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ON THE RADIUS OF ANALYTICITY OF SOLUTIONS TO

SEMI-LINEAR PARABOLIC SYSTEMS
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Abstract. We study the radius of analyticity R(t) in space, of strong solutions to
systems of scale-invariant semi-linear parabolic equations. It is well-known that near

the initial time, R(t)t−
1
2 is bounded from below by a positive constant. In this paper

we prove that lim inf
t→0

R(t)t−
1
2 = ∞, and assuming higher regularity for the initial data,

we obtain an improved lower bound near time zero. As an application, we prove that

for any global solution u in C([0,∞);H
1
2 (R3)) of the Navier-Stokes equations, there

holds lim inf
t→∞

R(t)t−
1
2 = ∞.
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1. Introduction

We consider the following system of N equations on R+ × Rd:

(SP)


∂tU −∆U = P (U) with

Pj(U)
def
=

∑
ℓ∈NN

|ℓ|=k

Aj,ℓ(D)(U ℓ) for j in {1, . . . , N},

U|t=0 = U0 ,

where Aj,ℓ(D) are homogeneous Fourier multipliers of degree β ∈ [0, 2[, and U =

(Uj)1≤j≤N . The order of the nonlinearity is k ≥ 2 and we have written U ℓ =
N∏
j=1

U
ℓj
j .

An important property of a such a system is its scaling invariance: if a function U
satisfies (SP) on a time interval [0, T ] with the initial data U0, then the function Uλ

defined by

Uλ(t, x)
def
= λαU(λ2t, λx)

satisfies (SP) on the time interval [0, λ−2T ] with the initial data U0,λ
def
= λαU0(λ ·) for

α
def
=

2− β

k − 1
·

Note that α is positive, and in the following we shall assume that α ≤ d/k. For
example for the Navier-Stokes equations there holds β = 1 and k = 2, while for the
cubic heat equation there holds β = 0 and k = 3. In both cases α = 1. The scaling
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invariant Sobolev space for the initial data is Hscrit(Rd), with scrit
def
= d

2 −α, recalling

that Hs(Rd) is defined by the following norm, for s < d/2:

∥f∥Hs(Rd)
def
=

(∫
Rd

|ξ|2s|f̂(ξ)|2 dξ
) 1

2

,

where f̂ = Ff is the Fourier transform of f .
The question of solving the Cauchy problem for systems such as (SP) in scale

invariant spaces has been widely studied. We shall make no attempt at listing all the
results on the subject but simply recall the typical so-called Kato-type theorem, which
may be proved by a Banach fixed point argument (see for instance [1, 7, 9, 13, 14]
among others as well as the estimates in the proof of Lemma 2.1 below).

Theorem 1.1. Assume α ∈ ]1/k, d/k] and define scrit
def
= d/2 − α. Let p be given,

in the interval ]max(2/α, k),∞[. Then, for any δ ∈ [0, α[, for any initial data U0

belonging to Hscrit+δ(Rd), a positive time T exists such that the system (SP) has a
unique solution U in the Kato space Kp

T such that

(1.1) ∥U∥Kp
T

def
= sup

t≤T
t
1
p ∥U(t)∥

H
scrit+

2
p
< ∞ .

Moreover, if δ is positve, a constant c exists such that T ≥ c∥U0∥
− 2

δ

Hscrit+δ .

The goal of this article is to analyze the instantaneous smoothing effect of (SP). Let
us start by recalling some well-known facts in the case of the Navier-Stokes equations.

(NS)

 ∂tu+ u · ∇u−∆u+∇p = 0 , (t, x) ∈ R+ × Rd ,
div u = 0 ,
u|t=0 = u0 ,

where u = (u1, . . . , ud) denotes the velocity of the fluid and p is the scalar pressure
function. in [5], the analyticity of smooth periodic solutions to the Navier-Stokes

equations (NS) is proved, in the sense that if v solves (NS) then eσ
√
−t∆v(t) is a

smooth function for some σ > 0. This result was extended in [3, 8, 11, 12] where it is
proved for instance that∫

R3

|ξ|
(
sup
t≤T

e
√
t|ξ||v̂(t, ξ)|

)2
dξ +

∫ T

0

∫
R3

|ξ|3
(
e
√
t|ξ||v̂(t, ξ)|

)2
dξdt < ∞ ,

which shows that the radius of analyticity R(t) of v(t) is bounded from below by
√
t.

Note that the above condition is equivalent to the fact that e
√
−t∆v(t) belongs to E∞

T ∩
E2

T , where Eq
T denotes the space of vector fields V such that

∥V ∥Eq
T

def
=

∥∥2j( 1
2+

2
q )∥∆jV ∥Lq([0,T ];L2(R3))

∥∥
ℓ2(Z) .

This type of result is also known to hold in the more general context of (SP) (see [4, 10]
for instance) and may be stated as follows.

Theorem 1.2. The solution constructed in Theorem 1.1 is analytic for positive t
with radius of analyticity R(t) greater than

√
t.

The purpose of this work is the proof of the following improved theorem.
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Theorem 1.3. (a) If δ satisfies max(2/α, k) < 2/δ < ∞, the solution construct-
ed in Theorem 1.1 satisfies

lim inf
t→0

R(t)

t
1
2

√
− log

(
t∥U0∥

2
δ

Hscrit+δ

) ≥
√
2δ .

(b) If δ = 0, then, for any small enough, positive ε and for any p in ]max(2/α, k),
∞[ we have

lim inf
t→0

R(t)

t
1
2

√
− log

(
∥eετ∆U0∥Kp

t

) ≥ 2
√
1− ε .

In particular lim
t→0

R(t)

t
1
2

= ∞.

We remark that in the case of three-dimensional incompressible Navier-Stokes sys-
tem (NS), part (a) of Theorem 1.3 coincides with Theorem 1.3 of [8]. Moreover,
the main idea used to prove Theorem 1.3 can be applied to investigate the radius of
analyticity of any global solution of (NS). More precisely we can prove the following
result.

Corollary 1.1. Let u ∈ C([0,∞);H
1
2 (R3)) be a global solution of (NS). Then one

has

(1.2) lim inf
t→∞

R(t)

t
1
2

= ∞ .

2. Proof of Theorem 1.3

We shall perform all our computations on the approximated system

(SPn)

{
∂tU −∆U = Pn(U)

U|t=0 = U0 ,
with Pn,j(U)

def
=

∑
ℓ∈NN

|ℓ|=k

1B(0,n)(D)Aj,ℓ(D)(U ℓ)

for j in {1, . . . , N}, and where we have written 1B(0,n) for the characteristic function

of the ball B(0, n)
def
=

{
ξ ∈ Rd; |ξ| ≤ n

}
. The system (SPn) is an ordinary differential

equation in all Sobolev spaces. All the quantities we shall write are defined in this
case, and we neglect the index n in all that follows. We also skip the final stage of
passing to the limit when n tends to infinity.

Let us consider three positive real numbers T , λ and ε which will be chosen later
on in the proof. Motivated by [8], we define

(2.1) Ua(t, x)
def
= F−1

(
e
− λ2

4(1−ε)
t
T +λ t√

T
|ξ||Û(t, ξ)|

)
.

The main point is that the function Ua behaves like a solution of a modified sys-
tem (SP) where the viscosity is ε instead of 1 and the non-linear term has a fac-

tor e
λ2(k−1)
4(1−ε) . We shall make this idea more precise in what follows.

The key ingredient used to prove Theorem 1.3 will be the following lemma.
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Lemma 2.1. Let Ua be defined by (2.1). Then for any p in ]max(2/α, k),∞[ , there
exists a positive constant Ck,ε such that

(2.2) ∥Ua∥Kp
T
≤ ∥eεt∆U0∥Kp

T
+ Ck,ε

(
e

λ2

4(1−ε) ∥Ua∥Kp
T

)k−1

∥Ua∥Kp
T
.

Proof. A solution of (SPn) satisfies

(2.3) |Û(t, ξ)| ≤ e−t|ξ|2 |Û0(ξ)|+ C

∫ t

0

e−(t−t′)|ξ|2 |ξ|β
(
|Û(t′)| ⋆ · · · ⋆ |Û(t′)|︸ ︷︷ ︸

k times

)
(ξ)dt′ .

Let us observe that

− λ2

4(1− ε)

1

T
+

λ√
T
|ξ| − |ξ|2 ≤ −ε|ξ|2.

Thus by definition (2.1), we infer from (2.3) that

Ûa(t, ξ) ≤ e−εt|ξ|2 |Û0(ξ)|+ C

∫ t

0

e−ε(t−t′)|ξ|2e
− λ2

4(1−ε)
t′
T +λ t′√

T
|ξ|

× |ξ|β
(
|Û(t′)| ⋆ · · · ⋆ |Û(t′)|︸ ︷︷ ︸

k times

)
(ξ)dt′.

Notice that(
|Û(t′)| ⋆ · · · ⋆ |Û(t′)|︸ ︷︷ ︸

k times

)
(ξ) =

∫
∑k

ℓ=1 ξℓ=ξ

( k∏
ℓ=1

|Û(t′, ξℓ)|
)
dξ1 . . . dξk ,

and using that, for any (ξj)1≤j≤k in (Rd)k such that
k∑

j=1

ξj = ξ, there holds e|ξ| ≤

k∏
j=1

e|ξj |, we infer that

(2.4)

Ûa(t, ξ) ≤ e−εt|ξ|2 |Û0(ξ)|+ Ce
λ2(k−1)
4(1−ε)

∫ t

0

e−ε(t−t′)|ξ|2 |ξ|β

×
(
Ûa(t

′) ⋆ · · · ⋆ Ûa(t
′)︸ ︷︷ ︸

k times

)
(ξ)dt′ .

Let us recall the following result on products in Sobolev spaces: for any positive real
number s, smaller than d/2 and greater than d/2− d/k, there holds

(2.5)
∥∥∥ k∏
ℓ=1

ak

∥∥∥
Hks−(k−1) d

2
≤ Ck

k∏
ℓ=1

∥ak∥Hs .

Now let us choose p in [1,∞] such that

(2.6) 0 <
2

p
< α and set sp

def
= scrit +

2

p
=

d

2
+

2

p
− α .

Notice that

Ûa(t
′) ⋆ · · · ⋆ Ûa(t

′)︸ ︷︷ ︸
k times

= (2π)kdF(Uk
a (t

′)) .
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The assumption that α ≤ d
k implies that α < d

k + 2
p and sp > d

2 − d
k , so (2.5) ensures

that (
Ûa(t

′) ⋆ · · · ⋆ Ûa(t
′)︸ ︷︷ ︸

k times

)
(ξ) ≤ Ck|ξ|−(sp+(k−1)( 2

p−α))f(t′, ξ)∥Ua(t
′)∥kHsp

with ∥f(t′)∥L2(Rd) = 1 .

As α(k − 1) = 2− β, plugging the above inequality in (2.4) gives

Ûa(t, ξ) ≤ e−εt|ξ|2 |Û0(ξ)|+ Cke
λ2(k−1)
4(1−ε)

∫ t

0

e−ε(t−t′)|ξ|2

× |ξ|−sp+2−(k−1) 2
p f(t′, ξ)∥Ua(t

′)∥kHspdt′.

By multiplication of this inequality by t
1
p |ξ|sp and by definition of the norm ∥ · ∥Kp

T

in (1.1), we get, for any t in the interval [0, T ],

t
1
p |ξ|spÛa(t, ξ) ≤ t

1
p |ξ|spe−εt|ξ|2 |Û0(ξ)|

+ Cke
λ2(k−1)
4(1−ε) ∥Ua∥kKp

T
t
1
p

∫ t

0

e−ε(t−t′)|ξ|2 1

(t′)
k
p

|ξ|2(1−
k−1
p )f(t′, ξ)dt′.

If we assume that p is greater than k, the function y∈ [0,∞] 7→ y1−
k−1
p e−εy is bound-

ed, we infer that for any t in the interval [0, T ],

t
1
p |ξ|spÛa(t, ξ) ≤ t

1
p |ξ|spe−εt|ξ|2 |Û0(ξ)|

+ Ck,εe
λ2(k−1)
4(1−ε) ∥Ua∥kKp

T
t
1
p

∫ t

0

1

(t− t′)1−
k−1
p

1

t′
k
p

f(t′, ξ)dt′.

Taking the L2 norm with respect to the variable ξ gives, for any t in the interval [0, T ],

t
1
p ∥Ua(t)∥Hsp ≤ t

1
p ∥eεt∆U0∥Hsp + Ck,εe

λ2(k−1)
4(1−ε) ∥Ua∥kKp

T
.

Taking the supremum with respect to t in the interval [0, T ] gives (2.2). �
Let us now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Let U and Ua be determined respectively by (SPn) and (2.1).
We make the following induction hypothesis where p is any real number in ]max(2/α,
k),∞[

(2.7) ∥Ua∥Kp
T
≤ ck,εe

− λ2

4(1−ε) with ck,ε
def
=

1

(4Ck,ε)
1

k−1

with Ck,ε being determined by Lemma 2.1. As long as this induction hypothesis is
satisfied, Inequality (2.2) becomes

(2.8) ∥Ua∥Kp
T
≤ 4

3
∥eεt∆U0∥Kp

T
.

Now let us distinguish the case when U0 belongs to the space Hscrit+δ from the case
when U0 belongs only to the critical space Hscrit .

(a) The case when U0 belongs to the space Hscrit+δ.
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We first observe that p ≤ 2
δ

(2.9) ∥eεt∆U0∥Kp
T
≤ Cδ,pT

δ
2 ∥U0∥Hscrit+δ

Let us define

Tε(U0)
def
= ηε∥U0∥

− 2
δ

Hscrit+δ with ηε
def
=

(
ck,ε
2Cδ,p

) 2
δ

·

By definition of Tε(U0), we have that for any T ≤ Tε(U0),

2Cδ,pT
δ
2 ∥U0∥Hscrit+δ ≤ ck,ε.

Now let us define

λT
def
=

√
2δ(1− ε) log

1
2

(
ηε

T∥U0∥
2
δ

Hscrit+δ

)
·

Then for T ≤ Tε(U0), we deduce from the Ineqalities (2.8) and (2.9) that

∥Ua∥Kp
T
≤ 4

3
Cδ,pT

δ
2 ∥U0∥Hscrit+δ < 2Cδ,pT

δ
2 ∥U0∥Hscrit+δ = ck,εe

− λ2
T

4(1−ε) .

This in turn shows that (2.7) holds for T ≤ Tε(U0). Furthermore, according to (1.1)
and (2.1), there holds

T
1
p

∥∥eλT

√
T |D|U(T )

∥∥
H

scrit+
2
p
≤ ck,ε.

As δ is less than α, taking p =
2

δ
ensures that

∀T ≤ Tε(U0) , R(T ) ≥
√
2δ(1− ε)T

1
2 log

1
2

(
ηε

T∥U0∥
2
δ

Hscrit+δ

)
·

This inequality means exactly that

lim inf
T→0

R(T )

T
1
2

√
− log

(
T∥U0∥

2
δ

Hscrit+δ

) ≥
√
2δ(1− ε) .

Due the fact that ε is arbitrary, we conclude the proof of part (a) of Theorem 1.3.

(b) The case when U0 belongs to the critical space Hscrit .

Let us use the fact that in this case

(2.10) lim
T→0

∥eεt∆U0∥Kp
T
= 0 .

Then we consider Tε(U0) such that

(2.11) ∥eεt∆U0∥Kp
Tε(U0)

≤ ck,ε .

For any T ≤ Tε(U0), let us define

λT
def
= 2(1− ε)

1
2 log

1
2

(
ck,ε

2∥eεt∆U0∥Kp
T

)
.

Then it follows from Inequality (2.8) that

∥Ua∥Kp
T
≤ 4

3
∥eεt∆U0∥Kp

T
< 2∥eεt∆U0∥Kp

T
= ck,εe

− λ2
T

4(1−ε) .
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This shows that (2.7) indeed holds for T ≤ Tε(U0). Furthermore, according to (1.1)
and (2.1), there holds

T
1
p

∥∥eλT

√
T |D|U(T )

∥∥
H

scrit+
2
p
≤ ck,ε .

By definition of λT this means in particular that

∀T ≤ Tε(U0) , R(T ) ≥ 2(1− ε)
1
2T

1
2 log

1
2

(
ck,ε

2∥eεt∆U0∥Kp
T

)
.

This inequality means exactly that for any small strictly positive ε, we have

lim inf
T→0

R(T )

T
1
2

√
− log

1
2
(
∥eεt∆U0∥Kp

T

) ≥ lim
T→0

2(1− ε)
1
2

(
1− log ck,ε

log
(
2∥eεt∆U0∥Kp

T

)) 1
2

,

which together with (2.10) ensures part (b) of of Theorem 1.3. This completes the
proof of the theorem. �

3. Proof of Corollary 1.1

Let u ∈ C([0,∞);H
1
2 (R3)) be a global solution of the Navier-Stokes system (NS)

with initial data u0. Then it follows from [2] that this solution is unique, so that
applying Theorem 2.1 of [6] yields

(3.1) lim
t→∞

∥u(t)∥
H

1
2
= 0 .

Moreover, for any t0 > 0, u verifies

(NSt0)

 ∂tu+ u · ∇u−∆u+∇p = 0, (t, x) ∈]t0,∞[×R3,
div u = 0,
u|t=t0 = u(t0).

Similar to (2.1) we denote

(3.2) ua,t0(t, x)
def
= F−1

(
e
− λ2

4(1−ε)

t−t0
T +λ

t−t0√
T

|ξ||û(t, ξ)|
)
,

and

∥u∥Kp
t0,T

def
= sup

t∈[t0,t0+T ]

(
(t− t0)

1
p ∥u(t)∥

H
1
2
+ 2

p

)
.

Then along the same lines as the proof of Lemma 2.1, we deduce that for p ∈
]max(2/α, k),∞[

(3.3) ∥ua,t0∥Kp
t0,T

≤ ∥eε(t−t0)∆u(t0)∥Kp
t0,T

+ Cεe
λ2

4(1−ε) ∥ua,t0∥2Kp
t0,T

.

By (3.1), we can choose t0 so large that

∥u(t0)∥
H

1
2
≤ cε

2Kε

with Kε being determined by ∥eεt∆u0∥Kp
∞ ≤ Kε∥u0∥

H
1
2
.

Let us make the induction assumption that

(3.4) ∥ua,t0∥Kp
t0,T

≤ cεe
− λ2

4(1−ε) with cε
def
=

1

4Cε
·
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Then as long as the induction assumption is satisfied, we infer from (3.3) that

∥ua,t0∥Kp
t0,T

≤ 4

3
∥eε(t−t0)∆u(t0)∥Kp

t0,T
< 2∥eε(t−t0)∆u(t0)∥Kp

t0,T
≤ 2Kε∥u(t0)∥

H
1
2
≤ cε.

Then defining for any T > 0

λT
def
= 2(1− ε)

1
2 log

1
2

(
cε

2Kε∥u(t0)∥
H

1
2

)
,

we have

∥ua,t0∥Kp
t0,T

< 2Kε∥u(t0)∥
H

1
2
≤ cεe

− λ2
T

4(1−ε) .

This in turn shows that (3.4) holds for any T > 0, and (3.4) in particular implies that

T
1
p

∥∥eλT

√
T |D|u(t0 + T )

∥∥
H

1
2
+ 2

p
≤ cε .

As a result, there holds

∀T , R(t0 + T ) ≥ 2(1− ε)
1
2T

1
2 log

1
2

(
cε

2Kε∥u(t0)∥
H

1
2

)
,

from which we infer that

lim inf
T→∞

R(t0 + T )√
t0 + T

= lim inf
T→∞

R(t0 + T )√
T

≥ 2(1− ε)
1
2 log

1
2

(
cε

2Kε∥u(t0)∥
H

1
2

)
.

This together with (3.1) ensures (1.2). This finishes the proof of Corollary 1.1. �
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