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Abstract. We consider the nonlinear Schrödinger equation with a logarith-

mic nonlinearity, whose sign is such that no non-trivial stationary solution

exists. Explicit computations show that in the case of Gaussian initial data,
the presence of the nonlinearity affects the large time behavior of the solution:

the dispersion is faster than usual by a logarithmic factor in time and the

positive Sobolev norms of the solution grow logarithmically in time. Moreover
after rescaling in space by the dispersion rate, the modulus of the solution

converges to a universal Gaussian profile (whose variance is independent of

the initial variance). In the case of general initial data, we show that these
properties remain, in a weaker sense. One of the key steps of the proof consists

in using the Madelung transform to reduce the equation to a variant of the
isothermal compressible Euler equation, whose large time behavior turns out

to be governed by a parabolic equation involving a Fokker–Planck operator.

1. Introduction

1.1. Setting. We are interested in the following equation

(1.1) i∂tu+
1

2
∆u = λ ln

(
|u|2
)
u , u|t=0 = u0 ,

with x ∈ Rd, d > 1, λ ∈ R \ {0}. It was introduced as a model of nonlinear
wave mechanics and in nonlinear optics ([6], see also [7, 33, 34, 35, 40]). The
mathematical study of this equation goes back to [14, 12] (see also [13]). The sign
λ < 0 seems to be the more interesting from a physical point of view, and this case
has been studied formally and rigorously (see [16, 34] for instance). On the other
hand, the case λ > 0 seems to have been little studied mathematically, except as
far as the Cauchy problem is concerned (see [14, 28]). In this article, we address
the large time properties of the solution in the case λ > 0, revealing several new
features in the context of Schrödinger equations, and more generally Hamiltonian
dispersive equations.

We recall that the mass, angular momentum and energy are (formally) conserved,
in the sense that defining

M(u(t)) := ‖u(t)‖2L2(Rd) ,

J(u(t)) := Im

∫
Rd
ū(t, x)∇u(t, x)dx ,

E(u(t)) :=
1

2
‖∇u(t)‖2L2(Rd) + λ

∫
Rd
|u(t, x)|2 ln |u(t, x)|2dx ,
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2 R. CARLES AND I. GALLAGHER

then formally,
d

dt
M(u(t)) =

d

dt
J(u(t)) =

d

dt
E(u(t)) = 0 .

The last identity reveals the Hamiltonian structure of (1.1).

Remark 1.1 (Effect of scaling factors). Unlike what happens in the case of an
homogeneous nonlinearity (classically of the form |u|pu), replacing u with κu (κ >
0) in (1.1) has only little effect, since we have

i∂t(κu) +
1

2
∆(κu) = λ ln

(
|κu|2

)
κu− 2λ(lnκ)κu .

The scaling factor thus corresponds to a purely time-dependent gauge transform:

κu(t, x)e2itλ lnκ

solves (1.1) (with initial datum κu0). In particular, the L2-norm of the initial
datum does not influence the dynamics of the solution.

Note that whichever the sign of λ, the energy E has no definite sign. The
distinction between focusing or defocusing nonlinearity is thus a priori ambiguous.
We shall see however that in the case λ < 0, no solution is dispersive, while for λ > 0,
solutions have a dispersive behavior (with a non-standard rate of dispersion). This
is why we choose to call defocusing the case λ > 0.

1.2. The focusing case. In [14] (see also [13]), the Cauchy problem is studied in
the case λ < 0. Define

W :=
{
u ∈ H1(Rd) , x 7→ |u(x)|2 ln |u(x)|2 ∈ L1(Rd)

}
.

Proposition 1.2 (Théorème 2.1 from [14], see also Theorem 9.3.4 from [13]). Let
the initial data u0 belong to W . In the case when λ < 0, there exists a unique, global
solution u ∈ C(R;W ) to (1.1). In particular, for all t ∈ R, |u(t, ·)|2 ln |u(t, ·)|2
belongs to L1(Rd), and the mass M(u) and the energy E(u) are independent of
time.

In the case when λ < 0, it can be proved that there is no dispersion for large
times. Indeed the following result holds.

Lemma 1.3 (Lemma 3.3 from [12]). Let λ < 0 and k <∞ such that

Lk :=
{
u ∈W, ‖u‖L2(Rd) = 1, E(u) 6 k

}
6= ∅ .

Then
inf
u∈Lk

16p6∞

‖u‖Lp(R) > 0 .

This lemma, along with the conservation of the energy for (1.1), indicates that
in the case λ < 0, the solution to (1.1) is not dispersive: typically, its L∞ norm is
bounded from below. Actually in the case of Gaussian initial data, some solutions
are even known to be periodic in time, as proved in [16] (and already noticed in
[6]).

Theorem 1.4 ([16]). In the case λ < 0, the Gausson exp(2iωt+ ω + d/2 + λ|x|2)
is a solution to (1.1) for any period ω ∈ R.

We emphasize that several results address the existence of stationary solutions
to (1.1) in the case λ < 0, and the orbital stability of the Gausson; see e.g. [6, 12,
16, 4].
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1.3. Main results. Throughout the rest of this paper, we assume λ > 0.

1.3.1. The Cauchy problem. Define, for 0 < α 6 2, the weighted L2 space

Vα :=
{
u ∈ L2(Rd) , x 7→ 〈x〉α/2u(x) ∈ L2(Rd)

}
,

where 〈x〉 :=
√

1 + |x|2, with norm

‖u‖Vα := ‖〈x〉α/2u(x)‖L2(Rd) .

Note that for any α > 0, Vα ∩H1 ⊂ W . The Cauchy problem for (1.1) is investi-
gated in [28], where in three space dimensions, the existence of a unique solution
in L∞(R;H1(R3)) ∩ C(R;L2(R3)) is proved as soon as the initial data belongs
to V1 ∩ H1(R3). Actually it is possible to improve slightly that result into the
following theorem.

Theorem 1.5. Let the initial data u0 belong to Vα∩H1(Rd) with 0 < α 6 2. In the
case when λ > 0, there exists a unique, global solution u ∈ L∞loc(R;Vα∩H1) to (1.1).
Moreover the mass M(u), the angular momentum J(u), and the energy E(u) are
independent of time. If in addition u0 ∈ H2(Rd), then u ∈ L∞loc(R;H2).

The main focus of this paper concerns large time asymptotics of the solution. The
situation is very different from the λ < 0 case described above (see Theorem 1.4).
Indeed we can prove that (some) solutions tend to zero in L∞ for large time, while
the H1 norm is always unbounded.

1.3.2. Large time behavior: the Gaussian case. As noticed already in [6], an impor-
tant feature of (1.1) is that the evolution of initial Gaussian data remains Gaussian.
Since (1.1) is invariant by translation in space, we may consider centered Gaussian
initial data. The following result is a crucial guide for the general case. We define
from now on the function

(1.2) `(t) :=
ln ln t

ln t
·

Theorem 1.6. Let λ > 0, and consider the initial data

(1.3) u0(x) = b0 exp
(
− 1

2

d∑
j=1

a0jx
2
j

)
with b0, a0j ∈ C, α0j = Re a0j > 0. Then the solution u to (1.1) is given by

u(t, x) = b0

d∏
j=1

1√
rj(t)

exp
(
iφj(t)− α0j

x2
j

2r2
j (t)

+ i
ṙj(t)

rj(t)

x2
j

2

)
for some real-valued functions φj , rj depending on time only, such that, as t→∞,

(1.4) rj(t) = 2t
√
λα0j ln t

(
1 +O

(
`(t)
))
, ṙj(t) = 2

√
λα0j ln t

(
1 +O

(
`(t)
))
.

In particular, as t→∞,

‖u(t)‖L∞(Rd) ∼
1(

t
√

ln t
)d/2 ‖u0‖L2(

2λ
√

2π
)d/2 ·

On the other hand u belongs to L∞loc(R;H1(Rd)) and as t→∞
‖∇u(t)‖2L2(Rd) ∼t→∞ 2λd‖u0‖2L2(Rd) ln t.
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Remark 1.7 (Numerical simulations). The asymptotic expansions for rj and its
derivative show that the convergences mentioned above are fairly slow. Therefore,
performing reliable large time numerical simulations on (1.1) is a challenging issue.

At least three aspects of this result differ from the more standard Schrödinger
equations, as discussed in more detail below:

• The dispersion is of order (t
√

ln t)−d/2, as opposed to t−d/2 in the case of
the free Schrödinger equation i∂tu + 1

2∆u = 0, or of defocusing nonlin-
ear Schrödinger equations with sufficiently short range nonlinearity. The
nonlinearity therefore has an effect on the dispersion rate.
• Even though the solution is dispersive, its H1-norm is unbounded.
• Up to a rescaling, the modulus of u converges for large time to a universal

Gaussian profile,

(2t
√
λ ln t)d/2

∣∣∣u(t, x× 2t
√
λ ln t

)∣∣∣ −→
t→∞

‖u0‖L2

πd/4
e−|x|

2/2 ,

that is, regardless of the value of the variance of the Gaussian initial datum
(a more precise statement is given in Corollary 1.12 below).

Indeed, in the linear case

(1.5) i∂tufree +
1

2
∆ufree = 0 , ufree|t=0 = u0 ,

the integral representation

ufree(t, x) =
1

(2iπt)d/2

∫
Rd
ei
|x−y|2

2t u0(y)dy

readily yields the well-known dispersive estimate

‖ufree(t)‖L∞(Rd) .
1

|t|d/2
‖u0‖L1(Rd) .

Moreover writing

ei
t
2 ∆ = MtDtFMt ,

where Mt stands for the multiplication by the function ei
|x|2
2t , and

(Dtf) (x) :=
1

(it)d/2
f
(x
t

)
, Ff(ξ) := f̂(ξ) :=

1

(2π)d/2

∫
Rd
f(x)e−ix·ξdx ,

we have ei
t
2 ∆ ∼

t→∞
MtDtF , that is

(1.6) ‖ufree(t)−A(t)u0‖L2(Rd) −→t→±∞
0, A(t)u0(x) :=

1

(it)d/2
û0

(x
t

)
ei
|x|2
2t ,

a formula which has proven very useful in the nonlinear (long range) scattering
theory (see e.g. [24, 31]).

In the case of the defocusing nonlinear Schrödinger equation with power-like
nonlinearity,

(1.7) i∂tu+
1

2
∆u = |u|2σu , u|t=0 = u0 ,

if σ is sufficiently large (say σ > 2/d if u0 ∈ H1(Rd), even though this bound can
be lowered if in addition û0 ∈ H1(Rd)), then there exists u+ ∈ H1(Rd) such that
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in L2(Rd),

u(t, x) ∼
t→∞

ei
t
2 ∆u+(x) ∼

t→∞

1

(it)d/2
û+

(x
t

)
ei
|x|2
2t ,

where the last relation stems from (1.6). Therefore, Theorem 1.6 shows that unlike
in the free case (1.5) or in the above nonlinear case (1.7), the dispersion is modified
(it is even enhanced the larger the λ), and the asymptotic profile û+ (with u+ = u0

in the free case), which depends on the initial profile, is replaced by a universal one
(up to a normalizing factor),

‖u0‖L2

πd/4
e−|x|

2/2 .

Finally, we note that the H1-norm of u is unbounded for large time in the case of
Theorem 1.6, a point which is due to the fact that the dispersive rate of u is larger
that the oscillatory rate, by a logarithmic factor, since

ṙj(t)

rj(t)
∼

t→∞

1

t
·

1.3.3. Long time behavior: the general case. We show that the three features de-
scribed above remain in a fairly general framework, up to weakening some aspects
of the statement. Before stating the general result, let us introduce the universal
dispersion rate τ through the following lemma.

Lemma 1.8 (Universal dispersion). Consider the ordinary differential equation

(1.8) τ̈ =
2λ

τ
, τ(0) = 1 , τ̇(0) = 0 .

It has a unique solution τ ∈ C2(0,∞), and it satisfies, as t→∞,

τ(t) = 2t
√
λ ln t

(
1 +O

(
`(t)
))
, τ̇(t) = 2

√
λ ln t

(
1 +O

(
`(t)
))
.

Let us now turn to the case of general initial data. Denote by

γ(x) := e−|x|
2/2

the Gaussian with variance one discussed above. In view of Remark 1.1, we may
suppose ‖u0‖L2(Rd) = ‖γ‖L2(Rd), an assumption that we make in the next statement
in order to lighten the notations.

Theorem 1.9. Let u0 ∈ V2∩H1 = H1∩F(H1), with ‖u0‖L2(Rd) = ‖γ‖L2(Rd), and
rescale the solution provided by Theorem 1.5 to v = v(t, y) by setting

(1.9) u(t, x) =
1

τ(t)d/2
v

(
t,

x

τ(t)

)
exp

(
i
τ̇(t)

τ(t)

|x|2

2

)
.

There exists C such that for all t > 0,

(1.10)

∫
Rd

(
1 + |y|2 +

∣∣ln |v(t, y)|2
∣∣) |v(t, y)|2dy +

1

τ(t)2
‖∇yv(t)‖2L2(Rd) 6 C .

We have moreover

(1.11)

∫
Rd

 1
y
|y|2

 |v(t, y)|2dy −→
t→∞

∫
Rd

 1
y
|y|2

 γ2(y)dy .
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As a consequence,

‖∇u(t)‖2L2(Rd) ∼t→∞ 2λd‖u0‖2L2(Rd) ln t .

Finally,

(1.12) |v(t, ·)|2 ⇀
t→∞

γ2 weakly in L1(Rd) .

Remark 1.10. If the initial data is not normalized in L2(Rd) then the result (1.12)
becomes

|v(t, ·)|2 ⇀
t→∞

‖u0‖2L2

πd/2
γ2 weakly in L1(Rd) .

To the best of our knowledge, this is the first time that a universal profile is observed
for the large time behavior of solutions to a dispersive, Hamiltonian equation. This
profile is reached in a weak sense only in Theorem 1.9, as far as the convergence
is concerned, but also because the modulus of the solution only is captured. This
indicates that a lot of information remains encoded in the oscillations of the solution.
See Section 1.4 for more on the large time asymptotics.

Remark 1.11. As a straightforward consequence, we infer the slightly weaker prop-
erty that |v(t, ·)|2 converges to γ2 in Wasserstein distance:

W2

(
|v(t, ·)|2

‖u0‖2L2

,
γ2

πd/2

)
−→
t→∞

0,

where we recall that the Wasserstein distance is defined, for ν1 and ν2 probability
measures, by

Wp(ν1, ν2) = inf

{(∫
Rd×Rd

|x− y|pdµ(x, y)

)1/p

; (πj)]µ = νj

}
,

where µ varies among all probability measures on Rd×Rd, and πj : Rd×Rd → Rd
denotes the canonical projection onto the j-th factor (see e.g. [45]).

In the Gaussian case, the Csiszár-Kullback inequality enables us to obtain the
strong convergence of |v|2 to γ2 in L1. This is made precise in the next statement.

Corollary 1.12 (Strong convergence in the Gaussian case). Suppose that the initial
data u0 is a Gaussian as in (1.3), with ‖u0‖L2(Rd) = ‖γ‖L2(Rd). Then, with v given

by (1.9), the relative entropy of |v|2 goes to zero for large time:∫
Rd
|v(t, y)|2 ln

∣∣∣∣v(t, y)

γ(y)

∣∣∣∣2 dy −→t→∞ 0 ,

and the convergence of |v|2 to γ2 is strong in L1:∥∥|v(t, ·)|2 − γ2
∥∥
L1(Rd)

−→
t→∞

0 .

Also, a straightforward consequence of Theorem 1.9 is the unboundedness of all
Sobolev norms above L2:

Corollary 1.13. Let u0 ∈ V2 ∩H1 = H1 ∩ F(H1), and 0 < s < 1. The solution
to (1.1) satisfies, as t→∞,

‖u(t)‖Ḣs(Rd) & (ln t)
s/2

,

where Ḣs(Rd) denotes the standard homogeneous Sobolev space.
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1.4. Comments. As already pointed out, the nonlinearity is responsible for the
new dispersive rate, as it introduces a logarithmic factor. In particular, no scat-
tering result relating the dynamics of (1.1) to the free dynamics ei

t
2 ∆ must be

expected. This situation can be compared with the more familiar one with low
power nonlinearity, where a long range scattering theory is (sometimes) available.
If σ 6 1/d in (1.7), then u cannot be be compared with a free evolution for large
time, in the sense that if for some u+ ∈ L2(Rd),

‖u(t)− ei t2 ∆u+‖L2(Rd) −→
t→∞

0 ,

then u = u+ = 0 ([5]). In the case σ = 1/d, d = 1, 2, 3, a nonlinear phase

modification of ei
t
2 ∆ must be incorporated in order to describe the asymptotic

behavior of u ([43, 31]). The same is true when (1.7) is replaced with the Hartree
equation [25, 41, 42]. In all these cases, as well as for some quadratic nonlinearities
in dimension 3 ([30]), the dispersive rate of the solution remains the same as in the
free case, of order t−d/2. Note however that a similar logarithmic perturbation of
the dispersive rate was observed in [32], for the equation

(1.13) i∂tu+
1

2
∂2
xu = iλu3 + |u|2u , x ∈ R ,

with λ ∈ R, 0 < |λ| <
√

3. More precisely, the authors construct small solutions
satisfying the bounds

1√
t(ln t)1/4

. sup
|x|6
√
t

|u(t, x)| . 1√
t(ln t)1/4

, as t→∞ .

An important difference with (1.1) though is that the L2-norm of the solution
of (1.13) is not preserved by the flow, and that (1.13) has no Hamiltonian structure.

On the other hand, in view of the large time behavior of |u|2, it would seem
sensible to compare u with a solution to

(1.14) i∂tulin +
1

2
∆ulin = −λ |x|

2

τ(t)2
ulin ,

with nontrivial effects altering the phase. The fundamental solution associated with
this equation is given by a generalized Mehler formula, or even by a generalized
lens transform since the potential is isotropic, relating the solution to (1.14) with
the solution of the free equation (1.5); see [9]. Resuming the computations from [9,
Section 4], we see that the solution to (1.14) is given in terms of the free solution
to (1.5) through the formula

ulin(t, x) =
1

τ(t)d/2
ufree

(∫ t

0

ds

τ(s)2
,
x

τ(t)

)
exp

(
i
τ̇(t)

τ(t)

|x|2

2

)
,

a formula which is comparable with the one relating u and v in Theorem 1.9, up
to the change of time variable. With the same change of unknown function as in
Theorem 1.9, we have

vlin(t, y) = ufree

(∫ t

0

ds

τ(s)2
, y

)
.

In view of Lemma 1.8, strongly in L1(Rd),

|vlin(t, y)|2 −→
t→∞

|ufree (T, y)|2 , T :=

∫ ∞
0

ds

τ(s)2
<∞.
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Recall that (1.14) is expected to approximate the solution to (1.1) for large time,
up to unknown oscillatory factors: therefore, one would have to impose at least
|ufree(T, y)| = γ(y) (up to the normalization in L2). We do not investigate this
issue in this paper.

Note also that the non-standard dispersion for (1.1) suggests that global in time
Strichartz estimates should be available for u, possibly with a slight improvement.
However, our approach, based rather on energy estimates, does not provide such
information.

Another non-standard dispersion rate was observed in [8] in the case of

i∂tu+
1

2
∆u = −|x|

2

2
u+ |u|2σu .

There, the solution disperses exponentially fast in time, but this is a linear effect :
the solution to

i∂tu+
1

2
∆u = −|x|

2

2
u

disperses exponentially in time, and the consequence is that any nonlinearity of the
form |u|2σu, σ > 0, becomes negligible for large time. Similarly, the H1-norm of
the solution then grows exponentially in time, but then again, this is true in the
linear case. On the other hand, the unboundedness of the H1-norm of the solution
to (1.1) is due to nonlinear effects only. Note that the reduction (1.14) draws a
parallel between (1.1) and the above linear model: the effect of the time decaying
factor 1/τ2 is to modify the dispersion, but in a moderate way compared to the
case without τ .

A natural question, which we do not address here, is to ask whether the large
time behavior of a power-like perturbation of (1.1),

(1.15) i∂tu+
1

2
∆u = λ ln

(
|u|2
)
u+ |u|2σu ,

can be described in the large time limit. Since the logarithmic nonlinearity has
a strong effect on the dynamics, the question would be to compare the solution
to (1.15) with a solution to (1.1) as t → ∞ (and not with a solution to the free
Schrödinger equation). As already suggested above, at least on a formal level, this
might be compared with the equation

i∂tu+
1

2
∆u = −λ |x|

2

τ(t)2
u+

1

τ(t)dσ
e−σ|x|

2/τ(t)2u .

Finally let us remark that the convergence to a universal profile is reminiscent of
what happens for the linear heat equation on Rd, or, in a nonlinear setting, of the
works [20, 21, 22] on the Navier-Stokes equations: there it is proved that up to a
rescaling which corresponds to the natural scaling of the equations, the vorticity
converges strongly to a Gaussian which is known as the Oseen vortex. The main
argument, as in the present case, is the reduction to a Fokker-Planck equation.

1.5. Outline of the paper. In Section 2, we give the proof of Theorem 1.5. Sec-
tion 3 contains the explicit computations in the Gaussian case, leading to Theo-
rem 1.6. The main step consists in a reduction to ordinary differential equations,
and the computations concerning the main ODEs are gathered in this section, in-
cluding the proof of Lemma 1.8. The first part of Theorem 1.9, that is everything
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except (1.12), is proved in Section 4 and relies on energy estimates with appropri-
ate weights in space. The weak limit (1.12) is proved in Section 5. The main idea
consists in using a Madelung transform, which leads to the study of a hyperbolic
system which is a variant of the isothermal, compressible Euler equation. A rescal-
ing in the time variable reduces the study to a non autonomous perturbation of the
Fokker-Planck equation, and the a priori estimates obtained in Section 4 imply that
a weak limit of the solution satisfies the Fokker-Planck equation for large times.
Since it is known that the large time behavior of the solution to the Fokker-Planck
equation is the centered Gaussian, a tightness argument on the rescaled solution
concludes the proof. The proofs of the corollaries are given in the final Section 6.

Acknowledgements. The authors wish to thank Kleber Carrapatoso, Laurent
Desvillettes, Erwan Faou, Matthieu Hillairet and Cédric Villani for enlightening
discussions.

2. Cauchy problem: proof of Theorem 1.5

In this section we sketch the proof of the existence of a unique weak solution,
which follows very standard ideas.

2.1. Uniqueness. The uniqueness of the solution in L2 follows easily from the
following lemma.

Lemma 2.1 (Lemma 9.3.5 from [13]). We have∣∣Im ((z2 ln |z2|2 − z1 ln |z1|2
)

(z̄2 − z̄1)
)∣∣ 6 4|z2 − z1|2 , ∀z1, z2 ∈ C .

Consider indeed u1 and u2 two solutions of (1.1) in L∞(R;L2(Rd)). Then the
function u := u1 − u2 satisfies

i∂tu+
1

2
∆u = λ

(
ln
(
|u1|2

)
u1 − ln

(
|u2|2

)
u2

)
and an energy estimate gives directly

1

2

d

dt
‖u(t)‖2L2(Rd) = λ Im

∫
Rd

(
ln
(
|u1|2

)
u1 − ln

(
|u2|2

)
u2

)
(ū1 − ū2)(t) dx

6 4λ‖u(t)‖2L2(Rd)

thanks to Lemma 2.1. Uniqueness (and in fact stability in L2) follows directly, by
integration in time.

2.2. Existence. To prove the existence of a weak solution we proceed by approx-
imating the equation as follows: consider for all ε ∈ (0, 1) the equation

(2.1) i∂tuε +
1

2
∆uε = λ ln

(
ε+ |uε|2

)
uε , uε|t=0 = u0 .

Equation (2.1) is easily solved in C(R;L2(Rd)) since it is subcritical in L2 (see [13]).
It remains therefore to prove uniform bounds for uε(t) in Vα ∩ H1(Rd), which
will provide compactness in space for the sequence uε. Since time compactness
(in H−2(Rd)) is a direct consequence of the equation, the Ascoli theorem will
then give the result. Actually once a bound in L∞loc(R;H1(Rd)) is derived, then
the L∞loc(R;Vα) bound can be obtained directly thanks to the following computa-
tion: define

Iε,α(t) :=

∫
Rd
〈x〉α|uε|2(t, x) dx .
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Then multiplying the equation by 〈x〉αuε and integrating in space provides

d

dt
Iε,α(t) = α Im

∫
x · ∇uε
〈x〉2−α

uε(t) dx

6 α‖ 〈x〉α−1
uε(t)‖L2(Rd)‖∇uε(t)‖L2(Rd)

6 α‖ 〈x〉α/2 uε(t)‖L2(Rd)‖∇uε(t)‖L2(Rd) .

where the last estimate stems form the property α 6 2. Therefore,

‖uε(t)‖2Vα 6 ‖u0‖2Vα + α

∫ t

0

‖uε(t′)‖Vα‖∇uε(t′)‖L2(Rd) dt
′ .

So it remains to compute the H1(Rd) norm of uε(t). This is quite easy since the
problem becomes linear in ∇uε. Indeed for any 1 6 j 6 d one has

(2.2) i∂t∂juε +
1

2
∆∂juε = λ ln

(
ε+ |uε|2

)
∂juε + 2λ

1

ε+ |uε|2
Re(ūε∂juε)uε

which is again subcritical in L2 since
∣∣∣ 1

ε+ |uε|2
2 Re(ūε∂juε)uε

∣∣∣ 6 2|∂juε|. We

therefore conclude that uε belongs to L∞loc(R;H1(Rd)). The conservation of mass,
angular momentum, and energy is established in the same way as in [14] (see
also [13]). The first part of Theorem 1.5 follows.

2.3. Higher regularity. As in [14], the idea is to consider time derivatives. This
fairly general idea in the context of nonlinear Schrödinger equations (see [13]) is
all the more precious in the present framework that the logarithmic nonlinearity
is very little regular. In particular, we emphasize that if u0 ∈ Hk(Rd), k > 3, we
cannot guarantee in general that this higher regularity is propagated.

To complete the proof of Theorem 1.5, assume that u0 ∈ Vα∩H2, for some α > 0.
We already know that a unique, global, weak solution u ∈ L∞loc(R;Vα ∩ H1) is
obtained by the procedure described in the previous subsection, that is, as the
limit of uε solution to (2.1). The idea is that for all T > 0, there exists C = C(T )
independent of ε ∈ (0, 1) such that

sup
−T6t6T

‖∂tuε(t)‖L2(Rd) 6 C .

Indeed, we know directly from (2.1) that

∂tuε|t=0 =
i

2
∆u0 − iλ ln

(
ε+ |u0|2

)
u0 ∈ L2(Rd) ,

uniformly in ε, in view of the pointwise estimate∣∣ln (ε+ |u0|2
)
u0

∣∣ 6 C (|u0|1+η + |u0|1−η
)
,

where η > 0 can be chosen arbitrarily small, and C is independent of ε ∈ (0, 1).
Then we can replace the spatial derivative ∂j in (2.2) with the time derivative ∂t,
and infer that ∂tuε ∈ L∞loc(R;L2(Rd)), uniformly in ε: by passing to the limit (up
to a subsequence), ∂tu ∈ L∞loc(R;L2(Rd)). Using the equation (1.1), we conclude
that ∆u ∈ L∞loc(R;L2(Rd)). This concludes the proof of Theorem 1.5. �

3. Propagation of Gaussian data: proof of Theorem 1.6

In this section we prove Theorem 1.6, by reducing the study to that of a system
of ordinary differential equations.
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3.1. From (1.1) to ordinary differential equations.

3.1.1. The Gaussian structure. As noticed in [6], the flow of (1.1) preserves any
initial Gaussian structure. We consider the data given by (1.3), and we seek the
solution u to (1.1) under the form

(3.1) u(t, x) = b(t) exp
(
−1

2

d∑
j=1

aj(t)x
2
j

)
,

with Re aj(t) > 0. With u of this form, (1.1) becomes equivalent to

i∂tu+
1

2
∆u = λ

(
ln |b(t)|2 −

d∑
j=1

Re aj(t)x
2
j

)
u , u|t=0 = u0 .

This is a linear Schrödinger equation with a time-dependent harmonic potential,
and an initial Gaussian. It is well-known in the context of the propagation of
coherent states (see [29, 15]) that the evolution of a Gaussian wave packet under
a time-dependent harmonic oscillator is a Gaussian wave packet. Therefore, it is
consistent to look for a solution to (1.1) of this form. Notice in particular that

(3.2) ‖u(t)‖Lp(Rd) = (2π)d/(2p)
|b(t)|(∏d

j=1 Re aj(t)
)1/(2p)

, 1 6 p 6∞ ,

and

(3.3) ‖∇u(t)‖2L2(Rd) =
1

2
πd/2

|b(t)|2(∏d
j=1 Re aj(t)

)1/2

d∑
j=1

|aj(t)|2

(Re aj(t))
·

To prove Theorem 1.6 we therefore need to find the asymptotic behavior in time
of b(t) and aj(t).

3.1.2. The ODEs. Plugging (3.1) into (1.1), we obtain

iḃ− i
d∑
j=1

ȧj
x2
j

2
b−

d∑
j=1

ajb

2
+

d∑
j=1

a2
j

x2
j

2
b = λ

(
ln
(
|b|2
)
−

d∑
j=1

(Re aj)x
2
j

)
b .

Equating the constant in x and the factors of x2
j , we get

iȧj − a2
j = 2λRe aj , aj|t=0 = a0j ,(3.4)

iḃ−
d∑
j=1

ajb

2
= λb ln

(
|b|2
)
, b|t=0 = b0 .(3.5)

We can express the solution to (3.5) directly as a function of the aj ’s: indeed

b(t) = b0 exp
(
−iλt ln

(
|b0|2

)
− i

2

d∑
j=1

Aj(t)− iλ
d∑
j=1

Im

∫ t

0

Aj(s)sds
)
,

where we have set

Aj(t) :=

∫ t

0

aj(s)ds .
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We also infer from (3.4) that y := Re aj solves ẏ = 2y Im aj , hence

Re aj(t) = Re a0j exp
(

2

∫ t

0

Im aj(s)ds
)
.

Since the equations (3.4) are decoupled as j varies, we simply consider from now
on

(3.6) iȧ− a2 = 2λRe a , a|t=0 = a0 = α0 + iβ0 ,

which amounts to assuming d = 1 in (1.1). Note that β0 is actually zero in our
context but it is not more difficult to deal with that more general case. Following
[37], we seek a of the form

a = −i ω̇
ω
·

Then (3.6) becomes

ω̈ = 2λω Im
ω̇

ω
·

Introducing the polar decomposition ω = reiθ, we get{
r̈ − (θ̇)2r = 2λrθ̇

θ̈r + 2θ̇ṙ = 0 .

Notice that

θ̇|t=0 = α0 ,

(
ṙ

r

)
|t=0

= −β0 .

We therefore have a degree of freedom to set r(0), and we decide r(0) = 1 so

θ̇(0) = Re a0 = α0 , ṙ(0) = − Im a0 = −β0 .

The second equation yields

d

dt

(
r2θ̇
)

= r
(

2ṙθ̇ + rθ̈
)

= 0 ,

so r2θ̇ is constant and we can express the problem in terms of r only: we write

(3.7) a(t) =
α0

r(t)2
− i ṙ(t)

r(t)
,

with

(3.8) r̈ =
α2

0

r3
+ 2λ

α0

r
, r(0) = 1 , ṙ(0) = −β0 .

Multiplying by ṙ and integrating, we infer

(3.9) (ṙ)
2

= β2
0 + α2

0

(
1− 1

r2

)
+ 4λα0 ln r .

Back to the solution u, in the case when d = 1 then writing in view of (3.2) and (3.7)

‖u(t)‖L∞(Rd) = |b(t)| = |b0| exp
(1

2

∫ t

0

Im a(s)ds
)

=
|b0|√
r(t)

we find that the study of r(t) is enough to find the dispersion rate of u(t). Once
the rate in one space dimension is known, the result in d space dimensions follows
directly.
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Moreover recalling (3.3), we have

‖∇u(t)‖2L2(Rd) =
1

2
πd/2

|b(t)|2(∏d
j=1 Re aj(t)

)1/2

d∑
j=1

|aj(t)|2

(Re aj(t))

=
πd/2|b0|2

2
(∏d

j=1 rj(t)
)(∏d

j=1 Re aj(t)
)1/2

d∑
j=1

|aj(t)|2

(Re aj(t))

=
πd/2|b0|2

2
√∏d

j=1 α0j

d∑
j=1

(
(ṙj)

2 +
α2

0

r2
j

) 1

α0j

= c+ 2λ
πd/2|b0|2

2
√∏d

j=1 α0j

d∑
j=1

ln rj(t) .

As soon as rj(t)→∞ when |t| → ∞, the H1 norm therefore becomes unbounded.
This is proved to be the case below (with an explicit rate): actually it can be
seen from the rate provided in Lemma 3.8 below that the energy remains bounded
because the unbounded contributions of both parts of the energy cancel exactly.

3.2. Study of r(t). The aim of this paragraph is to prove the following result.
Recall notation (1.2).

Lemma 3.1. Let r solve (3.8). Then as t→∞, there holds

r(t) = 2t
√
λα0 ln t

(
1 +O

(
`(t)
))
.

The proof of the lemma is achieved in three steps: first we prove, in Para-
graph 3.2.1, that r(t) → ∞ as t → ∞. In view of that result it is natural to
approximate the solution to (3.8) by

(3.10) r̈eff = 2λ
α0

reff
, reff(T ) = r(T ) , ṙeff(T ) = ṙ(T ) ,

for T � 1. This is proved in Paragraph 3.2.2, along with a first estimate on the large
time behavior of reff . The conclusion of the proof is achieved in Paragraph 3.2.3,
by proving Lemma 1.8.

3.2.1. First step: r(t) → ∞. We readily see from (3.9) that r is bounded from
below:

∃δ > 0 , r(t) > δ , ∀t ∈ R .
Indeed, if it were not so, there would exist a sequence tn such that r(tn)→ 0: for n
large, the right hand side of (3.9) then becomes negative, hence a contradiction.

Now let us prove that r(t) → +∞ as t → +∞. Assume first that ṙ(0) > 0.
Then (3.8) yields r̈ > 0, hence ṙ(t) > ṙ(0) for all t > 0, and

(3.11) r(t) > ṙ(0)t+ 1 −→
t→+∞

+∞ .

On the other hand, for ṙ(0) 6 0, assume that r is bounded, r(t) 6 M . Then (3.8)
yields

r̈(t) >
α2

0

M3
+ 2λ

α0

M
,
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hence a contradiction for t large enough. We infer that for T sufficiently large, there
holds r(T ) > 1 and ṙ(T ) > 0. The first case then implies r(t)→ +∞.

Note that we have proved in particular that

(3.12) ∃T > 1 , ṙ(T ) > 0 and ∀t > T , r(t) > ṙ(T )(t− T ) + 1 .

3.2.2. Second step: r(t) ∼ reff(t) with a rough bound. Let us prove the following
result.

Lemma 3.2. There is T large enough so that defining reff the solution of (3.10)
then as t→∞, there holds

|reff(t)| = 2t
√
λα0 ln t+ ε(t

√
ln t) , and |r(t)− reff(t)| 6 C(T )t , ∀t > T ,

where ε(t)/t goes to zero as t goes to infinity.

Proof. Let us start by studying reff . Multiplying (3.10) by ṙeff and integrating, we
get

(ṙeff(t))
2

= (ṙ(T ))
2

+ 4λα0 ln reff(t)− 4λα0 ln r(T )

= 4λα0 ln reff(t) + β2
0 + α2

0

(
1− 1

r(T )2

)
,

where we have used (3.9) at time t = T . Denote by

C0 := β2
0 + α2

0

(
1− 1

r(T )2

)
≈ β2

0 + α2
0 = |a0|2 ,

since T � 1. By similar arguments as in the proof of (3.12) in Paragraph 3.2.1, we
have ṙeff(t) > 0 for all t > T , and

reff(t) > ṙ(T )(t− T ) + 1

hence

ṙeff(t) =
√

4λα0 ln reff(t) + C0 .

Separating the variables,

dreff√
4λα0 ln reff + C0

= dt ,

so we naturally consider the anti-derivative

I :=

∫
dr√

4λα0 ln r + C0

·

The change of variable

y :=
√

4λα0 ln r + C0

yields

I =
1

2λα0

∫
e(y2−C0)/(4λα0)dy .

Since for x large (Dawson function, see e.g. [1]),∫
ex

2

dx ∼ 1

2x
ex

2

,

we infer

I ∼ r√
4λα0 ln r + C0

·
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In particular,

reff(t)√
4λα0 ln reff(t) + C0

∼
t→+∞

t ,

hence
reff(t)√
ln reff(t)

∼
t→+∞

2t
√
λα0 .

This relation is inverted through, for some κ ∈ R,

reff(t) ∼ t (ln t)
κ

2
√
λα0 ,

and we find that necessarily, κ = 1/2: we conclude that

reff(t) ∼
t→+∞

2t
√
λα0 ln t .

Now let us prove that r can be well approximated by reff . We define h := r − reff

and we want to prove that if T is chosen large enough, then h(t) . t when t→∞.
We have

ḣ(t) =

√
4λα0 ln r(t) + β2

0 + α2
0

(
1− 1

r(t)2

)
−

√
4λα0 ln reff(t) + β2

0 + α2
0

(
1− 1

r(T )2

)
6

√
4λα0

∣∣∣ ln r(t)

reff(t)

∣∣∣+ α2
0

( 1

r(T )2
− 1

r(t)2

)
.

Given ε ∈ (0, 1/2), let T > 1 be large enough so that for all t > T

(3.13) reff(t) > t
√
λα0 ln t

and

(3.14) α2
0

( 1

r(T )2
− 1

r(t)2

)
6 ε2 .

We shall also need that

(3.15)

(
2

(λα0)
1
4

√
lnT

+ ε

)
6

1

2
·

Then noticing that ∣∣∣ ln r(t)

reff(t)

∣∣∣ =
∣∣∣ ln(1 +

h(t)

reff(t)

)∣∣∣
6
|h(t)|
reff(t)

6
|h(t)|

t
√
λα0 ln t

6
|h(t)|

t
√
λα0 lnT

as soon as t > T thanks to (3.13), we infer that

∀t > T , ḣ(t) 6 ε+ 2
√
λα0

(
|h(t)|

t
√
λα0 lnT

) 1
2

, with h(T ) = 0 .
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Our goal is to prove that the function t 7→ h(t)/t is bounded for large t, so let T ∗ > T
be the maximal time such that

∀t ∈ [T, T ∗) , |h(t)| 6 t .

Then for t ∈ [T, T ∗),

ḣ(t) 6 ε+ 2(λα0)
1
4

1√
lnT

so thanks to (3.15)

h(t) 6
(
ε+ 2(λα0)

1
4

1√
lnT

)
(t− T ) 6

t

2
,

which contradicts the maximality of T ∗. The result follows, and Lemma 3.2 is
proved. �

3.2.3. Third step: r(t) ∼ reff(t) with improved bound. Let us end the proof of
Lemma 3.1. By (3.9) and as in the previous paragraph, we have for T sufficiently
large so that ṙ(t) > ṙ(T ) > 0 for t > T :

ṙ =

√
C0 + α2

0

(
1

r(T )2
− 1

r2

)
+ 4λα0 ln r ,

with the same constant C0 as above: recall that

ṙeff =
√
C0 + 4λα0 ln reff .

To lighten notation let us recall that h := r − reff and let us define

Reff := C0 + 4λα0 ln reff .

Then using a Taylor expansion for ṙ, we have:

ṙ =

√
Reff + α2

0

( 1

r(T )2
− 1

r2

)
+ 4λα0 ln

(
1 +

h

reff

)
=
√
Reff

√
1 +

1

Reff
α2

0

( 1

r(T )2
− 1

r2

)
+ 4

λα0

Reff
ln
(
1 +

h

reff

)
.

On the one hand we know that Reff → ∞ and by Lemma 3.2 we have h . t

and reff ∼
t→∞

t
√

ln t so we infer that

ṙ ∼
t→∞

√
Reff

(
1 +

1

2Reff

(
α2

0

( 1

r(T )2
− 1

r2

)
+ 4λα0 ln

(
1 +

h

reff

)))
.

As a consequence

ṙ − ṙeff ∼
t→∞

1

2
√
Reff

(
α2

0

( 1

r(T )2
− 1

r2

)
+ 4λα0 ln

(
1 +

h

reff

))
and since h/reff = O(1/

√
ln t) we infer that

ṙ − ṙeff ∼
t→∞

C(T )√
λ ln t

·

By integration, and comparison of diverging integrals, we find

h(t) ∼
t→∞

C1
t√
ln t

,
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hence

r(t) = 2t
√
λα0 ln t

(
1 +O

(
`(t)
))
,

as soon as we know that this holds for reff . Lemma 3.1 is therefore proved, up to
the study of the universal dispersion τ .

3.3. Study of the universal dispersion τ(t): proof of Lemma 1.8. It remains
to prove Lemma 1.8. By scaling, we may assume λ = 1, to lighten the notations.
Introduce the approximate solution

τeff(t) := 2t
√

ln t.

We have clearly
√

ln t =
√

ln τeff

(
1 +O

(
ln ln t

ln τeff

))
.

In view of a comparison with (1.8), which reads

τ̇ = 2
√

ln t ,

write

τ̇eff = 2
√

ln t+
1√
ln t

= 2
√

ln τeff

(
1 +O

(
ln ln t

ln τeff

))
= 2
√

ln τeff +O
(

ln ln t√
ln t

)
.

Thus,

τ̇ − τ̇eff = 2
(√

ln τ −
√

ln τeff

)
+O

(
ln ln t√

ln t

)
= 2

√
ln τeff + ln

τ

τeff
− 2
√

ln τeff +O
(

ln ln t√
ln t

)
.

Since we already know from Lemma 3.2 that τ/τeff → 1, we obtain

τ̇ − τ̇eff = O
(

ln ln t√
ln t

)
, and τ − τeff = O

(
t
ln ln t√

ln t

)
,

by integration. This proves Lemma 1.8. �

Back to the previous section, we simply note that

ṙeff −
√
α0τ̇ =

√
C0 + 4λα0 ln reff −

√
4λα0 ln τ ,

with C0 6= 0 in general, so the same computation as above yields

ṙeff −
√
α0τ̇ = O

(
1√

ln reff

)
= O

(
1√
ln t

)
,

hence

reff −
√
α0τ = O

(
t√
ln t

)
,

by integration. This completes the proof of Lemma 3.1. �

4. General case: preparation for the proof of Theorem 1.9

In this section we prove (1.10) and (1.11) of Theorem 1.9.



18 R. CARLES AND I. GALLAGHER

4.1. First a priori estimates. Recall that by definition, v is related to u through
the relation

(4.1) u(t, x) =
1

τ(t)d/2
v

(
t,

x

τ(t)

)
exp

(
i
τ̇(t)

τ(t)

|x|2

2

)
,

where τ is the solution to

τ̈ =
2λ

τ
, τ(0) = 1 , τ̇(0) = 0 .

Then v solves

i∂tv +
1

2τ(t)2
∆yv = λv ln

∣∣∣∣ vγ
∣∣∣∣2 − λv ln τ , v|t=0 = u0 ,

where we recall that γ(y) = e−|y|
2/2. Using a gauge transform (by replacing v

with veiθ(t) for θ̇ = λ ln τ), we may assume that the last term is absent, and we
focus our attention on

(4.2) i∂tv +
1

2τ(t)2
∆yv = λv ln

∣∣∣∣ vγ
∣∣∣∣2 , v|t=0 = u0 .

Because we now have a non-autonomous equation, the Hamiltonian structure of (1.1)
is lost. We compute

E(t) := Im

∫
Rd
v̄(t, y)∂tv(t, y)dy = Ekin(t) + λEent(t) ,

where

Ekin(t) :=
1

2τ(t)2
‖∇yv(t)‖2L2

is the kinetic energy and

Eent(t) :=

∫
Rd
|v(t, y)|2 ln

∣∣∣∣v(t, y)

γ(y)

∣∣∣∣2 dy
can be considered as a relative entropy. The transform (4.1) is unitary on L2(Rd)
so the conservation of mass for u trivially corresponds to the conservation of mass
for v :

(4.3) ‖v(t)‖L2 = ‖u0‖L2 = ‖γ‖L2 ,

and we will show, as stated in (1.11), that∫
|y|2|v(t, y)|2dy −→

t→∞

∫
|y|2γ(y)2dy .

Thanks to (4.3), the Csiszár-Kullback inequality yields

Eent(t) &
∥∥|v(t)|2 − γ2

∥∥
L1(Rd)

,

hence in particular Eent > 0, which is another way of justifying the term “defocus-
ing” for the case λ > 0. We easily compute

(4.4) Ė = −2
τ̇

τ
Ekin .

Ideally, we would like to prove directly E(t) −→
t→∞

0. The property E(t)→ 0 can be

understood as follows:
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• Ekin → 0 means that v oscillates in space more slowly than τ , hence that
the main spatial oscillations of u have been taken into account in (4.1) (as
a matter of fact, the boundedness of Ekin suffices to reach this conclusion).
• Eent → 0 implies |v(t)|2 → γ2 strongly in L1(Rd).

It turns out than in the case of Gaussian initial data, we can infer from Section 3
that indeed E(t)→ 0, each term going to zero logarithmically in time (see Section 6
for the case of Eent). In the general case, we cannot reach this conclusion. Note
however that if we had Ekin & 1, then integrating (4.4) we would get E(t)→ −∞
as t→∞, hence a contradiction. Therefore,

∃tk →∞ , Ekin(tk)→ 0 .

Remark 4.1 (Probabilistic approach). In view of a comparison with standard ques-
tions in probability related to logarithmic Sobolev inequalities (see e.g. [3]), let us
rewrite (4.2) in terms of g := v/γ, and equip Rd with the Gaussian measure γ2(y)dy.
Up to an irrelevant factor πd/2, this is a probability measure, and (4.2) becomes

i∂tg =
1

2τ(t)2
Lg + λg ln |g|2 , L := −∆y + 2y · ∇y + d− |y|2 .

As a matter of fact, if instead of considering (1.8), one considers the adimensional-
ized version of (3.8),

¨̃τ =
1

τ̃
+

2λ

τ̃
, τ̃(0) = 1 , ˙̃τ(0) = 0 ,

then L is replaced by L̃ := −∆y + 2y · ∇y + d, a Fokker-Planck operator which
plays a central role to prove the last point of Theorem 1.9. The goal is then to
understand the large time behavior of |g|2 (which is expected to converge to 1)
in L1(dγ2). The Csiszár-Kullback inequality now reads∥∥|g(t)|2 − 1

∥∥
L1(dγ2)

6 2

∫
Rd
|g(t, y)|2 ln |g(t, y)|2γ(y)2dy .

The logarithmic Sobolev inequality yields∫
Rd
|g(t, y)|2 ln |g(t, y)|2γ(y)2dy .

∫
Rd
|∇y|g(t, y)||2 γ(y)2dy ,

but then again, the last term seems delicate to control.

We now prove the first part of Theorem 1.9, that is, (1.10) which is recast and
complemented in the next lemma.

Lemma 4.2. Under the assumptions of Theorem 1.9, there holds

sup
t>0

(∫
Rd

(
1 + |y|2 +

∣∣ln |v(t, y)|2
∣∣) |v(t, y)|2dy +

1

τ(t)2
‖∇yv(t)‖2L2(Rd)

)
<∞

and

(4.5)

∫ ∞
0

τ̇(t′)

τ3(t′)
‖∇yv(t′)‖2L2(Rd)dt

′ <∞.

Proof. Write

Eent =

∫
Rd
|v|2 ln |v|2 +

∫
Rd
|y|2|v|2 ,
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and ∫
Rd
|v|2 ln |v|2 =

∫
|v|>1

|v|2 ln |v|2 +

∫
|v|<1

|v|2 ln |v|2.

We have

E+ := Ekin + λ

∫
|v|>1

|v|2 ln |v|2 + λ

∫
Rd
|y|2|v|2 6 E(0) + λ

∫
|v|<1

|v|2 ln
1

|v|2
·

The last term is controlled by∫
|v|<1

|v|2 ln
1

|v|2
.
∫
Rd
|v|2−ε ,

for all ε > 0. We conclude thanks to the estimate∫
Rd
|v|2−ε . ‖v‖2−(1+d/2)ε

L2 ‖yv‖dε/2L2 ,

for ε > 0 sufficiently small (0 < ε < 4
d+2 ), which can be readily proved by an

interpolation method (cutting the integral into |y| < R and |y| > R, using Hölder
inequality and optimizing over R; see e.g. [11]). This implies

E+ . 1 + E
dε/4
+ ,

and thus E+ ∈ L∞(R).
Finally, (4.5) follows from (4.4), since E(t) > 0 for all t > 0. �

4.2. Convergence of some quadratic quantities. Let us prove (1.11), as stated
in the next lemma.

Lemma 4.3. Under the assumptions of Theorem 1.9, there holds∫
Rd

 1
y
|y|2

 |v(t, y)|2dy −→
t→∞

∫
Rd

 1
y
|y|2

 γ2(y)dy .

Proof. Introduce

I1(t) := Im

∫
Rd
v(t, y)∇yv(t, y)dy , I2(t) :=

∫
Rd
y|v(t, y)|2dy .

We compute:

(4.6) İ1 = −2λI2 , İ2 =
1

τ2(t)
I1 .

Set Ĩ2 := τI2: we have ¨̃I2 = 0, hence (unless the data are well prepared in the sense
that I1(0) = 0)

I2(t) =
1

τ(t)

(
˙̃I2(0)t+ Ĩ2(0)

)
=

1

τ(t)
(−I1(0)t+ I2(0)) ∼

t→∞

c√
ln t

,

and

I1(t) ∼
t→∞

c̃
t√
ln t
·

In particular, ∫
Rd
y|v(t, y)|2dy −→

t→∞
0 =

∫
Rd
yγ(y)2dy .

In order to obtain estimates for higher order quadratic observables, we perform
systematic estimates based on multiplier methods. We multiply the equation
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by (y, i∇y)αv̄ with |α| = 2, then we integrate in space, and take the imaginary
part of the outcome. Denote

H1(t) :=

∫
|y|2|v(t, y)|2dy ,

J2(t) := Im

∫
v(t, y)y · ∇y v̄(t, y)dy ,

J3(t) :=

∫
|∇yv(t, y)|2dy .

We shall see that the definition of H1 has to be altered, hence the discrepancy in
the notations.

• Multiplier |y|2v̄. We write

1

2

d

dt

∫
|y|2|v|2 +

1

2τ2
Im

∫
|y|2v̄∆yv = 0 ,

hence, after integrating by parts,

Ḣ1 = − 2

τ2
J2 .

• Multiplier iy · ∇y v̄. We readily have

− Im

∫
y · ∇y v̄∂tv +

1

2τ2
Re

∫
y · ∇y v̄∆yv = λRe

∫
vy · ∇y v̄ ln

∣∣∣∣ vγ
∣∣∣∣2 .

We notice

d

dt
Im

∫
vy · ∇y v̄ = 2 Im

∫
∂tv y · ∇y v̄ − d Im

∫
v∂tv̄ ,

− Im

∫
v∂tv̄ = − 1

2τ2
J3 − λEent ,

∇y ln

∣∣∣∣ vγ
∣∣∣∣2 =

∇yv
v

+
∇y v̄
v̄

+ 2y ,

and get

J̇2 = − 1

τ2
J3 − dλ‖v‖2L2 + 2λH1 .

• Multiplier ∆y v̄. We have

Re

∫
∆y v̄∂tv = λ Im

∫
v∆y v̄ ln

∣∣∣∣ vγ
∣∣∣∣2 .

After integrating by parts, we infer

J̇3 = 4λJ2 + 2λ Im

∫
v̄

v
(∇yv)

2
.

Unfortunately, the system of equations that we get is not closed, because of the
last term in the above relation. As we are not able to obtain fine estimates for this
term (the estimate for ‖∇yv(t)‖2L2 is too rough), we follow another strategy.

We expect to have

H1(t) −→
t→∞

∫
Rd
|y|2e−|y|

2

dy =
d

2
‖γ‖2L2 =

d

2
‖v‖2L2 .
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Therefore, the right unknown is not H1, but

H1(t)−
∫
|y|2γ2 = H1(t)− d

2

∫
γ2 = H1(t)− d

2
‖v‖2L2 .

So we finally denote

J1(t) :=

∫
Rd
|y|2|v(t, y)|2dy − d

2
‖v‖2L2 .

To summarize, we have computed:

J̇1 = − 2

τ2
J2 ,(4.7)

J̇2 = − 1

τ2
J3 + 2λJ1 ,(4.8)

J̇3 = 4λJ2 + 2λ Im

∫
v̄

v
(∇yv)

2
.(4.9)

We already know from Lemma 4.2 that

J1 = O(1) , J3 = O(τ2) = O(t2 ln t) ,

hence, by integrating (4.8), we find

J2 = O(t) .

In order to exploit these informations, we go back to the conserved quantities for u
and translate them into estimates on v.

• Mass:
d

dt
‖u(t)‖2L2 = 0 ;

• Angular momentum:
d

dt
Im

∫
ū∇u = 0 ;

• Energy:

d

dt

(
1

2
‖∇u(t)‖2L2 + λ

∫
Rd
|u(t, x)|2 ln |u(t, x)|2dx

)
= 0 .

We recall the mass conservation for v stated in (4.3). The conservation of angular
momentum for u yields, in terms of v:

d

dt

(
τ̇ I2 +

1

τ
I1

)
= 0 .

This is indeed a consequence of (4.6). When using the energy however, we get some
interesting new piece of information. Substituting (4.1) into the conservation of the
energy of u, we get

d

dt

(
1

2τ2
J3 +

(τ̇)2

2

∫
|y|2|v|2 − τ̇

τ
J2 + λ

∫
|v|2 ln |v|2 − λd ln τ

∫
|v|2
)

= 0 .

Recall that we know that J2 = O(t). Therefore, in the above expression, all the
terms are bounded functions of time, but two:

(τ̇)2

2

∫
|y|2|v|2 and − λd ln τ

∫
|v|2 .

We infer
(τ̇)2

2

∫
|y|2|v|2 − λd ln τ

∫
|v|2 = O(1) .
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Integrating (1.8), we find

(τ̇)2

2
= 2λ ln τ ,

hence ∫
|y|2|v|2 − d

2
‖v‖2L2 = O

(
1

ln τ

)
.

Since τ(t) ∼
t→∞

2t
√
λ ln t thanks to Lemma 1.8, we obtain

J1 = O
(

1

ln t

)
as t→∞ .

The lemma is proved. �

At this stage, we therefore have proved Theorem 1.9, up to the final point re-
garding the asymptotic profile for |v|2.

Remark 4.4. The pseudo-conformal conservation law (see [13]) writes, in the case
of (1.1):

d

dt

(
1

2
‖(x+ it∇)u‖2L2 + λt2

∫
|u|2 ln |u|2

)
= −λdt

∫
|u|2 + 2λt

∫
|u|2 ln |u|2 .

It is equivalent to the virial evolution:

d

dt

∫
|x|2|u|2 = 2 Im

∫
ūx · ∇u,

d

dt
Im

∫
ūx · ∇u =

∫
|∇u|2 + λd

∫
|u|2 .

With these two equations, we recover (4.7) and (4.8), but without bringing any
new information. Similarly one can write Morawetz estimates, that bring new
information which we have not been able to exploit: following [26, 44] we write an
estimate with the usual weight |x|. After some computations we come up with∫ t

0

‖u(t′)‖4L4dt′ +

∫ t

0

∥∥∇|u|2(t′)
∥∥2

L2 dt
′ .
√

ln t ,

which if compared with the Gaussian case is to be expected. However translating
that estimate for v and considering an extra weight of the form (τ̇)−1−α gives∫ ∞

0

1

t(ln t)1+α
‖v(t)‖4L4dt+

∫ ∞
0

1

t3(ln t)2+α

∥∥∇|v|2(t)
∥∥2

L2dt <∞ , ∀α > 0,

which was not known before.

5. End of the proof of Theorem 1.9

In this section we conclude the proof of Theorem 1.9 by obtaining the weak
convergence to a universal profile as stated in (1.12).
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5.1. Hydrodynamical approach. We recall that the Madelung transform is a
classical tool (see e.g. [39, 36, 23], or the survey [10]) to relate the (nonlinear)
Schrödinger equation to fluid dynamics equations, via the change of unknown

(5.1) v(t, y) = a(t, y)eiφ(t,y) a, φ ∈ R .
Formally one obtains in our case the system of equations

∂tφ+
1

2τ2
|∇yφ|2 + λ ln

∣∣∣∣aγ
∣∣∣∣2 =

1

2τ2

∆ya

a

∂ta+
1

τ2
∇yφ · ∇ya+

1

2τ2
a∆yφ = 0 ,

which is easily related to the compressible Euler equations by using the change of
unknown

(5.2) ρ(t, y) := a2 Λ := a∇φ , J := aΛ .

Note that in the explicit case of Gaussian initial data studied in Section 3, ρ is
bounded in Sobolev spaces uniformly in time, whereas Λ and J are unbounded
as t→∞. In terms of these hydrodynamical variables, the above system becomes

(5.3)


∂tρ+

1

τ2
∇ · J = 0

∂tJ +
1

τ2
∇ · (Λ⊗ Λ) + λ∇ρ+ 2λyρ =

1

4τ2
∆∇ρ− 1

τ2
∇ · (∇√ρ⊗∇√ρ)

∂jJ
k − ∂kJj = 2Λk∂j

√
ρ− 2Λj∂k

√
ρ , j, k ∈ {1, . . . , d} .

Note that in the case where the initial data for (5.3) are well prepared, in the
sense that they stem from the polar decomposition of an initial wave function as in
(5.1)–(5.2), then the approach presented in [10, Section 5] can readily be adapted
to show that (5.3) holds true in the distributional sense. We shall however retain
simply one property related to this system: as soon as we have a solution v to (4.2),
it can be decomposed as in (5.1)–(5.2) so as to produce a solution to (5.3). The
most delicate issue to prove this is to give a suitable meaning to the phase φ when
v vanishes; we refer to [10, Section 5] for details.

We shall prove that

ρ(t) ⇀
t→∞

γ2 weakly in L1(Rd) .

This will stem from the fact that the weak limit of ρ evolves according to a Fokker–
Planck operator. We note that a formal link between the hydrodynamical formu-
lation of (1.1) and the Fokker–Planck equation can be found in [38, 27].

5.2. Heuristics. Let us explain the heuristics of the proof, which will be made
rigorous in the next section. Formally only retaining the higher order terms (in
terms of growth in time) in (5.3) we are led to studying the following simple model

(5.4)

 ∂tρ+
1

τ2
∇ · J = 0

∂tJ + λ∇ρ+ 2λyρ = 0 .

Note that in the explicit case of the evolution of a Gaussian (recall the computa-
tions of Section 3), we can check that in the above simplification, we have indeed
eliminated negligible terms. By elimination of J , (5.4) implies that

∂t
(
τ2∂tρ

)
= λ∇ · (∇+ 2y) ρ = λLρ ,
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where

L := ∆y +∇y · (2y ·)
is a Fokker–Planck operator. On the other hand,

∂t
(
τ2∂tρ

)
= τ2∂2

t ρ+ 2τ̇ τ∂tρ ,

so since τ2 � (τ̇ τ)2, it is natural to change scales in time and define s such that

τ̇ τ

λ
∂t = ∂s ,

or in other words define the following change of variables:

(5.5) s =

∫
1

λτ̇τ
=

∫
τ̈

2τ̇
=

1

2
ln τ̇(t) .

Notice that

(5.6) s ∼ 1

2
ln ln t , t→∞ .

Then again discarding formally lower order terms we find

∂sρ = Lρ ,

for which it is well-known (see for instance [21]) that in large times the solution
converges strongly to an element of the kernel of L, hence a Gaussian. Notice
that the convergence is exponentially fast in s variables, so returning to t variables
produces a logarithmic decay due to (5.6): we recover the logarithmic convergence
rate observed in the Gaussian case (Section 3).

The difficulty to make this argument rigorous is the justification that the lower
order terms may indeed be discarded, since we have very little control on higher
norms on v to guarantee compactness in space of the solution: we have more
precisely a sharp control of the momenta of v, but rather poor estimates in H1.
More precisely, we do expect v to oscillate rapidly in time (in view of the Gaussian
case), but

√
ρ should be bounded in H1, a property that does not seem easy to

prove (because of the prefactor 1/τ2 in the equation). This is the main obstacle to
proving strong convergence to a Gaussian in the general case, and explains why in
the end we only obtain a week convergence result in L1. This is made precise in
the next section.

5.3. End of the proof. Let us follow the steps of the previous paragraph, this time
neglecting no term. First, we consider a variant of the hydrodynamical formulation
of (4.2), by recalling that the two nonlinear terms in (5.3) correspond exactly
to τ−2∇ · |∇v|2, after the polar decomposition of v. Therefore, we simply use the
fact that if v =

√
ρeiφ, then we have

(5.7)


∂tρ+

1

τ2
∇ · J = 0

∂tJ + λ∇ρ+ 2λyρ =
1

4τ2
∆∇ρ− 1

τ2
∇ · |∇v|2 .

By elimination of J ,

∂t
(
τ2∂tρ

)
= −∂t∇ · J = λLρ− 1

4τ2
∆2ρ− 1

τ2
∆|∇v|2 ,
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with again L := ∆ +∇ · (2y ·). With the change of variable (5.5) we introduce the
notation ρ̃(s(t), y) := ρ(t, y), and we find for ρ̃ the following equation:

(5.8) ∂sρ̃−
2λ

(τ̇)2
∂sρ̃+

λ

(τ̇)2
∂2
s ρ̃ = Lρ̃− 1

4λτ2
∆2ρ̃− 1

λτ2
∆|∇ṽ|2 ,

where one should keep in mind that the functions τ and τ̇ also have undergone the
change of time variable. In terms of s, Lemma 1.8 yields

τ̇(s) ∼
s→∞

2
√
λe2s , τ(s) ∼

s→∞
2
√
λe2s+e4s .

To make the discussion at the end of the previous subsection more precise, we
comment on the various terms in (5.8):

• The term 2λ
(τ̇)2 ∂sρ̃ is essentially harmless in the large time limit, for it could

be handled by a slight modification of the time variable, for instance.
• The term λ

(τ̇)2 ∂
2
s ρ̃ is expected to be negligible in the large time limit. How-

ever, it makes (5.8) second order in time: one would like to take advantage of
the smoothing properties of esL, by using Duhamel’s formula typically, but
this approach is delicate in this context. Note that it has been established
before that in similar situations, the parabolic behavior gives the leading
order large time dynamics, even if the coefficient of ∂2

s ρ̃ is not asymptoti-
cally vanishing ([19]): the proof of this fact relies on energy estimates whose
analogue in the case of (5.8) we could not establish.
• By using the Fourier transform in space, it is easy to compute the funda-

mental solution of

∂sρ̃ = Lρ̃− 1

4λτ2
∆2ρ̃ ,

in the same way as [20] (without the last term).
• A possible idea to prove that the solution to (5.8) converges (strongly) to

the Gaussian γ2 as s → ∞ would be to use the spectral decomposition
of L, as given for instance in [20]. The main issue is then that we can
control the last term in (5.8) in L1-based spaces, as opposed to L2 where
the spectral decomposition is available. Note that this term is the only one
that prevents (5.8) from being a linear, homogeneous, equation.

In terms of s, the time integrability property of Ekin provided in (4.5) becomes

(5.9)

∫ ∞
0

(
τ̇(s)

τ(s)

)2

‖∇ṽ(s)‖2L2ds <∞ .

On the other hand, Lemma 4.2 yields

(5.10) sup
s>0

∫
Rd
ρ̃(s, y)

(
1 + y2 + | ln ρ̃(s, y)|

)
dy <∞ .

Mimicking the general approach of e.g. [17, 18], for s ∈ [−1, 2] and sn →∞, set

ρ̃n(s, y) := ρ̃(s+ sn, y) .

From (5.10) along with the de la Vallée-Poussin and Dunford–Pettis Theorems, we
get up to extracting a subsequence

ρ̃n ⇀ ρ̃∞ in Lps(−1, 2;L1
y) ,

for all p ∈ [1,∞). Up to another subsequence,

ρ̃n(0) ⇀ ρ̃0,∞ in L1
y .
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In view of (5.8):

(5.11)

{
∂sρ̃∞ = Lρ̃∞ in S ′

(
(−1, 2)× Rd

)
,

ρ̃∞|s=0 = ρ̃0,∞ ∈ L1 .

We now go back to (5.7) and show that ρ̃∞ is independent of s. In the s variable,
we have

(5.12)


∂sρ̃+

τ̇

λτ
∇ · J̃ = 0

∂sJ̃ + τ τ̇ (∇+ 2y) ρ̃− τ̇

4λτ
∇∆ρ̃ = − τ̇

λτ
∇|∇ṽ|2 .

Since J = Im v̄∇yv, (5.9) implies

τ̇

τ
J̃ ∈ L2

sL
1
y .

With J̃n(s) := J̃(s+ sn), we have

J̃n −→
n→∞

0 in L2(−1, 2;W−1,1) ,

hence

(5.13) ∂sρ̃∞ = 0 .

Putting (5.11) and (5.13) together, we have

Lρ̃∞|s=1 = 0 ,

and since ρ̃∞|s=1 is a smooth function, we infer ρ̃∞ = αγ2, 0 6 α 6 1.

Using (5.10) again, we see that the family (ρ̃(1 + sn, ·))n is tight, and so α = 1.
The limit being unique, no extraction of a subsequence is needed, and we conclude

ρ̃(s) ⇀
s→∞

γ2 weakly in L1(Rd) .

Theorem 1.9 is proved. �

6. Proof of the corollaries

6.1. Proof of Corollary 1.12. In view of the tensorization in Theorem 1.6, we
prove Corollary 1.12 in the case d = 1 to lighten the notations, and we assume

u0(x) = b0 exp
(
−a0(x− x0)2/2

)
,

with b0, a0 ∈ C, Re a0 = α0 > 0. We start with an initial center x0 to show that in
terms of v, the center is eventually zero (like in [21]). Recall that we have

u(t, x) = b0
1√
r(t)

eiφ(t) exp
(
−α0

(x− x0)2

2r2(t)
+ i

ṙ(t)

r(t)

(x− x0)2

2

)
,

with r solution to (3.8), r(0) = 1, ṙ(0) = − Im a0. We thus have

v(t, y) = b0

√
τ(t)

r(t)
eiφ(t) exp

(
−α0

τ2

r2

y2

2
+ α0

τ

r2
yx0 − α0

x2
0

2r2

)
× exp

(
i

(
ṙ

r
− τ̇

τ

)
τ2 y

2

2
− i ṙ

r
τyx0 + i

ṙ

r

x2
0

2

)
.
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In particular,

|v(t, y)|2 = |b0|2
τ(t)

r(t)
exp

(
−α0

τ2

r2
y2 + 2α0

τ

r2
yx0 − α0

x2
0

r2

)
.

On the other hand,

‖u0‖L2 = |b0|
(
π

α0

)1/4

= π1/4 ,

where the last equality corresponds to our assumption motivated by Remark 1.1.
Therefore, the relative entropy is

Eent(t) =

∫
R
|v(t, y)|2 ln

(
|v(t, y)|2

γ2(y)

)
dy

= ln

(
√
α0
τ(t)

r(t)

)
‖u0‖2L2 −

(
α0
τ(t)2

r(t)2
− 1

)∫
R
y2|v(t, y)|2dy

+ 2α0x0
τ(t)

r2(t)

∫
R
y|v(t, y)|2dy − α0

x2
0

r2(t)
‖u0‖2L2 −→

t→∞
0 ,

where we have used the properties of the solutions to (3.8) and (1.8), established
in Section 3. The end of the corollary simply stems from the standard Csiszár-
Kullback inequality ∥∥|v(t, ·)|2 − γ2

∥∥
L1 . Eent .

6.2. Proof of Corollary 1.13. Fix 0 < s < 1. In view of Remark 1.1, we may
assume that ‖u0‖L2 = ‖γ‖L2 and use the conclusion of Theorem 1.9, since we
are not tracking the multiplicative constants. The convergence in the Wasserstein
distance W2 (Remark 1.11) implies (see e.g. [45, Theorem 7.12])

(6.1)

∫
|y|2s|v(t, y)|2dy −→

t→∞

∫
|y|2sγ2(y)dy.

The idea is then to apply a fractional derivative to (1.9), that is

u(t, x) =
1

τ(t)d/2
v

(
t,

x

τ(t)

)
exp

(
i
τ̇(t)

τ(t)

|x|2

2

)
.

In order to shortcut this step, we recall a lemma employed in a somehow similar
situation, even though in the context of semi-classical limit. We therefore simplify
the initial statement and leave out the dependence on the semi-classical parameter:

Lemma 6.1 (Lemma 5.1 from [2]). There exists C such that if u ∈ H1(Rd) and w
is such that ∇w ∈ L∞(Rd),

‖|w|su‖L2 6 ‖u‖Ḣs + ‖(∇− iw)u‖sL2‖u‖1−sL2 + C (1 + ‖∇w‖L∞) ‖u‖L2 .

In [2], w corresponds to the gradient of rapid oscillations carried by an exponen-
tial, so we naturally introduce

w(t, x) =
τ̇(t)

τ(t)
x.

In the present framework, Lemma 6.1 yields:

(τ̇)s‖|y|sv(t)‖L2 6 ‖u(t)‖Ḣs +

∥∥∥∥1

τ
∇v(t)

∥∥∥∥s
L2

‖u0‖1−sL2 + C

(
1 +

τ̇

τ

)
‖u0‖L2 .

The result follows readily: the behavior of the left hand side is given by Lemma 1.8
and (6.1), and all the terms of the right hand side are bounded, but the first one.
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Sciences and Appl., Gakkōtosho, Tokyo, 1997, pp. 85–133.

http://arxiv.org/abs/1607.01479


30 R. CARLES AND I. GALLAGHER

[25] J. Ginibre and G. Velo, Long range scattering and modified wave operators for some

Hartree type equations. III. Gevrey spaces and low dimensions, J. Differential Equations,

175 (2001), pp. 415–501.
[26] , Quadratic Morawetz inequalities and asymptotic completeness in the energy space for

nonlinear Schrödinger and Hartree equations, Quart. Appl. Math., 68 (2010), pp. 113–134.
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CNRS, Institut Montpelliérain Alexander Grothendieck, Univ. Montpellier, CC51,
Place E. Bataillon, 34095 Montpellier, France

E-mail address: Remi.Carles@math.cnrs.fr
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