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Abstract. We consider a singular limit problem for the Navier-
Stokes system of a rotating compressible fluid, where the Rossby
and Mach numbers tend simultaneously to zero. The limit problem
is identified as the 2-D Navier-Stokes system in the “horizontal”
variables containing an extra term that accounts for compressibility
in the original system.

1. Introduction and main result

1.1. Setting. Consider a scaled Navier-Stokes system in the form

(1.1) ∂t%+ divx(%u) = 0,

(1.2) ∂t(%u) + divx(%u⊗ u) +
1

ε
(g × %u) +

1

ε2
∇xp(%) = divxS(∇xu),

with the viscous stress tensor

(1.3) S(∇xu) = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
, µ > 0,

and

g = [0, 0, 1].

Here % = %(t, x) ≥ 0 denotes the density and u(t, x) = [u1, u2, u3](t, x)
denotes the velocity of the fluid. Problem (1.1 - 1.2) arises in meteo-
rological applications, modeling rotating compressible fluids with the
rotation axis determined by g and the Rossby and Mach number pro-
portional to a small parameter ε.
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We consider a very simple geometry of the underlying physical space,
namely an infinite slab Ω bounded above and below by two parallel
planes,

(1.4) Ω = R2 × (0, 1).

The velocity u satisfies the complete slip boundary conditions (known
also as Navier boundary conditions),

(1.5) u · n = u3|∂Ω = 0, [Sn]× n|∂Ω = [S2,3,−S1,3, 0]|∂Ω = 0.

For the initial data

(1.6) %(0, ·) = %0,ε, u(0, ·) = u0,ε,

our goal is to study the asymptotic behavior of the corresponding solu-
tions %ε, uε for ε→ 0. We focus on the interplay between the Coriolis
force, here proportional to a singular parameter 1/ε, and the acous-
tic waves created in the low Mach number regime. In particular, we
neglect:

• stratification due to the presence of gravitation, here assumed
in equilibrium with the hydrostatic pressure; the action of the
centrifugal force is also neglected, compared to the gravitational
force;
• the effect of a boundary layer (Ekman layer), here eliminated

by the choice of the complete slip boundary conditions (see for
instance Lopes Filho et al. [11] and the references therein).

We consider ill-prepared initial data, specifically,

(1.7)


%0,ε = %+ εr0,ε, with {r0,ε}ε>0 bounded in L2 ∩ L∞(Ω),

for some positive constant %,

{u0,ε}ε>0 bounded in L2 ∩ L∞(Ω;R3).


Because of the prominent role of the “vertical” direction g in the

problem, we introduce the “horizontal” component vh = [v1, v2, 0] of
a vector field v, together with the corresponding differential opera-
tors ∇h, divh, and, notably, curlh, which is represented by the scalar
field

curlh[v] = ∂x1v2 − ∂x2v1.

Let %ε, uε be a solution of problem (1.1-1.6). Introducing a new quan-
tity

rε =
%ε − %
ε
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which satisfies

∂trε +
1

ε
divx(%u) + divx(rεu) = 0,

we easily check that if

rε → r, uε → U in some sense,

then, at least formally, the limits satisfy a diagnostic equation

(1.8) g ×U +
p′(%)

%
∇xr = 0,

which in turn implies that

(1.9) r = r(x1, x2), U = [Uh, 0], Uh = Uh(x1, x2).

Moreover, as we shall see below, divxU = divhUh = 0, and denot-
ing ∇⊥h r the vector (∂x2r,−∂x1r),

(1.10) ∂t

(
∆hr −

1

p′(%)
r
)

+∇⊥h r · ∇h(∆hr) =
µ

%
∆2
hr.

Thus r may be interpreted as a stream function associated to the vec-
tor field Uh, therefore (1.10) can be viewed as a 2D Navier-Stokes
system describing the motion of an incompressible fluid in the horizon-
tal plane R2, supplemented with an extra term (1/p′(%))∂tr. Equation
(1.10) is well-known to physicists in the theory of quasi-geostrophic
flows, see Zeitlin [13, Chapters 1,2].

The main goal of the present paper is to provide a rigorous justifi-
cation of the target system (1.10) in the framework of weak solutions
to the primitive equations (1.1), (1.2). In the coming paragraphs, we
introduce the weak solutions to both systems, recall their basic prop-
erties, and state our main result. In Section 2, we derive the necessary
uniform bounds on the family of solutions {%ε,uε}ε>0, and pass for-
mally to the limit when ε → 0. In Section 3, the associated wave
equation describing propagation of the acoustic waves in the low Mach
number regime is introduced. Using the celebrated RAGE theorem, we
show that the acoustic energy tends to zero, at least locally in space.
The proof of the main result is completed in Section 4.

The authors thank P.Fraunié and V.Zeitlin for a helpful discussion
concerning the physical interpretation of the limit problem.

1.2. Existence of weak solutions, and first uniform bounds. To
begin, we point out that system (1.1 - 1.3), endowed with the boundary
conditions (1.5) can be recast as a purely periodic problem with respect
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to the vertical coordinate x3 provided %, u1, u2 were extended as even
functions in the x3−variable defined on

Ω = R2 × T 1, T 1 ≡ [−1, 1]|{−1,1},

while u3 is extended to be odd in x3 on the same set. Throughout the
whole text, we therefore tacitly assume that % and u belong to these
symmetry classes. Accordingly, the same convention is adopted for the
initial data.

We shall say that functions %, u represent a weak solution to problem
(1.1 - 1.6) in (0, T )× Ω if:

• % ≥ 0, (%− %) ∈ L∞(0, T ; (Lγ + L2)(Ω)) for a certain γ > 3/2,
u ∈ L2(0, T ;W 1,2(Ω;R3));

• equation of continuity (1.1) is satisfied in the sense of renormal-
ized solutions, namely

(1.11)∫ T

0

∫
Ω

(
(%+b(%))∂tϕ+(%+b(%))u ·∇xϕ+(b(%)−b′(%)%)divxuϕ

)
dx dt

= −
∫

Ω

(
%0,ε + b(%0,ε)

)
ϕ(0, ·) dx

for any b ∈ C∞[0,∞), b′ ∈ C∞c [0,∞), and any test function
ϕ ∈ C∞c ([0, T )× Ω);
• p = p(%) ∈ L1((0, T )×Ω), momentum equation (1.2) is replaced

by a family of integral identities
(1.12)∫ T

0

∫
Ω

(
%u ·∂tϕ+%(u⊗u) : ∇xϕ+

1

ε
(g×%u) ·ϕ+

1

ε2
p(%)divxϕ

)
dx dt

=

∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt−
∫

Ω

%0,εu0,ε · ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω;R3);
• the energy inequality

(1.13)

∫
Ω

(
1

2
%|u|2 +

1

ε2
E(%, %)

)
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

(
1

2
%0,ε|u0,ε|2 +

1

ε2
E(%0,ε, %)

)
dx

holds for a.a. τ ∈ (0, T ), where

E(%, %) = H(%)−H ′(%)(%− %)−H(%),

with

H(%) = %

∫ %

1

p(z)

z2
dz.
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Note that, by virtue of hypothesis (1.7), the quantity on the right-
hand side of (1.13) is bounded uniformly for ε→ 0.

Existence of global-in-time weak solutions to problem (1.1 - 1.6)
can be established by the method developed by P.-L. Lions [10], with
the necessary modifications introduced in [8] in order to accommodate
a larger class of physically relevant pressure-density state equations,
specifically,
(1.14)

p ∈ C1[0,∞), p(0) = 0, p′(%) > 0 for % > 0, lim
%→∞

p′(%)

%γ−1
= p∞ > 0,

for a certain γ > 3/2.
Uniform bounds can be obtained in a rather standard way from the

energy inequality (1.13). We shall present the bounds in the next
section.

1.3. Main result. The main result of the present paper is stated as
follows.

Theorem 1.1. Assume that the pressure p satisfies (1.14).
Let {%ε,uε}ε>0 be a family of weak solutions to problem (1.1 - 1.6)

in (0, T ) × Ω, where Ω is specified through (1.4), with the initial data
satisfying (1.7), where

r0,ε → r0 weakly in L2(Ω), u0,ε → U0 weakly in L2(Ω;R3).

Then after taking a subsequence, the following results hold

rε ≡
%ε − %
ε
→ r weakly-(*) in L∞(0, T ;L2(Ω) + Lγ(Ω)),

uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),

and uε → U strongly in L2
loc((0, T )× Ω;R3),

where r and U satisfy (1.8), divxU = 0, and, moreover, the stream
function r solves equation (1.10) in the sense of distributions (see (4.3)
below for a weak formulation), supplemented with the initial datum

(1.15) r(0, ·) = r̃,

where r̃ ∈ W 1,2(R2) is the unique solution of

−∆hr̃ +
1

p′(%)
r̃ = %

∫ 1

0

curlhU0,h dx3 +

∫ 1

0

r0dx3.

If, in addition, curlhU0,h ∈ L2(Ω), then the solution r of (1.10)
is uniquely determined by (1.15) in the space {r ∈ D′(R2), ∇hr ∈
L∞(0,∞;W 1,2(R2))∩L2(0,∞; Ḣ2(R2))} and the convergence holds for
the whole sequence of solutions.
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The remaining part of the paper is devoted to the proof of The-
orem 1.1. The crucial point of the proof is, of course, the strong
(a.e. pointwise) convergence of the velocity field that enables us to
carry out the limit in the convective term. Here, the desired point-
wise convergence will follow from the celebrated RAGE theorem, to-
gether with the fact that the wave propagator in the associated acoustic
equation commutes with the Fourier transform in both the horizontal
variables (x1, x2) and the vertical variable x3.

1.4. Related results. This work is a contribution to a general re-
search direction consisting in studying singular limits in PDEs aris-
ing in fluid mechanics. Without giving an extensive bibliography, one
should refer for the first works in this line to Klainerman and Majda
[9] and Ukai [12] for the incompressible limit (actually [12] is probably
the first work in which dispersive estimates were established in order to
prove strong convergence in the whole space), followed by Desjardins et
al. [5] and [6]. In the context of rotating fluids one should mention the
important work of Babin, Mahalov and Nicolaenko [1], as well as the
book [3] and references therein; one also refers to [7] for a survey. Few
studies combine both rotation and compressible effects. We refer to
Bresch, Desjardins and Gérard-Varet [2] for an analysis in a cylinder,
where the well prepared case is studied precisely; the ill prepared case
is also addressed but only a conditional result is proved.

2. Uniform bounds

We start reviewing rather standard uniform bounds that follow di-
rectly from the energy inequality (1.13). To this end, it is convenient
to introduce a decomposition

h = [h]ess + [h]res, where [h]ess = ψ(%ε)h,

ψ ∈ C∞c (0,∞), 0 ≤ ψ ≤ 1, ψ ≡ 1 in a neighborhood of %

for any function h defined on (0, T )× Ω. It is understood that the es-
sential part [h]ess is the crucial quantity that determines the asymptotic
behavior of the system while the residual component [h]res “disappears”
in the limit ε→ 0.

As already pointed out, our choice of the initial data (1.7) guarantees
that the right-hand side of energy inequality (1.13) remains bounded
for ε → 0. After a straightforward manipulation, we deduce the fol-
lowing estimates:

(2.1) {√%εuε}ε>0 bounded in L∞(0, T ;L2(Ω;R3)),

(2.2) {[rε]ess}ε>0 bounded in L∞(0, T ;L2(Ω)),
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(2.3) ess sup
t∈(0,T )

‖[%ε]res‖γLγ(Ω) ≤ ε2c,

(2.4) ess sup
t∈(0,T )

‖[1]res‖L1(Ω) ≤ ε2c,

and{
∇xuε +∇t

xuε −
2

3
divxuεI

}
ε>0

bounded in L2((0, T )× Ω;R3×3),

which together with the standard Korn’s inequality implies that

(2.5) {∇xuε}ε>0 is bounded in L2((0, T )× Ω;R3×3).

In addition, it is easy to observe that (2.2), (2.3) yield

(2.6) %ε → % in L∞(0, T ;Lγ + L2(Ω)).

Now let us decompose

%

∫
Ω

|uε|2dx =

∫
Ω

(%− %ε)|uε|2dx+

∫
Ω

%ε|uε|2dx.

By (2.1) the second term on the right-hand side is bounded in L∞(0, T )
so let us consider the first one. Writing due to (2.6)

%ε − % = %(1)
ε + %(2)

ε

with

(2.7) %(1)
ε → 0 in L∞(0, T ;Lγ(Ω)) and %(2)

ε → 0 in L∞(0, T ;L2(Ω))

we have by Hölder’s inequality∣∣∣∣∫
Ω

(%− %ε)|uε|2dx

∣∣∣∣ ≤ (∫
Ω

|%(1)
ε |γdx

) 1
γ
(∫

Ω

|uε|2γ
′
dx

) 1
γ′

+

(∫
Ω

|%(2)
ε |2dx

) 1
2
(∫

Ω

|uε|4dx

) 1
2

with 1/γ+1/γ′ = 1. By (2.5) and Sobolev embeddings we know that uε
is bounded in L∞(0, T ;L6(Ω)) and Hölder’s inequality again allows to
write (∫

Ω

|uε|2γ
′
dx

) 1
γ′

≤
(∫

Ω

|uε|2dx

) 3
2γ′−

1
2
(∫

Ω

|uε|6dx

) 1
2
− 3

6γ′

and (∫
Ω

|uε|4dx

) 1
2

≤
(∫

Ω

|uε|2dx

) 1
4
(∫

Ω

|uε|6dx

) 1
4

.

Young’s inequality allows to conclude, thanks to (2.7). Finally

(2.8) {uε}ε>0 bounded in L2(0, T ;W 1,2(Ω;R3)).
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In accordance with (2.2) we may assume that

(2.9) [rε]ess → r weakly-(*) in L∞(0, T ;L2(Ω)).

Due to (2.3), (2.4),∫
Ω

[ |%ε − %|γ
εγ

]
res

dx ≤ c

(∫
Ω

[%γε
εγ

]
res

dx+

∫
Ω

[ 1

εγ

]
res

dx

)
≤ cε2−γ;

whence

(2.10) [rε]res → 0 in L∞(0, T ;Lq(Ω)) for any 1 ≤ q < min{γ, 2}.
Moreover, by virtue of (2.8),

(2.11) uε → U weakly in L2(0, T ;W 1,2(Ω;R3)),

passing to suitable subsequences as the case may be.
Letting ε → 0 in the weak formulation of the continuity equation

(1.11), with b ≡ 0, we obtain

(2.12) divxU = 0 a.a. in (0, T )× Ω.

Finally, multiplying momentum balance (1.12) by ε, we recover (1.8)

(2.13) %

[
−U2

U1

]
= p′(%)∇hr, ∂3r = 0,

in particular, r = r(x1, x2) is independent of the vertical variable, and

(2.14) Uh = Uh(x1, x2), divhUh = 0,

which, together with (2.12), implies U3 is independent of x3. However,
as U satisfies the complete-slip boundary conditions (1.5) on ∂Ω, we
may infer that

(2.15) U3 ≡ 0.

3. Propagation of acoustic waves

Assume from now on, to simplify notation, that p′(%) = 1. Sys-
tem (1.11), (1.12) can be written in the form

(3.1) ε∂trε + divxVε = 0,

(3.2) ε∂tVε + (g ×Vε +∇xrε) = εfε,

where we have set

rε =
%ε − %
ε

, Vε = %εuε,

and

fε = divxS(∇xuε)−divx(%εuε⊗uε)−
1

ε2
∇x

(
p(%ε)−p′(%)(%ε−%)−p(%)

)
.
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More precisely, system (3.1), (3.2) should be understood in the weak
sense:

(3.3)

∫ T

0

∫
Ω

(
εrε∂tϕ+ Vε · ∇xϕ

)
dx dt = −ε

∫
Ω

r0,εϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω),
(3.4)∫ T

0

∫
Ω

(
εVε ·∂tϕ−(g×Vε) ·ϕ+rεdivxϕ

)
dx dt = −ε

∫ T

0

< fε, ϕ > dt

−ε
∫

Ω

%0,εu0,ε · ϕ(0, ·) dx,

for any test function ϕ ∈ C∞c ([0, T )× Ω;R3), ϕ · n|∂Ω = 0, where

− < fε, ϕ >=

∫
Ω

(
S(∇xuε) : ∇xϕ− (%εuε ⊗ uε) : ∇xϕ

− 1

ε2

(
p(%ε)− p′(%)(%ε − %)− p(%)

)
divxϕ

)
dx.

It follows from the uniform bounds established in (2.1 - 2.8) that

(3.5) < fε, ϕ >=

∫
Ω

(
F1
ε : ∇xϕ+ F2

ε : ∇xϕ
)

dx,

with

F1
ε = %εuε ⊗ uε +

1

ε2

(
p(%ε)− p′(%)(%ε − %)− p(%)

)
I,

F2
ε = −S

(
∇xuε

)
,

(3.6) {F1
ε}ε>0 bounded in L∞(0, T ;L1(Ω;R3×3)),

(3.7) {F2
ε}ε>0 bounded in L2(0, T ;L2(Ω;R3×3)).

3.1. Point spectrum of the acoustic propagator. Consider an op-
erator B defined, formally, in L2(Ω)× L2(Ω;R3),

B
[
r
V

]
≡
[

divxV
g ×V +∇xr

]
.

As a matter of fact, it is more convenient to work in the frequency
space, meaning, we associate to a function v its Fourier transform ṽ

ṽ = ṽ(ξh, k), ξh ≡ (ξ1, ξ2) ∈ R2, k ∈ Z,
where

ṽ(ξh, k) =
1√
2

∫ 1

−1

∫
R2

exp
(
− i(ξh · xh)

)
v(xh, x3) dxh exp(−ikx3) dx3.
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We investigate the point spectrum of B, meaning, we look for solu-
tions of the eigenvalue problem

(3.8) divxV = λr, ∇xr + g ×V = λV,

or, in the Fourier variables,

i
( 2∑
j=1

ξjṼj + kṼ3

)
− λr̃ = 0, i[ξ1, ξ2, k]r̃ − [Ṽ2,−Ṽ1, 0]− λṼ = 0.

After a bit tedious but straightforward manipulation, we obtain

(3.9) λ2 = −µ, µ =
1 + |ξ|2 + k2 ±

√
(1 + |ξ|2 + k2)2 − 4k2

2
;

whence the only eigenvalue is λ = 0, for which k = 0, and consequently,
the space of eigenvectors coincides with the null-space of B,

(3.10) Ker(B) =
{

[r,V]
∣∣∣ r = r(x1, x2),

V = [V1(x1, x2), V2(x1, x2), V3(x1, x2)], divhVh = 0, ∇hr = [V2,−V1]
}
.

3.2. RAGE theorem. Our goal is to show that the component of the
field [rε,Vε], orthogonal to the null space Ker(B) decays to zero on
any compact subset of Ω. To this end, we use the celebrated RAGE
theorem in the following form (see Cycon et al. [4, Theorem 5.8]):

Theorem 3.1. Let H be a Hilbert space, A : D(A) ⊂ H → H a
self-adjoint operator, C : H → H a compact operator, and Pcont the
orthogonal projection onto Hcont, where

H = Hcont ⊕ closureH

{
span{w ∈ H | w an eigenvector of A}

}
.

Then∥∥∥∥1

τ

∫ τ

0

exp(−itA)CPcont exp(itA) dt

∥∥∥∥
L(H)

→ 0 for τ →∞.

In addition to the hypotheses of Theorem 3.1, suppose that C is
non-negative and self-adjoint in H. Thus we may write

1

T

∫ T

0

〈
exp

(
−i
t

ε
A

)
C exp

(
i
t

ε
A

)
PcontX, Y

〉
H

dt ≤ h(ε)‖X‖H‖Y ‖H ,

where h(ε)→ 0 as ε→ 0. Taking Y = PcontX we deduce

(3.11)
1

T

∫ T

0

∥∥∥∥√C exp

(
i
t

ε
A

)
PcontX

∥∥∥∥2

H

dt ≤ h(ε)‖X‖2
H .
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Similarly, for X ∈ L2(0, T ;H), we have

1

T 2

∥∥∥∥√CPcont

∫ t

0

exp

(
i
t− s
ε

A

)
X(s) ds

∥∥∥∥2

L2(0,T ;H)

(3.12)

≤ 1

T

∫ T

0

∫ T

0

∥∥∥∥√C exp

(
i
t− s
ε

A

)
PcontX(s)

∥∥∥∥2

H

dt ds

≤ h(ε)

∫ T

0

∥∥∥exp
(
−i
s

ε
A
)
X(s)

∥∥∥2

H
ds = h(ε)

∫ T

0

‖X(s)‖2 ds.

3.3. Application of RAGE theorem. For a fixed M > 0, we intro-
duce a Hilbert space

H = HM ≡ {[r,V] | r̃(ξh, k) = 0, Ṽ(ξh, k) = 0 whenever |ξh|+|k| > M}.
Let

PM : L2(Ω)× L2(Ω;R3)→ HM

denote the associated orthogonal projection onto HM .
Our goal is to apply RAGE theorem to the operators

A = iB, C[v] = PM [χv], χ ∈ C∞c (Ω), 0 ≤ χ ≤ 1,

considered on the Hilbert space HM . Indeed C is clearly self-adjoint
and non-negative, and its compactness is a consequence of the Rellich-
Kondrachov theorem (noticing that the range of C is included in the
space of H1, rapidly decaying functions).

Going back to system (3.3), (3.4), we obtain that

(3.13) ε
d

dt

[
rε,M
Vε,M

]
+ B

[
rε,M
Vε,M

]
= ε

[
0

fε,M

]
,

where
[rε,M ,Vε,M ] = PM [rε,Vε],

and [
0

fε,M

]
∈ H∗M ≈ HM ,〈[

0
fε,M

]
,

[
s
w

]〉
HM

= −
∫

Ω

(
F1
ε : ∇xw + F2

ε : ∇xw
)

dx

whenever (s, w) ∈ HM . Since

‖w‖Wm,∞∩Wm,2(Ω;R3) ≤ c(m)‖w‖Wm+2,2(Ω;R3) ≤ cMm+2‖w‖L2(Ω;R3),

we may use the uniform bounds (3.6), (3.7) in order to conclude that

(3.14)

∥∥∥∥[ 0
fε,M

]∥∥∥∥
L2(0,T ;HM )

≤ c(M)

uniformly for ε→ 0.
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Writing solutions to (3.13) by means of Duhamel’s formula we get

(3.15)

[
rε,M
Vε,M

]
= exp(iA

t

ε
)

[
rε,M(0)
Vε,M(0)

]
+

∫ t

0

exp

(
i
t− s
ε

A

)[
0

fε,M

]
ds;

whence a direct application of (3.11), (3.12), recalling that the only
point spectrum is reduced to 0, yields

(3.16) Q⊥
[
rε,M
Vε,M

]
→ 0 in L2((0, T )×K;R4)) as ε→ 0,

for any compact K ⊂ Ω and any fixed M , where we have denoted

Q : L2(Ω)× L2(Ω;R3)→ Ker(B)

the orthogonal projection onto the null space of B. Indeed observe that∥∥∥∥√CQ⊥ [ rε,M
Vε,M

]∥∥∥∥2

HM

=

〈
CQ⊥

[
rε,M
Vε,M

]
, Q⊥

[
rε,M
Vε,M

]〉
HM

=

∫
Ω

χ

∣∣∣∣Q⊥ [ rε,M
Vε,M

]∣∣∣∣2 dx,

where we have used the fact that PM and Q commute, and the time
integration is made possible by use of the Lebesgue dominated conver-
gence theorem.

A direct inspection of (3.15), using also (3.14), shows that the se-

quence ∂tQ

[
rε,M
Vε,M

]
is bounded in L2(0, T ;HM). Finally, since HM is

compactly imbedded in L2(K;R3) for any fixed M and any compact
K ⊂ Ω, Ascoli-Arzela’s theorem yields, in particular,

(3.17) Q

[
rε,M
Vε,M

]
→
[

rM
%UM

]
in L2((0, T )×K;R4)) as ε→ 0,

where r and U are the asymptotic limits identified through (2.9 - 2.13).

3.4. Strong convergence of the velocity fields. Relations (3.16),
(3.17), together with (2.8 - 2.11), may be used to obtain the desired
conclusion

(3.18) uε → U in L2((0, T )×K;R3) for any compact K ⊂ Ω.

In fact, since

%PM [uε] = εPM

[%− %ε
ε

uε

]
+ PM [%εuε],
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we obtain, by virtue of (2.9), (2.10), (3.16), (3.17),

PM [uε]→ PM [U] in L2((0, T )×K;R3)

for any fixed M , which, together with (2.11) yields (3.18). Indeed we
have

uε = PM [uε] + [I− PM ][uε],

where ∫
Ω

∣∣∣[I− PM ][uε]
∣∣∣2dx =

∑∫
︸ ︷︷ ︸
|ξh|+|k|≥M

|ũε|2 dξh

=
∑∫
︸ ︷︷ ︸
|ξh|+|k|≥M

(|ξh|+ |k|)2

(|ξh|+ |k|)2
|ũε|2 dξh ≤

c

M2
‖uε‖2

W 1,2(Ω;R3).

4. The limit system

4.1. Identifying the limit system. With the convergence estab-
lished in (2.9 - 2.11), and (3.18), it is not difficult to pass to the limit
in the weak formulation (1.11), (1.12). To this end, we take

ϕ ≡ [∇⊥hψ, 0], ψ ∈ C∞c ([0, T )× Ω)

as a test function in momentum equation (1.12) to obtain

(4.1)

∫ T

0

∫
Ω

(
%εuε · ∂tϕ+ %εuε ⊗ uε : ∇xϕ−

1

ε
%ε[uε]h · ∇xψ

)
dx dt

= −
∫

Ω

%0,εu0,ε · ϕ(0, ·) dx+

∫ T

0

∫
Ω

S(∇xuε) : ∇xϕ dx dt.

Moreover, (3.3) yields

(4.2)

∫ T

0

∫
Ω

(
rε∂tψ +

1

ε
%ε[uε]h · ∇xψ

)
dx = −

∫
Ω

r0,εψ(0, ·) dx.

Letting ε→ 0 in (4.1), (4.2) we may infer that∫ T

0

∫
Ω

(
%Uh · ∂t∇⊥hψ + %[Uh ⊗Uh] : ∇x(∇⊥hψ) + r∂tψ

)
dx

= −
∫

Ω

(
%U0,h · ∇⊥hψ(0, ·) + r0ψ(0, ·)

)
dx

+

∫ T

0

∫
Ω

µ∇hUh : ∇(∇⊥hψ) dx dt.
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Moreover, as the limit functions are independent of x3, we get,

(4.3)

∫ T

0

∫
R2

(
%Uh · ∂t∇⊥hψ+ %[Uh⊗Uh] : ∇h(∇⊥hψ) + r∂tψ

)
dxh dt

= −
∫
R2

(
%

(∫ 1

0

U0,h dx3

)
· ∇⊥hψ(0, ·) +

(∫ 1

0

r0 dx3

)
ψ(0, ·)

)
dxh

+

∫ T

0

∫
R2

µ∇hUh : ∇h(∇⊥hψ) dxh dt

for all ψ ∈ C∞c ([0, T )× R2).
Finally, by virtue of (1.8), Uh = ∇⊥h r, and (4.3) coincides with a

weak formulation of (1.10), (1.15). We have completed the proof of the
convergence result, up to a subsequence, of Theorem 1.1.

4.2. Uniqueness for the limit system. In this final section we shall
prove that the limit system has a unique solution provided the initial
data are more regular. In order to do so we shall simply write an
energy-type estimate on the difference of two solutions, called r1 and r2,
associated with two initial data r̃1 and r̃2. This will provide a stability
estimate, whose immediate consequence will be a uniqueness result.
Notice that the diagnostic equation (1.8) implies that r̃ should be taken
in W 1,2(R2).

The limit system writes

∂t(∆hr − r) +∇⊥h r · ∇h(∆hr) =
µ

%
∆2
hr

recalling that for simplicity we have chosen p′(%) = 1. Multiplying
(formally) this equation by ∆hr and integrating over R2 yields

d

dt

(
‖∆hr‖2

L2 + ‖∇hr‖2
L2

)
+
µ

%
‖∇h∆hr‖2

L2 = 0,

whence the estimate

‖∆hr(t)‖2
L2 + ‖∇hr(t)‖2

L2 +
2µ

%

∫ t

0

‖∇h∆hr(t
′)‖2

L2 dt′

= ‖∆hr̃‖2
L2 + ‖∇hr̃‖2

L2 .

Now suppose r1 and r2 are two solutions as described above, and de-
fine δ := r1 − r2. Then of course δ satisfies

∂t(∆hδ − δ) +∇⊥h δ · ∇h(∆hr2) +∇⊥h r1 · ∇h(∆hδ) =
µ

%
∆2
hδ
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with initial data δ0 = r̃1− r̃2. Writing a similar energy estimate to the
one above yields formally

d

dt

(
‖∆hδ‖2

L2 + ‖∇hδ‖2
L2

)
+

2µ

%
‖∇h∆hδ‖2

L2

= −
∫
R2

∇⊥h δ · ∇h(∆hr1)∆hδ dx.

Then we simply write, by Hölder’s inequality followed by Gagliardo-
Nirenberg’s inequality∣∣∣∫

R2

∇⊥h δ · ∇h(∆hr1)∆hδ dx
∣∣∣ ≤ ‖∇⊥h δ‖L4‖∇h∆hr1‖L2‖∆hδ‖L4

≤ C‖∇hδ‖
1
2

L2‖∆hδ‖
1
2

L2‖∇h∆hr1‖L2‖∆hδ‖
1
2

L2‖∇h∆hδ‖
1
2

L2 .

This implies that∣∣∣∫
R2

∇⊥h δ · ∇h(∆hr1)∆hδ dx
∣∣∣ ≤ µ

%
‖∇h∆hδ‖2

L2 + ‖∇hδ‖2
L2

+C

√
%

µ
‖∆hδ‖2

L2‖∇h∆hr1‖2
L2 .

Finally Gronwall’s inequality allows to obtain

‖∆hδ(t)‖2
L2 + ‖∇hδ(t)‖2

L2 +
µ

%

∫ t

0

‖∇h∆hδ(t
′)‖2

L2 dt′

≤
(
‖∆hδ

0‖2
L2 + ‖∇hδ

0‖2
L2

)
exp

(
C

√
%

µ

∫ t

0

‖∇h∆hr1(t′)‖2
L2 dt′ + Ct

)
.

This allows to conclude to stability, hence uniqueness for the limit
system (leaving the usual regularization procedure to make the above
arguments rigorous to the reader) provided the initial datum enjoys
the extra regularity stated in Theorem 1.1.
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