̂((np,mp, νp, λp), (n,m, ν, λ)) p→∞−→ 0 .

Consequently (in that case) the limit of the sequence (np,mp, νp, λp)p∈N in (Ĝ, d̂) belongs to Ĝ.
We now consider the case λ = 0, that is to say λp → 0, and recall that νp → ν ∈ R. If ν < 0,

recalling that by (2.8), for any k and any µ < 0, one has Ek(µ) ≥ |µ|2, we deduce that

|λp|2/3Emp

( νp
|λp|4/3

)
≥

ν2
p

|λp|2
p→∞−→ +∞ , |λp|2/3Enp

( νp
|λp|4/3

)
≥

ν2
p

|λp|2
p→∞−→ +∞ ,

which contradicts (6.2). In the case λ = 0, we thus necessarily have ν ≥ 0 and we distinguish the
two cases ν = 0 and ν > 0. (i) Firstly if ν = 0, then according to (6.2),(

Emp
(νp, λp), Emp

(νp, λp)− Enp
(νp, λp), νp, λp

) p→∞−→ (ẋ, ẋ− ẏ, 0, 0) ∈ Ĝ0,0 .

(ii) Secondly if ν > 0, then νp > 0, for p large, and according to the scaling relation (B.6)
and (6.2),

Emp
(νp, λp) = ν1/2

p µ−1/2
p Emp

(µp)
p→∞−→ ẋ,

with µp = νp

|λp|4/3 → +∞. As a consequence, µ−1/2
p Emp

(µp) → ν−1/2ẋ. Setting hp = µ
−3/2
p → 0

and performing the change of scales (2.12), it follows that Emp
(hp) = µ−2

p Emp
(µp) is an eigenvalue

of the semiclassical Schrödinger operator in (2.13). Since

(6.3) h−1
p Emp(hp) = µ−1/2

p Emp(µp)
p→∞−→ ν−1/2ẋ ,
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there exists β > 0 such that h−1
p Emp

(hp) ≤ β for all p ∈ N. Lemma 2.8 implies first the existence
of Nβ > 0 such that mp ≤ Nβ for all p ∈ N, and second that there exists m ∈ N with m ≤ Nβ
such that

(6.4) h−1
p Emp(hp)→

√
2(2m+ 1), as h→ 0+.

Combining (6.4) and (6.3) yields ẋ =
√

2ν(2m+ 1).
The same method applies to the sequence Enp(νp, λp) yielding existence of n ∈ N such that ẏ =√

2ν(2n+ 1), and we finally obtain(
Emp(νp, λp), Emp(νp, λp)− Enp(νp, λp), νp , λp

) p→∞−→ (
√

2ν(2m+ 1), 2(m− n)
√

2ν, ν, 0) ∈ Ĝ0,1 .

This concludes the proof of S ⊂ Ĝ ∪ Ĝ0,0 ∪ Ĝ0,1.

We now prove the converse statement, that is S ⊃ Ĝ ∪ Ĝ0,0 ∪ Ĝ0,1. If (n,m, ν, λ) ∈ Ĝ, that is
to say with λ ̸= 0, then the constant sequence (n,m, ν, λ) converges to (n,m, ν, λ) in Ĝ.

If (ẋ, ẏ, 0, 0) ∈ Ĝ0,0, we claim that there exists a Cauchy sequence (np,mp, νp, λp) ∈ Ĝ such that

(6.5) λp → 0, νp → 0, Emp(νp, λp)→ ẋ, Enp(νp, λp)→ ẏ .

Indeed, if ẋ = 0 and ẏ = 0, then, choose νp = 0, mp = np = 1 and any sequence λp → 0. We then
have

Emp
(νp, λp) = |λp|2/3E1(0)→ 0, Enp

(νp, λp) = |λp|2/3E1(0)→ 0 .
Otherwise, either ẋ ̸= 0 or ẏ ̸= 0. Assume for instance ẋ ̸= 0, and recall that by virtue of Lemma 2.2
one has Ek(0) ∼

(
2π

Vol1
k
)4/3

as k → +∞. Then applying Lemma 6.2 below to the sequence uk =

Ek(0), we infer that there exist sequences (mp)p∈N, (np)p∈N ∈ NN such that
Enp

(0)
Emp(0) →

ẏ

ẋ
. Setting

then νp = 0 and λp =
(

ẋ
Emp (0)

)3/2
, we have

Emp
(νp, λp) = |λp|2/3Emp

(0) = ẋ ,

Enp(νp, λp) = |λp|2/3Enp(0) = |λp|2/3Emp(0)
Enp

(0)
Emp(0)

p→∞−→ ẋ
ẏ

ẋ
= ẏ ,

which proves the existence of a Cauchy sequence satisfying (6.5), and thus Ĝ0,0 ⊂ S.
Finally, let (

√
2ν(2m+ 1), 2(m− n)

√
2ν, ν, 0) ∈ Ĝ0,1, that is to say ν > 0 and m,n ∈ N. First,

choosing β > 2
√

2(2 max{m,n}+ 1), Lemma 2.8 implies that

h−1E2m(h)→
√

2(2m+ 1), h−1E2n(h)→
√

2(2n+ 1) , as h→ 0 .

Second, we fix any sequence λp → 0 and notice that µp
def= ν

|λp|4/3 → +∞. As already noticed

in (6.3), we have with hp
def= µ

−3/2
p → 0

Em(ν, λp) =
√
νµ−1/2

p Em(µp) =
√
νh−1

p Em(hp)
p→∞−→

√
2ν(2m+ 1) ,

and similarly En(ν, λp)→
√

2ν(2n+ 1). This proves the existence of a Cauchy sequence satisfying

λp → 0, νp → ν, Emp(νp, λp)→
√

2ν(2m+ 1), Enp(νp, λp)→
√

2ν(2n+ 1) ,

and thus Ĝ0,1 ⊂ S. This concludes the proof of the proposition. □

Lemma 6.2. Assume that (un)n∈N in (0,∞)N is such that un → +∞ and un+1
un
→ 1, as n→∞.

Then, the set
{
um

un
, (n,m) ∈ N2} is dense in R+.

Proof. Our purpose is to prove that for all ℓ ≥ 0 and all ϵ > 0, there exists (n,m) ∈ N2 such
that

∣∣um
un
− ℓ
∣∣ ≤ ϵ. We shall argue according to the value of ℓ.

(i) The result is true when ℓ = 0 (respectively ℓ = 1) since by hypothesis u0

un
tends to 0

(respectively un+1

un
tends to 1), as n goes to infinity.
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(ii) Assume now that ℓ > 1. Since the sequence (un)n∈N is such that un+1
un
→ 1, there exists n0 ∈

N such that for all n ≥ n0, one has
∣∣un+1

un
− 1
∣∣ ≤ ϵ

ℓ
· Then using that un → +∞, one can define

m0 = min
m≥n0

{um > ℓun0}

which clearly satisfies um0−1

un0

≤ ℓ. We deduce that

ℓ <
um0

un0

<
(
1 + ϵ

ℓ

)um0−1

un0

<
(
1 + ϵ

ℓ

)
ℓ = ℓ+ ϵ,

that is to say
∣∣um0

un0

− ℓ
∣∣ ≤ ϵ, which completes the proof of the claim in that case.

(iii) The case when ℓ < 1 can be dealt by inverting m and n in the proof of the case ℓ > 1. □

Invoking (4.24) together with (6.1), we readily gather that, as in the Euclidean case, the regu-
larity of a function implies the decay of its Fourier transform in (Ĝ, d̂). In the next statement we
have used the notation

∥u∥N,S(G)
def= sup

x∈G
(1 + dG(x, 0))N

∣∣(Id−∆N
G )u(x)

∣∣
for the semi-norms on S(G).

Proposition 6.3. Denoting by 0̂ the point in Ĝ0 corresponding to (ẋ = 0, ẏ = 0, ν = 0, λ = 0),
for any k in N, an integer Nk and a constant Ck exist such that

(1 + d̂(x̂, 0̂))k|F(u)(x̂)| ≤ Ck∥u∥Nk,S(G) .

Proof. Taking advantage of (4.24), we get that

Ekm(ν, λ)F(u)(x̂) = F
(
(−∆G)ku

)
(x̂) .

Hence, invoking (4.19), we infer that

Ekm(ν, λ)|F(u)(x̂)| ≤
∥∥(−∆G)ku

∥∥
L1(G)

≤ Ck∥u∥Nk,S(G).

Similarly, one has

Ekn(ν, λ)F(u)(x̂) = F
(
(−∆̃G)ku

)
(x̂) ,

which implies that

Ekn(ν, λ)|F(u)(x̂)| ≤ Ck∥u∥Nk,S(G) .

Finally, using that

νF(u)(x̂) = F
((
X4X2 −

1
2X

2
3
)
u
)
(x̂) and iλF(u)(x̂) = −F(X4u)(x̂) ,

we end up with the result. □

Appendix A. Irreducible representations

In this section we briefly summarize the Kirillov theory which permits to compute explicitly
the irreducible unitary representations for nilpotent groups and in particular to recover those of
the Engel group described in Section 4.1. For a comprehensive description we refer the reader to
[23, 54]. See also [41, Section 2] for another derivation.
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A.1. Induced representations. Let G be a nilpotent Lie group and H be a subgroup. Given a
representation X : H → U(V ) of H onto the space U(V ) of unitary operators on a vector space V
one can define an induced representation R : G → U(W ) on a Hilbert space W which we now
define. Consider functions f : G → V such that X (h)f = f ◦ Lh, where Lh denotes the left
translation, or
(A.1) f(hg) = X (h)f(g) , h ∈ H , g ∈ G .
Notice that for such a function, since X (h) is unitary, we have that ∥f(hg)∥ is independent of h
and hence the norm of ∥f(Hg)∥ is well-defined, where Hg denotes the left coset of g in H\G. We
also require that

(A.2)
∫
H\G
∥f(Hg)∥2dµ <∞ ,

where dµ is an invariant measure on H\G. This means that the function f is in L2(H\G, dµ).
Then we set

W
def= {f : G→ V | f satisfies (A.1)-(A.2)}.

Finally one defines R : G→ U(W ) as follows

R(g)f def= f ◦Rg , i.e., (R(g)f)(g′) = f(g′g) ,
where the Rg is the right translation. One can check that R is unitary and strongly continuous.

Remark A.1. In order to compute explicitly the induced representation one can use the following
observation. Consider the natural projection π : G→ H\G of the group onto its quotient. Given
any section3 s : H\G → G we can consider its image K def= s(H\G) and write elements of G as
products H ·K. If g′g = hk, where h ∈ H and k ∈ K (both depending on g′g), we can write
(A.3) (R(g)f)(g′) = f(g′g) = f(hk) = X (h)f(k) .
In what follows we apply this construction when X is a character of the group. Thus, in the
induced representation, X represents the exponential part while the component f(k) is a “shift”.
The crucial step in the computations will be to solve the equation
(A.4) g′g = h(g′g)k(g′g) .
Since f satisfies (A.1), it is enough to solve (A.4) for g′ ∈ K. (In a compact form, one has to
solve K ·G = H ·K.)

A.2. Coadjoint orbits and Poisson structure. Given a Lie group G and its Lie algebra g one
can consider the so-called coadjoint action for g ∈ G

Ad∗
g : g∗ → g∗, ⟨Ad∗

gη, v⟩
def= ⟨η, (Adg−1)∗v⟩ ,

where Adg is the usual adjoint map. Notice that Ad∗ can be seen as an action of G on g∗.
Given η ∈ g∗ the coadjoint orbit of η is by definition the set

Oη
def= {Ad∗

gη | g ∈ G} .
The dual of the Lie algebra g∗ has the natural structure of Poisson manifold with the bracket

{a, b}(η) def= ⟨η, [da, db]⟩ ,
where a, b : g∗ → R are smooth functions and da, db are their differentials thought as elements
of (g∗)∗ ≃ g (hence the Lie bracket [da, db] is a well-defined element of g). Given a smooth
function a : g∗ → R we can define its Poisson vector field by setting for every smooth b : g∗ → R

a⃗(b) def= {a, b} .
The computation of the coadjoint orbits can be done in a coordinate independent way using the
Poisson structure. The set of all Poisson vector at a point defines a distribution

Dη
def= {a⃗(η) | a ∈ C∞(g∗)},

3recall that a section is a map s : H\G → G such that π ◦ s = idH\G.
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which does not have in general constant rank (notice indeed that we always have D0 = {0}). We
can define also the Poisson orbit of η ∈ g∗, in the sense of dynamical systems, as follows

OPη
def= {et1a⃗1 ◦ . . . ◦ etℓa⃗ℓ(η) | ℓ ∈ N, ti ∈ R, ai ∈ C∞(g∗)} .

Notice that both OPη and Oη are subsets of g∗ containing η.

Proposition A.2 ([54]). For every η ∈ g∗ we have the equality OPη = Oη. Each orbit is an even
dimensional symplectic manifold.

A.3. Computation of coadjoint orbits. To compute explicitly coadjoint orbits on a nilpotent
Lie group G one can use the following method (cf. for instance [1, Ch. 18]). Consider a basis of
the Lie algebra X1, . . . , Xn such that

[Xi, Xj ] =
n∑
k=1

ckijXk ,

Thanks to the fact that the vector fields are left-invariant, the functions ckij are constant. Define
the corresponding coordinates on the fibers of T ∗G given by hi(p, x) = p ·Xi(x). Notice that hi
are functions which are linear on fibers. These functions, due to left-invariance, can be thought as
smooth functions on g∗ and satisfy the relations

{hi, hj} =
n∑
k=1

ckijhk .

We recall that a Casimir is a smooth function f ∈ C∞(g∗) such that
{a, f} = 0, ∀ a ∈ C∞(g∗) .

If we consider an arbitrary function f ∈ C∞(g∗) as a function of the coordinates just introduced f =
f(h1, . . . , hn), then f is a Casimir if and only if {f, hj} = 0 for all j = 1, . . . , n, which means

n∑
i=1

∂f

∂hi
ckij = 0, j, k = 1, . . . , n.

With similar computations, the Poisson vector field associated to a function f is given by

(A.5) f⃗ =
n∑

i,j,k=1

∂f

∂hi
ckijhk

∂

∂hj
·

We stress that the Poisson vector field associated to a Casimir is the zero vector field. Moreover,
for coordinate functions h1, . . . , hn we have

(A.6) h⃗i =
n∑

j,k=1
ckijhk

∂

∂hj
·

Clearly, to compute Poisson orbits OPη , it is sufficient to consider the flow of the vector fields from
the family h⃗1, . . . , h⃗n.

A.4. Kirillov theory. The Kirillov theory gives a way to describe all irreducible unitary repre-
sentations of G in terms of coadjoint orbits of the group. The Kirillov theorem can be described
as the following three-steps algorithm:

(1) Fix an element η ∈ g∗ and any maximal (with respect to inclusion) Lie subalgebra h of g
in such a way that η([h, h]) = 0.

(2) Consider the one-dimensional representation Xη,h : H → S1 = U(C) defined by

Xη,h(eX) = ei⟨η,X⟩, X ∈ h .

where as usual ⟨η,X⟩ denotes the duality product g∗ and g.
(3) Compute the induced representation Rη,h : G→ U(W ).

Notice that, due to the previous discussion, the space W of functions f : G → V satisfying (A.1)
and are in L2(H\G) can be identified with L2(Rd) with d = dim g− dim h.

The Kirillov theorem states that the map which assigns to η ∈ g∗/G to Rη,h in Ĝ is a bijection.
This is formalized in the following statement.
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Theorem A.3 ([54]). We have the following properties:
(a) every irreductible unitary representation of a nilpotent Lie group G is of the form Rη,h for

some η ∈ g∗/G and h maximal subalgebra of g such that η([h, h]) = 0,
(b) two representations Rη,h and Rη′,h′ are equivalent if and only if η and η′ belong to the

same coadjoint orbit.

Here two irreductible unitary representations R1 : G → U(W1) and R2 : G → U(W2) are
equivalent if there exists an isometry T : W1 →W2 between the corresponding Hilbert spaces such
that T ◦R1(g) ◦ T−1 = R2(g) for every g ∈ G.

Notation. In what follows we write Rη
def= Rη,h by removing the Lie algebra from the param-

eters to simplify the notation.

A.5. The irreducible representations on the Engel group. Recall that the Engel group is a
nilpotent Lie group of dimension 4 with a basis of the Lie algebra satisfying

[X1, X2] = X3, [X1, X3] = X4 .

Following the discussion in Section A.3, to find a basis of the Poisson vector fields it is enough to
compute h⃗i for every i = 1, 2, . . . , 5. Using formula (A.5) we have that

(A.7) h⃗1 = h3∂h2 + h4∂h3 , h⃗2 = −h3∂h1 , h⃗3 = −h4∂h1 , h⃗4 = 0 .
Notice that h4 is a Casimir since the corresponding vector field X4 is in the center of the Lie
algebra. The Lie algebra admits a second independent Casimir.

Lemma A.4. The function f = 1
2h

2
3 − h2h4 is a Casimir. In particular all coadjoint orbits are

contained in the level sets Lν,λ defined by

(A.8)
{
h4 = λ,
1
2h

2
3 − λh2 = ν .

Proof. This is a consequence of an explicit calculation. Indeed we have {f, hj} = 0 for j = 2, 3, 4,
since {hi, hj}(p, x) = p · [Xi, Xj ](x) which vanishes identically if i and j are both different from 1.
Moreover

{f, h1} = {h3, h1}h3 − {h2, h1}h4 = −h4h3 + h3h4 = 0 .
This proves the lemma. □

Coadjoint orbits are given by the flow of the Poisson vector fields restricted to the level sets of
the Casimirs. One gets the following description.

Proposition A.5. In coordinates (h1, h2, h3, h4) on g∗, the coadjoint orbits are described as
follows:

(i) if λ = ν = 0, then every point (h1, h2, 0, 0) is an orbit,
(ii) if λ = 0 and ν ̸= 0, then orbits are planes {h3 = c} for c ∈ R,
(iii) if λ ̸= 0, then the orbit coincides with the set defined by the equations (A.8).

Proof. Case (i) is easy. By assumption λ = ν = 0, then h3 = h4 = 0 by (A.8). Hence coadjoint
orbits are contained in the set L0,0 = {(h1, h2, 0, 0) | h1, h2 ∈ R} but since all Poisson vector fields
vanish on this 2-dimensional set thanks to (A.7), all points in L0,0 are orbits.

Case (ii) is similar. By assumption λ = 0, ν ̸= 0, then h4 = 0 and h3 ̸= 0 by (A.8). Hence
coadjoint orbits are contained in the set Lν,0 = {(h1, h2, h3, 0) | h1, h2 ∈ R, h3 ̸= 0}. When
restricted to Lν,0 the only non zero Poisson vector fields are

(A.9) h⃗1 = h3∂h2 , h⃗2 = −h3∂h1 ,

so that if h3 ̸= 0 orbits are planes {h3 = c} for c ∈ R.
Case (iii). Here λ ̸= 0 hence each orbit is contained in the level set Lν,λ defined by equations h4 =

λ and 1
2h

2
3 − λh2 = ν as in (A.8). On the other hand the non zero vector fields (A.7) restricted to

the level set have the form
(A.10) h⃗1 = ν∂h2 + λ∂h3 , h⃗2 = −ν∂h1 , h⃗3 = −λ∂h1 ,

Since λ ̸= 0, it is not difficult to check that the orbit in this case coincides with the level set
itself. □
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Let us now compute all irreducible representations corresponding to the case (iii), i.e., λ ̸= 0.
In this case the orbit is the set Lν,λ described by (A.8) and on this set we fix the element η =
(0,−ν/λ, 0, λ). Then we choose the subalgebra

h = span{X2, X3, X4}, [h, h] = 0 .
which clearly satisfies η([h, h]) = 0 and is maximal with respect to inclusion since η is not zero.
The corresponding 1-dim representation acts on H = exp(h) as follows

Xν,λ(ex2X2+x3X3+x4X4) = ei(−νx2/λ+λx4) .

Let us write points on G as follows
(A.11) g = ex2X2+x3X3+x4X4ex1X1 .

Following the discussion in Remark A.1, we consider the complement K = exp(RX1) and we have
to solve the equation K · G = H ·K. Thanks to Lemma A.7 below (applied in the form eAeB =
eC(A,B)eA) we have the identity

eθX1ex2X2+x3X3+x4X4ex1X1 = ex2X2+(x3+θx2)X3+(x4+θx3+ θ2
2 x2)X4e(θ+x1)X1 .

We deduce that
Rν,λf(eθX1) = Xν,λ(ex2X2+(x3+θx2)X3+(x4+θx3+ θ2

2 x2)X4)f(e(θ+x1)X1) .

Introducing the notation f̃(θ) def= f(eθX1) we can summarize the above result as follows
Proposition A.6. All unitary irreducible representations on the Engel group corresponding to
coadjoint orbits of case (iii) are parametrized by λ ̸= 0 and ν ∈ R, acting on L2(R) as follows:

(A.12) Rν,λf̃(θ) = exp
[
i

(
−ν
λ
x2 + λ(x4 + θx3 + θ2

2 x2)
)]

f̃(θ + x1) .

where (x1, x2, x3, x4) are coordinates on G defined by (A.11).
We state here without proof the following algebraic lemma.

Lemma A.7. Assume that the Lie algebra generated by A,B is nilpotent. Then we have
that eAeBe−A = eC(A,B) with

C(A,B) = ead(A)B =
s−1∑
k=0

adk(A)
k! B,

where s is the nilpotency step of the structure. In particular in the case of the Engel group we
have

C(A,B) = B + [A,B] + 1
2 [A, [A,B]] .

Remark A.8. Formula (A.12) gives the representations of the element of the groupG parametrized
by coordinates (x1, x2, x3, x4), where (0, 0, 0, 0) is the origin of the group (which corresponds indeed
to the identical representation).

Hence, differentiating (A.12) with respect to the variables xi at x = 0, we get also the repre-
sentations of the element of the Lie algebra, as follows

X1f̃ = d

dθ
f̃ , X2f̃ = i

(
−ν
λ

+ λ
θ2

2

)
f̃ , X3f̃ = iλθf̃ , X4f̃ = iλf̃ ,

which indeed satisfy [X1, X2] = X3 and [X1, X3] = X4 as differential operators. Notice that the
Laplacian in this form is written as

X2
1 +X2

2 = d2

dθ2 −
(
λ

2 θ
2 − ν

λ

)2
.

Remark A.9. Notice that in the explicit computations of Section 4 only the representations
corresponding to the case (iii) of Proposition A.5 are involved, since in the Fourier trasform the
representations are integrated with respect to the the Plancherel measure, which in this coordinates
is written as dP = dλdν. Computing the representations corresponding to the case (i) and (ii)
reduces to the representations of the Euclidean plane and the Heisenberg group, respectively.
See [28, 54] for more details on the Plancherel measure and [55] for an explicit formula on nilpotent
Lie groups.
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Appendix B. Spectral theory

B.1. Spectral analysis of the quartic oscillator Pν,λ. We first collect general properties of
the operator Pν,λ defined in (4.10) for (ν, λ) ∈ R× R∗, and endowed with the domain

D(Pν,λ) =
{
u ∈ L2(R),− d2

dθ2u+
(
λ

2 θ
2 − ν

λ

)2
u ∈ L2(R)

}
.

Proposition B.1. For any (ν, λ) ∈ R × R∗, the following statements hold true. The opera-
tor (Pν,λ, D(Pν,λ)) is selfadjoint on L2(R), with compact resolvents. Its spectrum consists in
countably many real eigenvalues, accumulating only at +∞. Moreover,

(1) all eigenvalues are simple and positive, and we may thus write Sp(Pν,λ) = {Em(ν, λ),m ∈
N} with

0 < E0(ν, λ) < E1(ν, λ) < · · · < Em(ν, λ) < Em+1(ν, λ)→ +∞,
dim ker(Pν,λ − Em(ν, λ)) = 1 ,

(2) all eigenfunctions are real-analytic and belong to S(R),
(3) for all m ∈ N, functions in ker(Pν,λ − Em(ν, λ)) have the parity of m,
(4) for all m ∈ N, there is a unique function ψν,λm in ker(Pν,λ − Em(ν, λ)) such that

ψν,λm is real-valued, ∥ψν,λm ∥L2(R) = 1, ψν,λm (0) > 0 if m is even, d

dθ
ψν,λm (0) > 0 if m is odd ,

(5) the family
(
ψν,λm

)
m∈N forms a Hilbert basis of L2(R).

This proposition serves as a definition for the eigenvalue Em(ν, λ) and the associated eigenfunc-
tion ψν,λm for m ∈ N. Note that for ψν,λm , we made a particular choice.

Proof. If ψ ∈ D(Pν,λ), the inner product of Pν,λψ with ψ implies in particular that ψ ∈ H1(R)
and

(
λ
2 θ

2 − ν
λ

)
ψ ∈ L2(R), whence the compactness of the embedding D(Pν,λ) ↪→ L2(R) and that

of the resolvent of Pν,λ. The structure of the spectrum is a direct consequence of the first stated
facts. Then we notice that the coefficients of Pν,λ are real and one may thus choose real-valued
eigenfunctions. The fact that the eigenvalues are simple follows from the classical Sturm-Liouville
argument, see e.g. [68]. The latter also yields that any real-valued eigenfunction ψ associated
to Em has exactly m zeroes.

The property (−∞, 0]∩Sp(Pν,λ) = ∅ follows from the fact that Pν,λψ = Eψ for ψ ∈ D(Pν,λ))\{0}
implies

0 ≤ ∥ψ′∥2
L2(R) +

∥∥∥∥(λ2 θ2 − ν

λ

)
ψ

∥∥∥∥2

L2(R)
= E∥ψ∥L2(R) .

Hence, E ≥ 0. If E = 0, then the left hand-side yields ψ′ = 0 in D′(R), thus ψ = 0 (since
ψ ∈ L2(R)), which is a contradiction.

In Item 2, real-analyticity of the eigenfunctions follows from the analytic Cauchy-Lipschitz
theorem. That eigenfunctions belong to S(R) follows from Agmon estimates, see [46, 40, 27].
Item 3 is a consequence of the fact that

(
λ
2 θ

2 − ν
λ

)2 is even. Hence, if ψm is an eigenfunction
associated to Em, then x 7→ ψm(−x) is also an eigenfunction. Simplicity of the spectrum implies
that x 7→ ψm(−x) is proportional to ψm. Since we choose ψm real-valued and L2-normalized, we
necessarily have ψm(−x) = ±ψm(x). That ψm has the parity of m follows from the fact that ψm
has m zeroes.

Concerning Item 4, since dim ker(Pν,λ−Em(ν, λ)) = 1, there are only two normalized eigenvalues,
say ψ and −ψ. In case m is even (resp. odd), these eigenvalues are even (resp. odd) from Item 3
and hence one has ψ(0) ̸= 0 (resp. ψ′(0) ̸= 0), and we choose among ±ψ the one having positive
value (resp. positive derivative) at zero.

Finally, the last item is a consequence of the spectral theorem for compact selfadjoint operators.
□

We now explain how the study of the two parameter family of operators Pλ,ν reduces to that
of Pµ. We start with the following scaling argument, referring to the scaling operator Tα defined
in (2.6).
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Lemma B.2 (Scaling). For all α > 0 and (ν, λ) ∈ R×R∗, the operators α2Pν,λ and Pα4ν,α3λ are
unitarily equivalent: we have

Pα4ν,α3λ = α2TαPν,λTα−1 .

In particular, we have for all α > 0 and (ν, λ) ∈ R× R∗, and all m ∈ N,
Em(α4ν, α3λ) = α2Em(ν, λ) ,(B.1)

ψα
4ν,α3λ

m (θ) = Tαψ
ν,λ
m (θ) .(B.2)

This scaling property will later allow us to get rid of one of the two parameters. Note that the
last property can also be written, if needed: for all a > 0, we have

(B.3) a1/4ψa
−2ν,a−3/2λ
k (a1/2θ) = ψν,λk (θ) .

Proof of Lemma B.2. The first statement simply follows from the following computation:

TαPν,λTα−1 = − 1
α2

d2

dθ2 +
(
λα2 θ

2

2 −
ν

λ

)2

= 1
α2

[
− d2

dθ2 +
(
λα3 θ

2

2 − α
ν

λ

)2]

= 1
α2

[
− d2

dθ2 +
(

(λα3)θ
2

2 −
(να4)
(λα3)

)2]
= 1
α2Pα4ν,α3λ .

Concerning the second statement, we deduce from the first one that
Pα4ν,α3λTαψ

ν,λ
m = α2TαPν,λTα−1Tαψ

ν,λ
m = α2TαPν,λψ

ν,λ
m = α2Em(ν, λ)Tαψν,λm .

Hence, Tαψν,λm is an eigenfunction associated to the eigenvalue α2Em(ν, λ). From Item 1 of Propo-
sition B.1, we deduce that α2Em(ν, λ) is the m-th eigenvalue of Pα4ν,α3λ, whence (B.1). From the
uniqueness of the eigenvalue in Item 1 of Proposition B.1 and the fact that ψ 7→ Tαψ preserves the
sign of ψ(0) and ψ′(0), we deduce (B.2). □

We also notice that Pν,λ = Pν,−λ = Pν,|λ|. Now, we choose a particular value of α with so that
to reduce to a one-parameter problem, namely α = |λ|−1/3 > 0.

Definition B.3 (Reference operator). For µ ∈ R, and m ∈ N, we set

Pµ
def= Pµ,1 = − d2

dθ2 +
(
θ2

2 − µ
)2

, Em(µ) def= Em(µ, 1) , φµm
def= ψµ,1m .(B.4)

Note that Proposition B.1 applies to Pµ,Em(µ), φµm and we use it implicitly. In particular, Em(µ)
is the m-th eigenvalue of Pµ and φµm is the (with the appropriate choice) associated eigenfunction.

According to Lemma B.2 taken for α = |λ|−1/3 > 0, we have the following statement.

Corollary B.4 (Scaling and reference operator). For all (ν, λ) ∈ R×R∗, and all m ∈ N, we have

Pν,λ = |λ|2/3T|λ|1/3PµT|λ|−1/3 , µ = ν

|λ|4/3 ∈ R ,(B.5)

Em(ν, λ) = |λ|2/3Em(µ), µ = ν

|λ|4/3 ∈ R,(B.6)

ψν,λm = T|λ|1/3φµm, µ = ν

|λ|4/3 ∈ R .(B.7)

As a consequence, we are left with the study of the family of operators Pµ, depending on a
single parameter µ ∈ R.

B.2. Spectral theory for semiclassical Schrödinger operators. In this section, we collect
several results of spectral theory, that are used in the main part of the paper to study the opera-
tor Pµ (or equivalently Pν,λ).

We refer e.g. to [82, Section 6.4] for the following very classical Weyl law.

Theorem B.5 (Weyl’s law in dimension 1). Assume that V ∈ C∞(R;R) is real valued and
satisfies |∂αV (θ)| ≤ ⟨θ⟩k for all α and all θ ∈ R, and V (θ) ≥ c⟨θ⟩k for |θ| ≥ R > 0. Then, for
all h > 0, the operator

P (h) = −h2 d
2

dθ2 + V (θ), D(P (h)) =
{
u ∈ L2(R),−h2 d

2

dθ2u+ V u ∈ L2(R)
}
,(B.8)
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acting on L2(R) is selfadjoint, has compact resolvent, has discrete real spectrum, and an orthonor-
mal basis of eigenfunctions. Moreover, for any a < b,

♯ (Sp(P (h)) ∩ [a, b]) = (2πh)−1
(

Vol{(θ, ξ) ∈ R2, a ≤ ξ2 + V (θ) ≤ b}+ o(1)
)
,(B.9)

as h→ 0+.

Note that the phase space volume (taken according to the symplectic volume form dθ dξ) is
given by

Vol{(θ, ξ) ∈ R2, a ≤ ξ2 + V (θ) ≤ b} =
∫

{a≤ξ2+V (θ)≤b}
dθ dξ .

In the 1-dimensional context, it can often be computed more simply, see e.g. Remark B.8 below.
We shall also make use of the following lemma, which is a simple consequence of the minimax

and maximin formulae (see [44, Chapter 11 and discussion top of p148]).

Lemma B.6. Let H be a Hilbert space. Assume that (A,D(A)) and (B,D(B)) are two selfadjoint
operators, with compact resolvents, that are bounded from below and such that D(B) ⊂ D(A).
Denote for j ∈ N by Ej(A) (resp. Ej(B)) the j−th eigenvalue of the operator A (resp. B), defined
by the minimax formula, so that in particular E0(A) ≤ E1(A) ≤ · · · ≤ Ej(A) ≤ Ej+1(A) ≤ · · · →
+∞.

Assume further that (Au, u)H ≤ (Bu, u)H for all u in a dense set of D(B). Then we have
Ej(A) ≤ Ej(B), for all j ∈ N .

We now consider the operator

P (h) = −h2 d
2

dθ2 +
(
θ2

2 − ε(h)
)2

, D(P (h)) =
{
u ∈ L2(R),−h2 d

2

dθ2u+
(
θ2

2 − ε(h)
)2

u ∈ L2(R)
}
.

Note that

P (h) = −h2 d
2

dθ2 + θ4

4 − ε(h)θ2 + ε(h)2 .(B.10)

Since −ε(h)θ2 + ε(h)2 is a relatively compact perturbation of −h2 d2

dθ2 + θ4

4 , we notice that

D(P (h)) =
{
u ∈ L2(R),−h2 d

2

dθ2u+ θ4

4 u ∈ L
2(R)

}
does not depend on ε(h).

Proposition B.7. For any L > 0, there are two continuous nondecreasing functions Γ± : R+ →
R+ such that Γ±(ε0) > 0 for ε0 > 0 and Γ±(0) = 0 satisfying the following statement. For
all ε0 > 0 and all |ε(h)| ≤ ε0, we have

VolL−Γ−(ε0) + o(1) ≤ (2πh)♯ (Sp(P (h)) ∩ [0, L]) ≤ VolL +Γ+(ε0) + o(1)
as h→ 0+, where

VolL
def= Vol

{
(θ, ξ) ∈ R× R, ξ2 + θ4

4 ≤ L
}

=
∫

{ξ2+ θ4
4 ≤L}

dθ dξ.

In particular, if ε(h)→ 0 as h→ 0+, we have
(2πh)♯ (Sp(P (h)) ∩ [0, L]) = VolL +o(1) as h→ 0+ .

Remark B.8. Notice that we can take advantage of the homogeneity of the symbol ξ2 + θ4

4 to
prove that VolL = L3/4 Vol1. Indeed, we have explicitly

VolL =
∫ x+(L)

x−(L)

√
L− x4

4 dx, where x±(L)4

4 = L, ±x±(L) > 0

=
∫ (4L)1/4

−(4L)1/4

√
L− x4

4 dx, and thus, setting y def= x/L1/4,

=
∫ 41/4

−41/4

√
L− Ly

4

4 L
1/4dy = L3/4

∫ 41/4

−41/4

√
1− y4

4 dy = L3/4 Vol1 .
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The proof of the proposition relies on a comparison argument using Theorem B.5 and Lemma B.6.

Proof of Proposition B.7. For |ε(h)| ≤ ε0, we define

P−(h) = −h2 d
2

dθ2 + θ4

4 − ε0θ
2,

P+(h) = −h2 d
2

dθ2 + θ4

4 + ε0θ
2 + ε2

0 = −h2 d
2

dθ2 +
(
θ2

2 + ε0

)2

,

with respective domains defined as in (B.8). According to the same remarks as above, we haveD(P±(h)) =
D(P (h)). According to (B.10), we further notice that(

P−(h)u, u
)
L2(R) ≤ (P (h)u, u)L2(R) ≤

(
P+(h)u, u

)
L2(R) for all u ∈ S(R) ,

where S(R) is dense in D(P (h)).
For j ∈ N, we now denote by E±

j (resp. Ej) the j−th eigenvalue of the operator P±(h) (resp. P (h)),
defined by the minimax formula. Lemma B.6 yields for all j ∈ N and h > 0

E−
j ≤ Ej ≤ E

+
j .

As a consequence, for any L, h > 0,

♯
{
j ∈ N, E+

j ≤ L
}
≤ ♯ (Sp(P (h)) ∩ [0, L]) = ♯ {j ∈ N, Ej ≤ L} ≤ ♯

{
j ∈ N, E−

j ≤ L
}
.

Theorem B.5 then implies that for any ε0, L > 0 we have in the limit h→ 0+;∫
{ξ2+

(
θ2
2 +ε0

)2
≤L}

dθ dξ + o(1) ≤ (2πh)♯ (Sp(P (h)) ∩ [0, L]) ≤
∫

{ξ2+ θ4
4 −ε0θ2≤L}

dθ dξ + o(1) .

The sought result follows by taking Γ(ε0) = max{Γ+(ε0),Γ−(ε0)} with

Γ+(ε0) def=
∫

{ξ2+ θ4
4 −ε0θ2≤L}

dθ dξ −
∫

{ξ2+ θ4
4 ≤L}

dθ dξ ,

Γ−(ε0) def=
∫

{ξ2+ θ4
4 ≤L}

dθ dξ −
∫

{ξ2+
(

θ2
2 +ε0

)2
≤L}

dθ dξ .

and noticing that Γ has the desired properties. □
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Henri Poincaré Physique Théorique, 41, pages 291-331,1984.
[48] B. Helffer and Yu. A. Kordyukov. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic

wells, In “Mathematical results in quantum mechanics”, Proceedings of the QMath10 Conference Moieciu,
Romania 10 - 15 September 2007, World Sci. Publ., Singapore, 2008.



ENGEL GROUP 49
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