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175, rue du Chevaleret, 75013 Paris, FRANCE,
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FROM NEWTON TO BOLTZMANN: HARD SPHERES AND
SHORT-RANGE POTENTIALS

Isabelle Gallagher, Laure Saint-Raymond, Benjamin Texier

Abstract. — We provide a rigorous derivation of the Boltzmann equation as the mesoscopic limit of
systems of hard spheres, or Newtonian particles interacting via a short-range potential, as the number
of particles N goes to infinity and the characteristic length of interaction ε simultaneously goes to 0,
in the Boltzmann-Grad scaling Nεd−1 ≡ 1.

The time of validity of the convergence is a fraction of the average time of first collision, due to
a limitation of the time on which one can prove uniform estimates for the BBGKY and Boltzmann
hierarchies.

Our proof relies on the fundamental ideas of Lanford, and the important contributions of King,
Cercignani, Illner and Pulvirenti, and Cercignani, Gerasimenko and Petrina. The main novelty here
is the detailed study of pathological trajectories involving recollisions, which proves the term-by-term
convergence for the correlation series expansion.





PREFACE

The appearance of irreversibility in gas dynamics, although the elementary particles obey reversible
laws of motion, is a challenging issue. The first mathematical formulation of this irreversibility goes
back to Boltzmann [8], who proposed in 1872 to represent the state of a perfect gas by some distribution
function, the evolution of which is governed by the equation named after him

∂tf + v · ∇xf = Q(f, f)

where the collision operator Q is related to a jump process for the velocity variable. This dynamics
preserves locally the mass, momentum and energy as the underlying system of particles, but it admits
a Lyapunov functional referred to as the entropy, which encodes the irreversibility. It is therefore
a natural question to understand in which sense the Boltzmann equation can be seen as a suitable
approximation of the system of particles.

Until now, the only answer to this question is the celebrated Lanford Theorem [34], which gives a
rigorous mathematical statement accounting for some important intuitions of Boltzmann [9]:

– the Boltzmann equation should be obtained as a limit when N →∞:
The velocity distribution of the molecules is not mathematically exact as long as the number

of molecules is not assumed to be mathematically inifinitely large.
– it predicts the most probable behavior, which does not completely exclude the occurrence of more

pathological situations :
In nature, the tendency is to pass from the least likely state to the more likely. [....] The

second principle in Thermodynamics appears therefore as a probability theorem.
– it expresses some independence between elementary particles :

From now on we shall specifically assume that the motion is totally disorganized, either as an
ensemble or at a molecular level, and that it remains so indefinitely.

What is striking in Lanford’s theorem is that the propagation of chaos can be rigorously established,
and does not have to be assumed at all times. More precisely, it states that if one considers a system
of N particles interacting as hard spheres with elastic collisions, initially independent and distributed
according to some smooth profile, then its distribution function converges to the solution to the Boltz-
mann equation in the limit when the number of particles N goes to infinity and the characteristic
length of interaction ε simultaneously goes to 0, in the Boltzmann-Grad scaling Nεd−1 ≡ 1. The main
drawback of this result is that the time of validity of the convergence is a fraction of the average time
of first collision.

As we shall see, the main difference between the Boltzmann dynamics and the true dynamics of the
system of particles is due to possible recollisions (which are not admissible in order that independence,
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also called chaos, can be propagated). The strategy of Lanford was then to decompose the dynamics
in terms of collision trees and then to prove that

– with probability converging to 1, these trees have finite size,
– for trees of finite size, recollisions are of vanishing probability.

However, it seems that the arguments used to establish the second point are not entirely correct, so at
some point the proof should be completed. The aim of this monograph is therefore to provide a complete
self-contained proof of Lanford’s theorem, and to extend this convergence result to systems of particles
interacting pairwise via some compactly supported potential following the important contribution of
King [30]. In particular we discuss in depth the notion of independence, and a precise control of all
steps of the proof enables us to obtain a rate of convergence in the hard-spheres case. We insist on
the fact that the strategy of the proof is by no means new. The main novelty here is the detailed
study of pathological trajectories involving recollisions, which proves the termwise convergence for the
correlation series expansion.

Part I presents the context in which this work is set: we discuss the notion of low density limit, recall
some of the main landmarks in the vast literature concerning the Boltzmann equation, and state the
main theorems proved in this monograph.

In Part II we focus on the hard-spheres situation: we first derive the BBGKY hierarchy associated
with the Liouville equation and prove that it is uniformly well-posed on a short time interval. Then
we turn to the notion of independence, which we describe in detail as it is in the case of independent
initial data that one can recover at the limit a solution to the Boltzmann equation. Finally we give
the precise convergence statement, of the BBGKY hierarchy to the Boltzmann hierarchy, of which the
tensor product of solutions to the Boltzmann equation is a particular solution in the case of independent
initial configurations. We finally present the salient features of the proof.

Part III is devoted to the counterpart of Part II in the case of particles interacting via a short-range
potential. We first study the scattering associated to two-particle interactions, and then derive the
associated BBGKY hierarchy. This turns out to be more intricate than in the hard-spheres case as
many particles may interact via the potential, thus creating clusters of interacting particles. It is shown
however that the main contribution to the dynamics is the first link of such a cluster, thus uniform
bounds may be obtained as in the hard-spheres case. A precise statement of convergence towards the
limit Boltzmann hierarchy is given, and a strategy of proof is presented.

Part IV presents the proof of both convergence results (hard-spheres and short-range potential). It
turns out that the proof has been prepared in Parts II and III in such a way that both cases can
be dealt with in a unified way, up to some slight variations due to the nonlocal interactions in the
case of a potential. The study of pathological trajectories, which would deviate substantially from
the Boltzmann trajectories, is performed in detail and we provide explicit bounds on their size (semi-
explicit in the case of an interacting potential). As a consequence in the hard-spheres case we are
furthermore able to obtain a precise rate of convergence. A few open problems are suggested at the
end of Part IV. We emphasize here that actually the most interesting problem would be to prove the
convergence for a very long time, which would validate in particular the relaxation towards equilibrium;
this remains a very challenging question.

We thank J. Bertoin, Th. Bodineau, D. Cordero-Erausquin, L. Desvillettes, F. Golse, S. Mischler, C.
Mouhot and R. Strain for many helpful discussions on topics addressed in this text. We are particularly
grateful to M. Pulvirenti, C. Saffirio and S. Simonella for explaining to us how condition (8.3.1) makes
possible a parametrization of the collision integral by the deflection angle (see Chapter 8). Finally we
thank the anonymous referee for helpful suggestions to improve the manuscript.

Paris, May 2013 Isabelle Gallagher
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CHAPTER 1

THE LOW DENSITY LIMIT

We are interested in this monograph in the qualitative behavior of systems of particles with short-

range interactions. We study the qualitative behaviour of particle systems with short-range binary

interactions, in two cases: hard spheres, that move in uniform rectilinear motion until they undergo

elastic collisions, and smooth, monotonic, compactly supported potentials.

• For hard spheres, the equations of motion are

(1.0.1)
dxi
dt

= vi ,
dvi
dt

= 0 ,

for 1 ≤ i ≤ N, where (xi, vi) ∈ Rd ×Rd denote the position and velocity of particle i, provided that

the exclusion condition |xi(t) − xj(t)| > σ is satisfied, where σ denotes the diameter of the particles.

We further have to prescribe a reflection condition at the boundary : if there exists j 6= i such that

|xi − xj | = σ

(1.0.2)
vini = vouti − νi,j · (vouti − voutj ) νi,j

vinj = voutj + νi,j · (vouti − voutj ) νi,j ,

where νi,j := (xi−xj)/|xi−xj |. Note that it is not obvious to check that (1.0.1)-(1.0.2) defines global

dynamics. This question is addressed in Chapter 4.

• In the case of smooth interactions, the Hamiltonian equations of motion are

(1.0.3)
dxi
dt

= vi , mi
dvi
dt

= −
∑
j 6=i

∇Φ(xi − xj) ,

where mi is the mass of particle i (which we shall assume equal to 1 to simplify) and the force exerted

by particle j on particle i is −∇Φ(xi − xj).

When the system is constituted of two elementary particles, in the reference frame attached to the

center of mass, the dynamics is two-dimensional. The deflection of the particle trajectories from

straight lines can then be described through explicit formulas (which are given in Chapter 8).

When the system is constituted of three particles or more, the integrability is lost, and in general the

problem becomes very complicated, as already noted by Poincaré [37].
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Remark 1.0.1. — Note that the dynamics of hard spheres is in some sense a limit of the smooth-

forces case with

Φ(x) = +∞ if |x| < σ , Φ(x) = 0 if |x| > σ .

Nevertheless, to our knowledge, there does not exist any mathematical statement concerning these

asymptotics.

We will however see in the sequel that the two types of systems exhibit very similar qualitative behaviours

in the low density limit. Once the dynamics is defined (i.e. provided that we can discard multiple

collisions), the case of hard spheres is actually simpler and we will discuss it in Part II to explain the

main ideas and conceptual difficulties. We will then explain, in Part III, how to extend the arguments

to the smoother case of Hamiltonian systems.

1.1. The Liouville equation

In the large N limit, individual trajectories become irrelevant, and our goal is to describe an average

behaviour.

This average will be of course over particles which are indistiguishable, meaning that we will be only

interested in some distribution related to the empirical measure

µN
(
t,XN (0), VN (0)

)
:=

1

N

N∑
i=1

δxi(t),vi(t) ,

with XN (0) := (x1(0), . . . , xN (0)) ∈ RdN and VN (0) := (v1(0), . . . , vN (0)) ∈ RdN , and (xi(t), vi(t)) is

the state at time t of particle i in the system with initial configuration
(
XN (0), VN (0)

)
.

But, because we have only a vague knowledge of the state of the system at initial time, we will further

average over initial configurations. At time 0, we thus start with a distribution f0
N (ZN ), where we

use the following notation: for any set of s particles with positions Xs := (x1, . . . , xs) ∈ Rds and

velocities Vs := (v1, . . . , vs) ∈ Rds, we write Zs := (z1, . . . , zs) ∈ R2ds with zi := (xi, vi) ∈ R2d.

We then aim at describing the evolution of the distribution∫ (
1

N

N∑
i=1

δzi(t)

)
f0
N (ZN )dZN .

We thus define the probability fN = fN (t, ZN ), referred to as the N -particle distribution function, and

we assume that it satisfies for all permutations σ of {1, . . . , N},

(1.1.1) fN (t, Zσ(N)) = fN (t, ZN ) ,

with Zσ(N) = (xσ(1), vσ(1), . . . , xσ(N), vσ(N)). This corresponds to the property that the particles are

indistinguishable.

The distribution we are interested in is therefore nothing else than the first marginal f
(1)
N of the

distribution function fN , defined by

f
(1)
N (t, Z1) :=

∫
fN (t, ZN ) dz2 . . . dzN .
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Since fN is an invariant of the particle system, the Liouville equation relative to the particle sys-

tem (1.0.3) is

(1.1.2) ∂tfN +

N∑
i=1

vi · ∇xifN −
N∑
i=1

N∑
j=1
j 6=i

∇xΦ (xi − xj) · ∇vifN = 0 .

For hard spheres, provided that we can prove that the dynamics is well defined for almost all initial

configurations, we find the Liouville equation

(1.1.3) ∂tfN +

N∑
i=1

vi · ∇xifN = 0

on the domain

DN :=
{
ZN ∈ R2dN / ∀i 6= j, |xi − xj | > σ

}
with the boundary condition fN (t, ZinN ) = fN (t, ZoutN ), meaning that on the part of the boundary such

that |xi − xj | = σ

fN (t, . . . , xi, v
in
i , . . . xj , v

in
j , . . . ) = fN (t, . . . , xi, v

out
i , . . . xj , v

out
j , . . . )

where the ingoing and outgoing velocities are related by (1.0.2).

1.2. Mean field versus collisional dynamics

In this framework, in order for the average energy per particle to remain bounded, one has to assume

that the energy of each pairwise interaction is small. In other words, one has to consider a rescaled

potential Φε obtained

– either by scaling the strength of the force,

– or by scaling the range of potential.

According to the scaling chosen, we expect to obtain different asymptotics.

• In the case of a weak coupling, i.e. when the strength of the individual interaction becomes small

(of order 1/N) but the range remains macroscopic, the convenient scaling in order for the macroscopic

dynamics to be sensitive to the coupling is:

∂tfN +

N∑
i=1

vi · ∇xifN −
1

N

N∑
i=1

N∑
j=1
j 6=i

∇Φ (xi − xj) · ∇vifN = 0 .

Then each particle feels the effect of the force field created by all the (other) particles

FN (x) = − 1

N

N∑
j=1

∇xΦ (x− xj) ∼ −
∫∫
∇Φ(x− y)f

(1)
N (t, y, v)dydv .

In particular, the dynamics seems to be stable under small perturbations of the positions or velocities

of the particles.

In the limit N →∞, we thus get a mean field approximation, that is an equation of the form

∂tf + v · ∇xf + F · ∇vf = 0
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for the first marginal, where the coupling arises only through some average

F := −∇xΦ ∗
∫
fdv .

An important amount of literature is devoted to such asymptotics, but this is not our purpose here.

We refer to [11, 41] for pioneering results, to [25] for a recent study and to [21] for a review on that

topic.

• The scaling we shall deal with in the present work corresponds to a strong coupling, i.e. to the case

when the amplitude of the potential remains of size O(1), but its range becomes small.

Introduce a small parameter ε > 0 corresponding to the typical interaction length of the particles.

For hard spheres, ε is simply the diameter of particles. In the case of Hamiltonian systems, ε will

be the range of the interaction potential. We shall indeed assume throughout this text the following

properties for Φ (a short-range potential).

Assumption 1.2.1. — The potential Φ : Rd → R is a radial, nonnegative, nonincreasing function

supported in the unit ball of Rd, of class C2 in {x ∈ Rd , 0 < |x| < 1}. Moreover it is assumed that Φ

is unbounded near zero, goes to zero at |x| = 1 with bounded derivatives, and that ∇Φ vanishes only

on |x| = 1.

Then in the macroscopic spatial and temporal scales, the Hamiltonian system becomes

(1.2.1)
dxi
dt

= vi ,
dvi
dt

= −1

ε

∑
j 6=i

∇Φ

(
xi − xj

ε

)
,

and the Liouville equation takes the form

(1.2.2) ∂tfN +

N∑
i=1

vi · ∇xifN −
N∑
i=1

N∑
j=1
j 6=i

1

ε
∇xΦ

(
xi − xj

ε

)
· ∇vifN = 0 .

With such a scaling, the dynamics is very sensitive to the positions of the particles.

Situations 1 and 2 on Figure 1 are differ by a spatial translation of O(ε) only. However in Situation 1,

particles will interact and be deviated from their free motion, while in Situation 2, they will evolve

under free flow.

1.3. The Boltzmann-Grad limit

Particles move with uniform rectilinear motion as long as they remain at a distance greater than ε to

other particles. In the limit ε→ 0, we thus expect trajectories to be almost polylines.

Deflections are due to elementary interactions

– which occur when two particles are at a distance smaller than ε (exactly ε in the case of hard

spheres),

– during a time interval of order ε (if the relative velocity is not too small) or even instantaneously

in the case of hard spheres,
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Figure 1. Instability

– which involve generally only two particles : the probability that a third particle enters a security

ball of radius ε should indeed tend to 0 as ε → 0 in the convenient scaling. We are therefore

brought back to the case of the two-body system, which is completely integrable (see Chapter 8).

In order for the interactions to have a macroscopic effect on the dynamics, each particle should undergo

a finite number of collisions per unit of time. A scaling argument, giving the mean free path in terms

of N and ε, then shows that Nεd−1 = O(1): indeed a particle travelling at speed bounded by R covers

in unit time an area of size Rεd−1, and there are N such particles. This is the Boltzmann-Grad scaling

(see [24]).

The Boltzmann equation, which is the master equation in collisional kinetic theory [15, 46], is expected

to describe such a dynamics.





CHAPTER 2

THE BOLTZMANN EQUATION

2.1. Transport and collisions

As mentioned in the previous chapter, the state of the system in the low density limit should be

described (at the statistical level) by the kinetic density, i.e. by the probability f ≡ f(t, x, v) of finding

a particle with position x and velocity v at time t.

This density is expected to evolve under both the effects of transport and binary elastic collisions,

which is expressed in the Boltzmann equation (introduced by Boltzmann in [8]-[9]) :

(2.1.1) ∂tf + v · ∇xf︸ ︷︷ ︸
free transport

= Q(f, f)︸ ︷︷ ︸
localized binary collisions

The Boltzmann collision operator, present in the right-hand side of (2.1.1), is the quadratic form,

acting on the velocity variable, associated with the bilinear operator

(2.1.2) Q(f, f) =

∫∫
[f ′f ′1 − ff1] b(v − v1, ω) dv1dω

where we have used the standard abbreviations

f = f(v) , f ′ = f(v′) , f ′1 = f(v′1) , f1 = f(v1) ,

with (v′, v′1) given by

v′ = v + ω · (v1 − v)ω , v′1 = v1 − ω · (v1 − v)ω .

One can easily show that the quadruple (v, v1, v
′, v′1) parametrized by ω ∈ Sd−1

1 (where Sd−1
ρ denotes

the sphere of radius ρ in Rd) provides the family of all solutions to the system of d+ 1 equations

(2.1.3)
v + v1 = v′ + v′1 ,

|v|2 + |v1|2 = |v′|2 + |v′1|2 ,

which, at the kinetic level, express the fact that collisions are elastic and thus conserve momentum

and energy. Notice that the transformation (v, v1, ω) 7→ (v′, v′1,−ω) is an involution.

The Boltzmann collision operator can therefore be split, at least formally, into a gain term and a loss

term (see [13, 46])

Q(f, f) = Q+(f, f)−Q−(f, f).

The loss term counts all collisions in which a given particle of velocity v will encounter another particle,

of velocity v1, and thus will change its velocity leading to a loss of particles of velocity v, whereas the
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Figure 2. Parametrization of the collision by the deflection angle ω

gain term measures the number of particles of velocity v which are created due to a collision between

particles of velocities v′ and v′1.

The collision kernel b = b(w,ω) is a measurable function positive almost everywhere, which measures

the statistical repartition of post-collisional velocities (v, v1) given the pre-collisional velocities (v′, v′1).

Its precise form depends crucially on the nature of the microscopic interactions, and will be discussed

in more details in the sequel. Note that, due to the Galilean invariance of collisions, it only depends

on the magnitude of the relative velocity |w| and on the deviation angle θ, or deflection (scattering)

angle, defined by cos θ = k · ω where k = w/|w|.

2.2. Boltzmann’s H theorem and irreversibility

From (2.1.3) and using the well-known facts (see [13]) that transforming (v, v1) 7→ (v1, v)

and (v, v1, ω) 7→ (v′, v′1, ω) merely induces mappings with unit Jacobian determinants, one can

show that formally

(2.2.1)

∫
Q(f, f)ϕdv =

1

4

∫∫∫
[f ′f ′1 − ff1](ϕ+ ϕ1 − ϕ′ − ϕ′1) b(v − v1, ω) dvdv1dω .

In particular, ∫
Q(f, f)ϕdv = 0

for all f regular enough, if and only if ϕ(v) is a collision invariant, i.e. ϕ(v) is a linear combination

of
{

1, v1, . . . , vd, |v|2
}

. Thus, successively multiplying the Boltzmann equation (2.1.1) by the collision
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invariants and then integrating in velocity yields formally the local conservation laws

(2.2.2) ∂t

∫
Rd

f

 1

v
|v|2
2

 dv +∇x ·
∫
Rd

f

 v

v ⊗ v
|v|2
2 v

 dv = 0 ,

which provides the link to a macroscopic description of the gas.

The other very important feature of the Boltzmann equation comes also from the symmetries of the

collision operator. Disregarding integrability issues, we choose ϕ = log f and use the properties of the

logarithm, to find

(2.2.3)

D(f) ≡ −
∫
Q(f, f) log fdv

=
1

4

∫
Rd×Rd×Sd−1

1

b(v − v1, ω)(f ′f ′1 − ff1) log
f ′f ′1
ff1

dvdv1dω ≥ 0 .

The so-defined entropy dissipation is therefore a nonnegative functional.

This leads to Boltzmann’s H theorem, also known as second principle of thermodynamics, stating that

the entropy is (at least formally) a Lyapunov functional for the Boltzmann equation.

(2.2.4) ∂t

∫
Rd

f log fdv +∇x ·
∫
Rd

f log fvdv ≤ 0 .

As to the equation Q(f, f) = 0, it is possible to show that it is only satisfied by the so-called Maxwellian

distributions Mρ,u,θ, which are defined by

(2.2.5) Mρ,u,θ(v) :=
ρ

(2πθ)
d
2

e−
|v−u|2

2θ ,

where ρ ∈ R+, u ∈ Rd and θ ∈ R+ are respectively the macroscopic density, bulk velocity and

temperature, under some appropriate choice of units. The relation Q(f, f) = 0 expresses the fact

that collisions are no longer responsible for any variation in the density and so, that the gas has

reached statistical equilibrium. In fact, it is possible to show that if the density f is a Maxwellian

distribution for some ρ(t, x), u(t, x) and θ(t, x), then the macroscopic conservation laws (2.2.2) turn

out to constitute the compressible Euler system.

More generally, the H-theorem (2.2.4) together with the conservation laws (2.2.2) constitute the key

elements of the study of hydrodynamic limits.

Remark 2.2.1. — Note that the irreversibility inherent to the Boltzmann dynamics seems at first

sight to contradict the possible existence of a connection with the microscopic dynamics which is re-

versible and satisfies the Poincaré recurrence theorem (while the Boltzmann dynamics predict some

relaxation towards equilibrium).

That irreversibility will actually appear in the limiting process as an arbitrary choice of the time direc-

tion (encoded in the distinction between pre-collisional and post-collisional particles), and more precisely

as an arbitrary choice of the initial time, which is the only time for which one has a complete infor-

mation on the correlations. The point is that the joint probability of having particles of velocity (v′, v′1)

(respectively of velocities (v, v1)) before the collision is assumed to be equal to f(t, x, v′)f(t, x, v′1) (resp.

to f(t, x, v)f(t, x, v1)), meaning that particles should be independent before collision.
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2.3. The Cauchy problem

Let us first describe briefly the most apparent problems in trying to construct a general, good Cauchy

theory for the Boltzmann equation. In the full, general situation, known a priori estimates for the

Boltzmann equation are only those which are associated with the basic physical laws, namely the

formal conservation of mass and energy, and the bounds on entropy and entropy dissipation. Note

that, when the physical space is unbounded, the dispersive properties of the free transport operator

allow to further expect some control on the moments with respect to x-variables. Yet the Boltzmann

collision integral is a quadratic operator that is purely local in the position and time variables, meaning

that it acts as a convolution in the v variable, but as a pointwise multiplication in the t and x variables :

thus, with the only a priori estimates which seem to hold in full generality, the collision integral is

even not a well-defined distribution with respect to x-variables. This major obstruction is one of the

reasons why the Cauchy problem for the Boltzmann equation is so tricky, another reason being the

intricate nature of the Boltzmann operator.

For the sake of simplicity, we shall consider here only bounded collision cross-sections b. A huge

literature is devoted to the study of more singular cross-sections insofar as the presence of long range

interactions always creates singularities associated to grazing collisions. However, at the present time,

there is no extension of Lanford’s convergence result in this framework.

2.3.1. Short time existence of continuous solutions. — The easiest way to construct local

solutions to the Boltzmann equation is to use a fixed point argument in the space of continuous

functions.

Remarking that the free transport operator preserves weighted L∞ norms∥∥∥f0(x− vt, v) exp

(
β

2
|v|2
)∥∥∥

L∞
=
∥∥∥f0(x, v) exp(

β

2
|v|2)

∥∥∥
L∞

,

and that the following continuity property holds for the collision operator∥∥∥Q(f, f)(v) exp(
β

2
|v|2)

∥∥∥
L∞
≤ Cβ

∥∥∥f(v) exp(
β

2
|v|2)

∥∥∥2

L∞
,

we get the existence of continuous solutions, the lifespan of which is inversely proportional to the norm

of the initial data.

Theorem 1. — Let f0 ∈ C0(Rd ×Rd) such that

(2.3.1)
∥∥∥f0 exp(

β

2
|v|2)

∥∥∥
L∞

< +∞

for some β > 0.

Then, there exists Cβ > 0 (depending only β) such that the Boltzmann equation (2.1.1) with initial

data f0 has a unique continuous solution on [0, T ] with

T =
Cβ∥∥∥f0 exp(β2 |v|2)

∥∥∥
L∞

·

Note that the weigthed L∞ norm controls in particular the macroscopic density

ρ(t, x) :=

∫
f(t, x, v)dv ≤ Cβ‖f(t, x, v) exp(

β

2
|v|2)‖∞ ,
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therefore the possible concentrations for which the collision process can become very pathological. This

restriction, even coming from a very rough analysis, has therefore a physical meaning.

2.3.2. Fluctuations around some global equilibrium. — Historically the first global existence

result for the spatially inhomogeneous Boltzmann equation is due to S. Ukai [43, 44], who considered

initial data that are fluctuations around a global equilibrium, for instance around the reduced centered

Gaussian M := M1,0,1 with notation (2.2.5):

f0 = M(1 + g0) .

He proved the global existence of a solution to the Cauchy poblem for (2.1.1) under the assumption

that the initial perturbation g0 is smooth and small enough in a norm that involves derivatives and

weights so as to ensure decay for large v.

The convenient functional space to be considered is indeed

H`,k = {g ≡ g(x, v) / ‖g‖`,k := sup
v

(1 + |v|k)‖M1/2g(·, v)‖H`x < +∞} .

Theorem 2 ([43, 44]). — Let g0 ∈ H`,k for ` > d/2 and k > d/2 + 1 such that

(2.3.2) ‖g0‖`,k ≤ a0

for some a0 sufficiently small.

Then, there exists a unique global solution f = M(1 + g) with g ∈ L∞(R+, H`,k)∩C(R+, H`,k) to the

Boltzmann equation (2.1.1) with initial data

g|t=0 = g0 .

Such a global existence result is based on Duhamel’s formula and on Picard fixed point theorem. It

requires a very precise study of the linearized collision operator LM defined by

LMg := − 2

M
Q(M,Mg) ,

and more precisely of the semi-group U generated by

v · ∇x + LM .

The main disadvantage inherent to that strategy is that one cannot expect to extend such a result to

classes of initial data with less regularity.

2.3.3. Renormalized solutions. — The theory of renormalized solutions goes back to the late 80s

and is due to R. DiPerna and P.-L. Lions [18]. It holds for physically admissible initial data of arbitrary

sizes, but does not yield solutions that are known to solve the Boltzmann equation in the usual weak

sense.

Rather, it gives the existence of a global weak solution to a class of formally equivalent initial-value

problems.

Definition 2.3.1. — A renormalized solution of the Boltzmann equation (2.1.1) relatively to the global

equilibrium M is a function f ∈ C(R+, L1
loc(R

d ×Rd)) such that

H(f |M)(t) :=

∫∫ ∫ (
f log

f

M
− f +M

)
(t, x, v) dv dx < +∞ ,
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which satisfies in the sense of distributions

(2.3.3)
M
(
∂t + v · ∇x

)
Γ

(
f

M

)
= Γ′

(
f

M

)
Q(f, f) on R+ ×Rd ×Rd ,

f|t=0 = f0 ≥ 0 on Rd ×Rd .

for any Γ ∈ C1(R+) such that |Γ′(z)| ≤ C/
√

1 + z.

With the above definition of renormalized solution relatively to M , the following existence result holds :

Theorem 3 ([18]). — Given any initial data f0 satisfying

(2.3.4) H(f0|M) =

∫ ∫ (
f0 log

f0

M
− f0 +M

)
(x, v) dv dx < +∞ ,

there exists a renormalized solution f ∈ C(R+, L1
loc(R

d × Rd)) relatively to M to the Boltzmann

equation (2.1.1) with initial data f0.

Moreover, f satisfies

- the continuity equation

(2.3.5) ∂t

∫
fdv +∇x ·

∫
fvdv = 0 ;

- the momentum equation with defect measure

(2.3.6) ∂t

∫
fvdv +∇x ·

∫
fv ⊗ vdv +∇x ·m = 0

where m is a Radon measure on R+ ×Rd with values in the nonnegative symmetric matrices;

- the entropy inequality

(2.3.7)
H(f |M)(t) +

∫
trace(m)(t) +

∫ t

0

∫
D(f)(s, x)dsdx

≤ H(f0|M)

where trace(m) is the trace of the nonnegative symmetric matrix m, and the entropy dissipation D(f)

is defined by (2.2.3).

The weak stability of approximate solutions is inherited from the entropy inequality. In order to take

limits in the renormalized Boltzmann equation, we have further to obtain some strong compactness.

The crucial idea here is to use the velocity averaging lemma due to F. Golse, P.-L. Lions, B. Perthame

and R. Sentis [22], stating that the moments in v of the solution to some transport equation are more

regular than the function itself.

Remark 2.3.2. — As we will see, the major weakness of the convergence theorem describing the

Boltzmann equation as the low density limit of large systems of particles is the very short time on

which it holds. However, the present state of the art regarding the Cauchy theory for the Boltzmann

equation makes it very difficult to improve.

Because of the scaling of the microscopic interactions, the conditioning on energy surfaces (see Chap-

ter 6) introduces strong spatial oscillations in the initial data. We therefore do not expect to get

regularity so that we could take advantage of the perturbative theory of S. Ukai [43, 44]. A coarse
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graining argument would be necessary to retrieve spatial regularity on the kinetic distribution, but we

are not aware of any breakthrough in this direction.

As for using the DiPerna-Lions theory [18], the first step would be to understand the counterpart of

renormalization at the level of the microscopic dynamics, which seems to be also a very challenging

problem.





CHAPTER 3

MAIN RESULTS

3.1. Lanford and King’s theorems

The main goal of this monograph is to prove the two following statements. We give here compact, and

somewhat informal, statements of our two main results. Precise statements are given in Chapters 6

and 11 (see Theorem 8 page 51 for the hard-spheres case, and 11 page 91 for the potential case).

The following statement concerns the case of hard spheres dynamics, and the main ideas behind its

proof go back to the fundamental work of Lanford [34].

Theorem 4. — Let f0 : R2d 7→ R+ be a continuous density of probability such that∥∥f0(x, v) exp(
β

2
|v|2)

∥∥
L∞(R2d)

< +∞

for some β > 0.

Consider the system of N hard spheres of diameter ε, initially distributed according to f0 and “indepen-

dent”, governed by the system (1.0.1)-(1.0.2). Then, in the Boltzmann-Grad limit N →∞, Nεd−1 = 1,

its distribution function converges to the solution to the Boltzmann equation (2.1.1) with the cross-

section b(w,ω) := (ω · w)+ and with initial data f0, in the sense of observables.

The next theorem concerns the Hamiltonian case (with a repulsive potential), and important steps of

the proof can be found in the thesis of King [30].

Theorem 5. — Assume that the repulsive potential Φ satisfies Assumption 1.2.1 as well as the tech-

nical assumption (8.3.1). Let f0 : R2d 7→ R+ be a continuous density of probability such that∥∥f0 exp(
β

2
|v|2)

∥∥
L∞

< +∞

for some β > 0.

Consider the system of N particles, initially distributed according to f0 and “independent”, governed by

the system (1.2.1). Then, in the Boltzmann-Grad limit N → ∞, Nεd−1 = 1, its distribution function

converges to the solution to the Boltzmann equation (2.1.1) with a bounded cross-section, depending

on Φ implicitly, and with initial data f0, in the sense of observables.
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Remark 3.1.1. — Convergence in the sense of observables means that, for any test function ϕ

in C0
c (Rd

v), the corresponding observable

φε(t, x) :=

∫
fε(t, x, v)ϕ(v)dv −→ φ(t, x) :=

∫
f(t, x, v)ϕ(v)dv

uniformly in t and x. We indeed recall that the kinetic distribution cannot be measured, only averages

can be reached by physical experiments : this accounts for the terminology “observables”.

In mathematical terms, this means that we establish only weak convergence with respect to the v-

variable. Such a convergence result does not exclude the existence of pathological behaviors, in particular

dynamics obtained by reversing the arrow of time and which are predicted by the (reversible) microscopic

system. We shall only prove that these behaviors have negligible probability in the limit ε→ 0.

Remark 3.1.2. — The initial independence assumption has to be understood also asymptotically. It

will be discussed with much details in Chapter 6 (see also Chapter 11 in the case of a potential): it is

actually related to some coarse-graining arguments which are rather not intuitive at first sight.

For hard spheres, the exclusion obviously prevents independence for fixed ε, but we expect to retrieve

this independence as ε → 0 if we consider a fixed number s of particles. The question is to deal with

an infinite number of such particles.

The case of the smooth Hamiltonian system could seem to be simpler insofar as particles can occupy

the whole space. Nevertheless, in order to control the decay at large energies, we need to introduce

some conditioning on energy surfaces, which is very similar to exclusion.

Remark 3.1.3. — The technical assumption (8.3.1) will be made explicit in Chapter 8 : it ensures

that the deviation angle is a suitable parametrization of the collision, and more precisely that we can

retrieve the impact parameter from both the ingoing velocity and the deviation angle. What we will use

is the fact that the jacobian of this change of variables is bounded at least locally.

Such an assumption is not completely compulsory for the proof. We can imagine of splitting the

integration domain in many subdomains where the deviation angle is a good parametrization of the

collision, but then we have to extend the usual definition of the cross-section. The important point is

that the deviation angle cannot be a piecewise constant function of the impact parameter.

3.2. Background and references

The problem of asking for a rigorous derivation of the Boltzmann equation from the Hamiltonian

dynamics goes back to Hilbert [27], who suggested to use the Boltzmann equation as an intermediate

step between the Hamiltonian dynamics and fluid mechanics, and who described this axiomatization

of physics as a major challenge for mathematicians of the twentieth century.

We shall not give an exhaustive presentation of the studies that have been carried out on this question

but indicate some of the fundamental landmarks, concerning for most of them the case of hard spheres.

First one should mention N. Bogoliubov [6], M. Born, and H. S. Green [10], J. G. Kirkwood [31] and

J. Yvan [47], who gave their names to the BBGKY hierarchy on the successive marginals, which we

shall be using extensively in this study. H. Grad was able to obtain in [23] a differential equation on

the first marginal which after some manipulations converges towards the Boltzmann equation.
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The first mathematical result on this problem goes back to C. Cercignani [12] and O. Lanford [34] who

proved that the propagation of chaos should be established by a careful study of trajectories of a hard

spheres system, and who exhibited – for the first time – the origin of irreversibility. The proof, even

though incomplete, is therefore an important breakthrough. The limits of their methods, on which

we will comment later on – especially regarding the short time of convergence – are still challenging

questions.

The argument of O. Lanford was then revisited and completed in several works. Let us mention

especially the contributions of K. Uchiyama [42], C. Cercignani, R. Illner and M. Pulvirenti [15]

and H. Spohn [40] who introduced a mathematical formalism, in particular to get uniform a priori

estimates for the solutions to the BBGKY hierarchy which turns out to be a theory in the spirit of the

Cauchy-Kowalewskaya theorem.

The term-by-term convergence of the hierarchy in the Boltzmann-Grad scaling was studied in more

details by C. Cercignani, V. I. Gerasimenko and D. I. Petrina [14] : they provide for the first time

quantative estimates on the set of “pathological trajectories”, i.e. trajectories for which the Boltzmann

equation does not provide a good approximation of the dynamics. What is not completely clear in this

approach is the stability of the estimates under microscopic spatial translations.

The method of proof was then extended

– to the case when the initial distribution is close to vacuum, in which case global in time results

may be proved [15, 28, 29];

– to the case when interactions are localized but not pointwise [30]. Because multiple collisions

are no longer negligible, this requires a careful study of clusters of particles.

Many review papers deal with those different results, see [19, 38, 46] for instance.

Let us now summarize the strategy of the proofs. Their are two main steps:

(i) a short time bound for the series expansion expressing the correlations of the system of N particles

and the corresponding quantities of the Boltzmann equation;

(ii) the term by term convergence.

In the case of hard spheres, point (i) is just a matter of explicit estimates, while point (ii) is usually

considered as almost obvious (but deep). Among experts in the field the hard sphere case is therefore

considered to be completely solved. However, we could not find a proof for the measure zero estimates

(i.e. the control of recollisions) in the litterature. It might be that to experts in the field such an

estimate is easy, but from our point of view it turned out to be quite delicate.

– For the Boltzmann dynamics, it seems to be correct that a zero measure argument allows to

control recollisions inasmuch as particles are pointwise.

– For fixed ε, we will see that the set of velocities leading to recollisions (even in the case of

three particles) is small but not zero : this cannot be obtained by a straightforward thickening

argument without any geometrical information on the limiting zero measure set.

– For the microscopic system of N particles, collisional particles are at a distance ε from each other,

we thus expect that even “good trajectories” deviate from trajectories associated to the Boltz-

mann dynamics. We shall therefore need some stability of “pathological sets” of velocities

with respect to microscopic spatial translations, to be able to iterate the process.
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3.3. New contributions

Our goal here is to provide a self-contained presentation, which includes all the details of the proofs,

especially concerning term-by-term convergence which to our knowledge is not completely written

anywhere, even in the hard-spheres case.

Part II is a review of known results in the case of hard spheres. Following Lanford’s strategy, we shall

establish the starting hierarchy of equations, providing a short time, uniform estimate. Note that,

because the dynamics of hard spheres is singular, the definition of collision integrals in this hierarchy

is rather subtle. This point, which was missed in the first version as well as in the existing literature,

is dealt with in details at the beginning of Chapter 5.

We focus especially on the definition of functional spaces: we shall see that the short time estimate

is obtained as an analytical type result, meaning that we control all correlation functions together. The

functional spaces we consider are in some sense natural from the point of view of statistical physics,

since they involve two parameters β and µ (related to the inverse temperature and chemical potential)

to control the growth of energy and of the number of particles. Nevertheless, instead of usual L1

norms, we use L∞ norms, which are needed to control collision integrals (see Remark 2.3.2).

The second point we discuss in details is the notion of independence. As noted in Remark 3.1.2,

for any fixed ε > 0, because of the exclusion, particles cannot be independent. In the 2Nd-dimensional

phase-space, we shall see actually that the Gibbs measure has support on only a very small set. Careful

estimates on the partition function show however that the marginal of order s (for any fixed s) converges

to some tensorized distribution, meaning that independence is recovered at the limit ε→ 0.

Part III deals with the case of the Hamiltonian system, with a repulsive potential. It basically follows

King’s thesis [30], filling in some gaps.

In the limit ε → 0 with Nεd−1 ≡ 1, we would like to obtain a kind of homogeneization result : we

want to average the motion over the small scales in t and x, and replace the localized interactions by

pointwise collisions as in the case of hard spheres. We therefore introduce an artificial boundary

(following [30]) so that

– on the exterior domain, the dynamics reduces to free transport,

– on the interior domain, the dynamics can be integrated in order to compute outwards boundary

conditions in terms of the incoming flux. Note that such a scattering operator is relevant only if

we can guarantee that there is no other particle involved in the interaction.

An important point is therefore to control multiple collisions, which - contrary to the case of hard

spheres - could happen for a non zero set of initial data. We however expect that they become negligible

in the Boltzmann-Grad limit (as the probability of finding three particles having approximately the

same position tends to zero). Cluster estimates, based on suitable partitions of the 2Nd-dimensional

phase-space and symmetry arguments, give the required asymptotic bound on multiple collisions.

Part IV is the heart of our contribution, where we establish the term-by-term convergence. Note that

the arguments work in the same way in both situations (hard spheres and potential case), up to some

minor technical points due to the fact that, for the N -particle Hamiltonian system, pre-collisional and
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post-collisional configurations differ by their velocities but also by their microscopic positions and by

some microscopic shift in time.

However the two main difficulties are exactly the same:

– describing geometrically the set of “pathological” velocities and deflection angles leading to pos-

sible recollisions, in order to get a quantitative estimate of its measure;

– proving that this set is stable under small translations of positions.

Note that the estimates we establish depend only on the scattering operator, so that we have a rate of

convergence which can be made explicit for instance in the case of hard spheres.

To control the set of recolliding trajectories by means of explicit estimates, we make use of properties of

the cross-section which are not guaranteed a priori for a generic repulsive potential. Assumption (8.3.1)

guarantees that these conditions are satisfied.





PART II

THE CASE OF HARD SPHERES





CHAPTER 4

MICROSCOPIC DYNAMICS AND BBGKY HIERARCHY

In this chapter we define the N -particle flow for hard spheres (introduced in Chapter 1), and write

down the associated BBGKY hierarchy. Finally we present a formal derivation of the Boltzmann

hierarchy, and the Boltzmann equation of hard spheres. This chapter follows the classical approaches

of [1], [14], [15], [34], among others.

4.1. The N-particle flow

We consider N particles in the space Rd, the motion of which is described by N positions (x1, . . . , xN )

and N velocities (v1, . . . , vN ), each in Rd. Denoting by ZN := (z1, . . . , zN ) the set of particles, each

particle zi := (xi, vi) ∈ R2d is submitted to free flow

(4.1.1) ∀1 ≤ i ≤ N ,
dxi
dt

= vi ,
dvi
dt

= 0

on the domain

DN :=
{
ZN ∈ R2dN /∀i 6= j, |xi − xj | > ε

}
and bounces off the boundary ∂DN according to the laws of elastic reflection: if |xi − xj | = ε

(4.1.2)
vini = vouti − νi,j · (vouti − voutj ) νi,j

vinj = voutj + νi,j · (vouti − voutj ) νi,j

where νi,j := (xi − xj)/|xi − xj |, and in the case when νi,j · (vini − vinj ) < 0 (meaning that the ingoing

velocities are precollisional).

Contrary to the potential case studied in Part III, it is not obvious to check that (4.1.1) defines a

global dynamics, at least for almost all initial data. Note indeed that this is not a simple consequence

of the Cauchy-Lipschitz theorem since the boundary condition is not smooth, and even not defined for

all configurations. We call pathological a trajectory such that

- either there exists a collision involving more than two particles, or the collision is grazing (meaning

that νi,j · (vini − vinj ) = 0) hence the boundary condition is not well defined;

- or there are an infinite number of collisions in finite time so the dynamics cannot be globally defined.

In [2, Proposition 4.3], it is stated that outside a negligible set of initial data there are no pathological

trajectories; the complete proof is provided in [1]. Actually the setting of [1] is more complicated than
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ours since an infinite number of particles is considered. The arguments of [1] can however be easily

adapted to our case to yield the following result, whose proof we detail for the convenience of the

reader.

Proposition 4.1.1. — Let N, ε be fixed. The set of initial configurations leading to a pathological

trajectory is of measure zero in R2dN .

We first prove the following elementary lemma, in which we have used the following notation: for

any s ∈ N∗ and R > 0, we denote BsR := {Vs ∈ Rds, |Vs| ≤ R} where | · | is the euclidean norm; we

often write BR := B1
R.

Lemma 4.1.1. — Let ρ,R > 0 be given, and δ < ε/2. Define

I :=
{
ZN ∈ BNρ ×BNR / one particle will collide with two others on the time interval [0, δ]

}
.

Then |I| ≤ C(N, ε,R) ρd(N−2)δ2 .

Proof. — We notice that I is a subset of{
ZN ∈ BNρ ×BNR / ∃{i, j, k} distinct , |xi − xj | ∈ [ε, ε+ 2Rδ] and |xi − xk| ∈ [ε, ε+ 2Rδ]

}
,

and the lemma follows directly.

Proof of Proposition 4.1.1. — Let R > 0 be given and fix some time t > 0. Let δ < ε/2 be a parameter

such that t/δ is an integer.

Lemma 4.1.1 implies that there is a subset I0(δ,R) of BNR ×BNR of measure at most C(N, ε,R)Rd(N−2)δ2

such that any initial configuration belonging to (BNR ×BNR )\I0(δ,R) generates a solution on [0, δ] such

that each particle encounters at most one other particle on [0, δ]. Moreover up to removing a measure

zero set of initial data each collision is non-grazing.

Now let us start again at time δ. We recall that in the velocity variables, the ball of radius R in RdN

is stable by the flow, whereas the positions at time δ lie in the ball BNR+Rδ. Let us apply Lemma 4.1.1

again to that new initial configuration space. Since the measure is invariant by the flow, we can

construct a subset I1(δ,R) of the initial positions BNR ×BNR , of size C(N, ε,R)Rd(N−2)(1 + δ)d(N−2)δ2

such that outside I0 ∪ I1(δ,R), the flow starting from any initial point in BNR ×BNR is such that each

particle encounters at most one other particle on [0, δ], and then at most one other particle on [δ, 2δ],

again in a non-grazing collision. We repeat the procedure t/δ times: we construct a subset

Iδ(t, R) :=

t/δ−1⋃
j=0

Ij(δ,R)

of BNR ×BNR , of measure

|Iδ(t, R)| ≤ C(N, ε,R)Rd(N−2)δ2

t/δ−1∑
j=0

(1 + jδ)d(N−2)

≤ C(N,R, t, ε)δ ,

such that for any initial configuration in BNR ×BNR outside that set, the flow is well-defined up to time t.

The intersection I(t, R) :=
⋂
δ>0

Iδ(t, R) is of measure zero, and any initial configuration in BNR × BNR

outside I(t, R) generates a well-defined flow until time t. Finally we consider the countable union of
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those zero measure sets I :=
⋃
n

I(tn, Rn) where tn and Rn go to infinity, and any initial configuration

in R2dN outside I generates a globally defined flow. The proposition is proved.

4.2. The Liouville equation and the BBGKY hierarchy

According to Part I, Paragraph 1.1, the Liouville equation relative to the particle system (4.1.1) is

(4.2.1) ∂tfN +

N∑
i=1

vi · ∇xifN = 0 on DN

with the boundary condition fN (t, ZinN ) = fN (t, ZoutN ). We recall the assumption that fN is invariant

by permutation in the sense of (1.1.1), meaning that the particles are indistinguishable.

The classical strategy to obtain asymptotically a kinetic equation such as (2.1.1) is to write the evolution

equation for the first marginal of the distribution function fN , namely

f
(1)
N (t, z1) :=

∫
R2d(N−1)

fN (t, z1, z2, . . . , zN )11ZN∈DN dz2 . . . dzN .

The point to be noted is that the evolution of f
(1)
N depends actually on f

(2)
N because of the quadratic

interaction imposed by the boundary condition. And in the same way, the equation on f
(2)
N depends

on f
(3)
N . Instead of a kinetic equation, we therefore obtain a hierarchy of equations involving all the

marginals of fN

(4.2.2) f
(s)
N (t, Zs) :=

∫
R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )11ZN∈DN dzs+1 · · · dzN .

Notice that f
(s)
N (t, Zs) is defined on Ds only, and that

(4.2.3) f
(s)
N (t, Zs) =

∫
R2d

f
(s+1)
N (t, Zs, zs+1) dzs+1 .

Finally by integration of the boundary condition on fN we find that f
(s)
N (t, Zins ) = f

(s)
N (t, Zouts ). An

equation for the marginals is derived in weak form in Section 4.3, and from that equation we derive

formally the Boltzmann hierarchy in the Boltzmann-Grad limit (see Section 4.4).

4.3. Weak formulation of Liouville’s equation

Our goal in this section is to find the weak formulation of the system of equations satisfied by the

family of marginals
(
f

(s)
N

)
1≤s≤N defined above in (4.2.2). From now on we assume that fN decays at

infinity in the velocity variable (the functional setting will be made precise in Chapter 5).

Given a smooth, compactly supported function φ defined on R+ × Ds and satisfying the symmetry

assumption (1.1.1) as well as the boundary condition φ(t, Zins ) = φ(t, Zouts ), we have

(4.3.1)

∫
R+×R2dN

(
∂tfN +

N∑
i=1

vi · ∇xifN
)
φ(t, Zs)11ZN∈DN dZNdt = 0 .
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We now use integrations by parts to derive from (4.3.1) the weak form of the equation in the

marginals f
(s)
N . On the one hand an integration by parts in the time variable gives∫

R+×R2dN

∂tfN (t, ZN )φ(t, Zs)11ZN∈DN dZNdt = −
∫
R2dN

fN (0, ZN )φ(0, Zs)11ZN∈DN dZN

−
∫
R+×R2dN

fN (t, ZN )∂tφ(t, Zs)11ZN∈DN dZNdt ,

hence, by definition of f
(s)
N in (4.2.2),∫

R+×R2dN

∂tfN (t, ZN )φ(t, Zs)11ZN∈DN dZNdt = −
∫
R2ds

f
(s)
N (0, Zs)φ(0, Zs) dZs

−
∫
R+×R2ds

f
(s)
N (t, Zs)∂tφ(t, Zs) dZsdt .

Now let us compute

N∑
i=1

∫
R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11ZN∈DN dZN =

∫
R2dN

divXN
(
VN fN (t, ZN )

)
φ(t, Zs)11ZN∈DN dZN

using Green’s formula. The boundary terms involve configurations with at least one pair (i, j) sat-

isfying |xi − xj | = ε. According to Paragraph 4.1 we may neglect configurations where more than

two particles collide at the same time, so the boundary condition is well defined. For any i and j

in {1, . . . , N} we denote

ΣN (i, j) :=
{
XN ∈ R2dN , |xi − xj | = ε

}
,

and ni,j is the outward normal to ΣN (i, j) in RdN . We obtain by Green’s formula:

N∑
i=1

∫
R+×R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11ZN∈DN dZN dt

= −
s∑
i=1

∫
R+×R2dN

fN (t, ZN )vi · ∇xiφ(t, Zs)11ZN∈DN dZNdt

+
∑

1≤i 6=j≤N

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt ,

with dσi,jN the surface measure on ΣN (i, j), induced by the Lebesgue measure. Now we split the last

term into four parts:∑
1≤i 6=j≤N

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt

=

s∑
i=1

N∑
j=s+1

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt

+

N∑
i=s+1

s∑
j=1

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt

+
∑

1≤i 6=j≤s

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt

+
∑

s+1≤i 6=j≤N

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt .
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The boundary condition on fN and φ imply that the two last terms of on the right-hand side are zero.

By symmetry (1.1.1) and by definition of f
(s)
N , we can write

s∑
i=1

N∑
j=s+1

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt

+

N∑
i=s+1

s∑
j=1

∫
R+×RdN×ΣN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt

= −(N − s)
s∑
i=1

∫
R+×Sd−1

ε ×Rd×R2ds

(xs+1 − xi)
|xs+1 − xi|

· (vs+1 − vi) f (s+1)
N (t, Zs, xs+1, vs+1)φ(t, Zs) dZsdσ(xs+1)dvs+1dt

= −(N − s)εd−1
s∑
i=1

∫
R+×Sd−1

1 ×Rd×R2ds

ω · (vs+1 − vi) f (s+1)
N (t, Zs, xi + εω, vs+1)φ(t, Zs) dZsdωdvs+1dt .

Finally we obtain

N∑
i=1

∫
R+×R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11ZN∈DN dZN dt

= −
s∑
i=1

∫
R+×R2ds

f
(s)
N (t, Zs)vi · ∇xiφ(t, Zs) dZsdt

− (N − s)εd−1
s∑
i=1

∫
R+×Sd−1

1 ×Rd×R2ds

ω · (vs+1 − vi) f (s+1)
N (t, Zs, xi + εω, vs+1)φ(t, Zs) dZsdωdvs+1dt .

It remains to define the collision operator

(4.3.2)

(
Cs,s+1f

(s+1)
N

)
(t, Zs) := (N − s)εd−1

s∑
i=1

∫
Sd−1

1 ×Rd

ω · (vs+1 − vi)

× f (s+1)
N (t, Zs, xi + εω, vs+1)dωdvs+1 ,

where recall that Sd−1
1 is the unit sphere of Rd, and in the end we obtain the weak formulation of the

BBGKY hierarchy

(4.3.3) ∂tf
(s)
N +

∑
1≤i≤s

vi · ∇xif
(s)
N = Cs,s+1f

(s+1)
N in R+ ×Ds ,

with the boundary conditions f
(s)
N (t, Zins ) = f

(s)
N (t, Zouts ).

In the integrand of the collision operators Cs,s+1 defined in (4.3.2), we now distinguish between pre-

and post-collisional configurations, as we decompose

Cs,s+1 = C+
s,s+1 − C

−
s,s+1

where

(4.3.4) C±s,s+1f
(s+1) =

s∑
i=1

C±,is,s+1f
(s+1)

the index i referring to the index of the interaction particle among the s “fixed” particles, with the

notation(
C±,is,s+1f

(s+1)
)
(Zs) := (N − s)εd−1

∫
Sd−1

1 ×Rd

(ω · (vs+1 − vi))±f (s+1)(Zs, xi + εω, vs+1) dωdvs+1 ,

the index + corresponding to post-collisional configurations and the index − to pre-collisional config-

urations.
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Denote by Ψs(t) the s-particle flow associated with the hard-spheres system, and by Ts the associated

solution operator:

(4.3.5) Ts(t) : f ∈ L∞(Ds; R) 7→ f(Ψs(−t, ·)) ∈ L∞(Ds; R) .

The time-integrated form of equation (4.3.3) is

(4.3.6) f
(s)
N (t, Zs) = Ts(t)f

(s)
N (0, Zs) +

∫ t

0

Ts(t− τ)Cs,s+1f
(s+1)
N (τ, Zs) dτ .

The total flow and total collision operators T and CN are defined on finite sequences GN = (gs)1≤s≤N
as follows:

(4.3.7)

{
∀s ≤ N , (T(t)GN )s := Ts(t)gs ,

∀ s ≤ N − 1 , (CNGN )s := Cs,s+1gs+1 ,
(
CNGN

)
N

:= 0 .

We finally define mild solutions to the BBGKY hierarchy (4.3.6) to be solutions of

(4.3.8) FN (t) = T(t)FN (0) +

∫ t

0

T(t− τ)CNFN (τ) dτ , FN = (f
(s)
N )1≤s≤N .

4.4. The Boltzmann hierarchy and the Boltzmann equation

Starting from (4.3.8) we now consider the limit N →∞ under the Boltzmann-Grad scaling Nεd−1 ≡ 1,

in order to derive formally the expected form of the Boltzmann hierarchy.

Because of the scaling assumption Nεd−1 ≡ 1, the collision term Cs,s+1f
(s+1)(Zs) is approximately

equal to
s∑
i=1

∫
Sd−1

1 ×Rd

ω · (vs+1 − vi)f (s+1)
N (Zs, xi + εω, vs+1) dωdvs+1

which we may split into two terms, depending on the sign of ω · (vs+1 − vi), as in (4.3.4):
s∑
i=1

∫
Sd−1

1 ×Rd

(
ω · (vs+1 − vi)

)
+
f

(s+1)
N (Zs, xi + εω, vs+1) dωdvs+1

−
s∑
i=1

∫
Sd−1

1 ×Rd

(
ω · (vs+1 − vi)

)
−
f

(s+1)
N (Zs, xi + εω, vs+1) dωdvs+1 .

Changing ω in −ω in the second term, we get
s∑
i=1

∫
Sd−1

1 ×Rd

(
ω · (vs+1 − vi)

)
+
f

(s+1)
N (Zs, xi + εω, vs+1) dωdvs+1

−
s∑
i=1

∫
Sd−1

1 ×Rd

(
ω · (vs+1 − vi)

)
+
f

(s+1)
N (Zs, xi − εω, vs+1) dωdvs+1 .

Recall that pre-collisional particles are particles (xi, vi) and (xs+1, vs+1) whose distance is decreasing

up to collision time, meaning that for which

(xs+1 − xi) · (vs+1 − vi) < 0 .

With the above notation this means that

ω · (vs+1 − vi) < 0 .

On the contrary the case when ω · (vs+1 − vi) > 0 is called the post-collisional case; we recall that

grazing collisions, satisyfing ω · (vs+1 − vi) = 0 can be neglected (see Paragraph 4.1 above).
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Consider a set of particles Zs+1 = (Zs, xi + εω, vs+1) such that (xi, vi) and (xi + εω, vs+1) are post-

collisional. We recall the boundary condition

f
(s+1)
N (t, Zs, xi + εω, vs+1) = f

(s+1)
N (t, Z∗s , xi + εω, v∗s+1)

where Z∗s = (z1, . . . , z
∗
i , . . . zs) and (v∗i , v

∗
s+1) is the pre-image of (vi, vs+1) by (4.1.1):

(4.4.1)
v∗i := vi − ω · (vi − vs+1)ω

v∗s+1 := vs+1 + ω · (vi − vs+1)ω ,

while x∗i := xi. In the following writing also x∗s+1 := xs+1 we shall use the notation

(4.4.2) σ(z∗i , z
∗
s+1) := (zi, zs+1) .

Then neglecting the small spatial translations in the arguments of f
(s+1)
N and using the fact that f

(s+1)
N

is left-continuous in time for all s we obtain the following asymptotic expression for the collision

operator at the limit:

(4.4.3)
C0
s,s+1f

(s+1)(t, Zs) :=

s∑
i=1

∫ (
ω · (vs+1 − vi)

)
+

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1)− f (s+1)(t, Zs, xi, vs+1)

)
dωdvs+1 .

The asymptotic dynamics are therefore governed by the following integral form of the Boltzmann

hierarchy:

(4.4.4) f (s)(t) = Ss(t)f
(s)
0 +

∫ t

0

Ss(t− τ)C0
s,s+1f

(s+1)(τ) dτ ,

where Ss(t) denotes the s-particle free-flow.

Similarly to (4.3.7), we can define the total Boltzmann flow and collision operators S and C as follows:

(4.4.5)

{
∀s ≥ 1 , (S(t)G)s := Ss(t)gs ,

∀ s ≥ 1 ,
(
C0G

)
s

:= C0
s,s+1gs+1 ,

so that mild solutions to the Boltzmann hierarchy (4.4.4) are solutions of

(4.4.6) F (t) = S(t)F (0) +

∫ t

0

S(t− τ)C0F (τ) dτ , F = (f (s))s≥1 .

Note that if f (s)(t, Zs) =

s∏
i=1

f(t, zi) (meaning f (s)(t) is tensorized) then f satisfies the Boltzmann

equation (2.1.1)-(2.1.2), where the cross-section is b(w,ω) :=
(
ω · w

)
+

.





CHAPTER 5

UNIFORM A PRIORI ESTIMATES FOR THE BBGKY AND

BOLTZMANN HIERARCHIES

This is a revised version of Chapter 5: in the original version, there were inconsistencies in the way

the function spaces were introduced, and the present Paragraph 5.1 has been added to this Chapter in

order to settle the functional framework.

The first two authors wish to thank Thierry Bodineau for his help in the writing of this new version.

This chapter is devoted to the statement and proof of uniform a priori estimates for mild solutions to

the BBGKY hierarchy, defined formally in (4.3.8), which we reproduce here:

(5.0.1) FN (t) = T(t)FN (0) +

∫ t

0

T(t− τ)CNFN (τ) dτ , FN = (f
(s)
N )1≤s≤N ,

as well as for the limit Boltzmann hierarchy defined in (4.4.6)

(5.0.2) F (t) = S(t)F (0) +

∫ t

0

S(t− τ)C0F (τ) dτ , F = (f (s))s≥1 .

Those results are obtained in Paragraphs 5.3 and 5.4 by use of a Cauchy-Kowalevskaya type argument.

Before that we need to make sense of the formulation (5.0.1), which is not an obvious fact since

characteristics of the transport are defined only almost everywhere (see Chapter 4) while the collision

operators are defined by integrals on manifolds of codimension 1 (1). In Paragraph 5.1 we show that

the collision integrals make sense in L∞ outside some measure zero sets, provided that they are

combined with the transport operator. Then Paragraph 5.2 is devoted to the definition of adequate

function spaces in which the equations will be shown to be wellposed, and to the statements of the

wellposedness results.

5.1. Rigorous formulation of the BBGKY hierarchy

In this paragraph we show how to make sense of the collision operators in (5.0.1). To this end, we

define a new hierarchy by filtering of the transport operator:

(5.1.1) GN (t) = FN (0) +

∫ t

0

T(−τ)CNT(τ)GN (τ) dτ .

1. The question of correctly defining the hierarchy is also addressed in the work by S. Simonella, Evolution of

correlation functions in the hard sphere dynamics, J. Stat. Phys. 155 (2014), no. 6, 1191-1221.
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Notice that although GN and FN are related by the simple fact that

GN (t) = (Ts(−t)f (s)
N (t))1≤s≤N ,

the hierarchy GN has much better regularity properties. In particular one can see (see the discussion

in Remark 5.4.4 at the end of this chapter) that writing GN = (gn,s)1≤s≤N then gn,s is a continuous

function of time, with values in L∞(Ds), which is not the case of f
(s)
N . Moreover the idea of combining

the collision integral Cs,s+1 with the transport operator Ts(τ) comes from the fact that time can be

viewed as the missing coordinate on ∂Ds+1 in the direction orthogonal to the boundary. We then

expect to define the collision integral in L∞ by using Fubini’s theorem.

5.1.1. A local system of coordinates near the boundary. — From now on we fix two inte-

gers 1 ≤ i ≤ s and we note that for all δ > 0, the change of variables

(5.1.2)
ιs := Ds × [0, δ]× Sd−1

1 ×Rd → R2d(s+1)

(Zs, , t, ω, vs+1) 7→ Zs+1 = (Xs − tVs, Vs, xi + εω − tvs+1, vs+1)

maps the measure dµ−i := εd−1
(
(vs+1 − vi) · ω

)
−dZsdtdωdvs+1 on the Lebesgue measure dZs+1. Of

course Zs+1 defined in (5.1.2) is simply the mapping of Z̃s+1 := (Zs, xi+εω, vs+1) by the free transport

operator. Similarly one can consider a post-collisional situation and notice that as the scattering

preserves the measure, we have that for any i ≤ s, with notation (4.4.1),

(5.1.3) ι∗s := (Zs, t, ω, vs+1) ∈ Ds× [0, δ]×Sd−1
1 ×Rd 7→ Zs+1 = (Xs− tV ∗s , V ∗s , xi + εω− tv∗s+1, v

∗
s+1)

maps the measure dµ+
i := εd−1

(
(vs+1− vi) ·ω

)
+
dZsdtdωdvs+1 on the Lebesgue measure dZs+1. In the

following we write ι−s and ι−∗s the above mappings where t is replaced by −t.

Our aim is to extend this to the case when the free transport in the mappings ιs, ι
∗
s is replaced by the

transport Ψs+1 with exclusion

Zs+1 = Ψs+1(−t)Z̃s+1 , Z̃s+1 := (Zs, xi + εω, vs+1)

so that the image belongs to Ds+1.

To do so, we are going to consider trajectories away from pathological configurations. From now on

we fix R1, R > 0 (which will go to infinity at the very end), as well as the set

B
2(s+1)
R1,R

:=
{
Zs+1 ∈ R2d(s+1) / |Xs+1| ≤ R1 and |Vs+1| ≤ R

}
and we define for all δ > 0, the sets

∂Di,s+1,±
δ :=

{
Zs+1 ∈ B2(s+1)

R1,R
/ |xi − xs+1| = ε , ±(vi − vs+1) · (xi − xs+1) > 0

and ∀(k, `) ∈ [1, s+ 1]2 \ {(i, s+ 1)} , |xk − x`| > ε+Rδ
}
,

and ∂Di,s+1
δ := ∂Di,s+1,+

δ ∪ ∂Di,s+1,−
δ . When δ = 0 we write ∂Di,s+1,± := ∂Di,s+1,±

0 .

Note that
(
∂Di,s+1,+

δ

)
δ>0

are decreasing families.
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5.1.2. Definition of the truncated collision integral. —

The collision operator is obtained by integration on each component of the boundary ∂Di,s+1,± with

respect to a partial set of variables, namely ω, vs+1, with the measure dµ±i . For functions in L∞ (which

are defined almost everywhere), such integrals are defined by Fubini’s theorem.

More precisely, let us define truncated collision operators as follows: for any δ > 0 and any continuous

function ϕs+1 defined on Ds+1,

(
C±,δs,s+1ϕs+1

)
(Zs) :=

s∑
i=1

(
C±,i,δs,s+1ϕs+1

)
(Zs)

:= (N − s)εd−1
s∑
i=1

∫
Sd−1

1 ×Rd

(
ω · (vs+1 − vi)

)
±

× ϕs+1(Zs, xi + εω, vs+1)
( ∏

(k,`)∈[1,s+1]2\{(i,s+1)}

11|xk−x`|>ε+δR

)
dωdvs+1 .

In the above integral to simplify notation we have written xs+1 = xi + εω in the exclusion func-

tion
∏

(k,`)∈[1,s+1]2\{(i,s+1)}

11|xk−x`|>ε+δR .

Now let us fix T > 0 and let us make sense of the functions C±,δs,s+1Ts+1(t)ϕs+1 in L∞, for ϕs+1

belonging to L∞(Ds+1) and t ∈ [0, T ].

• We start by proving that those functions are locally integrable on Ds × [0, T ] (equipped with the

Lebesgue measure dZsdt).

In the case when t ∈ [0, δ] then writing

C±,δs,s+1(Ts+1(t)ϕs+1) = C±,δs,s+1(ϕs+1(Z̃s+1))

then by definition there is no recollision since Z̃s+1 belongs to ∂Di,s+1,±
δ . Using the change of vari-

ables (5.1.2) in the pre-collisional case, and (5.1.3) in the post-collisional one, one finds that for any

function ϕs+1 belonging to L∞(Ds+1) ⊂ L1
loc(Ds+1), the volumic integral is well defined: the domain

of integration is indeed included in ι−s (BsR1
× [0, δ]× Sd−1

1 × B1
R) ∪ ι−∗s (BsR1

× [0, δ]× Sd−1
1 × B1

R), or

in other words in

{Zs+1 ∈ B2(s+1)
R1,R

/ ∃t ∈ [0, δ], |xi − xs+1 + t(vi − vs+1)| = ε}

∪ {Zs+1 ∈ B2(s+1)
R1,R

/ ∃t ∈ [0, δ], |xi − xs+1 + t(v∗i − v∗s+1)| = ε}

the volume of which is O(Rδεd−1Rd(s+1)Rds1 ). Then,∣∣∣ ∫ δ

0

∫
Ds

(
C±,i,δs,s+1Ts+1(t)ϕs+1

)
dZsdt

∣∣∣ ≤ Cdδεd−1Rds1 R
d(s+1)+1‖ϕs+1‖L∞(Ds+1) .

Next we cover [0, T ] by T/δ intervals [nδ, (n+ 1)δ]∫ (n+1)δ

nδ

∫
Ds

(
C±,i,δs,s+1Ts+1(t)ϕs+1

)
dZsdt =

∫ δ

0

∫
Ds

(
C±,i,δs,s+1Ts+1(τ)Ts+1(nδ)ϕs+1

)
dZsdτ

and we know that thanks to Alexander [2] (see also Paragraph 4.1),∣∣(Ts+1(nδ)ϕs+1)(Zs+1)
∣∣ ≤ ‖ϕs+1‖L∞(Ds+1) .
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As above one infers after changing variables that∫ (n+1)δ

nδ

∫
Ds

∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)∣∣∣ dZsdt ≤ Cdδεd−1Rds1 R
d(s+1)+1‖ϕs+1‖L∞(Ds+1)

and therefore finally∫ T

0

∫
Ds

∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)∣∣∣ dZsdt ≤ CdTεd−1Rds1 R
d(s+1)+1‖ϕs+1‖L∞(Ds+1) .

Then, by Fubini’s theorem, we conclude that C±,i,δs,s+1Ts+1(t)ϕs+1 ∈ L1([0, T ] × Ds), in particular they

are measurable functions.

• Returning to the control of the L∞ norm, we find from the above analysis that for any subset A

of [0, δ]×Ds, ∫
A

∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)∣∣∣ dZsdt ≤ Cd|A|Rd+1εd−1‖ϕs+1‖L∞(Ds+1) ,

since the domain of integration is included in ι−s (A × Sd−1
1 × B1

R) ∪ ι−∗s (A × Sd−1
1 × B1

R). It is then

easy to conclude that ∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)
(Zs)

∣∣∣ ≤ CdRd+1εd−1‖ϕs+1‖L∞(Ds+1)

almost everywhere in [0, δ]×Ds (since the set where these inequalities are not satisfied is of measure 0).

We then extend the reasoning to any set of the type [nδ, (n+ 1)δ]×Ds as in the previous paragraph:

for any subset An of [nδ, (n+ 1)δ]×Ds, we have∫
An

(
C±,i,δs,s+1Ts+1(t)ϕs+1

)
(Zs) dZsdt =

∫
An

(
C±,i,δs,s+1Ts+1(t− nδ)Ts+1(nδ)ϕs+1

)
(Zs) dZsdt

=

∫
Aδn

(
C±,i,δs,s+1Ts+1(τ)Ts+1(nδ)ϕs+1

)
(Zs) dZsdτ

where Aδn := {(τ, Zs) / (τ + nδ, Zs) ∈ An}. Since |Aδn| = |An| we find that∫
An

∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)
(Zs)

∣∣∣ dZsdt ≤ Cd|An|Rd+1εd−1‖ϕs+1‖L∞(Ds+1) ,

so ∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)
(Zs)

∣∣∣ ≤ CdRd+1εd−1‖ϕs+1‖L∞(Ds+1)

almost everywhere in [nδ, (n+ 1)δ]×Ds. Finally this implies that∣∣∣(C±,i,δs,s+1Ts+1(t)ϕs+1

)
(Zs)

∣∣∣ ≤ CdRd+1εd−1‖ϕs+1‖L∞(Ds+1)

almost everywhere in [0, T ]×Ds.

We have thus defined truncated collision integrals far from the singular points of the boundary of Ds+1.

It remains then to check that the sequence of operators thus constructed is a Cauchy sequence with

respect to the truncation parameter in L∞, outside a set of measure going to zero with the truncation

parameter.
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5.1.3. Removing the truncation. —

Let 0 < δ′ < δ be given and consider the truncated operators

C±,i,δ
′,δ

s,s+1 := C±,i,δ
′

s,s+1 − C
±,i,δ
s,s+1 .

We shall prove that the partial integral C±,i,δ
′,δ

s,s+1 Ts+1(t)ϕs+1 is small (of the order
√
δ) outside a small

subset of Ds × [0, T ], of measure going to zero with δ. Indeed we have∫ δ′

0

∫
Ds

∣∣∣(C±,i,δ′,δs,s+1 Ts+1(t)ϕs+1

)∣∣∣ dZsdt =

∫
Vδ,δ′

|ϕs+1(Zs+1)| dZs+1 ,

where Vδ,δ′ is a subdomain of{
Zs+1 ∈ B2(s+1)

R1,R
/ ∃t ∈ [0, δ′] , (j, j′) 6= (i, s+ 1) , |xi − xs+1 + t(vi − vs+1)| = ε

and ε ≤ |xj − xj′ + t(vj − vj′)| ≤ ε+Rδ
}

∪
{
Zs+1 ∈ B2(s+1)

R1,R
/ ∃t ∈ [0, δ′] , (j, j′) 6= (i, s+ 1) , ` 6= i, s+ 1 , |xi − xs+1 + t(v∗i − v∗s+1)| = ε

and

 either ε ≤ |xi − x` + t(v∗i − v`)| ≤ ε+Rδ

or ε ≤ |xs+1 − x` + t(v∗s+1 − v`)| ≤ ε+Rδ or ε ≤ |xj − xj′ + t(vj − vj′)| ≤ ε+Rδ
}
.

In particular, |Vδ,δ′ | ≤ C(R, ε)δδ′. Arguing as in the previous section we deduce the estimate on [0, T ]

(5.1.4)

∫ T

0

∫
Ds

∣∣∣(C±,i,δ′,δs,s+1 Ts+1(t)ϕs+1

)∣∣∣ dZsdt ≤ C(R, T )δ‖ϕs+1‖L∞(Ds+1) ,

uniformly in δ′. Finally we introduce the set

Iδ,δ′,i,± =
{

(t, Zs) ∈ [0, T ]×Ds
∣∣∣ ∣∣∣(C±,i,δ′,δs,s+1 Ts+1(t)ϕs+1

)
(Zs)

∣∣∣ ≥ √δ} .
Thanks to the Bienaymé-Tchebichev inequality and to (5.1.4), we have uniformly in δ′

|Iδ,δ′,i,±| = O(
√
δ) .

Note furthermore that Iδ,δ′,i,± is a decreasing function of δ. On the complement of Iδ,δ′,i,±, for any

function ϕs+1 ∈ L∞(Ds+1)

‖C±,i,δ
′,δ

s,s+1 Ts+1(t)ϕs+1‖L∞ ≤ C(R)‖ϕs+1‖L∞
√
δ .

This tells us exactly that the sequence C±,i,δs,s+1Ts+1(t)ϕs+1 is a Cauchy sequence and converges weakly-∗
in L∞([0, T ]×Ds) as δ → 0.

5.1.4. Dependence with respect to time and conclusion. —

Finally to define Cs,s+1Ts+1(t) on time-dependent functions belonging to C([0, T ];L∞(Ds+1)) sup-

ported in [0, T ] × B2(s+1)
R1,R

, we notice that the above arguments are very easily adapted to the case

of piecewise constant functions in time, denoted PC([0, T ];L∞(Ds+1)). Then we conclude by density

of PC([0, T ];L∞(Ds+1)) in C([0, T ];L∞(Ds+1)). Indeed if ϕs+1 is a function in C([0, T ];L∞(Ds+1))

supported in [0, T ] × B2(s+1)
R1,R

and if (ϕns+1)n∈N is a sequence of approximations of ϕs+1, we have the

following estimate∥∥C±s,s+1Ts+1(t)
(
ϕns+1(t)− ϕms+1(t)

)∥∥
L∞
≤ C(R)‖ϕns+1(t)− ϕms+1(t)‖L∞ ,

which tends to 0 as n,m→∞, uniformly in t ∈ [0, T ].
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Letting R1 and R go to infinity, we conclude that the operator Cs,s+1Ts+1(t) is well defined on functions

of C([0, T ];L∞(Ds+1)) with bounded support in Vs+1 (or decaying sufficiently fast at infinity). A

quantitative estimate of this decay will be given by introducing appropriate weighted spaces in the

next section.

Notice that for the Boltzmann hierarchy (5.0.2), the collision operators are defined by integrals on

manifolds of codimension d but since free transport preserves continuity one can require that all

functions under study are continuous.

5.2. Functional spaces and statement of the results

In order to obtain uniform a priori bounds for mild solutions to the (filtered) BBGKY hierarchy, we

need to introduce some norms on the space of sequences (gs)s≥1. Given ε > 0, β > 0, an integer s ≥ 1,

and a measurable function gs : Ds → R, we let

(5.2.1) |gs|ε,s,β := supessZs∈Ds
(
|gs(Zs)| exp

(
βE0(Zs)

))
where E0 is the free Hamiltonian:

(5.2.2) E0(Zs) :=
∑

1≤i≤s

|vi|2

2
·

Note that the dependence on ε of the norm is through the constraint Zs ∈ Ds.

We also define, for a continuous function gs : R2ds → R,

(5.2.3) |gs|0,s,β := sup
Zs∈R2ds

(
|gs(Zs)| exp

(
βE0(Zs)

))
.

Definition 5.2.1. — For ε > 0 and β > 0, we denote Xε,s,β the Banach space of measurable func-

tions Ds → R with finite | · |ε,s,β norm, and similarly X0,s,β is the Banach space of continuous

functions R2ds → R with finite | · |0,s,β norm.

For sequences of measurable functions G = (gs)s≥1, with gs : Ds → R, we let for ε > 0, β > 0,

and µ ∈ R,

‖G‖ε,β,µ := sup
s≥1

(
|gs|ε,s,β exp(µs)

)
.

We define similarly for G = (gs)s≥1, with gs : R2ds → R continuous,

‖G‖0,β,µ := sup
s≥1

(
|gs|0,s,β exp(µs)

)
.

Definition 5.2.2. — For ε ≥ 0, β > 0, and µ ∈ R, we denote Xε,β,µ the Banach space of sequences

of functions G = (gs)1≤s≤N , with gs ∈ Xε,s,β and ‖G‖ε,β,µ < ∞, and similarly X0,β,µ the Banach

space of sequences of continuous functions G = (gs)s≥1, with gs ∈ X0,s,β and ‖G‖0,β,µ <∞.

The following inclusions hold:

(5.2.4) if β′ ≤ β and µ′ ≤ µ, then Xε,s,β′ ⊂ Xε,s,β , Xε,β′,µ′ ⊂ Xε,β,µ .



5.2. FUNCTIONAL SPACES AND STATEMENT OF THE RESULTS 39

Remark 5.2.3. — These norms are rather classical in statistical physics (up to replacing the L∞

norm by an L1 norm), where probability measures are called “ensembles”.

At the canonical level, the ensemble 11Zs∈Dse
−βE0(Zs)dZs is a normalization of the Lebesgue measure,

where β ∼ θ−1 (and θ is the absolute temperature) specifies fluctuations of energy. The Boltzmann-

Gibbs principle states that the average value of any quantity in the canonical ensemble is its equilibrium

value at temperature θ.

The micro-canonical level consists in restrictions of the ensemble to energy surfaces.

At the grand-canonical level the number of particles may vary, with variations indexed by chemical

potential µ ∈ R.

Existence and uniqueness for (5.0.1) comes from the theory of linear transport equations which pro-

vides a unique, global solution to the Liouville equation (4.2.1) by the method of characteristics.

Nevertheless, in order to obtain a similar result for the limiting hierarchy (5.0.2), we need to obtain

uniform a priori estimates with respect to N , on the marginals f
(s)
N for any fixed s. We shall thus

deal with both systems (5.0.1) and (5.0.2) simultaneously, using analytical-type techniques which will

provide short-time existence (with uniform bounds) in the spaces of Xε,β,µ-valued functions of time

(resp. X0,β,µ). Actually the parameters β and µ will themselves depend on time: in the sequel we

choose for simplicity a linear dependence in time, though other, decreasing functions of time could be

chosen just as well. Such a time dependence on the parameters of the function spaces is a situation

which occurs whenever continuity estimates involve a loss, which is the case here since the continuity

estimates on the collision operators lead to a deterioration in the parameters β and µ.

Definition 5.2.4. — Given T > 0, a positive function β and a real valued function µ both defined

on [0, T ], we denote by Xε,β,µ the space of time continuous functions

G : t ∈ [0, T ] 7→ G(t) = (gs(t))s≥1 ∈ Xε,β(t),µ(t) ,

such that

(5.2.5)

|‖G|‖ε,β,µ := sup
0≤t≤T

‖G(t)‖ε,β(t),µ(t) <∞ ,

lim
s→t−

‖G(t)−G(s)‖Xε,β(t),µ(t)
= 0 .

We define similarly

|‖G|‖0,β,µ := sup
0≤t≤T

‖G(t)‖0,β(t),µ(t) .

We shall prove the following uniform bounds for the BBGKY hierarchy.

Theorem 6 (Uniform estimates for the BBGKY hierarchy). — Let β0 > 0 and µ0 ∈ R be

given. There is a time T > 0 as well as two nonincreasing functions β > 0 and µ defined on [0, T ],

satisfying β(0) = β0 and µ(0) = µ0, such that in the Boltzmann-Grad scaling Nεd−1 ≡ 1, any family

of initial marginals FN (0) =
(
f

(s)
N (0)

)
1≤s≤N in Xε,β0,µ0

gives rise to a unique solution GN (t) =

(Ts(−t)f (s)
N (t))1≤s≤N in Xε,β,µ to the BBGKY hierarchy (5.0.1) satisfying the following bound:

|‖GN |‖ε,β,µ ≤ 2‖FN (0)‖ε,β0,µ0 .
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Remark 5.2.5. — The proof of Theorem 6 provides a lower bound for the time T on which one has

a uniform bound, in terms of the initial parameters β0, µ0 and the dimension d: one finds

(5.2.6) T ≥ Cdeµ0(1 + β
1
2
0 )−1 max

β∈[0,β0]
βe−β(β0 − β)

d+1
2 ,

where Cd is a constant depending only on d.

In particular if d� β0, there holds max
β∈[0,β0]

βe−β(β0−β)
d+1
2 = β

d+1
2

0

(
1 + o(1)

)
, hence an existence time

of the order of eµ0β
d/2
0 .

The proof of Theorem 6 uses neither the fact that the BBGKY hierarchy is closed by the transport

equation satisfied by fN , nor possible cancellations of the collision operators. It only relies on crude

estimates and in particular the limiting hierarchy satisfies the same result, proved similarly. Note that

the functional setting is simpler in the case of the Boltzmann hierarchy as all functions are continuous

with respect to all parameters.

Theorem 7 (Existence for the Boltzmann hierarchy). — Let β0 > 0 and µ0 ∈ R be given.

There is a time T > 0 as well as two nonincreasing functions β > 0 and µ defined on [0, T ], satisfy-

ing β(0) = β0 and µ(0) = µ0, such that any family of initial marginals F (0) =
(
f (s)(0)

)
s≥1

in X0,β0,µ0

gives rise to a unique solution G(t) = (Ss(−t)f (s)(t))s≥1 in X0,β,µ to the Boltzmann hierarchy (5.0.2),

satisfying the following bound:

|‖G|‖0,β,µ ≤ 2‖F (0)‖0,β0,µ0 .

5.3. Main steps of the proofs

The proofs of Theorems 6 and 7 are typical of analytical-type results, such as the classical Cauchy-

Kowalevskaya theorem. We follow here Ukai’s approach [45], which turns out to be remarkably short

and self-contained.

Let us give the main steps of the proof: we start by noting that the conservation of energy for the s-

particle flow is reflected in identities

(5.3.1) |Ts(t)gs|ε,s,β = |gs|ε,s,β and ‖T(t)GN‖ε,β,µ = ‖GN‖ε,β,µ ,

for all parameters β > 0, µ ∈ R, and for all gs ∈ Xε,s,β , GN = (gs)1≤s≤N ∈ Xε,β,µ, and all t ≥ 0.

Similarly,

(5.3.2) |Ss(t)gs|0,s,β = |gs|s,β and ‖S(t)G‖0,β,µ = ‖G‖0,β,µ ,

for all parameters β > 0, µ ∈ R, and for all gs ∈ X0,s,β , G = (gs)s≥1 ∈ X0,β,µ, and all t ≥ 0.

Next assume that in the Boltzmann-Grad scaling Nεd−1 ≡ 1, there holds the bound

(5.3.3) ∀ 0 < ε ≤ ε0 ,
∣∣∣∥∥∥ ∫ t

0

T(−τ)CNT(τ)GN (τ) dτ
∣∣∣∥∥∥
ε,β,µ

≤ 1

2
|‖GN |‖ε,β,µ ,

for some functions β and µ as in the statement of Theorem 6. Under (5.3.3), the linear operator

L : GN ∈ Xε,β,µ 7→
(
t 7→

∫ t

0

T(−τ)CNT(τ)GN (τ) dτ

)
∈ Xε,β,µ
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is linear continuous from Xε,β,µ to itself with norm strictly smaller than one. In particular, the

operator Id−L is invertible in the Banach algebra L(Xε,β,µ). Hence, there exists a unique solution GN
in Xε,β,µ to (Id− L)GN = FN (0), an equation which is equivalent to (5.0.1).

The reasoning is identical for Theorem 7, replacing (5.3.3) by

(5.3.4)
∣∣∣∥∥∥ ∫ t

0

S(−τ)C0S(τ)G(τ) dτ
∣∣∣∥∥∥

0,β,µ
≤ 1

2
|‖G|‖0,β,µ .

The next section is devoted to the proofs of (5.3.3) and (5.3.4).

5.4. Continuity estimates

In order to prove (5.3.3) and (5.3.4), we first establish bounds, in the above defined functional spaces,

for the collision operators defined in (4.3.2) and (4.4.3), and for the total collision operators. In Cs,s+1,

the sum in i over [1, s] will imply a loss in µ, while the linear velocity factor will imply a loss in β.

The next statement concerns the BBGKY collision operator.

Proposition 5.4.1. — Given β > 0 and µ ∈ R, for 1 ≤ s ≤ N − 1, the collision operator Cs,s+1

satisfies the bound, for all GN = (gs)1≤s≤N ∈ Xε,β,µ in the Boltzmann-Grad scaling Nεd−1 ≡ 1, and

for almost all t and Zs,

(5.4.1)
∣∣(Cs,s+1Ts+1(t)gs+1

)
(Zs)

∣∣ ≤ Cd β− d2 (sβ− 1
2 +

∑
1≤i≤s

|vi|
)
e−βE0(Zs)|gs+1|ε,s+1,β ,

for some Cd > 0 depending only on d.

Proof. — Recall that as in (4.3.2),(
Cs,s+1Ts+1(t)g(s+1)

)
(t, Zs) :=(N − s)εd−1

×
s∑
i=1

∫
Sd−1

1 ×Rd

ω · (vs+1 − vi) Ts+1(t)g(s+1)(t, Zs, xi + εω, vs+1)dωdvs+1 .

Estimating each term in the sum separately, regardless of possible cancellations between “gain” and

“loss” terms, it is obvious that

|Cs,s+1Ts+1(t)gs+1(Zs)| ≤ κdεd−1(N − s)|gs+1|ε,s+1,β

∑
1≤i≤s

Ii(Vs) ,

where κd is the volume of the unit ball of Rd, and where

Ii(Vs) :=

∫
Rd

(
|vs+1|+ |vi|

)
exp

(
− β

2

s+1∑
j=1

|vj |2
)
dvs+1 .

Since a direct calculation gives

Ii(Vs) ≤ Cd β−
d
2

(
β−

1
2 + |vi|

)
exp

(
− β

2

∑
1≤j≤s

|vj |2
)
,

the result (5.4.1) is deduced directly in the Boltzmann-Grad scaling Nεd−1 ≡ 1. Proposition 5.4.1 is

proved.

A similar result holds for the limiting collision operator.
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Proposition 5.4.2. — Given β > 0, µ ∈ R, the collision operator C0
s,s+1 satisfies the following bound,

for all gs+1 ∈ X0,s+1,β :

(5.4.2)
∣∣(C0

s,s+1gs+1)(Zs)
∣∣ ≤ Cdβ− d2 (sβ− 1

2 +
∑

1≤i≤s

|vi|
)
e−βE0(Zs)|gs+1|0,s+1,β ,

for some Cd > 0 depending only on d.

Proof. — There holds∣∣(C0
s,s+1gs+1)(Zs)

∣∣ ≤ ∑
1≤i≤s

∫
Sd−1×Rd

(
|vs+1|+ |vi|

)(
|gs+1(v∗i , v

∗
s+1)|+ |gs+1(vi, vs+1)|

)
dωdvs+1,

omitting most of the arguments of gs+1 in the integrand. By definition of |·|0,s,β norms and conservation

of energy (5.3.1), there holds

|gs+1(v∗i , v
∗
s+1)|+ |gs+1(vi, vs+1)| ≤

(
e−βE0(Z∗s ) + e−βE0(Zs)

)
|gs+1|0,β

= 2e−βE0(Zs)|gs+1|0,s+1,β ,

where Z∗s is identical to Zs except for vi and vs+1 changed to v∗i and v∗s+1. This gives∣∣(C0
s,s+1gs+1)(Zs)

∣∣ ≤ Cd|gs+1|0,s+1,βe
−βE0(Zs)

∑
1≤i≤s

Ii(Vs) ,

borrowing notation from the proof of Proposition 5.4.1, and we conclude as above.

Propositions 5.4.1 and 5.4.2 are the key to the proof of (5.3.3) and (5.3.4). Let us first prove a continuity

estimate based on Proposition 5.4.1, which implies directly (5.3.3).

Lemma 5.4.3. — Let β0 > 0 and µ0 ∈ R be given. For all λ > 0 and t > 0 such that λt < β0, there

holds the bound

(5.4.3) es(µ0−λt)
∣∣∣ ∫ t

0

Ts(−τ)Cs,s+1Ts+1(τ)gs+1(τ) dτ
∣∣∣
ε,s,β0−λt

≤ c̄(β0, µ0, λ, T )|‖GN |‖ε,β,µ ,

for all GN = (gs)1≤s≤N ∈ Xε,β,µ, with c̄(β0, µ0, λ, T ) computed explicitly in (5.4.9) below. In particular

there is T > 0 depending only on β0 and µ0 such that for an appropriate choice of λ in (0, β0/T ), there

holds for all t ∈ [0, T ]

(5.4.4) es(µ0−λt)
∣∣∣ ∫ t

0

Ts(−τ)Cs,s+1Ts+1(τ)gs+1(τ) dτ
∣∣∣
ε,s,β0−λt

≤ 1

2
|‖GN |‖ε,β,µ .

Proof. — Let us define, for all λ > 0 and t > 0 such that λt < β0, the functions

(5.4.5) βλ0 (t) := β0 − λt and µλ0 (t) := µ0 − λt .

By conservation of energy (5.3.1), there holds the bound∣∣∣ ∫ t

0

Ts(−τ)Cs,s+1Ts+1(τ)gs+1(τ) dτ
∣∣∣
ε,s,βλ0 (t)

≤ sup
Zs∈R2ds

∫ t

0

eβ
λ
0 (t)E0(Zs)

∣∣Cs,s+1Ts+1(τ)gs+1(τ, Zs)
∣∣ dτ .

Estimate (5.4.1) from Proposition 5.4.1 gives

eβ
λ
0 (t)E0(Zs)

∣∣Cs,s+1Ts+1(τ)gs+1(τ, Zs)
∣∣

≤ Cd
(
βλ0 (τ)

)− d2 |gs+1(τ)|ε,s+1,βλ0 (τ)

(
s(βλ0 (τ))−

1
2 +

∑
1≤i≤s

|vi|
)
eλ(τ−t)E0(Zs) .
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By definition of norms ‖ · ‖ε,β,µ and |‖ · |‖ε,β,µ we have

(5.4.6)
|gs+1(τ)|ε,s+1,βλ0 (τ) ≤ e−(s+1)µλ0 (τ)‖GN (τ)‖ε,βλ0 (τ),µλ0 (τ)

≤ e−(s+1)µλ0 (τ)|‖GN |‖ε,β,µ .

The above bounds yield, since βλ0 and µλ0 are nonincreasing,

esµ
λ
0 (t)
∣∣∣ ∫ t

0

Ts(−τ)Cs,s+1Ts+1(τ)gs+1(τ) dτ
∣∣∣
ε,s,βλ0 (t)

≤ Cd|‖GN |‖ε,β,µe−µ
λ
0 (T )

(
βλ0 (T )

)− d2 sup
Zs∈R2ds

∫ t

0

C(τ, t, Zs) dτ ,

where, for τ ≤ t,

(5.4.7) C(τ, t, Zs) :=
(
s(βλ0 (τ))−

1
2 +

∑
1≤i≤s

|vi|
)
eλ(τ−t)(s+E0(Zs)) .

Since

(5.4.8) sup
Zs∈R2ds

∫ t

0

C(τ, t, Zs) dτ ≤
Cd
λ

(
1 +

(
βλ0 (T )

)− 1
2

)
,

there holds finally

esµ
λ
0 (t)
∣∣∣ ∫ t

0

Ts(−τ)Cs,s+1Ts+1(τ)gs+1(τ) dτ
∣∣∣
ε,s,βλ0 (t)

≤ c̄(β0, µ0, λ, T )|‖GN |‖ε,β,µ ,

where, with a possible change of the constant Cd,

(5.4.9) c̄(β0, µ0, λ, T ) := Cd e
−µλ0 (T )λ−1

(
βλ0 (T )

)− d2 (1 +
(
βλ0 (T )

)− 1
2

)
.

The result (5.4.3) follows. To deduce (5.4.4) we need to find T > 0 and λ > 0 such that λT < β0 and

(5.4.10) Cd(1 + (β0 − λT )−
1
2

)
e−µ0+λT (β0 − λT )−

d
2 =

λ

2
·

With β := λT ∈ (0, β0), condition (5.4.10) becomes

T = Cde
µ0βe−β

(β0 − β)
d+1
2

1 + (β0 − β)
1
2

≥ Cdeµ0(1 + β
1
2
0 )−1βe−β(β0 − β)

d+1
2 ,

up to changing the constant Cd and (5.4.4) follows. Notice that (5.2.6) is a consequence of this

computation.

The proof of the corresponding result (5.3.4) for the Boltzmann hierarchy is identical, since the esti-

mates for C0
s,s+1 and Cs,s+1 are essentially identical (compare estimate (5.4.1) from Proposition 5.4.1

with estimate (5.4.2) from Proposition 5.4.2).

Remark 5.4.4. — The above arguments provide the global in time wellposedness of the BBGKY hi-

erarchy for each fixed N — though with no uniform bound on N . Indeed the exponential weight

exp
(
−µ0N − β0E0(ZN )

)
11DN is an invariant measure for the flow of the transport equation

∂tfN + VN · ∇XN fN = 0 .

The maximum principle then implies that for all t ≥ 0

0 ≤ fN (t, ZN ) ≤ exp
(
−µ0N − β0E0(ZN )

)
11DN .
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By integration we find

0 ≤ f (s)
N (t, Zs) ≤ exp

(
−µ0N − β0E0(Zs)

)
11Ds

As the measure exp
(
−µ0N − β0E0(Zs)

)
11Ds is invariant by the flow Ts, we get by filtering that with

the notation introduced in Pargagraph 5.1, GN = (gN,s)1≤s≤N satisfies

0 ≤ gN,s(t, Zs) ≤ exp
(
−µ0N − β0E0(Zs)

)
11Ds

hence a bound for which no parameters depend on t (though the bound is very poor in N).

Then we can iterate the fixed point method used in the proof of Theorem 6 to prove that the marginals

belong for all time to the space Xε,β,µ and not only on a short time interval . However the size of the

functions grows with N so that fact cannot be used to obtain a convergence result.



CHAPTER 6

STATEMENT OF THE CONVERGENCE RESULT

We state here our first main result, describing convergence of mild solutions to the BBGKY hier-

archy (4.3.6) to mild solutions of the Boltzmann hierarchy (4.4.4). This result implies in particular

Theorem 5 stated in the Introduction page 17.

The first part of this chapter is devoted to a precise description of Boltzmann initial data which are ad-

missible, i.e., which can be obtained as the limit of BBGKY initial data satisfying the required uniform

bounds. This involves discussing the notion of “quasi-independence” mentioned in the Introduction,

via a conditioning of the initial data. Then we state the main convergence result (Theorem 8 page 51)

and sketch the main steps of its proof.

6.1. Quasi-independence

In this paragraph we discuss the notion of “quasi-independent” initial data. We first define admis-

sible Boltzmann initial data, meaning data which can be reached from BBGKY initial data (which

are bounded families of marginals) by a limiting procedure, and then show how to “condition” the

initial BBGKY initial data so as to converge towards admissible Boltzmann initial data. Finally we

characterize admissible Boltzmann initial data.

6.1.1. Admissible Boltzmann data. — In the following we denote

Ωs := {Zs ∈ R2ds , ∀i 6= j , xi 6= xj} .

Definition 6.1.1 (Admissible Boltzmann data). — Admissible Boltzmann data are defined as

families F0 = (f
(s)
0 )s≥1, with each f

(s)
0 nonnegative, integrable and continuous over Ωs, such that

(6.1.1)

∫
R2d

f
(s+1)
0 (Zs, zs+1) dzs+1 = f

(s)
0 (Zs) ,

and which are limits of BBGKY initial data F0,N = (f
(s)
0,N )1≤s≤N ∈ Xε,β0,µ0

in the following sense:

for some F0,N satisfying

(6.1.2) sup
N≥1
‖F0,N‖ε,β0,µ0

<∞ , for some β0 > 0 , µ0 ∈ R , as Nεd−1 ≡ 1 ,
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for each given s ∈ [1, N ], the marginal of order s defined by

(6.1.3) f
(s)
0,N (Zs) =

∫
R2d(N−s)

11ZN∈DN f
(N)
0,N (ZN ) dzs+1 . . . dzN , 1 ≤ s < N ,

converges in the Boltzmann-Grad limit:

(6.1.4) f
(s)
0,N −→ f

(s)
0 as N →∞ with Nεd−1 ≡ 1 , locally uniformly in Ωs .

In this section we shall prove the following result.

Proposition 6.1.1. — The set of admissible Boltzmann data, in the sense of Definition 6.1.1, is the

set of families of marginals F0 as in (6.1.1) satisfying a uniform bound ‖F0‖0,β0,µ0
<∞ for some β0 > 0

and µ0 ∈ R.

6.1.2. Conditioning. — We first consider “chaotic” configurations, corresponding to tensorized

initial measures, or initial densities which are products of one-particle distributions:

(6.1.5) f⊗s0 (Zs) =
∏

1≤i≤s

f0(zi) , 1 ≤ s ≤ N ,

where f0 is nonnegative, normalized, and belongs to some X0,1,β0
space (see Definition 5.2.1 page 38):

(6.1.6) f0 ≥ 0 ,

∫
R2d

f0(z)dz = 1 , eµ0 |f0|0,1,β0
≤ 1 for some β0 > 0 , µ0 ∈ R .

Such initial data are particularly meaningful insofar as they will produce the Boltzmann equa-

tion (2.1.1), and we shall show in Proposition 6.1.2 that they are admissible.

We then consider the initial data with exclusion 11ZN∈DN f
⊗N
0 (ZN ), and the property of normalization

is preserved by introduction of the partition function

(6.1.7) ZN :=

∫
R2dN

11ZN∈DN f
⊗N
0 (ZN ) dZN .

Conditioned datum built on f0 is then defined as Z−1
N 11ZN∈DN f

⊗N
0 (ZN ). This operation is called con-

ditioning on energy surfaces, and is a classical tool in statistical mechanics (see [20, 32, 33] for

instance).

The partition function defined in (6.1.7) satisfies the next result, which will be useful in the following.

Lemma 6.1.2. — Given f0 satisfying (6.1.6), there holds for 1 ≤ s ≤ N the bound

1 ≤ Z−1
N ZN−s ≤

(
1− εκd|f0|L∞L1

)−s
,

in the scaling Nεd−1 ≡ 1, where |f0|L∞L1 denotes the L∞(Rd
x, L

1(Rd
v)) norm of f0, and κd denotes

the volume of the unit ball in Rd.

Proof. — We have by definition

Zs+1 =

∫
R2d(s+1)

11Zs+1∈Ds+1

( s∏
i=1

11|xi−xs+1|>ε

)
f
⊗(s+1)
0 (Zs+1) dZs+1 .

By Fubini, we deduce

Zs+1 =

∫
R2ds

∫
R2d

( ∏
1≤i≤s

11|xi−xs+1|>ε

)
f0(zs+1)dzs+1

 11Zs∈Dsf
⊗s
0 (Zs)dZs .
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Since ∫
R2d

( ∏
1≤i≤s

11|xi−xs+1|>ε

)
f0(zs+1)dzs+1 ≥ ‖f0‖L1 − κdsεd|f0|L∞L1 ,

we deduce from the above, by nonnegativity of f⊗s0 and the fact that ‖f0‖L1 = 1 the lower bound

Zs+1 ≥ Zs
(
1− κdsεd|f0|L∞L1

)
,

implying by induction

ZN ≥ ZN−s
N−1∏
j=N−s

(1− jεdκd|f0|L∞L1) ≥ ZN−s
(
1− εκd|f0|L∞L1

)s
,

where we used s ≤ N and the scaling Nεd−1 ≡ 1. That proves the lemma.

6.1.3. Characterization of admissible Boltzmann initial data. — The aim of this paragaph

is to prove Proposition 6.1.1.

Let us start by proving the following statement, which provides examples of admissible Boltzmann

initial data, in terms of tensor products.

Proposition 6.1.2. — Given f0 satisfying (6.1.6), the data F0 = (f⊗s0 )s≥1 is admissible in the sense

of Definition 6.1.1.

Proof. — Let us define, with notation (6.1.7),

f
(N)
0,N := Z−1

N 11ZN∈DN f
⊗N
0 (ZN )

and let F0,N :=
(
f

(s)
0,N

)
s≤N be the set of its marginals. In a first step we prove they satisfy uniform

bounds as in (6.1.2). In a second step, we prove the local uniform convergence to zero of f
(s)
0,N − f

⊗s
0

in Ωs, as in (6.1.3).

First step. We have clearly

f
(s)
0,N (Zs) ≤ Z−1

N 11Zs∈Dsf
⊗s
0 (Zs)

∫
R2d(N−s)

∏
s+1≤i<j≤N

11|xi−xj |>ε
∏

s+1≤i≤N

f0(zi) dZ(s+1,N) ,

where we have used the notation

dZ(s+1,N) := dzs+1 . . . dzN .

This gives

f
(s)
0,N (Zs) ≤ Z−1

N ZN−s11Zs∈Dsf
⊗s
0 (Zs)

≤
(
1− εκd|f0|L∞L1

)−s
11Zs∈Dsf

⊗s
0 (Zs) ,

the second inequality by Lemma 6.1.2.

By 2x+ ln(1− x) ≥ 0 for x ∈ [0, 1/2], there holds

(6.1.8) (1− εκd|f0|L∞L1)−s ≤ e2sεκd|f0|L∞L1 , if 2εκd|f0|L∞L1 < 1 ,

so that for N larger than some N0 (equivalently, for ε small enough),

esµ
′
0

∣∣f (s)
0,N

∣∣
ε,s,β0

≤ es(µ
′
0+2εκd|f0|L∞L1 )

∣∣11Zs∈Dsf⊗s0 (Zs)
∣∣
ε,s,β0

≤
(
e2εκd|f0|L∞L1 |f0|0,1,β0

)s
.

Therefore, for any µ′0 < µ0 and for ε sufficiently small,

sup
N≥N1

‖F0,N‖ε,β0,µ′0
<∞ ,
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which of course implies the uniform bound sup
N≥1
‖F0,N‖ε,β0,µ′0

<∞.

Second step. We compute for s ≤ N :

f
(s)
0,N = Z−1

N 11Zs∈Dsf
⊗s
0

∫
R2d(N−s)

∏
s+1≤i<j≤N

11|xi−xj |>ε
∏
i≤s<j

11|xi−xj |>ε
∏

s+1≤i≤N

f0(zi) dZ(s+1,N) .

We deduce, by symmetry,

(6.1.9) f
(s)
0,N = Z−1

N 11Zs∈Dsf
⊗s
0

(
ZN−s −Z[(s+1,N)

)
with the notation

Z[(s+1,N) =

∫
R2d(N−s)

(
1−

∏
i≤s<j

11|xi−xj |>ε

) ∏
s+1≤i<j≤N

11|xi−xj |>ε
∏

s+1≤i≤N

f0(zi) dZ(s+1,N) ,

so that Z[(s+1,N) is a function of Xs.

From there, the difference 11Zs∈Dsf
⊗s
0 − f (s)

0,N decomposes as a sum:

(6.1.10) 11Zs∈Dsf
⊗s
0 − f (s)

0,N =
(

1−Z−1
N ZN−s

)
11Zs∈Dsf

⊗s
0 + Z−1

N Z
[
(s+1,N)11Zs∈Dsf

⊗s
0 .

By Lemma 6.1.2, there holds 1−Z−1
N ZN−s → 0 as N →∞, for fixed s. Since f⊗s0 is uniformly bounded

in Ωs, this implies that the first term in the right-hand side of (6.1.10) tends to 0 as N →∞, uniformly

in Ωs. Besides, by

0 ≤ 1−
∏
i≤s<j

11|xi−xj |>ε ≤
∑

1≤i≤s
s+1≤j≤N

11|xi−xj |<ε ,

we bound

Z[(s+1,N) ≤
∑

1≤k≤s

∫
R2d(N−s)

( ∑
s+1≤j≤N

11|xk−xj |<ε

) ∏
s+1≤i<j≤N

11|xi−xj |>ε
∏

s+1≤i≤N

f0(zi) dZ(s+1,N) .

Given 1 ≤ k ≤ s, there holds by symmetry and Fubini,∫
R2d(N−s)

( ∑
s+1≤j≤N

11|xk−xj |<ε

) ∏
s+1≤i<j≤N

11|xi−xj |>ε
∏

s+1≤i≤N

f0(zi) dZ(s+1,N)

≤ (N − s)
∫
R2d

11|xi−xs+1|<εf0(zs+1)dzs+1

×
∫
R2d(N−s−1)

∏
s+2≤i<j≤N

11|xk−xj |>ε
∏

s+2≤i≤N

f0(zi) dZ(s+2,N)

= (N − s)
∫
R2d

11|xi−xs+1|<εf0(zs+1)dzs+1 × ZN−s−1 ,

so that

(6.1.11) Z[(s+1,N) ≤ s(N − s)ε
dκd|f0|L∞L1ZN−s−1 ,

where |f0|L∞L1 denotes the L∞(Rd
x, L

1(Rd
v)) norm of f0. By Lemma 6.1.2, we obtain

Z−1
N Z

[
(s+1,N) ≤ εsκd|f0|L∞L1

(
1− εκd|f0|L∞L1

)−(s+1)
,

and the upper bound tends to 0 as N →∞, for fixed s. This implies convergence to 0, uniformly in Ωs,

of the second term in the right-hand side of (6.1.10).
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We thus proved the uniform convergence f
(s)
0,N − 11Zs∈Dsf

⊗s
0 → 0 in Ωs, and hence f⊗s0,N → f⊗s0 holds

locally uniformly in Ωs. We conclude that f
(s)
0,N converges locally uniformly to tensor products f⊗s0

in Ωs.

Proposition 6.1.2 is proved.

By Proposition 6.1.2, tensor products (f⊗s0 )s≥1, with f0 satisfying (6.1.6), are admissible Boltzmann

data. It is easy to generalize that result (see Proposition 6.1.4 below) to the convex hull of the set of

tensor products. We shall actually also show the converse: all admissible Boltzmann data belong to

the convex hull of tensor products, and that will enable us to deduce Proposition 6.1.1.

We first remark that given a Boltzmann datum F0, and an associated BBGKY datum F0,N , there

holds

(6.1.12) ‖F0‖0,β0,µ0
<∞ ,

with β0 and µ0 as in (6.1.2). Indeed, let C0 = sup
N≥1
‖F0,N‖ε,β0,µ0

<∞. Given s and Zs ∈ Ωs, for ε small

enough, 11Zs∈Ds = 1. Besides, by (6.1.4) there holds the pointwise convergence f
(s)
0,N (Zs) → f

(s)
0 (Zs).

Hence taking the limit ε → 0 in the left-hand side of the inequality esµ0+β0Eε(Zs)|f (s)
0,N (Zs)| ≤ C0, we

find (6.1.12).

The Hewitt-Savage theorem reveals the specific role played by tensor products: the set of families F0 =

(f
(s)
0 )s≥1 of marginals (6.1.1) satisfying the uniform bound (6.1.12) is the convex hull of tensorized

initial data, as described in the following statement. We define P = P(R2d) be the set of continuous

densities of probability in R2d :

(6.1.13) P :=
{
h ∈ C0(R2d; R) , h ≥ 0 ,

∫
R2d

h(z)dz = 1
}
.

Proposition 6.1.3. — Given F0 = (f
(s)
0 )s≥1 a family of marginals (6.1.1) satisfying the uniform

bound (6.1.12) with constants β0 > 0 and µ0 ∈ R, there exists a probability measure π over the set P,

with

(6.1.14) suppπ ⊂
{
g ∈ P, |g|0,1,β0

≤ e−µ0
}
,

such that the following representation holds:

(6.1.15) f
(s)
0 =

∫
P
g⊗sdπ(g) , s ≥ 1 .

Proof. — Given a family F0 satisfying (6.1.1) and (6.1.12), the existence of π satisfying (6.1.15) is

granted by the Hewitt-Savage theorem [26]. The goal is then to prove the inclusion (6.1.14). Assume

by contradiction that, for some α > 0,

(6.1.16) π(Aα) = κα > 0 , where Aα :=
{
g ∈ P(R2d), |g|0,1,β0 ≥ e−µ0 + α

}
.

We then have by (6.1.15)

f
(s)
0 ≥

∫
Aα

g⊗sdπ(g),

hence by f
(s)
0 ≤ e−sµ0‖F0‖0,β0,µ0

, we infer that ‖F0‖0,β0,µ0
≥ κα(1 + αeµ0)s, which cannot hold for

some α > 0 and all s, since 1 + αeµ0 > 1. Hence (6.1.16) does not hold, which proves the result.
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We now give the generalization of Proposition 6.1.2 that will be useful in the proof of Proposition 6.1.1.

Let π be a probability measure on P satisfying (6.1.14) for some β0 > 0 and some µ0 ∈ R. Next we

define

(6.1.17) π(s) :=

∫
P
h⊗sdπ(h) .

In the case when π = δf0 , then (6.1.17) reduces to the tensor product (6.1.5)-(6.1.6).

In the general case, we define

(6.1.18)

ZN (h) :=

∫
R2dN

11ZN∈DNh
⊗N (ZN ) dZN , h ∈ P ,

π
(N)
N :=

∫
P

1

ZN (h)
h⊗Ndπ(h) .

generalizing (6.1.7).

The following result is an obvious generalization of Lemma 6.1.2.

Lemma 6.1.3. — Given π satisfying (6.1.14) and h ∈ suppπ, the family of partition functions Zs
defined in (6.1.18) satisfies for 1 ≤ s ≤ N the bound

1 ≤ ZN (h)−1ZN−s(h) ≤
(
1− εCde−µ0β

−1/2
0

)−s
,

where Cd depends only on d.

The next statement generalizes Proposition 6.1.2. Its proof is an immediate extension of the

proof of Proposition 6.1.2 thanks to the dominated convergence theorem, using the obvious

bound 11Zs∈Dsh
⊗s(Zs) ≤ e−sµ0 .

Proposition 6.1.4. — Given π satisfying (6.1.14), the data (π(s))s≥1, with π(s) defined in (6.1.17),

is admissible in the sense of Definition 6.1.1.

It is obtained for instance from the BBGKY data (π
(s)
N )s≤N defined by (6.1.18).

Proof of Proposition 6.1.1. — We already observed in (6.1.12) that admissible Boltzmann data are

bounded families of marginals. Conversely, given a bounded family of marginals F0, by Proposi-

tion 6.1.3 representation (6.1.15) holds. Then, by Proposition 6.1.4, F0 is an admissible Boltzmann

datum. This proves Proposition 6.1.1.

Combining Propositions 6.1.1 and 6.1.3, we see that all admissible Boltzmann data are built on tensor

products, in the sense that given an admissible Boltzmann datum, representation (6.1.15) holds for

some π satisfying (6.1.14).

6.2. Main result: Convergence of the BBGKY hierarchy to the Boltzmann hierarchy

6.2.1. Statement of the result. —

Our main result is a weak convergence result, in the sense of convergence of observables, or averages

with respect to the momentum variables. Moreover, since the marginals are defined in Ds, we must

also eliminate, in the convergence, the diagonals in physical space. Let us give a precise definition of

the convergence we shall be considering.
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Definition 6.2.1 (Convergence). — Given a sequence (hsN )1≤s≤N of functions hsN ∈ C0(Ds; R),

a sequence (hs)s≥1 of functions hs ∈ L∞(Ωs; R), we say that (hsN ) converges on average and locally

uniformly outside the diagonals to (hs), and we denote

(hsN )1≤s≤N
∼−→ (hs)1≤s ,

when for any fixed s, any test function ϕs ∈ C0
c (Rds; R), there holds

Iϕs
(
hsN − hs

)(
Xs) :=

∫
Rds

ϕs(Vs)
(
hsN − hs

)
(Zs)dVs −→ 0 , as N →∞ ,

in L∞loc
({
Xs ∈ Rds, xi 6= xj for i 6= j

}
.
)

With regard to spatial variables, this notion of convergence is similar to the convergence in the sense

of Chacon.

We remark that local uniform convergence in Ωs implies convergence in the sense of Definition 6.2.1:

Lemma 6.2.2. — Given (f
(s)
N )1≤s≤N a bounded sequence in Xε,β,µ with the notation of Defini-

tion 5.2.2, if f
(s)
N → f (s) for fixed s, uniformly in t ∈ [0, T ] and locally uniformly in Ωs, then there

holds f
(s)
N

∼−→ f (s), uniformly in t ∈ [0, T ].

Proof. — Let Ks be compact in
{
Xs ∈ Rds, xi 6= xj for i 6= j

}
. There holds∣∣Iϕs(f (s)

N − f
(s)
)
(Xs)

∣∣ ≤ ‖ϕs‖L1(Rd)supessVs∈suppϕs

∣∣(f (s)
N − f

(s)
)
(Xs, Vs)

∣∣ .
The set Ks × suppϕs is compact in Ωs. Hence the above upper bound converges to 0 as N → ∞, in

the space C([0, T ], L∞(Ks)).

We can now state our main result.

Theorem 8 (Convergence). — Let β0 > 0 and µ0 ∈ R be given. There is a time T > 0 such that

the following holds. Let F0 in X0,β0,µ0
be an admissible Boltzmann datum, with associated family of

BBGKY datum (F0,N )N≥1, in Xε,β0,µ0 . Let F and FN be the solutions to the Boltzmann and BBGKY

hierarchy produced by F0 and F0,N respectively. There holds

(6.2.1) FN
∼−→ F ,

uniformly on [0, T ],.

In particular, if F0 = (f⊗s0 )s≥1, then the first marginal f
(1)
N converges to the solution f of the Boltzmann

equation (2.1.1) with initial data f0.

Finally in the case when F0 = (f⊗s0 )s≥1 with f0 Lipschitz, then the convergence (6.2.1) holds at a

rate O(εα) for any α < (d− 1)/(d+ 1).

Solutions to the Boltzmann hierarchy issued from tensorized initial data are themselves tensorized. For

such data, the Boltzmann hierarchy then reduces to the nonlinear Boltzmann equation (2.1.1), and

Theorem 8 describes an asymptotic form of propagation of chaos, in the sense that an initial property

of independence is propagated in time, in the limit. This corresponds to Theorem 5 stated in the

Introduction page 17.
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6.2.2. About the proof of Theorem 8: outline of Chapter 7 and Part IV. —

The formal derivation presented in Chapter 4, Section 4.4, fails because of a number of incorrect

arguments:

– Since mild solutions to the BBGKY hierarchy are defined by the Duhamel formula (4.3.6) where

the solution itself occurs in the source term, we need some precise information on the convergence

to take limits directly in (4.3.6).

– The irreversibility inherent to the Boltzmann hierarchy appears in the limiting process as an

arbitrary choice of the time direction (encoded in the distinction between pre-collisional and

post-collisional particles), and more precisely as an arbitrary choice of the initial time, which is

the only time for which one has a complete information on the family of marginals F0,N . This

specificity of the initial time does not appear clearly in (4.3.6).

– The heuristic argument which allows to neglect pathological trajectories, meaning trajectories for

which the reduced dynamics with s-particles does not coincide with the free transport (Ts 6= Ss),

requires to be quantified. Indeed we have more or less to repeat the operation infinitely many

times, since mild solutions are defined by a loop process; moreover, the question of the stability

with respect to micro-translations in space must be analyzed.

– Because of the conditioning, the initial data are not so smooth. The operations such as infinites-

imal translations on the arguments require therefore a careful treatment.

To overcome the two first difficulties, the idea is to start from the iterated Duhamel formula, which

allows to express any marginal f
(s)
N (t, Zs) in terms of the initial data F0,N . By successive integrations

in time, we have indeed the following representation of f
(s)
N :

(6.2.1)
f

(s)
N (t) =

∞∑
k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)f
(s+k)
N (0) dtk . . . dt1

where by convention f
(j)
N (0) ≡ 0 for j > N .

Using a dominated convergence argument, we shall first reduce (in Chapter 7) to the study of a

functional

– defined as a finite sum of terms (independent of N),

– where the energies of the particles are assumed to be bounded (namely E0(Zs+k) ≤ R2),

– and where the collision times are supposed to be well separated (namely |tj − tj+1| ≥ δ).

The reason for the two last assumptions is essentially technical, and will appear more clearly in the

next step.

The heart of the proof, in Part IV, is then to prove the term by term convergence, dealing with

pathological trajectories. Let us recall that each collision term is defined as an integral with respect

to positions and velocities. The main idea consists then in proving that we cannot build pathological

trajectories if we exclude at each step a small domain of integration. The explicit construction of this

“bad set” lies on



6.2. MAIN RESULT: CONVERGENCE OF THE BBGKY HIERARCHY TO THE BOLTZMANN HIERARCHY 53

– a very simple geometrical lemma which ensures that two particles of size ε have not collided

in the past provided that their relative velocity does not belong to a small subset of Rd (see

Lemma 12.2.1),

– scattering estimates which tell us how these properties of the transport are modified when a

particle is deviated by a collision (see Lemma 12.2.3).

This construction, which is the technical part of the proof, will be detailed in Chapter 12. The

conclusion of the convergence proof is presented in Chapters 13 and14.





CHAPTER 7

STRATEGY OF THE CONVERGENCE PROOF

The goal of this chapter is to use dominated convergence arguments to reduce the proof of Theorem 8

stated page 51 to the term-by-term convergence of some functionals involving a finite (uniformly

bounded) number of marginals (Section 7.1). In order to further simplify the convergence analysis, we

shall modify these functionals by eliminating some small domains of integration in the time and velocity

variables corresponding to pathological dynamics, namely by removing large energies in Section 7.2

and clusters of collision times in Section 7.3.

We consider therefore families of initial data: Boltzmann initial data F0 = (f
(s)
0 )s∈N ∈ X0,β0,µ0

and

for each N , BBGKY initial data FN,0 = (f
(s)
N,0)1≤s≤N ∈ Xε,β0,µ0

such that

sup
N
‖FN,0‖ε,β0,µ0

= sup
N

sup
s≤N

sup
Zs∈Ds

(
exp(β0E0(Zs) + µ0s)f

(s)
N,0(Zs)

)
< +∞ .

We then associate the respective unique mild solutions of the hierarchies

f (s)(t) = Ss(t)f
(s)
0 +

∫ t

0

Ss(t− τ)C0
s,s+1f

(s+1)(τ) dτ

and

f
(s)
N (t) = Ts(t)f

(s)
N,0 +

∫ t

0

Ts(t− τ)Cs,s+1f
(s+1)
N (τ) dτ .

In terms of the initial datum, they can be rewritten

f (s)(t, Zs) =

∞∑
k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ss(t− t1)C0
s,s+1Ss+1(t1 − t2)C0

s+1,s+2 . . .

. . .Ss+k(tk)f
(s+k)
0 dtk . . . dt1

and

f
(s)
N (t, Zs) =

∞∑
k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)f
(s+k)
N,0 dtk . . . dt1 .

The observables we are interested in (recall the definition of convergence provided in Definition 6.2.1)

are the following:

Is(t)(Xs) :=

∫
ϕs(Vs)f

(s)
N (t, Zs)dVs and I0

s (t)(Xs) :=

∫
ϕs(Vs)f

(s)(t, Zs)dVs ,

and they therefore involve infinite sums, as there may be infinitely many particles involved (the sum

over n is unbounded).
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7.1. Reduction to a finite number of collision times

Due to the uniform bounds derived in Chapter 5, the dominated convergence theorem implies that it

is enough to consider finite sums of elementary functions

(7.1.1)

f
(s,k)
N (t) :=

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)f
(s+k)
N,0 dtk . . . dt1

f (s,k)(t) :=

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

Ss(t− t1)Cs,s+1Ss+1(t1 − t2)Cs+1,s+2 . . .

. . .Ss+k(tk)f
(s+k)
0 dtk . . . dt1 ,

and the associate elementary observables :

(7.1.2) Is,k(t)(Xs) :=

∫
ϕs(Vs)f

(s,k)
N (t, Zs)dVs , and I0

s,k(t)(Xs) :=

∫
ϕs(Vs)f

(s,k)(t, Zs)dVs ,

and therefore to study the term-by-term convergence (for any fixed k), as expressed by the following

statement.

Proposition 7.1.1. — Fix β0 > 0 and µ0 ∈ R. With the notation of Theorems 6 and 7 page 39, for

each given s ∈ N∗ and t ∈ [0, T ] there is a constant C > 0 such that for each n ∈ N∗,∥∥Is(t)− n∑
k=0

Is,k(t)
∥∥
L∞(Rds)

≤ C‖ϕs‖L∞(Rds)

(
1

2

)n
‖FN,0‖ε,β0,µ0

and ∥∥I0
s (t)−

n∑
k=0

I0
s,k(t)

∥∥
L∞(Rds)

≤ C‖ϕs‖L∞(Rds)

(
1

2

)n
‖F0‖0,β0,µ0

,

uniformly in N and t ≤ T , in the Boltzmann-Grad scaling Nεd−1 ≡ 1.

Proof. — We use the notation of Chapter 5. Using the continuity estimate (5.3.3) we have

(7.1.3) sup
t∈[0,T ]

∥∥∥∫ t

0

T(−t′)CNT(t′)GN (t′) dt′
∥∥∥
ε,β(t),µ(t)

≤ 1

2
‖|GN‖|ε,β,µ .

Recalling the definition of the Hamiltonian

E0(Zs) :=
∑

1≤i≤s

|vi|2

2

we then deduce that

(7.1.4)

eβ(t)E0(Zs)+sµ(t)
∥∥∥ ∞∑
k=n+1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)f
(s+k)
N,0 dtk . . . dt1

∥∥∥
L∞
≤ C

(
1

2

)n
‖|FN‖|ε,β,µ .

Combining this estimate together with the uniform bound on ‖|FN‖|ε,β,µ given in Theorem 6 leads to

the first statement in Proposition 7.1.1. The second statement is established exactly in an analogous

way, using estimate (5.3.4) together with the uniform bound obtained in Theorem 7.
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7.2. Energy truncation

We introduce a parameter R > 0 and define

(7.2.1)

f
(s,k)
N,R (t) :=

n∑
k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2 . . .

. . .Ts+k(tk)11E0(Zs+k)≤R2f
(s+k)
N,0 dtk . . . dt1 ,

f
(s,k)
R (t) :=

n∑
k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ss(t− t1)C0
s,s+1Ss+1(t1 − t2)C0

s+1,s+2 . . .

. . .Ss+k(tk)11E0(Zs+k)≤R2f
(s+k)
0 dtk . . . dt1

and the corresponding observables

(7.2.2) IRs,k(t)(Xs) :=

∫
ϕs(Vs)f

(s,k)
N,R (t, Zs)dVs and I0,R

s,k (t)(Xs) :=

∫
ϕs(Vs)f

(s,k)
R dVs .

Using the bounds derived in Chapter 5 we find easily that
∑
k

(Is,k − IRs,k)(t) and
∑
k

(I0
s,k − I

0,R
s,k )(t)

can be made arbitrarily small when R is large. More precisely the following result holds.

Proposition 7.2.1. — Fix β0 > 0 and µ0 ∈ R. Let s ∈ N∗ and t ∈ [0, T ] be given. There are two

nonnegative constants C,C ′ such that for each n,∥∥ n∑
k=0

(Is,k − IRs,k)(t)
∥∥
L∞(Rds)

≤ C‖ϕs‖L∞(Rds)e
−C′β0R

2

‖FN,0‖ε,β0,µ0
,

and ∥∥ n∑
k=0

(I0
s,k − I

0,R
s,k )(t)

∥∥
L∞(Rds)

≤ C‖ϕs‖L∞(Rds)e
−C′β0R

2

‖F0‖0,β0,µ0
.

Proof. — Let 0 < β′0 < β0 be given, and define the associate functions β′ and β as in Theorem 6

stated in Chapter 5. Choose β′0 < β0 so that

Cd(1 + (β′0 − λT )−
1
2

)
e−µ0+λT (β′0 − λT )−

d
2 =

2λ

3
.

(to be compared with (5.4.10) for β0).

Then according to the results of Chapter 5 and similarly to (7.1.4) we know that∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Ts(t− t1)Cs,s+1Ts+1(t1 − t2) . . .Ts+k(tk)11E0(Zs+k)≥R2f
(s+k)
N,0 dtk . . . dt1

≤ C
(

3

2

)−k
e−β

′(T )E0(Zs)−sµ0(T )‖GN,0,s‖ε,β′0,µ0
,

where we have defined

GN,0,s := (gs+kN,0 )0≤k≤N−s , with gs+kN,0 (Zs+k) := 11E0(Zs+k)≥R2 f
(s+k)
N,0 (Zs+k) .

The result then follows from the fact that

‖GN,0,s‖ε,β′0,µ0
≤ Ce(β′0−β0)R2

‖FN,0‖ε,β0,µ0 .

The argument is identical for I0
s,n(t)− I0,R

s,n (t).
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Remark 7.2.1. — It is useful to notice that the collision operators preserve the bound on high ener-

gies, in the sense that

Cs,s+111E0(Zs+1)≤R2 ≡ 11E0(Zs)≤R2 Cs,s+111E0(Zs+1)≤R2

C0
s,s+111E(Zs+1)≤R2 ≡ 11E(Zs)≤R2 C0

s,s+111E(Zs+1)≤R2 .

7.3. Time separation

We choose another small parameter δ > 0 and further restrict the study to the case when ti− ti+1 ≥ δ.
That is, we define

Tk(t) :=
{
Tk = (t1, . . . , tk) / ti < ti−1 with tk+1 = 0 and t0 = t

}
,

Tk,δ(t) :=
{
Tk ∈ Tk(t) / ti − ti+1 ≥ δ

}
,

and

(7.3.1)

IR,δs,k (t)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Ts(t− t1)Cs,s+1Ts+1(t1 − t2)Cs+1,s+2

. . . Cs+k−1,s+kTs+k(tk − tk+1)11E0(Zs+k)≤R2f
(s+k)
N,0 dTkdVs ,

I0,R,δ
s,k (t)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Ss(t− t1)C0
s,s+1Ss+1(t1 − t2)C0

s+1,s+2

. . . C0
s+k−1,s+kSs+k(tk − tk+1)11E0(Zs+k)≤R2f

(s+k)
0 dTkdVs .

Again applying the continuity bounds for the transport and collision operators, the error on the

functions
∑
k

(IRs,k − I
R,δ
s,k )(t) and

∑
k

(I0,R
s,k − I

0,R,δ
s,k )(t) can be estimated as follows.

Proposition 7.3.1. — Let s ∈ N∗ and t ∈ [0, T ] be given. There is a constant C such that for each n

and R, ∥∥ n∑
k=0

(IRs,k − I
R,δ
s,k )(t)

∥∥
L∞(Rds)

≤ Cn2 δ

T
‖ϕ‖L∞(Rds)‖FN,0‖ε,β0,µ0

and ∥∥ n∑
k=0

(I0,R
s,k − I

0,R,δ
s,k )(t)

∥∥
L∞(Rds)

≤ Cδn2 δ

T
‖ϕ‖L∞(Rds)‖F0‖0,β0,µ0

.

7.4. Reformulation in terms of pseudo-trajectories

Putting together Propositions 7.1.1, 7.2.1 and 7.3.1 we obtain the following result.

Corollary 7.4.1. — With the notation of Theorem 9, given s ∈ N∗ and t ∈ [0, T ], there are two

positive constants C and C ′ such that for each n ∈ N∗,∥∥Is(t)− n∑
k=0

IR,δs,k (t)
∥∥
L∞(Rds)

≤ C(2−n + e−C
′β0R

2

+ n2 δ

T
δ)‖ϕ‖L∞(Rds)‖FN,0‖ε,β0,µ0 .
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In the same way as in (4.3.4) we now decompose the Boltzmann collision operators (4.4.3) into

C0
s,s+1 = C0,+

s,s+1 − C
0,−
s,s+1 ,

where the index + corresponding to post-collisional configurations and the index − to pre-collisional

configurations. By definition of the collision cross-section for hard spheres, we have(
C0,−,m
s,s+1 f

(s+1)
)
(Zs) :=

∫
Sd−1

1 ×Rd

b(vs+1 − vm, ω)f (s+1)(Zs, xm, vs+1) dωdvs+1

=

∫
Sd−1

1 ×Rd

((vs+1 − vm) · ω)−f
(s+1)(Zs, xm, vs+1) dωdvs+1 and

(
C0,+,m
s,s+1 f

(s+1)
)
(Zs) :=

∫
Sd−1

1 ×Rd

b(vs+1 − vm, ω)f (s+1)(z1, . . . , xm, v
∗
m, . . . , zs, xm, v

∗
s+1) dωdvs+1

=

∫
Sd−1

1 ×Rd

((vs+1 − vm) · ω)+f
(s+1)(z1, . . . , xm, v

∗
m, . . . , zs, xm, v

∗
s+1) dωdvs+1 .

The elementary BBGKY and Boltzmann observables we are interested in can therefore be decomposed

as

(7.4.1)

IR,δs,k (t)(Xs) =
∑
J,M

( k∏
i=1

ji

)
IR,δs,k (t, J,M)(Xs) and

I0,R,δ
s,k (t)(Xs) =

∑
J,M

I0,R,δ
s,k (t, J,M)(Xs)

where the elementary functionals IR,δs,k (t, J,M) are defined by

(7.4.2)

IR,δs,k (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Ts(t− t1)Cj1,m1

s,s+1 Ts+1(t1 − t2)Cj2,m2

s+1,s+2

. . .Ts+k(tk − tk+1)11E0(Zs+k)≤R2f
(s+k)
N,0 dTkdVs ,

I0,R,δ
s,k (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Ss(t− t1)C0,j1,m1

s,s+1 Ss+1(t1 − t2)C0,j2,m2

s+1,s+2

. . .Ss+k(tk − tk+1)11E0(Zs+k)≤R2f
(s+k)
0 dTkdVs ,

with

J := (j1, . . . , jk) ∈ {+,−}k and M := (m1, . . . ,mk) with mi ∈ {1, . . . , s+ i− 1} .

Each one of the functionals IR,δs,k (t, J,M) and I0,R,δ
s,k (t, J,M) defined in (7.4.2) can be viewed as the

observable associated with some dynamics, which of course is not the actual dynamics in physical space

since

– the total number of particles is not conserved;

– the distribution does even not remain nonnegative because of the sign of loss collision operators.

This explains the terminology of “pseudo-trajectories” we choose to describe the process.

In this formulation, the characteristics associated with the operators Ts+i(ti−ti+1) and Ss+i(ti−ti+1)

are followed backwards in time between two consecutive times ti and ti+1, and collision terms (associated

with Cs+i,s+i+1 and C0
s+i,s+i+1) are seen as source terms, in which, in the words of Lanford [34],

“additional particles” are “adjoined” to the marginal.
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The main heuristic idea is that for the BBGKY hierarchy, in the time interval [ti+1, ti] between two

collisions Cs+i−1,s+i and Cs+i,s+i+1, the particles should not interact in general so trajectories should

correspond to the free flow Ss+i. On the other hand at a collision time ti, the velocities of the two

particles in interaction are liable to change. This is depicted in Figure 3.

Figure 3. Pseudo-trajectories

At this stage however, we still cannot study directly the convergence of IR,δs,k (t, J,M)− I0,R,δ
s,k (t, J,M)

since the transport operators Tk do not coincide everywhere with the free transport operators Sk,

which means – in terms of pseudo-trajectories – that there are recollisions. We shall thus prove that

these recollisions arise only for a few pathological pseudo-trajectories, which can be eliminated by

additional truncations of the domains of integration. This is the goal of Part IV.



PART III

THE CASE OF SHORT RANGE POTENTIALS





CHAPTER 8

TWO-PARTICLE INTERACTIONS

In the case when the microscopic interaction between particles is governed by a short-range repulsive

potential, collisions are no more instantaneous and pointwise, and they possibly involve more than two

particles. Our analysis in Chapter 11 shows however that the low density limit Nεd−1 ≡ 0 requires

only a description of two-particle interactions, at the exclusion of more complicated interactions.

In this chapter we therefore study precisely, following the lines of [13], the Hamiltonian system (1.2.1)

for N = 2. The study of the reduced motion is carried out in Section 8.1, while the scattering map is

introduced in Section 8.2, and the cross-section, which will play in important role in the Boltzmann

hierarchy, is described in Section 8.3.

8.1. Reduced motion

We first define a notion of pre- and post-collisional particles, by analogy with the dynamics of hard

spheres.

Definition 8.1.1. — Two particles z1, z2 are said to be pre-collisional if their distance is ε and de-

creasing:

|x1 − x2| = ε , (v1 − v2) · (x1 − x2) < 0 .

Two particles z1, z2 are said to be post-collisional if their distance is ε and increasing:

|x1 − x2| = ε , (v1 − v2) · (x1 − x2) > 0 .

We consider here only two-particle systems, and show in Lemma 8.1.2 that, if z1 and z2 are pre-

collisional at time t−, then there exists a post-collisional configuration z′1, z
′
2, attained at t+ > t−.

Since ∇Φ(x/ε) vanishes on {|x| ≥ ε}, the particles z1 and z2 travel at constant velocities v′1 and v′2 for

ulterior (t > t+) times.

Momentarily changing back the macroscopic scales of (1.2.1) to the microscopic scales of (1.0.3) by

defining τ := (t − t−)/ε and y(τ) := x(τ)/ε, w(τ) = v(τ), we find that the two-particle dynamics is

governed by the equations

(8.1.1)


dy1

dτ
= w1 ,

dy2

dτ
= w2 ,

dw1

dτ
= −∇Φ (y1 − y2) = −dw2

dτ
,
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whence the conservations

(8.1.2)
d

dτ
(w1 + w2) = 0 ,

d

dτ

(
1

4
(w1 + w2)2 +

1

4
(w1 − w2)2 + Φ(y1 − y2)

)
= 0 .

From (8.1.2) we also deduce that the center of mass has a uniform, rectilinear motion:

(8.1.3) (y1 + y2)(τ) = (y1 + y2)(0) + τ(w1 + w2) ,

and that pre- and post-collisional velocities are linked by the classical relations

(8.1.4) w′1 + w′2 = w1 + w2, |w′1|2 + |w′2|2 = |w1|2 + |w2|2 .

A consequence of (8.1.1) is that (δy, δw) := (y1 − y2, w1 − w2) solves

(8.1.5)
d

dτ
δy = δw ,

d

dτ
δw = −2∇Φ(δy) .

In the following we denote by φt : R2d → R2d the flow of (8.1.5).

We notice that, Φ being radial, there holds

d

dτ
(δy ∧ δw) = δw ∧ δw − 2δy ∧∇Φ(δy) = 0 ,

implying that, if the initial angular momentum δy0 ∧ δw0 is non-zero, then δy remains for all times

in the hyperplane orthogonal to δy0 ∧ δw0. In this hyperplane, introducing polar coordinates (ρ, ϕ)

in R+ × S1
1, such that

δy = ρeρ and δw = ρ̇eρ + ρϕ̇eϕ

the conservations of energy and angular momentum take the form

1

2
(ρ̇2 + (ρϕ̇)2) + 2Φ(ρ) =

1

2
|δw0|2 ,

ρ2|ϕ̇| = |δy0 ∧ δw0| ,

implying ρ > 0 for all times, and

(8.1.6) ρ̇2 + Ψ(ρ, E0,J0) = E0 , Ψ :=
E0J 2

0

ρ2
+ 4Φ(ρ) ,

where we have defined

(8.1.7) E0 := |δw0|2 and J0 := |δy0 ∧ δw0|/|δw0| =: sinα ,

which are respectively (twice) the energy and the impact parameter, π−α being the angle between δw0

and δy0 (notice that α ≥ π/2 for pre-collisional situations). In the limit case when α = 0, the movement

is confined to a line since ϕ̇ ≡ 0.

We consider the sets corresponding to pre- and post-collisional configurations:

(8.1.8) S± :=
{

(δy, δw) ∈ Sd−1
1 ×Rd

/
± δy · δw > 0

}
.

In polar coordinates pre-collisional configurations correspond to ρ = 1 and ρ̇ < 0 while post-collisional

configurations correspond to ρ = 1 and ρ̇ > 0.

Lemma 8.1.2 (Description of the reduced motion). — For the differential equation (8.1.5)

with pre-collisional datum (δy0, δw0) ∈ S−, there holds |δy(τ)| ≥ ρ∗ for all τ ≥ 0, with the notation

(8.1.9) ρ∗ = ρ∗(E0,J0) := max
{
ρ ∈ (0, 1)

/
Ψ(ρ, E0,J0) = E0

}
,



8.1. REDUCED MOTION 65

and for τ∗ defined by

(8.1.10) τ∗ := 2

∫ 1

ρ∗

(E0 −Ψ(ρ, E0,J0))
−1/2

dρ ,

the configuration is post-collisional (ρ = 1, ρ̇ > 0) at τ = τ∗.

Proof. — Solutions to (8.1.6) satisfy ρ̇ = ι(ρ)
(
E0 − Ψ(ρ)

)1/2
, with ι(ρ) = ±1, possibly changing

values only on {Ψ = E0}, by Darboux’s theorem (a derivative function satisfies the intermediate value

theorem). The initial configuration being pre-collisional, there holds initially ι = −1, corresponding

to a decreasing radius. The existence of ρ∗ satisfying (8.1.9) is then easily checked: we have |δy0| = 1

and δy0 · δw0 6= 0, so there holds Ψ(1, E0,J0) < E0, and Ψ is increasing as ρ is decreasing. The set

{τ ≥ 0, ρ(τ) ≥ ρ∗} is closed by continuity. It is also open: since Φ is nonincreasing, then ∂ρΨ 6= 0

everywhere and in particular at (ρ∗, E0,J0). So E0 − Ψ changes sign at ρ∗, which forces, by (8.1.6),

the sign function ι to jump from − to + as ρ reaches the value ρ∗ from above. This proves ρ ≥ ρ∗ by

connexity. The minimal radius ρ = ρ∗ is attained at τ∗/2, where τ∗ is defined by (8.1.10), the integral

being finite since ∂ρΨ does not vanish. Assume finally that for all τ > 0, there holds ρ(τ) < 1. Then

on [τ∗/2,+∞), ρ is increasing and bounded, hence converges to a limit radius, which contradicts the

definition of ρ∗. This proves ρ = 1 at τ = τ∗, a time at which ρ̇ > 0, since ι has jumped exactly once,

by definition of ρ∗.

ω	


δy	


δy’	

apse	  line	  

*	  

δw	


δw’	


ρ	

θ	


α	


Figure 4. Reduced dynamics

The reduced dynamics is pictured on Figure 4, where the half-deflection angle θ is the integral of the

angle ϕ as a function of ρ over [ρ∗, 1] :

(8.1.11) θ =

∫ 1

ρ∗

E1/2
0 I0

ρ2
(E0 −Ψ(ρ, E0, I0))

−1/2
dρ ,

With the initialization choice ϕ0 = 0, the post-collisional configuration is (ρ, ϕ)(τ∗) = (1, 2θ); it can

be deduced from the pre-collisional configuration by symmetry with respect to the apse line, which by

definition is the line through the origin and the point of closest approach (δy(τ∗/2), δw(τ∗/2)). The

direction of this line is denoted ω ∈ Sd−1
1 .
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8.2. Scattering map

We shall now define a microscopic scattering map that sends pre- to post-collisional configurations:

(δy0, δw0) ∈ S− 7→ (δy(τ∗), δw(τ∗)) = φτ∗(δy0, δw0) ∈ S+ .

By uniqueness of the trajectory of (8.1.5) issued from (δy0, δw0) (a consequence of the regularity

assumption on the potential, via the Cauchy-Lipschitz theorem), the scattering is one-to-one. It is also

clearly onto.

Back in the macroscopic variables, we now define a corresponding scattering operator for the two-

particle dynamics. In this view, we introduce the sets

S±ε :=
{

(z1, z2) ∈ R4d
/
|x1 − x2| = ε , ±(x1 − x2) · (v1 − v2) > 0

}
.

We define, as in (8.1.7),

(8.2.1) E0 = |v1 − v2|2 and J0 :=
|(x1 − x2) ∧ (v1 − v2)|

ε|v1 − v2|
=: sinα .

Definition 8.2.1 (Scattering operator). — The scattering operator is defined as

σε : (x1, v1, x2, v2) ∈ S−ε 7→ (x′1, v
′
1, x
′
2, v
′
2) ∈ S+

ε ,

where

(8.2.2)

x′1 :=
1

2
(x1 + x2) +

ετ∗
2

(v1 + v2) +
ε

2
δy(τ∗) = −x1 + ω · (x1 − x2)ω +

ετ∗
2

(v1 + v2) ,

x′2 :=
1

2
(x1 + x2) +

ετ∗
2

(v1 + v2)− ε

2
δy(τ∗) = −x2 − ω · (x1 − x2)ω +

ετ∗
2

(v1 + v2) ,

v′1 :=
1

2
(v1 + v2) +

1

2
δw(τ∗) = v1 − ω · (v1 − v2) ω ,

v′2 :=
1

2
(v1 + v2)− 1

2
δw(τ∗) = v2 + ω · (v1 − v2) ω ,

where τ∗ is the microscopic interaction time, as defined in Lemma 8.1.2, (δy(τ∗), δw(τ∗)) is the micro-

scopic post-collisional configuration: (δy(τ∗), δw(τ∗)) = φτ∗((x1−x2)/ε, v1−v2), and ω is the direction

of the apse line. Denoting by ν := (x1 − x2)/|x1 − x2| we also define

σ0(ν, v1, v2) := (ν′, v′1, v
′
2) .

The above description of (x′1, v
′
1) and (x′2, v

′
2) in terms of ω is deduced from the identities

δv(τ∗) = δv0 − 2ω · δv0 ω and δy(τ∗) = −δy0 + 2ω · δy0 ω

in the reduced microscopic coordinates.

By ∂ρΨ 6= 0 in (0, 1) and the implicit function theorem, the map (E ,J )→ ρ∗(E ,J ) is C2 just like Ψ.

Similarly, τ∗ ∈ C2. By Definition 8.2.1 and C1 regularity of ∇Φ (Assumption 1.2.1), this implies that

the scattering operator σε is C1, just like the flow map φ of the two-particle scattering. The scattering

σε is also bijective, for the same reason that the microsopic scattering is bijective.

Proposition 8.2.1. — Let R > 0 be given and consider

S±ε,R :=
{

(z1, z2) ∈ R4d
/
|x1 − x2| = ε , |(v1, v2)| = R , ± (v1 − v2) · (x1 − x2) > 0

}
.

The scattering operator σε is a bijection from S−ε,R to S+
ε,R.
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The macroscopic time of interaction ετ∗, where τ∗ is defined in (8.1.10), is uniformly bounded on

compact sets of R+ \ {0} × [0, 1], as a function of E0 and J0.

Proof. — We already know that σε is a bijection from S−ε to S+
ε . By (8.1.4), it also preserves the

velocity bound. Hence σε is bijective S−ε,R → S
+
ε,R. Now given E0 > 0 and J0 ∈ [0, 1], we shall show

that τ∗ can be bounded by a constant depending only on E0. Since Φ(ρ∗) ≤ E0/4, then ρ∗ ≥ Φ−1(E0/4).

Let us then define i0 ∈ (0, 1) by

i0 :=
1

2
√

2
Φ−1

(E0
4

)
,

so that ρ2
∗ ≥ 8i20.

On the one hand it is easy to see, after a change of variable in the integral, using

d

dρ
(E0 −Ψ(E0,J0, ρ)) =

2E0J 2
0

ρ3
− 4Φ′(ρ) ≥ 2E0J 2

0

ρ3
≥ 2E0J 2

0 ,

that there holds the bound

τ∗ ≤
1

E0J 2
0

∫ E0(1−J 2
0 )

0

dy
√
y
≤ 2

√
1− J 2

0

J 2
0

√
E0
·

− So if J0 ≥ i0, we find that

τ∗ ≤
2√
E0i20

=
16

√
E0
(
Φ−1

(E0
4

))2 ·
− On the other hand for J0 ≤ i0 we define γ := Φ−1(E0/8) and we cut the integral defining τ∗ into

two parts:

τ∗ = τ
(1)
∗ + τ

(2)
∗ with τ

(1)
∗ = 2

∫ γ

ρ∗

(E0 −Ψ(E0,J0, ρ))
−1/2

dρ .

Notice that since ρ2
∗ ≥ 8i20 and J0 ≤ i0, then E0/4− E0J 2

0 /4ρ
2
∗ ≥ 7E0/32 ≥ E0/8 so

ρ∗ = Φ−1
(E0

4
− E0J

2
0

4ρ2
∗

)
≤ Φ−1

(E0
8

)
= γ .

The first integral τ
(1)
∗ is estimated using the fact that Φ′ does not vanish outside 1 as stated in

Assumption 1.2.1: defining

M(Φ) := inf
i0≤ρ≤γ

|Φ′(ρ)| > 0 ,

we find that on [i0, γ],

d

dρ
(E0 −Ψ(E0,J0, ρ)) =

2E0J 2
0

ρ3
− 4Φ′(ρ) ≥ 4M(Φ)

so

τ
(1)
∗ ≤

(
E0/2− E0J 2

0 /γ
2
) 1

2

M(Φ)
≤

√
E0√

2M(Φ)
·

For the second integral we estimate simply

τ
(2)
∗ ≤ 2(

E0/2− E0J 2
0 /γ

2
) 1

2

≤ 2(
E0/2− E0/8

) 1
2

=
4
√

2√
3E0
·

The result follows.

Remark 8.2.2. — If Φ is of the type
1

ρs
exp(− 1

1− ρ2
) then the proof of Proposition 8.2.1 shows

that τ∗ may be bounded from above by a constant of the order of C/
√
e0(1 + log e0) if E0 ≥ e0.



68 CHAPTER 8. TWO-PARTICLE INTERACTIONS

8.3. Scattering cross-section and the Boltzmann collision operator

The scattering operator in Definition 8.2.1 is parametrized by the impact parameter and the two ingoing

(or outgoing) velocities. However in the Boltzmann limit the impact parameter cannot be observed:

the observed quantity is the deflection angle or scattering angle, defined as the angle between ingoing

and outgoing relative velocities. The next paragraph defines that angle as well as the scattering cross-

section, and the following paragraph defines the Boltzmann collision operators using that formulation.

8.3.1. Scattering cross-section. — With notation from the previous paragraphs, the deflection

angle is equal to π − 2Θ where Θ := α + θ, the angle α being defined in (8.2.1) and θ being defined

in (8.1.11), so that

Θ = Θ(E0,J0) := arcsinJ0 + J0

∫ 1

ρ∗

dρ√
1− 4Φ(ρ)

E0 − J
2
0

ρ2

·

The following result, and its proof, are due to [39]:

Lemma 8.3.1. — Under Assumption 1.2.1, assume moreover that for all ρ ∈ (0, 1),

(8.3.1) ρΦ′′(ρ) + 2Φ′(ρ) ≥ 0 .

Then for all E0 > 0, the function J0 7→ Θ(E0,J0) ∈ [0, π/2] satisfies Θ(E0, 0) = 0 and is strictly

monotonic: ∂J0
Θ > 0 for all J0 ∈ (0, 1). Moreover, it satisfies

lim
J0→0

∂J0Θ ∈ (0,∞] and lim
J0→1

∂J0Θ = 0 .

Proof. — An energy E0 > 0 being fixed, the limiting values Θ(E0, 0) = 0 and Θ(E0, 1) = π/2 are found

by direct computation. To prove monotonicity, the main idea of [39] is to use the change of variable

sin2 ϕ :=
4Φ(ρ)

E0
+
J 2

0

ρ2

which yields

Θ(E0,J0) = arcsinJ0 +

∫ π
2

arcsinJ0

sinϕ
J0

ρ −
2ρΦ′(ρ)
E0J0

dϕ .

Computing the derivative of this expression with respect to J0 gives

∂Θ

∂J0
(E0,J0) =

1√
1− J 2

0

(
1− E0J 2

0

E0J 2
0 − Φ′(1)

)
+

∫ π
2

arcsinJ0

E2
0J 2

0 ρ
4 sinϕ

(J 2
0 E0 − ρ3Φ′(ρ))3

(
ρΦ′′(ρ) + 2Φ′(ρ) +

ρ3

E0J 2
0

(Φ′(ρ))2

)
dϕ

where ϕ is defined by

sin2 ϕ =
J 2

0

ρ2
+

2Φ(ρ)

E0
·

In view of the formula giving ∂J0
Θ, it turns out assumption (8.3.1) implies ∂J0

Θ > 0 for all J0 ∈ (0, 1),

and also the limits

lim
J0→0

∂J0
Θ ∈ (0,∞] and lim

J0→1
∂J0

Θ = 0

as soon as Φ′(1) = 0 (if not then lim
J0→1

∂J0Θ =∞). The result follows.

Remark 8.3.2. — Note that one can construct examples that violate assumption (8.3.1) and for which

monotonicity fails, regardless of convexity properties of the potential Φ ([39]).
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By Lemma 8.3.1, for each E0 we can locally invert the map Θ(E0, ·), and thus define J0 as a smooth

function of E0 and Θ. This enables us to define a scattering cross-section (or collision kernel), as follows.

!v

!x

"

#

Figure 5. Spherical coordinates

For fixed x1, we denote dσ1 the surface measure on the sphere {y ∈ Rd, |y − x1| = ε}, to which x2

belongs. We can parametrize the sphere by (α,ψ), with ψ ∈ Sd−2
1 , where α is the angle defined

in (8.2.1). There holds

dσ1 = εd−1(sinα)d−2dαdψ .

The direction of the apse line is ω = (Θ, ψ), so that, denoting dω the surface measure on the unit

sphere, there holds

(8.3.2) dω = (sin Θ)d−2dΘdψ .

By definition of α in (8.2.1), there holds

(x1 − x2) · (v1 − v2) = ε|v1 − v2| cosα ,

so that
1

ε
(x1 − x2) · (v1 − v2) dσ1 = εd−1|v1 − v2| cosα (sinα)d−2 dαdψ

= εd−1|v1 − v2| J d−2
0 dJ0dψ ,

where in the second equality we used the definition of J0 in (8.2.1). This gives

(8.3.3)
1

ε
(x1 − x2) · (v1 − v2) dσ1 = εd−1|v1 − v2|J d−2

0 ∂ΘJ0 dΘdψ ,

wherever ∂ΘJ0 is defined, that is, according to Lemma 8.3.1, for J0 ∈ [0, 1).

Definition 8.3.3. — The scattering cross-section is defined for |w| > 0 and Θ ∈ (0, π/2]

by J d−2
0 ∂ΘJ0(sin Θ)2−d. In the following we shall use the notation

(8.3.4) b(w,Θ) := |w|J d−2
0 ∂ΘJ0(sin Θ)2−d ,

and abusing notation we shall write b(w,Θ) = b(w,ω).

By Lemma 8.3.1, the cross-section b is a locally bounded function of the relative velocities and scattering

angle.
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8.3.2. Scattering cross-section. — The relevance of b is made clear in the derivation of the Boltz-

mann hierarchy, where we shall use the identity

(8.3.5)
1

ε
(x1 − x2) · (v1 − v2) dσ1 = εd−1b(v1 − v2, ω)dω ,

derived from (8.3.2), (8.3.3) and Definition 8.3.3. As in Chapter 4 (see in particular Paragraph 4.4),

we can formally derive the Boltzmann collision operators using this formulation: we thus define

(8.3.6)
C0
s,s+1f

(s+1)(t, Zs) :=

s∑
i=1

∫
11ν·(vs+1−vi)>0 ν · (vs+1 − vi)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1)− f (s+1)(t, Zs, xi, vs+1)

)
dνdvs+1 ,

where (v∗i , v
∗
s+1) is obtained from (vi, vs+1) by applying the inverse scattering operator σ−1

0 :

σ−1
0

(
ν, vi, vs+1

)
=
(
ν, v∗i , v

∗
s+1

)
.

This can also be written using the cross-section:

(8.3.7)
C0
s,s+1f

(s+1)(t, Zs) :=

s∑
i=1

∫
b(v1 − v2, ω)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1)− f (s+1)(t, Zs, xi, vs+1)

)
dωdvs+1 .

Remark 8.3.4. — It is not possible to define an integrable cross-section if the potential is not com-

pactly supported, no matter how fast it might be decaying. This issue is related to the occurrence of

grazing collisions and discussed in particular in [46], Chapter 1, Section 1.4. However it is still possible

to study the limit towards the Boltzmann equation, if one is ready to change the formulation of the

Boltzmann equation by renouncing to the cross-section formulation ([39]).

The question of the convergence to Boltzmann in the case of long-range potentials is a challenging open

problem; it was considered by L. Desvillettes and M. Pulvirenti in [16] and L. Desvillettes and V. Ricci

in [17].



CHAPTER 9

TRUNCATED MARGINALS AND THE BBGKY HIERARCHY

Our starting point in this first part is the Liouville equation (1.2.2) satisfied by the N -particle distri-

bution function fN . We reproduce here equation (1.2.2):

(9.0.1) ∂tfN +
∑

1≤i≤N

vi · ∇xifN −
∑

1≤i 6=j≤N

1

ε
∇Φ

(
xi − xj

ε

)
· ∇vifN = 0 .

The arguments of fN in (9.0.1) are (t, ZN ) ∈ R+ × ΩN , where we recall that

ΩN :=
{
ZN ∈ R2dN , ∀i 6= j , xi 6= xj

}
.

As recalled in Part II, Chapter 4, the classical strategy to obtain a kinetic equation is to write the

evolution equation for the first marginal of the distribution function fN , namely

f
(1)
N (t, z1) :=

∫
R2d(N−1)

fN (t, z1, z2, . . . , zN ) dz2 . . . dzN ,

which leads to the study of the hierarchy of equations involving all the marginals of fN

(9.0.2) f
(s)
N (t, Zs) :=

∫
R2d(N−s)

fN (t, Zs, zs+1, . . . , zN ) dzs+1 · · · dzN .

In Section 9.1 it is shown that due to the presence of the potential, and contrary to the hard-spheres

case described in Paragraph 4.2, it is necessary to truncate those marginals away from the set ΩN .

An equation for the truncated marginals is derived in weak form in Section 9.2. In order to introduce

adequate collision operators, the notion of cluster is introduced and described in Section 9.3, following

the work of F. King [30]. Then collision operators are introduced in Section 9.4, and finally the integral

formulation of the equation is written in Section 9.5.

9.1. Truncated marginals

From (9.0.1), we deduce by integration that the untruncated marginals defined in (9.0.2) solve

(9.1.1)

∂tf
(s)
N (t, Zs) +

s∑
i=1

vi · ∇xif
(s)
N (t, Zs)−

1

ε

s∑
i,j=1
i6=j

∇Φ

(
xi − xj

ε

)
· ∇vif

(s)
N (t, Zs)

=
N − s
ε

s∑
i=1

∫
∇Φ

(
xi − xs+1

ε

)
· ∇vif

(s+1)
N (t, Zs, zs+1) dzs+1 .
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There are several differences between (9.1.1) and the BBGKY hierarchy for hard spheres (4.3.2)-(4.3.3).

One is that the transport operator in the left-hand side of (9.1.1) involves a force term. Another is that

the integral term in the right-hand side of (9.1.1) involves velocity derivatives. Also, that integral term

is a linear integral operator acting on higher-order marginals, just like (4.3.2), but, contrary to (4.3.2),

is not spatially localized, in the sense that the integral in xs+1 is over the whole ball B(xi, ε), as

opposed to an integral over a sphere in (4.3.2).

This leads us to distinguish spatial configurations in which interactions do take place from spatial

configurations in which particles are pairwise at a distance greater than ε, by truncating off the

interaction domain
{
ZN , |xi − xj | ≤ ε for some i 6= j

}
in the integrals defining the marginals. For the

resulting truncated marginals, collision operators will appear as integrals over a piece of the boundary

of the interaction domain, just like in the case of hard spheres. The scattering operator of Chapter 8

(Section 8.2) will then play the role that the boundary condition plays in the case of hard spheres in

Chapter 4.

Suitable quantities to be studied are therefore not the marginals defined in (9.0.2) but rather the

truncated marginals

(9.1.2) f̃
(s)
N (t, Zs) :=

∫
R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )
∏

i∈{1,...,s}
j∈{s+1,...,N}

11|xi−xj |>ε dzs+1 · · · dzN ,

where | · | denotes the euclidean norm. Notice that

(f̃
(1)
N − f (1)

N )(t, z1) =

∫
R2d(N−1)

fN (t, z1, z2, . . . , zN )(1−
∏

j∈{2,...,N}

11|x1−xj |>ε) dz2 · · · dzN

so that

(9.1.3) ‖(f̃ (1)
N − f (1)

N )(t)‖L∞(R2d) ≤ C(N − 1)εd‖f (2)
N (t)‖L∞(Ω2) .

We therefore expect both functions to have the same asymptotic behaviour in the Boltzmann-Grad

limit Nεd−1 ≡ 1. This is indeed proved in Lemma 11.1.2.

Given 1 ≤ i < j ≤ N, we recall that dZ(i,j) denotes the 2d(j − i + 1)-dimensional Lebesgue mea-

sure dzidzi+1 . . . dzj , and dX(i,j) the d(j − i + 1)-dimensional Lebesgue measure dxidxi+1 . . . dxj . We

also define

(9.1.4) DsN :=
{
XN ∈ RdN , ∀(i, j) ∈ [1, s]× [s+ 1, N ] , |xi − xj | > ε

}
,

where [1, s] is short for [1, s] ∩N = {k ∈ N, 1 ≤ k ≤ s}. Then the truncated marginals (9.1.2) may be

formulated as follows:

(9.1.5) f̃
(s)
N (t, Zs) =

∫
R2d(N−s)

fN (t, Zs, zs+1, . . . , zN )11XN∈DsN dZs+1,N .

The key in introducing the truncated marginals (9.1.5), following King [30], is that it allows for a

derivation of a hierarchy that is similar to the case of hard spheres. The main drawback is that

contrary to the hard-spheres case in (4.2.3), truncated marginals are not actual marginals, in the sense

that

(9.1.6) f̃
(s)
N (Zs) 6=

∫
R2d

11Xs+1∈B f̃
(s+1)
N (Zs, zs+1) dzs+1 ,

for any B ⊂ Rd(s+1), in particular if B = Rd(s+1), simply because DsN is not included in Ds+1
N .

Indeed, conditions |xj − xs+1| > ε, for j ≤ s, hold for XN ∈ DsN , but not necessarily for XN ∈ Ds+1
N .

Furthermore, DsN intersects all the Ds+mN , for m ∈ [1, N − s]. A consequence is the existence of
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higher-order interactions between truncated marginals, as seen below in (9.4.8). Proposition 10.3.1 in

Chapter 10 states however that these higher-order interactions are negligible in the Boltzmann-Grad

limit.

9.2. Weak formulation of Liouville’s equation

Our goal in this section is to find the weak formulation of the system of equations satisfied by the

family of truncated marginals
(
f̃

(s)
N

)
s∈[1,N ]

defined above in (9.1.5). The strategy will be similar to

that followed in Chapter 4 in the hard-spheres case. From now on we assume that fN decays at infinity

in the velocity variable.

Given a smooth, compactly supported function φ defined on R+ ×R2ds and satisfying the symmetry

assumption (1.1.1), we have

(9.2.1)

∫
R+×R2dN

(
∂tfN +

N∑
i=1

vi · ∇xifN −
1

ε

N∑
i=1

∑
j 6=i

∇Φ

(
xi − xj

ε

)
· ∇vifN

)
(t, ZN )

× φ(t, Zs)11XN∈DsN dZNdt = 0 .

Note that in the above double sum in i and j, all the terms vanish except when (i, j) ∈ [1, s]2 and

when (i, j) ∈ [s+ 1, N ]2, by assumption on the support of Φ.

We now use integrations by parts to derive from (9.2.1) the weak form of the equation in the

marginals f̃
(s)
N . On the one hand an integration by parts in the time variable gives∫

R+×R2dN

∂tfN (t, ZN )φ(t, Zs)11XN∈DsN dZNdt = −
∫
R2dN

fN (0, ZN )φ(0, Zs)11XN∈DsN dZN

−
∫
R+×R2dN

fN (t, ZN )∂tφ(t, Zs)11XN∈DsN dZNdt ,

hence, by definition of f̃
(s)
N ,∫

R+×R2dN

∂tfN (t, ZN )φ(t, Zs)11XN∈DsN dZNdt = −
∫
R2ds

f̃
(s)
N (0, Zs)φ(0, Zs) dZs

−
∫
R+×R2ds

f̃
(s)
N (t, Zs)∂tφ(t, Zs) dZsdt .

Now let us compute

N∑
i=1

∫
R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11XN∈DsN dZN =

∫
R2dN

divXN
(
VN fN (t, ZN )

)
φ(t, Zs)11XN∈DsN dZN

using Green’s formula. The boundary of DsN is made of configurations with at least one pair (i, j),

satisfying 1 ≤ i ≤ s and s+ 1 ≤ j ≤ N , with |xi − xj | = ε.

Let us define, for any couple (i, j) ∈ [1, N ]2,

(9.2.2)
ΣsN (i, j) :=

{
XN ∈ RdN , |xi − xj | = ε

and ∀(k, `) ∈ [1, s]× [s+ 1, N ] \ {i, j}, |xk − x`| > ε
}
.

We notice that ΣsN (i, j) is a submanifold of
{
XN ∈ RdN , |xi − xj | = ε

}
, which is a smooth, codi-

mension 1 manifold of RdN (locally isomorphic to the space Sdε ×Rd(N−1)), and we denote by dσi,jN
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its surface measure, induced by the Lebesgue measure. Configurations with more than one collisional

pair, i.e., (i, j) and (i′, j′) with 1 ≤ i, i′ ≤ s, s + 1 ≤ j, j′ ≤ N , with |xi − xj | = |xi′ − xj′ | = ε,

and {i, j} 6= {i′, j′}, are subsets of submanifols of RdN of codimension at least two, and therefore

contribute nothing to the boundary terms. Denoting ni,j the outward normal to ΣsN (i, j) we therefore

obtain by Green’s formula:

N∑
i=1

∫
R+×R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11XN∈DsN dZN dt

= −
s∑
i=1

∫
R+×R2dN

fN (t, ZN )vi · ∇xiφ(t, Zs)11XN∈DsN dZNdt

+
∑

1≤i6=j≤N

∫
R+×RdN×ΣsN (i,j)

ni,j · VN fN (t, ZN )φ(t, Zs) dσ
i,j
N dVNdt .

By symmetry (1.1.1) and recalling that νi,j = (xi − xj)/|xi − xj | this gives

N∑
i=1

∫
R+×R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11XN∈DsN dZN dt

= −
s∑
i=1

∫
R+×R2dN

fN (t, ZN )vi · ∇xiφ(t, Zs)11XN∈DsN dZNdt

+ (N − s)
s∑
i=1

∫
R+×RdN×ΣsN (i,j)

νi,s+1

√
2
· (vs+1 − vi) fN (t, ZN )φ(t, Zs) dσ

i,j
N dVNdt ,

so finally by definition of f̃
(s)
N , we obtain

(9.2.3)

N∑
i=1

∫
R+×R2dN

vi · ∇xifN (t, ZN )φ(t, Zs)11XN∈DsN dZN dt

= −
s∑
i=1

∫
R+×R2ds

f̃
(s)
N (t, Zs)vi · ∇xiφ(t, Zs) dZsdt

+ (N − s)
s∑
i=1

∫
R+×RdN×ΣsN (i,j)

νi,s+1

√
2
· (vs+1 − vi) fN (t, ZN )φ(t, Zs) dσ

i,j
N dVNdt .

Now let us consider the contribution of the potential in (9.2.1). We split the sum as follows:

1

ε

∑
i

∑
j 6=i

∫
R+×R2dN

∇Φ

(
xi − xj

ε

)
· ∇vifN (t, ZN )φ(t, Zs)11XN∈DsN dZNdt

=
1

ε

s∑
i,j=1
j 6=i

∫
R+×R2dN

∇Φ

(
xi − xj

ε

)
· ∇vifN (t, ZN )φ(t, Zs)11XN∈DsN dZNdt

+
1

ε

N∑
i,j=s+1
j 6=i

∫
R+×R2dN

∇Φ

(
xi − xj

ε

)
· ∇vifN (t, ZN )φ(t, Zs)11XN∈DsN dZNdt .
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We notice that the second term in the right-hand side vanishes identically. It follows that

1

ε

∑
i

∑
j 6=i

∫
R+×R2dN

∇Φ

(
xi − xj

ε

)
· ∇vifN (t, ZN )φ(t, Zs)11XN∈DsN dZNdt

= −1

ε

s∑
i,j=1
j 6=i

∫
R+×R2ds

∇Φ

(
xi − xj

ε

)
· ∇viφ(t, Zs)f̃

(s)
N (t, Zs) dZsdt

so in the end we obtain

(9.2.4)

∫
R+×R2ds

f̃
(s)
N (t, Zs)

(
∂tφ+ divXs (Vsφ)− 1

ε

s∑
i,j=1
j 6=i

∇Φ

(
xi − xj

ε

)
· ∇viφ

)
(t, Zs) dZsdt

= −
∫
R2ds

f̃
(s)
N (0, Zs)φ(0, Zs) dZs

− (N − s)
s∑
i=1

∫
R+×RdN×ΣsN (i,s+1)

νi,s+1

√
2
· (vs+1 − vi) fN (t, ZN )φ(t, Zs) dσ

i,s+1
N dVNdt .

Remark 9.2.1. — Using the weak form of Liouville’s equation, we see that configurations in which

there would be two pre-or post-collisional pairs, can be neglected (they occur as a boundary integral on

a zero measure subset of ∂DsN ) .

9.3. Clusters

We want to analyze the second term on the right-hand side of (9.2.4). We notice that in the space

integration the variables xs+2, . . . , xN are integrated over Rd(N−s−1) (with the restriction that they

must be at a distance at least ε from Xs) whereas xs+1 must lie in the sphere centered at xi and of ra-

dius ε. It is therefore natural to try to express that contribution in terms of the marginal f̃
(s+1)
N (Zs+1).

However as pointed out in (9.1.6),∫
f̃

(s+1)
N (Zs+1) dzs+1 6= f̃

(s)
N (Zs) .

The difference between those two terms is that on the one hand

∀XN ∈ Ds+1
N , one has |xj − xs+1| > ε for all j ≥ s+ 2 ,

which is not the case for XN ∈ DsN , and on the other hand

∀XN ∈ DsN , one has |xj − xs+1| > ε for all j ≤ s ,

a condition which does not appear in the definition of Ds+1
N .

This leads to the following definition.

Definition 9.3.1 (ε-closure). — Given a subset XN = {x1, . . . , xN} of RdN and an integer s

in [1, N ], the ε-closure E(Xs, XN ) of Xs in XN is defined as the intersection of all subsets Y of XN

which contain Xs and satisfy the separation condition

(9.3.1) ∀y ∈ Y , ∀x ∈ XN \ Y , |x− y| > ε .

We denote |E(Xs, XN )| the cardinal of E(Xs, XN ).

Now let us introduce the following notation, useful in situations where XN belongs to ΣsN (i, s + 1),

defined in (9.2.2).



76 CHAPTER 9. TRUNCATED MARGINALS AND THE BBGKY HIERARCHY

Notation 9.3.2. — If Xs+m = E(Xs, Xs+m) and if for some integers j0 ≤ s < k0 ≤ s + m, there

holds |xj − xk| > ε for all (j, k) ∈ [1, s]× [s+ 1, s+m] \ {(j0, k0)}, then we say that E(Xs, Xs+m) has

a weak link at (j0, k0), and we denote Xs+m = E〈j0,k0〉(Xs, Xs+m).

Moreover the following notion, following King [30], will turn out to be very useful.

Definition 9.3.3 (Cluster). — A cluster of base Xs = {x1, . . . , xs} and length m is any

point {xs+1, . . . , xs+m} in Rdm such that E(Xs, Xs+m) = Xs+m . We denote ∆m(Xs) the set of

all such clusters.

The proof of the following lemma is completely elementary.

Lemma 9.3.4. — The following equivalences hold, for m ≥ 1 :

(9.3.2)
(
E(Xs, XN ) = Xs+m

)
⇐⇒

(
E(Xs, Xs+m) = Xs+m and XN ∈ Ds+mN

)
,

(9.3.3)

(
E(Xs, XN ) = Xs+m

XN ∈ ΣsN (i, s+ 1)

)
⇐⇒

E〈i,s+1〉(Xs, Xs+m) = Xs+m

XN ∈ Ds+mN

|xi − xs+1| = ε

 ,

as well as the implication, for m ≥ 2,

(9.3.4)
(
E〈i,s+1〉(Xs, Xs+m) = Xs+m

)
=⇒

({
xs+2, . . . , xs+m

}
∈ ∆m−1(xs+1)

)
.

+	  

+	  

+	  
+	  

+	  

+	  

+	  

+	  

+	  

+	  

+	  

Xs	   XN	  \	  Xs	  
	  

Xs+m	   XN\	  Xs+m	  

Weak	  link	  <i,s+1>	  

Cluster	  of	  basis	  xs+1	  
And	  length	  m-‐1	  

xs+1	  xi	  

xs+2	  

Figure 6. Clusters with weak links
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9.4. Collision operators

With the help of the notions introduced in Section 9.3, we now can reformulate the boundary integral

in (9.2.4).

Given 1 ≤ s ≤ N − 1 and XN in ΣsN (i, s + 1), there holds |xs+1 − xi| = ε, so that xs+1 belongs

to E(Xs, XN ), implying |E(Xs, XN )| ≥ s + 1. We decompose ΣsN (i, s + 1) into a disjoint union over

the possible cardinals of the ε-closure of Xs in XN :

(9.4.1) ΣsN (i, s+ 1) =
⋃

1≤m≤N−s

(
ΣsN (i, s+ 1)

⋂{
YN , |E(Ys, YN )| = s+m

})
,

implying∫
RdN×ΣsN (i,s+1)

νi,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ
i,s+1
N dVN

=
∑

1≤m≤N−s

∫
RdN×ΣsN (i,s+1)

11|E(Xs,XN )|=s+m ν
i,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ

i,s+1
N dVN .

By assumption of symmetry (1.1.1) for fN and φ, if |E(Xs, XN )| = s+m, we can index the particles

so that E(Xs, XN ) = Xs+m : we obtain

(9.4.2)

∫
RdN×ΣsN (i,s+1)

11|E(Xs,XN )|=s+m ν
i,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ

i,s+1
N dVN

= Cm−1
N−s−1

∫
RdN×ΣsN (i,s+1)

11E(Xs,XN )=Xs+mν
i,s+1 · (vs+1 − vi) fN (ZN )φ(Zs) dσ

i,s+1
N dVN .

We use equivalence (9.3.3) from Lemma 9.3.4 and Fubini’s theorem to write∫
RdN×ΣsN (i,s+1)

11E(Xs,XN )=Xs+mν
i,s+1 · (vs+1 − vi)fN (ZN )φ(Zs)dσ

i,s+1
N dVN

=
√

2

∫
Sε(xi)×Rd

νi,s+1 · (vs+1 − vi)φ(Zs)

×
(∫

R2d(m−1)

11E〈i,s+1〉(Xs,Xs+m)=Xs+mf
(s+m)
N (Zs+m)dZ(s+1,s+m)

)
dσi(xs+1) ,

with dσi the surface measure on Sε(xi) :=
{
x ∈ Rd, |x − xi| = ε

}
. With (9.3.4), if m ≥ 2, then the

above integral over R2d(m−1) appears as an integral over ∆m−1(xs+1). We also remark that in the

case m = 1, we have a simple description of E〈i,s+1〉(Xs, Xs+1) = Xs+1 :

(9.4.3)
(

11E〈i,s+1〉(Xs,Xs+1)=Xs+1
6= 0
)
⇐⇒

(
|xi − xs+1| ≤ ε
|xj − xs+1| > ε for j ∈ [1, s] \ {i}

)
.

This leads to the following definition of the collision term of order m ≥ 1, for s+m ≤ N : we define

(9.4.4)
Cs,s+mf̃ (s+m)

N (Zs) := mCmN−s

s∑
i=1

∫
Sε(xi)×Rd

νs+1,i · (vs+1 − vi)

×G(m−1)
〈i,s+1〉(f

(s+m)
N )(Zs+1) dσi(xs+1)dvs+1 ,

where for m = 1, by (9.4.3):

(9.4.5) G
(0)
〈i,s+1〉(f̃

(s+1)
N )(Zs+1) :=

( ∏
1≤j≤s
j 6=i

11|xs+1−xj |>ε

)
f̃

(s+1)
N (Zs+1) ,
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and for m ≥ 2 :

(9.4.6)

G
(m−1)
〈i,s+1〉(f̃

(s+m)
N )(Zs+1)

:=

∫
∆m−1(xs+1)×Rd(m−1)

11E〈i,s+1〉(Xs,Xs+m)=Xs+m f̃
(s+m)
N (Zs+m)dZ(s+2,s+m) .

The complex-looking indicator function 11E〈i,s+1〉(Xs,Xs+m)=Xs+m will, in the estimates of the next

chapters, be simply bounded from above by one. This will be the case for instance in an estimate

showing that higher-order collision operators (9.4.6) are negligible in the thermodynamical limit; this

estimate is (10.3.2) in Proposition 10.3.1. One should notice on the other hand that the operator Cs,s+1

is very similar to the corresponding collision operator (4.3.2) in the hard-spheres situation.

With (N − s)Cm−1
N−s−1 = mCmN−s, we can now reformulate (9.2.4) into

(9.4.7)

∫
R+×R2ds

f̃
(s)
N (t, Zs)

(
∂tφ+ divXs (Vsφ)− 1

ε

s∑
i,j=1
j 6=i

∇Φ

(
xi − xj

ε

)
· ∇viφ

)
(t, Zs) dZsdt

+

∫
R2ds

f̃
(s)
N (0, Zs)φ(0, Zs) dZs =

N−s∑
m=1

∫
R+×R2ds

φ(t, Zs)Cs,s+mf̃ (s+m)
N (t, Zs) dtdZs ,

so that f̃
(s)
N appears as a (formal) weak solution to

(9.4.8) ∂tf̃
(s)
N +

∑
1≤i≤s

vi · ∇xi f̃
(s)
N −

1

ε

∑
1≤i 6=j≤s

∇Φ

(
xi − xj

ε

)
· ∇vi f̃

(s)
N =

N−s∑
m=1

Cs,s+mf̃ (s+m)
N .

9.5. Mild solutions

We now define the integral formulation of (9.4.8). Denote by Φs(t) the s-particle Hamiltonian flow,

and by Hs the associated solution operator:

(9.5.1) Hs(t) : f ∈ C0(Ωs; R) 7→ f(Φs(−t, ·)) ∈ C0(Ωs; R) .

The time-integrated form of equation (9.4.8) is

(9.5.2) f̃
(s)
N (t, Zs) = Hs(t)f̃

(s)
N (0, Zs) +

N−s∑
m=1

∫ t

0

Hs(t− τ)Cs,s+mf̃ (s+m)
N (τ, Zs) dτ .

The total flow and total collision operators H and CN are defined on finite sequences GN = (gs)1≤s≤N
as follows:

(9.5.3)


∀s ≤ N , (H(t)GN )s := Hs(t)gs ,

∀ s ≤ N − 1 , (CNGN )s :=

N−s∑
m=1

Cs,s+mgs+m ,
(
CNGN

)
N

:= 0 .

We define mild solutions to the BBGKY hierarchy (9.5.2) to be solutions of

(9.5.4) F̃N (t) = H(t)F̃N (0) +

∫ t

0

H(t− τ)CN F̃N (τ) dτ , F̃N = (f̃
(s)
N )1≤s≤N .

Remark 9.5.1. — At this stage, the use of weak formulations could seem a little bit suspicious since

they are used essentially as a technical artifice to go from the Liouville equation (1.2.2) to the mild

form of the BBGKY hierarchy (9.5.2). In particular, this allows to ignore pathological trajectories as

mentioned in Remark 9.2.1. Nevertheless, the existence of mild solutions to the BBGKY hierarchy
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provides the existence of weak solutions to the BBGKY hierarchy, and in particular to the Liouville

equation (which is nothing else than the last equation of the hierarchy). The classical uniqueness result

for kinetic transport equations then implies that the object we consider, that is the family of truncated

marginals, is uniquely determined (almost everywhere).

9.6. The limiting Boltzmann hierarchy

The limit of the BBGKY collision operators (9.4.4) was obtained formally in Section 8.3.2, following

the formal derivation of the hard-spheres case in Paragraph 4.4, assuming higher-order interactions

can be neglected. We recall the form of the collision operator as given in (8.3.7):

C0
s,s+1f

(s+1)(t, Zs) :=

s∑
i=1

∫
b(v1 − v2, ω)

×
(
f (s+1)(t, x1, v1, . . . , xi, v

∗
i , . . . , xs, vs, xi, v

∗
s+1)− f (s+1)(t, Zs, xi, vs+1)

)
dωdvs+1 .

where (v∗i , v
∗
s+1) is obtained from (vi, vs+1) by applying the inverse scattering operator σ−1

0 defined in

Definition 8.2.1 and b(w,ω) is the cross-section given by Definition 8.3.3.

The asymptotic dynamics are therefore governed by the following integral form of the Boltzmann

hierarchy:

(9.6.1) f (s)(t) = Ss(t)f
(s)
0 +

∫ t

0

Ss(t− τ)C0
s,s+1f

(s+1)(τ) dτ ,

where Ss(t) denotes the s-particle free-flow.

Similarly to (4.3.7), we can define the total Boltzmann flow and collision operators S and C as follows:

(9.6.2)

{
∀s ≥ 1 , (S(t)G)s := Ss(t)gs ,

∀ s ≥ 1 ,
(
C0G

)
s

:= C0
s,s+1gs+1 ,

so that mild solutions to the Boltzmann hierarchy (9.6.1) are solutions of

(9.6.3) F (t) = S(t)F (0) +

∫ t

0

S(t− τ)C0F (τ) dτ , F = (f (s))s≥1 .

Note that if f (s)(t, Zs) =

s∏
i=1

f(t, zi) (meaning f (s)(t) is tensorized) then f satisfies the Boltzmann

equation (2.1.1)-(2.1.2), with the cross-section b(w,ω) given by Definition 8.3.3.





CHAPTER 10

CLUSTER ESTIMATES AND UNIFORM A PRIORI ESTIMATES

In view of proving the existence of mild solutions to the BBGKY hierarchy (9.5.2), we need continuity

estimates on the linear collision operators Cs,s+m defined in (9.4.4)-(9.4.5)-(9.4.6), and the total collision

operator CN defined in (9.5.3).

We first note that, by definition, the operator Cs,s+m involves only configurations with clusters of

length m. Classical computations of statistical mechanics, presented in Section 10.1, show that the

probability of finding such clusters is exponentially decreasing with m.

It is then natural to introduce functional spaces encoding the decay with respect to energy and the

growth with respect to the order of the marginal (see Section 10.2, where norms are introduced,

generalizing the norms introduced in Chapter 5 for the hard spheres case). In these appropriate

functional spaces, we can establish uniform continuity estimates for the BBGKY collision operators

(Section 10.3). These will enable us in Section 10.4 to obtain directly uniform bounds for the hierarchy

as in Chapter 5.

10.1. Cluster estimates

A point Xs ∈ Rds being given, we recall that ∆m(Xs) is the set of all clusters of base Xs and length m

(this notation is introduced in Definition 9.3.3 page 76).

Lemma 10.1.1. — For any symmetric function ϕ on RNd, any s ∈ [1, N − 1], any Xs ∈ Rds, the

following identity holds:

(10.1.1)

∫
R(N−s)d

ϕ(XN )dX(s+1,N) =

∫
Rd(N−s)

11XN∈DsN ϕ(XN ) dX(s+1,N)

+

N−s∑
m=1

CmN−s

∫
∆m(Xs)

(∫
Rd(N−s−m)

11XN∈Ds+mN
ϕ(XN ) dX(s+m+1,N)

)
dX(s+1,s+m) ,

implying, for ζ > 0,

(10.1.2)
1

m!

∫
∆m(Xs)

dX(s+1,s+m) ≤ ζ−m exp
(
ζκd(s+m)εd

)
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and

(10.1.3)
∑
m≥1

ζm+1 exp
(
− ζκd(m+ 1)εd

)
m!

∫
∆m(x1)

dX(2,m+1) ≤ ζ
(
1− exp

(
− ζκdεd

))
,

where κd is the volume of the unit ball in Rd.

Proof. — The first identity (10.1.1) is obtained by a simple partitioning argument, which extends the

splitting used to define Cs,s+m in (9.4.4) in the previous chapter. We recall that, given any Xs ∈ Rds,

the family {
(xs+1, . . . , xN ) , |E(Xs, XN )| = s+m

}
for 0 ≤ m ≤ N − s ,

is a partition of R(N−s)d. Then we use the symmetry assumption, as we did in (9.4.2), to find∫
R(N−s)d

ϕ(XN )dX(s+1,N) =
∑

0≤m≤N−s

CmN−s

∫
R(N−s)d

11E(Xs,XN )=Xs+mϕ(XN )dX(s+1,N) .

It then suffices to use equivalence (9.3.2) from Lemma 9.3.4, noting that the set of all (xs+1, . . . , xs+m)

in Rmd such that E(Xs, Xs+m) = Xs+m coincides with ∆m(Xs). This proves (10.1.1).

Estimates (10.1.2) and (10.1.3) come from the counterpart of (10.1.1) at the grand canonical level,

i.e. when the activity ζ−1 ∼ eµ is fixed, rather than the total number N of particles (we refer

to Remark 5.2.3 for comments on this terminology).

For any bounded Λ ⊂ Rd, the associated grand-canonical ensemble for n non-interacting particles is

defined as the probability measure with density

ϕn(Xn) :=
ζn exp(−ζ|Λ|)

n!

∏
1≤i≤n

11xi∈Λ .

The s-point correlation function gs and the truncated s-point correlation function g̃s are defined by

gs(Xs) :=

∞∑
n=s

n!

(n− s)!

∫
R(n−s)d

ϕn(Xn)dX(s+1,n) ,

g̃s(Xs) :=

∞∑
n=s

n!

(n− s)!

∫
R(n−s)d

11Xn∈Dsnϕn(Xn)dX(s+1,n) .

We compute ∫
R(n−s)d

ϕn(Xn)dX(s+1,n) = ζs exp
(
− ζ|Λ|

) (ζ|Λ|)n−s

n!

∏
1≤i≤s

11xi∈Λ ,

so that

(10.1.4) gs(Xs) = ζs exp
(
− ζ|Λ|

) ∞∑
k=0

(ζ|Λ|)k

k!

∏
1≤i≤s

11Λ(xi) = ζs
∏

1≤i≤s

11xi∈Λ .

Similarly, by definition of Dsn in (9.1.4),∫
R(n−s)d

11Xn∈Dsn

∏
s+1≤j≤n

11xi∈Λ dX(s+1,n) =
∣∣Λ ∩ cBε(Xs)

∣∣ ,
where we denote Bε(Xs) :=

⋃
1≤i≤s

Bε(xi), with Bε(xi) :=
{
y ∈ Rd, |y − xi| ≤ ε

}
. This implies

g̃s(Xs) = ζs exp
(
− ζ|Λ|

)∑
n≥s

(
ζ|Λ ∩ cBε(Xs)

∣∣)n−s
(n− s)!

∏
1≤i≤s

11xi∈Λ .
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Since |Λ| − |Λ ∩ cBε(Xs)| = |Λ ∩Bε(Xs)|, we obtain

(10.1.5) g̃s(Xs) = ζs exp
(
− ζ|Λ ∩Bε(Xs)|

)
.

Besides, by (10.1.1),

gs(Xs) = g̃s(Xs)

+

∞∑
n=s

n−s∑
m=1

n!Cmn−s
(n− s)!

∫
∆m(Xs)

(∫
R(n−s−m)d

11Xn∈Ds+mn
gs(Xn) dX(s+m+1,n)

)
dX(s+1,s+m) .

By Fubini, we get

∞∑
n=s

n−s∑
m=1

n!Cmn−s
(n− s)!

∫
∆m(Xs)

(∫
R(n−s−m)d

11Xn∈Ds+mn
ϕn(Xn) dX(s+m+1,n)

)
dX(s+1,s+m)

=

∞∑
n=s

n−s∑
m=1

n!

(k − s)!(n− k)!

∫
∆k−s(Xs)

(∫
R(n−k)d

11Xn∈Dknϕn(Xn) dX(k+1,n)

)
dX(s+1,k)

=

∞∑
k=s+1

1

(k − s)!

∞∑
n=k

n!

(n− k)!

∫
∆k−s(Xs)

(∫
R(n−k)d

11Xn∈Dknϕn(Xn) dX(k+1,n)

)
dX(s+1,k)

=

∞∑
k=s+1

1

(k − s)!

∫
∆k−s(Xs)

g̃k(Xk)dX(s+1,k) .

We have proved that

(10.1.6) gs(Xs) = g̃s(Xs) +

∞∑
k=s+1

1

(k − s)!

∫
∆k−s(Xs)

gk(Xk)dX(s+1,k) .

We now show how identities (10.1.4)-(10.1.5)-(10.1.6) imply the bounds (10.1.2)-(10.1.3).

We first retain only the contribution of k = s+m in the right-hand side of (10.1.6). We have

ζs ≥ 1

m!

∫
∆m(Xs)

ζs+m exp
(
− ζ|Λ ∩Bε(Xs+m)|

)
dX(s+1,s+m) ,

and now |Λ ∩Bε(Xs+m)| ≤ κdεd(s+m) implies (10.1.2).

We finally fix an integer K ≥ 2 and choose s = 1 in (10.1.6). Then

ζ − ζ exp
(
− ζ|Λ ∩Bε(x1)|

)
≥

K∑
k=2

∫
∆k−1(x1)

ζk exp
(
− ζ|Bε(Xk)|

)
dX(2,k) ,

and bounding the volumes of balls from above, we find

ζ
(
1− exp(−ζκdεd)

)
≥
K−1∑
k=1

ζk+1

k!
exp

(
− ζκd(k + 1)εd

) ∫
∆k(x1)

dX(2,k+1) .

It then suffices to let K →∞ to find (10.1.3). This ends the proof of Lemma 10.1.1.

10.2. Functional spaces

To show the convergence of the series defining mild solutions (9.5.2) to the BBGKY hierarchy, we need

to introduce some norms on the space of sequences (f̃ (s))s≥1. Given ε > 0, β > 0, an integer s ≥ 1,
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and a continuous function gs : Ωs → R, we let

(10.2.1) |gs|ε,s,β := sup
Zs∈Ωs

(
|gs(Zs)| exp

(
βEε(Zs)

))
where for ε > 0, the function Eε is the s-particle Hamiltonian

(10.2.2) Eε(Zs) :=
∑

1≤i≤s

|vi|2

2
+

∑
1≤i<k≤s

Φε(xi − xk) , with Φε(x) := Φ
(x
ε

)
.

Notice that this norm does coincide with its counterpart defined in Paragraph 5.2 in the limit described

in Remark 1.0.1.

Definition 10.2.1. — For ε > 0 and β > 0, we denote Xε,s,β the Banach space of continuous

functions Ωs → R with finite | · |ε,s,β norm.

By Assumption 1.2.1, for ε > 0 (and β > 0) there holds exp(βEε(Zs))→∞ as Zs approaches ∂Ωs. This

implies for gs ∈ Xε,s,β the existence of an extension by continuity: ḡs ∈ C0(R2ds; R) such that ḡs ≡ 0

on ∂Ωs, and ḡs ≡ g on Ωs.

For sequences of functions G = (gs)s≥1, with gs : Ωs → R, we let for ε > 0, β > 0, µ ∈ R,

‖G‖ε,β,µ := sup
s≥1

(
|gs|ε,s,β exp(µs)

)
.

Definition 10.2.2. — For ε ≥ 0, β > 0, and µ ∈ R, we denote Xε,β,µ the Banach space of se-

quences G = (gs)s≥1, with gs ∈ Xε,s,β and ‖G‖ε,β,µ <∞.

As in (5.2.4), he following inclusions hold:

(10.2.3) if β′ ≤ β and µ′ ≤ µ , then Xε,s,β′ ⊂ Xε,s,β , Xε,β′,µ′ ⊂ Xε,β,µ .

Finally similarly to Definition 5.2.4 we define norms of time-dependent functions as follows.

Definition 10.2.3. — Given T > 0, a positive function β and a real valued function µ defined

on [0, T ] we denote Xε,β,µ the space of functions G : t ∈ [0, T ] 7→ G(t) = (gs(t))1≤s ∈ Xε,β(t),µ(t), such

that for all Zs ∈ R2ds, the map t ∈ [0, T ] 7→ gs(t, Zs) is measurable, and

(10.2.4) |‖G|‖ε,β,µ := sup
0≤t≤T

‖G(t)‖ε,β(t),µ(t) <∞ .

Notice that the following conservation of energy properties hold, as for (5.3.1):

(10.2.5) |Hs(t)gs|ε,s,β = |gs|ε,s,β and ‖H(t)GN‖ε,β,µ = ‖GN‖ε,β,µ ,

for all parameters β > 0, µ ∈ R, and for all gs ∈ Xε,s,β , GN = (gs)1≤s≤N ∈ Xε,β,µ, and all t ≥ 0.

10.3. Continuity estimates

We now establish bounds, in the above defined functional spaces, for the collision operators defined

in (9.4.4)-(9.4.6), and for the total collision operator CN defined in (9.5.3).

Notice that in the case when m = 1 the estimates are the same as in Chapter 5: in particular thanks

to (10.2.5) the following bound holds:

(10.3.1) es(µ0−λt)
∣∣∣ ∫ t

0

Hs(t− τ)Cs,s+1gs+1(τ) dτ
∣∣∣
ε,s,β0−λt

≤ c̄(β0, µ0, λ, T )|‖GN |‖ε,β,µ ,
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for all GN = (gs+1)1≤s≤N ∈ Xε,β,µ, with c̄(β0, µ0, λ, T ) computed explicitly in (5.4.9).

The following statement is the analogue of Proposition 5.4.1 in the hard spheres case, but in the present

situation higher order correlations must be taken into account.

Proposition 10.3.1. — Given β > 0 and µ ∈ R, for m ≥ 1 and 1 ≤ s ≤ N − m, the collision

operators Cs,s+m satisfy the bounds, for all GN = (gs)1≤s≤N ∈ Xε,β,µ,

(10.3.2)
∣∣Cs,s+mgs+m(Zs)

∣∣ ≤ εm−1Cde
mκd(β/Cd)

−md2
(
sβ−

1
2 +

∑
1≤i≤s

|vi|
)
e−βEε(Zs)|gs+m|ε,s+m,β ,

for some Cd > 0 depending only on d.

If ε < Cde
µβ

d
2 , then for all 0 < β′ < β and µ′ < µ, the total collision operator CN satisfies the bound

(10.3.3) ‖CNGN‖ε,β′,µ′ ≤ Cd(1 + β−
1
2 )
( 1

β − β′
+

1

µ− µ′
)
‖GN‖ε,β,µ .

Considering the case m > 1 in (10.3.2), for which the upper bound is O(ε), we see that higher-order

interactions are negligible in the Boltzmann-Grad limit (provided (10.3.2,) can be summed over m,

which is possible for ε small enough).

Proof. — We shall only consider the case m ≥ 2, as the case m = 1 is dealt with exactly as in the

proof of Proposition 5.4.1. From the definition of G
(m−1)
〈i,s+1〉 in (9.4.6), we obtain∣∣G(m−1)

〈i,s+1〉(gs+m)(Zs+1)
∣∣ ≤ |gs+m|ε,s+m,β ∫

∆m−1(xs+1)×Rd(m−1)

exp
(
− βEε(Zs+m)

)
dZ(s+2,s+m) ,

where the norm | · |ε,s,β is defined in (10.2.1), and the Hamiltonian Eε is defined in (10.2.2). For the

collision operator defined in (9.4.4), this implies the bound

(10.3.4) |Cs,s+mgs+m(Zs)| ≤ mCmN−s|gs+m|ε,s+m,β ×
∑

1≤i≤s

Ii,m(Vs)× Ji,m(Xs) ,

where Ii,m is the velocity integral

Ii,m(Vs) :=

∫
Rdm

(
|vs+1|+ |vi|

)
exp

(
− β

2

s+m∑
j=1

|vj |2
)
dV(s+1,s+m) ,

and Ji,m is the spatial integral

Ji,m(Xs) :=

∫
Sε(xi)×∆m−1(xs+1)

exp
(
− β

∑
1≤j<k≤s+m

Φε(xj − xk)
)
dσ(xs+1)dX(s+2,s+m) .

The velocity integral is a product of Gaussian integrals and can be exactly computed, as in the hard-

spheres case:

(10.3.5) Ii,m(Vs) ≤ (β/Cd)
−md2

(
|vi|+ β−

1
2

)
exp

(
− β

2

∑
1≤j≤s

|vj |2
)
.

For the spatial integral, there holds

Ji,m(Xs) ≤ exp
(
− β

∑
1≤j<k≤s

Φε(xj − xk)
)
|Sε(xi)| × sup

x

∫
∆m−1(x)

dX(1,m−1)

≤ exp
(
− β

∑
1≤j<k≤s

Φε(xj − xk)
)
× κdεd−1 ×

(
(m− 1)! ε(m−1)d exp(mκd)

)
,
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where in the last bound we used identity (10.1.2) from Lemma 10.1.1 with s = 1 and ζ = ε−d. This

implies

|Cs,s+mgs+m(Zs)| ≤ Cdεm−1
(
(N − s)εd−1

)m
emκd(β/Cd)

−md2
(
sβ−

1
2 +

∑
1≤i≤s

|vi|
)

× e−βEε(Zs)|gs+m|ε,s+m,β .

In the Boltzmann-Grad scaling Nεd−1 ≡ 1, this gives (10.3.2). Above and in the following, Cd denotes

a positive constant which depends only on d, and which may change from line to line.

We turn to the proof of (10.3.3), which is similar to the proof of (??) up to the control of higher

correlations. From the pointwise inequality (??) we deduce for the above velocity integral Ii,m(Vs) the

bound, for 0 < β′ < β,∑
1≤i≤s

exp
(

(β′/2)
∑

1≤j≤s

|vj |2
)
Ii,m(Vs) ≤ Cd(β/Cd)−

md
2

(
sβ−

1
2 + s

1
2 (β − β′)− 1

2

)
.

From the above bound in Ji,m(Xs), we deduce immediately, for 0 < β′ < β,

max
1≤i≤s

exp
(
β′

∑
1≤j<k≤s

Φε(xj − xk)
)
Ji,m(Xs) ≤ κd(m− 1)! emκdεmd−1 .

With (10.3.4), these bounds yield, in the Boltzmann-Grad scaling,

eβ
′Eε(Zs)+µ

′s
∣∣Cs,s+mgs+m(Zs)

∣∣ ≤ εm−1Cd(β/Cd)
−md2 emκdeµ

′s
(
sβ−

1
2 + s

1
2 (β − β′)− 1

2

)
× |gs+m|ε,s+m,β .

Summing over m, we finally obtain, for CN defined in (9.5.3),

‖CNGN‖ε,β′,µ′ ≤ Cd‖GN‖ε,β,µ sup
1≤s≤N

((
sβ−

1
2 + s

1
2 (β − β′)− 1

2

)
e−(µ−µ′)s

)
×

∑
1≤m≤N−s

e−m(µ−κd)εm−1 (β/Cd)
−md2 .

If ε is small enough so that εeκd−µ(Cd/β)d/2 < 1, then the above series is convergent, and∑
1≤m≤N−s

e−m(µ−κd)εm−1(Cd/β)md/2 ≤ eκd−µ(Cd/β)d/2

1− εeκd−µ(Cd/β)d/2
·

We conclude as in the proof of Proposition 5.4.1. Proposition 10.3.1 is proved.

Remark 10.3.1. — We do not use the extra decay provided by the contribution of the potential in

the exponential of the Hamiltonian. This is quite obvious in the bound for Ji,m(Xs) in the proof

of Proposition 10.3.1, where we bound e−β
∑

1≤j<k≤s+m Φε(xj−xk) by e−β
∑

1≤j<k≤s Φε(xj−xk). Then, we

might be tempted to replace Eε by the free Hamiltonian E0 in the definition of the functional spaces. The

kinetic energy, however, is not a conserved quantity, so that in X0,s,β there is no analogue of (10.2.5).

This leads to the following lemma, which is the key to the proof of the uniform bound stated in

Theorem 9 in the next paragraph. It is the analogue of Lemma 5.4.3.

Lemma 10.3.2. — Let β0 > 0 and µ0 ∈ R be given. There is T > 0 depending only on β0 and µ0

such that for an appropriate choice of λ in (0, β0/T ), there holds for all t ∈ [0, T ]

(10.3.6)
∥∥∥∫ t

0

H(t− τ)CNGN (τ) dτ
∥∥∥
ε,β0−λt,µ0−λt

≤ 1

2
|‖GN |‖ε,β,µ .
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Proof. — We follow closely the proof of Lemma 5.4.3. The difference is that here we take into account

higher-order collision operators Cs,s+m, with m ≥ 2. Using notation (5.4.5), Estimate (10.3.2) from

Proposition 10.3.1 gives

eβ
λ
0 (t)Eε(Zs)

∣∣Cs,s+mgs+m(t′, Zs)
∣∣

≤ εm−1Cde
mκd(2π/βλ0 (t′))md/2|gs+m(t′)|ε,s+m,βλ0 (t′)

(
s(βλ0 (t′))−d/2 +

∑
1≤i≤s

|vi|
)
eλ(t′−t)Eε(Zs) .

Using also (5.4.6) with s+ 1 replaced by s+m, we get

(10.3.7)

∥∥∥∫ t

0

H(t− t′)CNGN (t′) dt′
∥∥∥
ε,βλ0 (t),µλ0 (t)

≤ |‖GN |‖ε,β,µ
( ∑

1≤m≤N−s

Cm

)
sup

Zs∈R2ds

∫ t

0

C(t, t′, Zs) dt
′ ,

where Cm := Cdε
m−1em(κd−µλ0 (T ))(Cd/β

λ
0 (T ))md/2, and C is defined in (5.4.7) and satisfies (5.4.8)

which we recall here:

(10.3.8) sup
Zs∈R2ds

∫ t

0

C(τ, t, Zs) dτ ≤
Cd
λ

(
1 +

1

(βλ0 (T ))d/2

)
,

Under the assumption that

(10.3.9) ε0e
κd−µλ0 (T )(2π/βλ0 (T ))d/2 < 1/2 ,

we find

(10.3.10)
∑

1≤m≤N−s

Cm ≤ 2Cde
−µλ0 (T )(βλ0 (T ))−d/2 .

The upper bounds in (10.3.8) and (10.3.10) are independent of s, and their product is equal

to 2c̄(β0, µ0, λ, T ). It then suffices to choose λ so that 2c̄(β0, µ0, λ, T ) ≤ 1/2 and taking the supremum

in s in (10.3.7) then yields the result.

10.4. Uniform bounds for the BBGKY and Boltzmann hierarchies

The results of the previous section enable us, exactly as in the hard spheres case page 39, to deduce

directly the following bounds on the BBGKY hierarchy defined in (9.5.4) page 78.

Theorem 9 (Uniform bounds for the BBGKY hierarchy). — Let β0 > 0 and µ0 ∈ R be given.

There is a time T > 0 as well as two nonincreasing functions β > 0 and µ defined on [0, T ], satisfy-

ing β(0) = β0 and µ(0) = µ0, such that in the Boltzmann-Grad scaling Nεd−1 ≡ 1, any family of initial

marginals F̃N (0) =
(
f̃

(s)
N (0)

)
1≤s≤N in Xε,β0,µ0

gives rise to a unique solution F̃N (t) = (f̃
(s)
N (t))1≤s≤N

in Xε,β,µ to the BBGKY hierarchy (9.5.4) satisfying the following bound:

|‖F̃N |‖ε,β,µ ≤ 2‖F̃N (0)‖ε,β0,µ0 .

In the case of the Boltzmann hierarchy associated with the collision operator (8.3.6), the same existence

result as in Theorem 7 holds, again with the same proof.
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Theorem 10 (Existence for the Boltzmann hierarchy). — Assume the potential satisfies As-

sumption 1.2.1. Let β0 > 0 and µ0 ∈ R be given. There are a time T > 0 as well as two nonincreasing

functions β > 0 and µ defined on [0, T ], satisfying β(0) = β0 and µ(0) = µ0, such that any family of

initial marginals F (0) =
(
f (s)(0)

)
s≥1

in X0,β0,µ0 gives rise to a unique solution F (t) = (f (s)(t))s≥1

in X0,β,µ to the Boltzmann hierarchy (5.0.2), satisfying the following bound:

|‖F |‖0,β,µ ≤ 2‖F (0)‖0,β0,µ0 .



CHAPTER 11

CONVERGENCE RESULT AND STRATEGY OF PROOF

The main goal of this chapter is to reduce the proof of Theorem 5 stated page 17 to the term-by-term

convergence of some functionals involving a finite (uniformly bounded) number of marginals with only

first-order collisions, bounded energies and a finite number of collision times, exactly as was performed

in Chapter 7 (see Section 11.3).

Before doing so we define, as in the hard spheres case, the notion of admissible initial data in Sec-

tion 11.1. We give the precise version of Theorem 5 in Section 11.2.

11.1. Admissible initial data

The characterization of admissible initial data is very similar to the hard spheres case studied in

Paragraph 6.1.1. The only new aspect concerns the fact that marginals have been truncated, and that

feature will be dealt with in this section.

Definition 11.1.1 (Admissible Boltzmann data). — Admissible Boltzmann data are defined as

families F0 = (f
(s)
0 )s≥1, with each f

(s)
0 nonnegative, integrable and continuous over Ωs, such that

(11.1.1)

∫
R2d

f
(s+1)
0 (Zs, zs+1) dzs+1 = f

(s)
0 (Zs) ,

and which are limits of BBGKY initial data F̃0,N = (f̃
(s)
0,N )1≤s≤N ∈ Xε,β0,µ0

in the following sense: it

is assumed that

(11.1.2) sup
N≥1
‖F̃0,N‖ε,β0,µ0

<∞ , for some β0 > 0 , µ0 ∈ R , as Nεd−1 ≡ 1 ,

and that for each given s ∈ [1, N ], the truncated marginal of order s defined by

(11.1.3) f̃
(s)
0,N (Zs) =

∫
R2d(N−s)

11DsN (XN )f
(N)
0,N (ZN )dZ(s+1,N) , 1 ≤ s < N ,

converges in the Boltzmann-Grad limit:

(11.1.4) f̃
(s)
0,N −→ f

(s)
0 , as N →∞ with Nεd−1 ≡ 1 , locally uniformly in Ωs .

The following result is proved very similarly to Proposition 6.1.1.
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Proposition 11.1.1. — The set of admissible Boltzmann data, in the sense of Definition 11.1.1, is

the set of families of marginals F0 as in (11.1.1) satisfying a uniform bound ‖F0‖0,β0,µ0
< ∞ for

some β0 > 0 and µ0 ∈ R.

We shall not give the proof of that result, as the only difference with Proposition 6.1.1 lies in the

presence of a truncation in the marginals, whose effect disappears asymptotically as stated in the

following lemma.

Lemma 11.1.2. — Given F̃0,N = (f̃
(s)
0,N )1≤s≤N satisfying (11.1.2) and (11.1.3) from Defini-

tion 11.1.1, with associated family F0,N = (f
(s)
0,N )1≤s≤N of untruncated marginals:

(11.1.5) f
(s)
0,N (Zs) =

∫
R2d(N−s)

f
(N)
0,N (ZN ) dZ(s+1,N) , 1 ≤ s < N , Zs ∈ Ωs , f̃

(N)
0,N = f

(N)
0,N ,

there holds the convergence

f
(s)
0,N − f̃

(s)
0,N −→ 0 , for fixed s ≥ 1 , as N →∞ with Nεd−1 ≡ 1 , uniformly in Ωs .

Proof. — We apply identity (10.1.1) from Lemma 10.1.1 to f
(N)
0,N , and obtain after integration in the

velocity variables

(11.1.6) f
(s)
0,N (Zs)− f̃ (s)

0,N (Zs) =

N−s∑
m=1

CmN−s

∫
∆m(Xs)×Rdm

f̃
(s+m)
0,N (Zs+m)dZ(s+1,s+m) .

Then, denoting C0 = sup
M≥1

‖F0,M‖ε,β0,µ0 , a finite number by assumption, from

f
(s+m)
0,N (Zs+m) ≤ exp

(
− µ0(s+m)− β0Eε(Zs+m)

)
C0

≤ exp
(
− µ0(s+m)− (β0/2)

∑
1≤i≤s

|vi|2
)
C0 ,

we deduce, first by integrating the velocity gaussians and then by using the cluster bound (10.1.2) in

Lemma 10.1.1 with ζ = ε−d, the bound∫
∆m(Xs)×Rdm

f
(s+m)
0,N (Zs+m)dZ(s+1,s+m) ≤ (Cd/β0)md/2e−µ0(s+m)C0

∫
∆m(Xs)

dX(s+1,s+m)

≤ m!(Cd/β0)md/2εmde(κd−µ0)(s+m)C0 .

If 2εeκd−µ0(Cd/β0)d/2 < 1, then

N−s∑
m=1

CmN−sm!(Cd/β0)md/2εmde(κd−µ0)(s+m) ≤ e(κd−µ0)s
∑
m≥1

(
2εeκd−µ0(Cd/β0)d/2

)m −→ 0

as ε→ 0, implying f
(s)
0,N − f̃

(s)
0,N −→ 0 for fixed s, uniformly in Ωs.

Remark 11.1.3. — We can reproduce the above proof in the case of a time-dependent family of

bounded marginals, i.e., FN ∈ Xε,β,µ, with sup
N≥1
|‖FN |‖ε,β,µ <∞, with the notation of Definition 10.2.1.

This gives uniform convergence to zero, in time t ∈ [0, T ] and in space Xs ∈ Ωs, of the difference

between truncated and untruncated marginals: f̃
(s)
N − f (s)

N → 0.

We consider therefore families of initial data: Boltzmann initial data F0 = (f
(s)
0 )s∈N such that

‖F0‖0,β0,µ0
= sup
s∈N

sup
Zs

(
exp(β0E0(Zs) + µ0s)f

(s)
0 (Zs)

)
< +∞
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and for each N , BBGKY initial data F̃N,0 = (f̃
(s)
N,0)1≤s≤N such that

sup
N
‖F̃N,0‖ε,β0,µ0

= sup
N

sup
s≤N

sup
Zs

(
exp(β0Eε(Zs) + µ0s)f̃

(s)
N,0(Zs)

)
< +∞ ,

satisfying (11.1.3) and (11.1.4). These give rise to a unique, uniformly bounded solution F̃N to the

BBGKY hierarchy thanks to Theorem 9 page 87, and to a unique solution F to the Boltzmann hierarchy

thanks to Theorem 10 page 88.

11.2. Convergence to the Boltzmann hierarchy

Our main result is the following.

Theorem 11 (Convergence). — Assume the potential satisfies Assumption 1.2.1 as well as (8.3.1).

Let β0 > 0 and µ0 ∈ R be given. There is a time T > 0 such that the following holds. For any admissible

Boltzmann datum F0 in X0,β0,µ0
associated with a family (F̃0,N )N≥1 of BBGKY data in Xε,β0,µ0

, the

solution F̃N to the BBGKY hierarchy satisfies, in the sense of Definition 6.2.1,

F̃N
∼−→ F

uniformly on [0, T ], where F is the solution to the Boltzmann hierarchy with data F0.

Corollary 11.2.1. — Assume the potential satisfies Assumption 1.2.1 as well as (8.3.1). Let β0 > 0

and µ0 ∈ R be given. There is a time T > 0 such that the following holds. For any admissible

Boltzmann datum F0 in X0,β0,µ0
associated with a family (F̃0,N )N≥1 of BBGKY data in Xε,β0,µ0

, the

associate family of untruncated marginals FN satisfies

FN
∼−→ F ,

uniformly on [0, T ], where F is the solution to the Boltzmann hierarchy with data F0.

Proof. — By Proposition 11.1.1, the family F0 is an admissible Boltzmann datum. Denoting F̃0,N an

associated BBGKY datum, let T > 0 be a time for which the solution the BBGKY hierarchy F̃N with

datum F̃0,N has a uniform bound, as given by Theorem 9.

By Theorem 11, the convergence Iϕs
(
f̃

(s)
N − f (s)

)
→ 0 holds uniformly in [0, T ] and locally uniformly

in Ωs. Then, by Lemma 11.1.2 and Remark 11.1.3, there holds f
(s)
N − f̃ (s)

N → 0, for fixed s, uniformly

in [0, T ] × Ωs. By Lemma 6.2.2, this implies Iϕs
(
f

(s)
N − f̃

(s)
N

)
→ 0, uniformly in [0, T ] and locally

uniformly in Ωs. We conclude that f
(s)
N

∼−→ f (s), uniformly in [0, T ].

In the next paragraph we shall prove that in the sum defining f̃
(s)
N (t) one can neglect all higher-order

interactions and restrict our attention to the case when mi = 1 for each i ∈ [1, n] and each n ∈ N.

Then we can, exactly as in the hard spheres case discussed in Chapter 7, consider only a finite number

of collisions, and reduce the study to bounded energies and well separated collision times.
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11.3. Reductions of the BBGKY hierarchy, and pseudotrajectories

In this paragraph, we first prove that the estimates obtained in Chapter 10 enable us to reduce the

study of the BBGKY hierarchy to the equation

(11.3.1) g̃
(s)
N (t, Zs) = Hs(t)f̃

(s)
N (0, Zs) +

∫ t

0

Hs(t− τ)Cs,s+1g̃
(s+1)
N (τ, Zs) dτ , 1 ≤ s ≤ N − 1 .

Estimate (10.3.2) in Proposition 10.3.1 shows indeed that higher-order collisions are negligible in the

Boltzmann-Grad limit. For the solution to the BBGKY hierarchy, this translates as follows.

Proposition 11.3.1. — Let β0 > 0 and µ0 be given. Then with the same notation as Theorem 9,

in the Boltzmann-Grad scaling Nεd−1 ≡ 1, any family of initial marginals F̃N (0) =
(
f̃

(s)
N (0)

)
1≤s≤N

in Xε,β0,µ0
gives rise to a unique solution G̃N ∈ Xε,β,µ of (11.3.1) and there holds the bound

‖|G̃N‖|ε,β,µ ≤ 2‖F̃N (0)‖ε,β0,µ0 .

Besides, the solution G̃N to the modified hierarchy (11.3.1) is asymptotically close to the solution F̃N
to the BBGKY hierarchy (9.5.4):

(11.3.2) ‖|G̃N − F̃N‖|ε,β,µ ≤ 2ε‖F̃N (0)‖ε,β0,µ0
.

Proof. — We find the bound for G̃N , in the same way as for Theorem 9. We turn to the proof

of (11.3.2). There holds

‖|G̃N − F̃N‖|ε,β,µ ≤
∥∥∥∣∣∣∫ t

0

(
Hs(t− t′)Cs,s+1(g̃

(s+1)
N − f̃ (s+1)

N )(t′)
)

1≤s≤N
dt′
∥∥∥∣∣∣
ε,β,µ

+
∥∥∥∣∣∣∫ t

0

(
Hs(t− t′)

∑
2≤m≤N−s

Cs,s+mf (s+m)
N (t′)

)
1≤s≤N

dt′
∥∥∥∣∣∣
ε,β,µ

.

With (10.3.1), this implies

‖|G̃N − F̃N‖|ε,β,µ ≤ c0
∥∥∥∣∣∣∫ t

0

(
Hs(t− t′)

∑
2≤m≤N−s

Cs,s+mf (s+m)
N (t′)

)
1≤s≤N

dt′
∥∥∥∣∣∣
ε,β,µ

,

with c0 :=
(
1− c̄(β0, µ0, λ, T )

)−1
, which is indeed strictly positive by assumption. We conclude as in

the proof of Proposition 10.3.1 and Lemma 10.3.2.

One has the following formulation for g̃
(s)
N in terms of the initial datum:

g̃
(s)
N (t) =

∞∑
k=0

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Hs(t− t1)Cs,s+1Hs+1(t1 − t2) . . .Hs+k(tk)f̃
(s+k)
N (0) dtk . . . dt1 .

We define the functional

Is(t)(Xs) :=

∞∑
k=0

∫
ϕs(Vs)

∫
Tk(t)

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2

. . . Cs+k−1,s+kHs+k(tk − tk+1)f̃
(s+k)
N,0 dTkdVs

and following Chapter 7, the reduced elementary functional

(11.3.3)
IR,δs,k (t)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Hs(t− t1)Cs,s+1Hs+1(t1 − t2)Cs+1,s+2

. . . Cs+k−1,s+kHs+k(tk − tk+1)11Eε(Zs+k)≤R2 f̃
(s+k)
N,0 dTkdVs .
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We can reproduce the proofs of Propositions 7.1.1, 7.2.1 and 7.3.1 to obtain the following result, as in

Corollary 7.4.1.

Proposition 11.3.2. — With the notation of Theorem 9, given s ∈ N∗ and t ∈ [0, T ], there are two

positive constants C and C ′ such that for all n ∈ N∗,∥∥Is(t)− n∑
k=0

IR,δs,k (t)
∥∥
L∞(Rds)

≤ C
(

2−n + e−C
′β0R

2

+
n2

T
δ

)
‖ϕ‖L∞(Rds)‖F̃N,0‖ε,β0,µ0 .

As in the hard-spheres case, in the integrand of the collision operators Cs,s+1 defined in (9.4.4), we can

distinguish between pre- and post-collisional configurations, as we decompose

Cs,s+1 = C+
s,s+1 − C

−
s,s+1

where

(11.3.4) C±s,s+1g̃
(s+1) =

s∑
m=1

C±,ms,s+1g̃
(s+1)

the index m referring to the index of the interacting particle among the s “fixed” particles, with the

notation(
C±,ms,s+1g̃

(s+1)
)
(Zs) := (N − s)εd−1

∫
Sd−1

1 ×Rd

(ν · (vs+1 − vm))±g̃
(s+1)(Zs, xm + εν, vs+1)

×
∏

1≤j≤s
j 6=m

11|xj−xs+1|≥ε dνdvs+1 ,

the index + corresponding to post-collisional configurations and the index − to pre-collisional config-

urations, according to terminology set out in Chapter 8.

The elementary BBGKY observables we are interested in can therefore be decomposed as

(11.3.5) IR,δs,k (t,Xs) =
∑
J,M

( k∏
i=1

ji

)
IR,δs,k (t, J,M)(Xs)

where the elementary functionals IR,δs,k (t, J,M) are defined by

IR,δs,k (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Hs(t− t1)Cj1,m1

s,s+1 Hs+1(t1 − t2)Cj2,m2

s+1,s+2

. . .Hs+k(tk − tk+1)11Eε(Zs+k)≤R2 f̃
(s+k)
N,0 dTkdVs ,

with

J := (j1, . . . , jk) ∈ {+,−}k and M := (m1, . . . ,mk) with mi ∈ {1, . . . , s+ i− 1} .

As in the hard spheres case, we still cannot study directly the convergence of IR,δs,n (t, J,M) −
I0,R,δ
s,n (t, J,M) since the transport operators Hk do not coincide everywhere with the free transport

operators Sk, which means – in terms of pseudo-trajectories – that there are recollisions. Note that,

because the interaction potential is compactly supported, recollisions happen only for characteristics

such that there exist i, j ∈ [1, k] with i 6= j, and τ > 0 such that

|(xi − τvi)− (xj − τvj)| ≤ ε .
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We shall thus prove that these recollisions arise only for a few pathological pseudo-trajectories, which

can be eliminated by additional truncations of the domains of integration. This is the goal of Part IV,

which deals with the hard-spheres and the potential case simultaneously.



PART IV

TERM-BY-TERM CONVERGENCE





CHAPTER 12

ELIMINATION OF RECOLLISIONS

This last part is the heart of our contribution. We prove the term-by-term convergence of the series

giving the observables, both in the case of hard spheres and in the case of smooth hamiltonian systems.

We have indeed seen in Corollary 7.4.1 (for the hard-spheres case) and Proposition 11.3.2 (for the

potential case) that the convergence of observables reduces to the convergence to zero of the elementary

functionals IR,δs,k − I
0,R,δ
s,k , where IR,δs,k is defined in (7.3.1) in the hard-spheres case and in (11.3.3) for

the potential case, and I0,R,δ
s,k is defined in (7.3.1). These functionals correspond to dynamics

– involving only a finite number s+ k of particles,

– with bounded energies (at most R2),

– such that the k additional particles are adjoined through binary collisions,

– at times separated at least by δ.

What we shall establish is that recollisions can occur only for very pathological pseudo-trajectories,

in the sense that the velocities and impact parameters of the additional particles in the collision trees

have to be chosen in small measure sets.

We point out the fact that, even in the case of hard spheres, these bad sets are generally not of zero

measure because they are built as non countable unions of zero measure sets. The arguments are

actually very similar whatever the precise nature of the microscopic interaction.

The only differences we shall see between the case of hard spheres and the case of smooth potentials

are the following:

– the parametrization of collisions by the deflection angle is trivial in the case of hard spheres since

it coincides exactly with the impact parameter;

– there is no time shift between pre-collisional and post-collisional configurations in the case of

hard spheres since the reflection is instantaneous.

These two simplifications will enable us to obtain explicit estimates on the convergence rate in the case

of hard spheres. For more general interactions, this convergence rate can be expressed as an implicit

function depending on the potential.
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12.1. Stability of good configurations by adjunction of collisional particles

In this paragraph we momentarily forget the BBGKY and Boltzmann hierarchies, and focus on the

study of pseudo-trajectories.

Definition 12.1.1 (Good configuration). — For any constant c > 0, we denote by Gk(c) the set

of “good configurations” of k particles, separated by at least c through backwards transport: that is the

set of (Xk, Vk) ∈ Rdk ×BkR such that the image of (Xk, Vk) by the backward free transport satisfies the

separation condition

∀τ ≥ 0, ∀i 6= j, |xi − xj − τ(vi − vj)| ≥ c ,
in particular it is never collisional.

We recall that BkR :=
{
Vk ∈ Rdk / |Vk| ≤ R

}
and in the following we write BR := B1

R.

Our aim is to show that “good configurations” are stable by adjunction of a collisional particle provided

that the deflection angle and the velocity of the additional particle do not belong to a small pathological

set. Furthermore the set to be excluded can be chosen in a uniform way with respect to the initial

positions of the particles in a small neighborhood of any fixed “good configuration”.

Notation 12.1.2. — In all the sequel, given two positive parameters η1 and η2, we shall say that

η1 � η2 if η1 ≤ Cη2

for some large constant C which does not depend on any parameter.

In the following we shall fix three parameters a, ε0, η � 1 such that

(12.1.1) a� ε0 � ηδ .

We recall that the parameter δ scales like time while we shall see that η, like R, scales like a velocity.

The parameters a and ε0, just like ε, will have the scaling of a distance.

Proposition 12.1.1. — Let a, ε0, η � 1 satisfy (12.1.1). Given Zk ∈ Gk(ε0), there is a subset Bk(Zk)

of Sd−1
1 ×BR of small measure: for some fixed constant C > 0 and some constant C(Φ, η, R) > 0,

(12.1.2)

∣∣Bk(Zk)
∣∣ ≤ Ck(Rηd−1 +Rd

( a
ε0

)d−1

+R
(ε0

δ

)d−1)
in the case of hard spheres∣∣Bk(Zk)

∣∣ ≤ Ck(Rηd−1 + C(Φ, R, η)Rd
( a
ε0

)d−1

+ C(Φ, R, η)R
(ε0

δ

)d−1)
in the case of a smooth interaction potential Φ ,

and such that good configurations close to Zk are stable by adjunction of a collisional particle close

to x̄k and not belonging to Bk(Zk), in the following sense.

Consider (ν, v) ∈ (Sd−1
1 ×BR) \ Bk(Zk) and let Zk be a configuration of k particles such that Vk = V k

and |Xk −Xk| ≤ a.

• If ν · (v − v̄k) < 0 then for all ε > 0 sufficiently small,

(12.1.3) ∀τ ≥ 0 ,

{
∀i 6= j ∈ [1, k] , |(xi − τ v̄i)− (xj − τ v̄j)| ≥ ε ,
∀j ∈ [1, k] , |(xk + εν − τv)− (xj − τ v̄j)| ≥ ε .
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Moreover after the time δ, the k + 1 particles are in a good configuration:

(12.1.4) (Xk − δV k, V k, xk + εν − δv, v) ∈ Gk+1(ε0/2) .

• If ν · (v − v̄k) > 0 then define for j ∈ [1, k − 1]

(zε∗k , z
ε∗) := σ−1

(
zk, (xk + εν, v)

)
and zε∗j := (xj − v̄j , v̄j)

in the hard-spheres case, where σ is defined in (4.4.2), and

(zε∗k , z
ε∗) := σ−1

ε

(
zk, (xk + εν, v)

)
and zε∗j := (xj − tεv̄j , v̄j)

in the potential case, where σε is the scattering operator as in Definition 8.2.1 and where tε < δ denotes

the scattering time between zk and (xk + εν, v). Then for all ε > 0 sufficiently small,

(12.1.5) ∀τ ≥ 0 ,

{
∀i 6= j ∈ [1, k] , |(xε∗i − τvε∗i )− (xε∗j − τvε∗j )| ≥ ε ,
∀j ∈ [1, k] , |(xε∗ − τvε∗)− (xε∗j − τvε∗j )| ≥ ε .

Moreover after the time δ, the k + 1 particles are in a good configuration:

(12.1.6)
(
Xε∗
k − (δ − tε)V ε∗k , V ε∗k , xε∗ − (δ − tε)vε∗, vε∗

)
∈ Gk+1(ε0/2) ,

with tε := 0 in the hard-spheres case.

The proof of the proposition may be found in Section 12.3. It relies on some elementary geometrical

lemmas, stated and proved in the next section. The first one describes the bad trajectories associated

with (free) transport. The other ones explain how they are modified by collisions, both in the case of

hard spheres and in the case of smooth interactions.

Remark 12.1.3. — For the sake of simplicity, we have assumed in the statement of Proposition 12.1.1

that the additional particle collides with the particle numbered k. Of course, a simple symmetry argu-

ment shows that an analogous statement holds if the new particle is added close to any of the particles

in Zk.

The proof of Proposition 12.1.1 shows that if Zk = Zk then the factor ε0/2 in (12.1.4) and (12.1.6)

may be replaced by ε0. The loss if Zk 6= Zk comes from the fact that the set to be excluded has to be

chosen in a uniform way with respect to the initial positions of the particles in a small neighborhood

of Xk.

12.2. Geometrical lemmas

We first consider the case of two particles moving freely, and describe the set of velocities v2 leading

possibly to collisions (or recollisions).

Here and in the sequel, we denote by K(w, y, ρ) the cylinder of origin w ∈ Rd, of axis y ∈ Rd and

radius ρ > 0 and by Bρ(y) the ball centered at y of radius ρ.
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12.2.1. Bad trajectories associated to free transport. —

Lemma 12.2.1. — Given ā > 0 satisfying ε� ā� ε0, consider x̄1, x̄2 in Rd such that |x̄1−x̄2| ≥ ε0,

and v1 ∈ BR. Then for any x1 ∈ Bā(x̄1), any x2 ∈ Bā(x̄2) and any v2 ∈ BR, the following results

hold.

• If v2 /∈ K(v1, x̄1 − x̄2, 6Rā/ε0), then

∀τ ≥ 0 , |(x1 − v1τ)− (x2 − v2τ)| > ε ;

• If v2 /∈ K(v1, x̄1 − x̄2, 6ε0/δ)

∀τ ≥ δ , |(x1 − v1τ)− (x2 − v2τ)| > ε0 .

Proof. — • Assume that there exists τ∗ such that

|(x1 − v1τ∗)− (x2 − v2τ∗)| ≤ ε .

Then, by the triangular inequality and provided that ε is sufficiently small,

|(x̄1 − x̄2)− τ∗(v1 − v2)| ≤ ε+ 2ā ≤ 3ā .

This means that (v1 − v2) belongs to the cone of vertex 0 based on the ball centered at x̄1 − x̄2 and of

radius 3ā, which is a cone of solid angle (3ā/|x̄1 − x̄2|)d−1 (since ā� ε0).

The intersection of this cone and of the sphere of radius 2R is obviously embedded in the cylinder of

axis x̄1 − x̄2 and radius 6Rā/ε0, which proves the first result.

• Similarly assume that there exists τ∗ ≥ δ such that

|(x1 − v1τ∗)− (x2 − v2τ∗)| ≤ ε0 .

Then, by the triangular inequality again,

|(x̄1 − x̄2)− τ∗(v1 − v2)| ≤ ε0 + 2ā ≤ 3ε0 .

In particular, for any unit vector n orthogonal to x̄1 − x̄2,

τ∗|n · (v1 − v2)| = |n · ((x̄1 − x̄2)− τ∗(v1 − v2)) | ≤ 3ε0 .

This tells us exactly that v1 − v2 belongs to the cylinder of axis x̄1 − x̄2 and radius 3ε0/δ.

The lemma is proved.

12.2.2. Modification of bad trajectories by hard sphere reflection. —

We now consider the case when particles 1 and 2 undergo a hard sphere collision before being trans-

ported, and look at impact parameters ν and velocities v2 leading possibly to collisions (or recollisions).

Lemma 12.2.2. — Consider ρ� R, and (y, w) ∈ Rd ×BR. For any v1 in BR, define

N ∗(w, y, ρ)(v1) :=
{

(ν, v2) ∈ Sd−1
1 ×BR / (v2 − v1) · ν > 0 ,

v∗1 ∈ K(w, y, ρ) or v∗2 ∈ K(w, y, ρ)
}
,

where

v∗1 := v1 − ν · (v1 − v2) ν and v∗2 := v2 + ν · (v1 − v2) ν .

Then

|N ∗(w, y, ρ)(v1)| ≤ CdRρd−1 ,

where the constant Cd depends only on the dimension d.
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Proof. — Denote by r = |v1−v2| = |v∗1 −v∗2 |. The reflection condition shows that, as ν varies in Sd−1
1 ,

the velocities v∗1 and v∗2 range over a sphere of diameter r.

The solid angle of the intersection of such a sphere with the cylinder K(w, y, ρ) is less than

Cd min

(
1,
(ρ
r

)d−1
)

which implies that∣∣∣{(ν, v2) / v∗1 ∈ K(w, y, ρ) or v∗2 ∈ K(w, y, ρ)
}∣∣∣ ≤ Cd ∫ rd−1 min

(
1,
(ρ
r

)d−1
)
dr

≤ CdRρd−1 .

This proves Lemma 12.2.2.

12.2.3. Modification of bad trajectories by the scattering associated to Φ. —

The last geometrical lemma requires the use of notation coming from scattering theory, introduced in

Chapter 8: it states that if two particles z1, z2 in R2d are in a post-collisional configuration and if v1

or v2 belong to a cylinder as in Lemma 12.2.1, then the pre-image z∗2 of z2 through the scattering

operator belongs to a small set of R2d.

Lemma 12.2.3. — Consider two parameters ρ � R and η � 1, and (y, w) ∈ Rd × BR. For any v1

in BR, define

N ∗(w, y, ρ)(v1) :=
{

(ν, v2) ∈ Sd−1
1 ×BR / (v2 − v1) · ν > η ,

v∗1 ∈ K(w, y, ρ) or v∗2 ∈ K(w, y, ρ)
}
,

where (ν∗, v∗1 , v
∗
2) = σ−1

0 (ν, v1, v2) with the notations of Chapter 8. Then

|N ∗(w, y, ρ)(v1)| ≤ C(Φ, R, η)Rρd−1

where the constant depends on the potential Φ through the L∞ norm of the cross-section b on the

compact set B2R × [η/2R, π/2] defined in Chapter 8.

Proof. — Denote by r = |v1 − v2| = |v∗1 − v∗2 |, and by ω the deflection angle.

From the proof of the previous lemma, we deduce that∣∣∣{(ω, v2) / v∗1 ∈ K(w, y, ρ) or v∗2 ∈ K(w, y, ρ)
}∣∣∣ ≤ Cd ∫ rd−1 min

(
1,
(ρ
r

)d−1
)
dr

≤ CdRρd−1 .

According to Chapter 8, the change of variables (ν, v1−v2) 7→ (ω, v1−v2) is a Lipschitz diffeomorphism

away from ν · (v1 − v2) = 0. We therefore get the expected estimate.

Remark 12.2.4. — Note that the geometrical Lemmas 12.2.1 to 12.2.3 consist in eliminating sets in

the velocity variables and deflection angles only, and do not concern the position variables.
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12.3. Proof of the geometric proposition

In this section we prove Proposition 12.1.1. We fix a good configuration Zk ∈ Gk(ε0), and we consider

a configuration Zk ∈ R2dk, with the same velocities as Zk, and neighboring positions: |Xk −Xk| ≤ a.

In particular we notice that for all τ ≥ 0 and all i 6= j,

(12.3.7) |xi − xj − τ(v̄i − v̄j)| ≥ |x̄i − x̄j − τ(v̄i − v̄j)| − 2a ≥ ε0/2

since a� ε0. This implies that Zk ∈ Gk(ε0/2). Next we consider an additional particle (xk + εν, vk+1)

and we shall separate the analysis into two parts, depending on whether the situation is pre-collisional

(meaning ν · (vk+1 − v̄k) < 0) or post-collisional (meaning ν · (vk+1 − v̄k) > 0).

12.3.1. The pre-collisional case. — We assume that

ν · (vk+1 − v̄k) < 0 ,

meaning that (xk+εν, vk+1) and zk form a pre-collisional pair. In particular we have for all times τ ≥ 0

and all ε > 0 ∣∣(xk + εν − vk+1τ
)
−
(
xk − v̄kτ

)∣∣ ≥ ε .
Furthermore up to excluding the ball Bη(v̄k) in the set of admissible vk+1, we may assume that

|vk+1 − v̄k| > η .

Under that assumption we have for all τ ≥ δ and all ε > 0 sufficiently small,∣∣(xk + εν − vk+1τ
)
−
(
xk − v̄kτ

)∣∣ ≥ τ |vk+1 − v̄k| − ε
≥ δη − ε > ε0/2 .

Furthermore we know that Zk belongs to Gk(ε0/2) thanks to (12.3.7).

Now let j ∈ [1, k − 1] be given. According to Lemma 12.2.1, we find that for any vk+1 belonging to

the set BR \K(v̄j , x̄j − x̄k, 6Ra/ε0 + 6ε0/δ), we have

∀τ ≥ 0 , |(xk + εν − vk+1τ)− (xj − v̄jτ)| > ε ,

and

∀τ ≥ δ , |(xk + εν − vk+1τ)− (xj − v̄jτ)| > ε0 .

Notice that ∣∣∣BR ∩K(v̄j , x̄j − x̄k, 6Ra/ε0 + 6ε0/δ)
∣∣∣ ≤ C(Rd( a

ε0

)d−1

+R
(ε0

δ

)d−1)
.

Defining M−(Zk) :=
⋃

j≤k−1

K(v̄j , x̄j − x̄k, 6Ra/ε0 + 6ε0/δ) and

B−k (Zk) := Sd−1
1 ×

(
Bη(v̄k) ∪M−(Zk)

)
we find that ∣∣∣B−k (Zk)

∣∣∣ ≤ Ck(ηd +Rd
( a
ε0

)d−1
+R

(ε0

δ

)d−1
)

and (12.1.3) and (12.1.4) hold as soon as (ν, vk+1) /∈ B−k (Zk).
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12.3.2. The post-collisional case with hard sphere reflection. —

We now assume that

ν · (vk+1 − v̄k) > 0 ,

meaning that (xk + εν, vk+1) and zk form a post-collisional pair. In particular, at time τ = 0+, the

configuration is changed and we have the pre-collisional pair (xk + εν, v∗k+1) and (xk, v
∗
k) where v∗k

and v∗k+1 are defined by the usual reflection condition. Furthermore, we have for all times τ ≥ 0 and

all ε > 0 ∣∣(xk + εν − v∗k+1τ
)
−
(
xk − v∗kτ

)∣∣ ≥ ε .
We can then repeat the same arguments as inthe pre-collisional case replacing v̄k, vk+1 by v∗k, v

∗
k+1.

Excluding the ball Bη(v̄k) in the set of admissible vk+1, we find that∣∣(xk + εν − v∗k+1τ
)
−
(
xk − v∗kτ

)∣∣ ≥ τ |vk+1 − v̄k| − ε
≥ δη − ε > ε0/2 .

According to Lemma 12.2.1, if v∗k, v
∗
k+1 belong to the set BR \K(v̄j , x̄j − x̄k, 6Ra/ε0 + 6ε0/δ), we have

∀τ ≥ 0 , |(xk + εν − v∗k+1τ)− (xj − v̄jτ)| > ε ,

|(xk − v∗kτ)− (xj − v̄jτ)| > ε ,

and
∀τ ≥ δ , |(xk + εν − v∗k+1τ)− (xj − v̄jτ)| > ε0

|(xk − v∗kτ)− (xj − v̄jτ)| > ε0 .

Combining Lemmas 12.2.1and 12.2.2, we therefore obtain that (12.1.3) and (12.1.4) hold as soon

as (ν, vk+1) /∈ B+
k (Zk) where

B+
k (Zk) := Sd−1

1 ×Bη(v̄k) ∪
⋃

j≤k−1

N ∗(v̄j , x̄j − x̄k, 6Ra/ε0 + 6ε0/δ)(v̄k) .

In particular, ∣∣∣B+
k (Zk)

∣∣∣ ≤ Ck(ηd +Rd
( a
ε0

)d−1
+R

(ε0

δ

)d−1
)
.

12.3.3. The post-collisional case with smooth scattering. —

In the case of a smooth interaction potential, dealing with the post-collisional case is a little bit more

intricate because of the time shift. Furthermore, using Lemma 12.2.3 instead of Lemma 12.2.2, we lose

the explicit estimate for the bad set B+
k (Zk).

Let us first define

(12.3.8) C(Zk) :=
{

(ν, vk+1) ∈ Sd1 ×BR , ν · (vk+1 − v̄k) ≤ η
}
,

which satisfies

|C(Zk)| ≤ CRηd−1 .

Choosing (ν, vk+1) ∈ (Sd1 × BR) \ C(Zk) ensures that the cross-section is well defined (see Defini-

tion 8.3.3), and that the scattering time tε is of order C(Φ, R, η)ε by Proposition 8.2.1.



104 CHAPTER 12. ELIMINATION OF RECOLLISIONS

Considering the formulas (8.2.2) expressing (zε∗k , z
ε∗
k+1) in terms of

(
zk, (xk + εν, vk+1)

)
, we know that

(12.3.9)

|xε∗k − xk| ≤
1

2
|xε∗k − xε

∗

k+1|+
1

2
|(xε∗k + xε

∗

k+1)− (xk + xk+1)|+ 1

2
|(xk − xk+1)|

≤ Rtε + ε ≤ C(Φ, R, η)ε ,

|xε∗k+1 − (xk + εν)| ≤ 1

2
|xε∗k − xε

∗

k+1|+
1

2
|(xε∗k + xε

∗

k+1)− (xk + xk+1)|+ 1

2
|(xk − xk+1)|

≤ Rtε + ε ≤ C(Φ, R, η)ε .

Note that due to (12.3.7), all particles xj with j ≤ k−1 are at a distance at least ε0/2−ε ≥ ε0/3 of the

particles xk and xk + εν. Since they have bounded velocities, they cannot enter the protection spheres

of these post-collisional particles during the interaction time tε, provided that ε is small enough:

Rtε � ε0/3 .

Since the dynamics of the particles j ≤ k−1 is not affected by the scattering, we get that Zε∗k−1 belongs

to Gk−1(ε0/2):

(12.3.10) ∀τ ≥ 0 , ∀(i, j) ∈ [1, k − 1]2 with i 6= j , |xε∗i − xε∗j − τ(vε∗i − vε∗j )| ≥ ε0/2 .

The pair (zε∗k , z
ε∗
k+1) is a pre-collisional pair by definition, so we know that for all τ ≥ 0,

|(xε∗k − τvε∗k )− (xε∗k+1 − τvε∗k+1)| ≥ ε .

Excluding the ball Bη(v̄k) in the set of admissible vk+1, we find as above that

∀τ ≥ δ , |xε∗k − xε∗ − τ(vε∗k − vε∗k+1)| ≥ ηδ − ε ≥ ε0 ,

for ε sufficiently small, since ε0 � ηδ.

Next for j ≤ k− 1 we have for ε sufficiently small, recalling that the uniform, rectilinear motion of the

center of mass as described in (8.1.3),

|xε∗j − x̄j | ≤ |xε∗j − xj |+ |xj − x̄j | ≤ Rtε + a ≤ 2a

|xε∗k − x̄k| ≤ |xε∗k − xk|+ |xk − x̄k| ≤ Rtε + ε+ a ≤ 2a

|xε∗k+1 − x̄k| ≤ |xε∗k+1 − xk+1|+ |xk + εν − x̄k| ≤ Rtε + 2ε+ a ≤ 2a .

By Lemma 12.2.1, provided vε∗k and vε∗k+1 do not belong to

K(v̄j , x̄j − x̄k, 12Ra/ε0 + 12ε0/δ) ∩BR ,

we get since vε∗j = v̄j ,

∀τ ≥ 0 , |xε∗k − xε∗j − τ(vε∗k − vε∗j )| ≥ ε ,
and |xε∗k+1 − xε∗j − τ(vε∗k+1 − vε∗j )| ≥ ε

as well as
∀τ ≥ δ/2 , |xε∗k − xε∗j − τ(vε∗k − vε∗j )| ≥ ε0/2 ,

and |xε∗k+1 − xε∗j − τ(vε∗k+1 − vε∗j )| ≥ ε0/2 .

Lemma 12.2.3 bounds from the above the size of the set N ∗(v̄j , x̄j − x̄k, ρ) of all (ν, vk+1) belonging

to (Sd1×BR) \C(Zk) such that vε∗k or vε∗k+1 belongs to K(v̄j , x̄j − x̄k, ρ). We let ρ = 12Ra/ε0 + 12ε0/δ,

and define

B+
k (Zk) := C(Zk) ∪

(
Sd−1

1 ×Bη(v̄k)
) ⋃
j≤k−1

N ∗(v̄j , x̄j − x̄k, 12Ra/ε0 + 12ε0/δ)(v̄k) .

By Lemma 12.2.3, ∣∣∣B+
k (Zk)

∣∣∣ ≤ CkRηd−1 + C(Φ, R, η)R
(
R
a

ε0
+
ε0

δ

)d−1
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and (12.1.5) and (12.1.6) hold as soon as (ν, v) /∈ B+
k (Zk). Proposition 12.1.1 is proved.

Note that, in order to prove that pathological sets have vanishing measure as ε → 0, we have to

choose η small enough, and then a and ε0 even smaller in order that (12.1.1) is satisfied and that

(12.1.2) is small. Moreover, if we want to get a rate of convergence, we need to have more precise

bounds on the cross-section b in terms of the truncation parameters R and η.





CHAPTER 13

TRUNCATED COLLISION INTEGRALS

Our goal in the present chapter is to slightly modify (in a uniform way) the functionals IR,δs,k (defined

in (7.3.1) in the hard-spheres case and in (11.3.3) for the potential case) and I0,R,δ
s,k , defined in (7.3.1),

in order for the corresponding pseudo-trajectories to be decomposed as a succession of free transport

and binary collisions, without any recollision. This will be possible thanks to Proposition 12.1.1. We

then expect to be able to compare these approximate observables, which will be done in the next

chapter.

13.1. Initialization

The first step consists in preparing the initial configuration Zs so that it is a good configuration. We

define

∆s(ε0) :=
{
Zs ∈ Rds ×BsR / inf

1≤`<j≤s
|x` − xj | ≥ ε0

}
,

and we shall assume from now on that Zs belongs to ∆s(ε0). We also define for convenience

∆X
s (ε0) :=

{
Xs ∈ Rds / inf

1≤`<j≤s
|x` − xj | ≥ ε0

}
.

Proposition 13.1.1. — For all Xs ∈ ∆X
s (ε0), there is a subset Ms(Xs) of Rds such that∣∣Ms(Xs)

∣∣ ≤ CRs2

((
R
ε

ε0

)d−1

+
(ε0

δ

)d−1
)
,

and defining Ps :=
{
Zs ∈ ∆s(ε0) / Vs /∈Ms(Xs)

}
, then

(13.1.1)

∀τ ≥ 0 , 11Ps ◦Ts(τ) ≡ 11Ps ◦ Ss(τ)

in the hard-spheres case ,

∀τ ≥ 0 , 11Ps ◦Hs(τ) ≡ 11Ps ◦ Ss(τ)

in the potential case, and

∀τ ≥ δ , 11Ps ◦ Ss(τ) ≡ 11Ps ◦ Ss(τ) ◦ 11Gs(ε0) .

denoting abusively by 11A the operator of multiplication by the indicator of A.



108 CHAPTER 13. TRUNCATED COLLISION INTEGRALS

Proof. — The proof is very similar to the arguments of the previous chapter. For any Zs in ∆s(ε0),

we apply Lemma 12.2.1 which shows that outside a small measure set Ms(Xs) ⊂ Rds of veloci-

ties (v1, . . . , vs), with

|Ms(Xs)| ≤ CRs2

((
R
ε

ε0

)d−1

+
(ε0

δ

)d−1
)
,

the backward nonlinear flow is actually the free flow and the particles remain at a distance larger

than ε to one another for all times:

∀τ > 0, ∀` 6= `′ ∈ {1, . . . , s} , |(x` − v`τ)− (x`′ − v`′τ)| > ε ,

and that

∀τ ≥ δ, ∀` 6= `′ ∈ {1, . . . , s} , |(x` − v`τ)− (x`′ − v`′τ)| ≥ ε0 .

By construction, Ms(Xs) depends continuously on Xs; the result follows by definition of Ps.

13.2. Approximation of the Boltzmann functional

We recall that we consider a family of initial data F0 = (f
(s)
0 ) satisfying

‖F0‖0,β0,µ0
:= sup

s∈N
sup
Zs

(
exp(β0E(Zs) + µ0s)f

(s)
0 (Zs)

)
< +∞

and after the reductions of Chapters 7 and 11, the observable we are interested in is the following:

(13.2.2)
I0,R,δ
s,k (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Ss(t− t1)C0,j1,m1

s,s+1 Ss+1(t1 − t2)C0,j2,m2

s+1,s+2

. . .Ss+k(tk − tk+1)11E0(Zs+k)≤R2f
(s+k)
0 dTkdVs ,

By Proposition 13.1.1, up to an error term of order CRs2
((
R
ε

ε0

)d−1

+
(ε0

δ

)d−1)
, we can assume that

the initial configuration Zs is a good configuration, meaning that

I0,R,δ
s,k (t, J,M)(Xs) =

∫
BR\Ms(Xs)

ϕs(Vs)

∫
Tk,δ(t)

Ss(t− t1)C0,j1,m1

s,s+1 Ss+1(t1 − t2)C0,j2,m2

s+1,s+2

. . . C0,jk,mk
s+k−1,s+kSs+k(tk − tk+1)11|E0(Zs+k)|≤R2f

(s+k)
0 dTkdVs

+O

(
ck,J,MRs

2

((
R
ε

ε0

)d−1

+
(ε0

δ

)d−1
)
‖F0‖0,β0,µ0

)
,

where
∑
k

∑
J,M

ck,J,M = 1 and

(
C0,−,m
s,s+1 f

(s+1)
)
(Zs) =

∫
Sd−1

1 ×Rd

((vs+1 − vm) · νs+1)−f
(s+1)(Zs, xm, vs+1) dνs+1dvs+1 and

(
C0,+,m
s,s+1 f

(s+1)
)
(Zs) =

∫
Sd−1

1 ×Rd

((vs+1 − vm) · νs+1)+f
(s+1)(z1, . . . , xm, v

∗
m, . . . , zs, xm, v

∗
s+1) dνs+1dvs+1 .

Now let us introduce some notation which we shall be using constantly from now on: given Zs ∈
∆s(ε0), we call Z0

s (τ) the position of the backward free flow initiated from Zs, at time t1 ≤ τ ≤ t.

Then given j1 ∈ {+,−}, m1 ∈ [1, s], a deflection angle νs+1 and a velocity vs+1 we call Z0
s+1(τ) the

position at time t2 ≤ τ < t1 of the Boltzmann pseudo-trajectory initiated by the adjunction of the

particle (νs+1, vs+1) to the particle z0
m1

(t1) (which is simply free-flow in the pre-collisional case j1 = −,

and free-flow after scattering of particles z0
m1

(t1) and (νs+1, vs+1) in the post-collisional case j1 = +).
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Similarly by induction given Zs ∈ ∆s(ε0), T, J and M we denote for each 1 ≤ k ≤ n by Z0
s+k(τ)

the position at time tk+1 ≤ τ < tk of the pseudo-trajectory initiated by the adjunction of the parti-

cle (νs+k, vs+k) to the particle z0
mk

(tk) (which is simply free-flow in the pre-collisional case jk = −,

and free-flow after scattering of particles z0
mk

(tk) and (νs+k, vs+k) in the post-collisional case jk = +).

Notice that τ 7→ Z0
s+k(τ) is pointwise right-continuous on [0, tk].

With this notation, the elementary functional I0,R,δ
s,k may be reformulated as

I0,R,δ
s,k (t, J,M)(Xs) =

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk

∫
Sd−1

1 ×BR
dνs+1dvs+1((vs+1 − v0

m1
(t1) · νs+1)+

. . .

∫
Sd−1

1 ×BR
dνs+kdvs+k((vs+k − v0

mk
(tk) · νs+k)+11E0(Z0

s+k(0))≤R2f
(s+k)
0 (Z0

s+k(0))

+O

(
ck,J,MRs

2

((
R
ε

ε0

)d−1

+
(ε0

δ

)d−1
)
‖F0‖0,β0,µ0

)
,

where
∑
k

∑
J,M

ck,J,M = 1. Let a, ε0, η � 1 be such that

a� ε0 � ηδ .

According to Proposition 12.1.1, for any good configuration Zs+k−1 ∈ R2d(s+k−1), we can define a set

cBmks+k−1(Zs+k−1) :=
(
Sd−1

1 ×BR
)
\ Bmks+k−1(Zs+k−1) ,

such that good configurations Zs+k−1 = (Xs+k−1, V s+k−1) with |Xs+k−1 −Xs+k−1| ≤ Ca are stable

by adjunction of a collisional particle zs+k = (xmk+ενk+s, vk+s) with (νk+s, vk+s) ∈ cBmks+k−1(Zs+k−1).

We further notice that thanks to Remark 12.1.3, if the adjoined pair (νs+k, vs+k) belongs to the

set cBmks+k−1(Z0
s+k−1(tk)) with Z0

s+k−1(tk) ∈ Gs+k−1(ε0), then Z0
s+k(tk+1) belongs to Gs+k(ε0).

As a consequence we may define recursively the approximate Boltzmann functional

(13.2.3)

J0,R,δ
s,k (t, J,M)(Xs) =

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1(vs+1 − v0
m1

(t1) · νs+1)j1

. . .

∫
cBmks+k−1(Z0

s+k−1(tk))

dνs+kdvs+k(vs+k − v0
mk

(tk) · νs+k)jk

× 11E0(Z0
s+k(0))≤R2f

(s+k)
0 (Z0

s+k(0)) .

The following result is an immediate consequence of Proposition 12.1.1, together with the continuity

estimates for the Boltzmann collision operator in Proposition 5.4.2.

Proposition 13.2.1. — Let a, ε0, η � 1 satisfying (12.1.1). Then, we have the following error esti-

mates for the observables associated to the Boltzmann dynamics:

– with the cross-section associated to hard-spheres,∣∣∣ n∑
k=0

∑
J,M

11∆s(ε0)

(
I0,R,δ
s,k − J0,R,δ

s,k

)
(t, J,M)

∣∣∣ ≤ Cn2(s+ n)

×
(
Rηd−1 +Rd

( a
ε0

)d−1

+R
(ε0

δ

)d−1)
‖F0‖0,β0,µ0

;
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– with the cross-section associated with a smooth short-range potential Φ,∣∣∣ n∑
k=0

∑
J,M

11∆s(ε0)

(
I0,R,δ
s,k − J0,R,δ

s,k

)
(t, J,M)

∣∣∣ ≤ Cn2(s+ n)

×
(
Rηd−1 + C(Φ, η, R)Rd

( a
ε0

)d−1

+ C(Φ, η, R)R
(ε0

δ

)d−1)
‖F0‖0,β0,µ0 .

13.3. Approximation of the BBGKY functional

We recall that after the reductions of Chapters 7 and 11, the elementary functionals we are interested

in are

– in the case of hard spheres:

IR,δs,k (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Ts(t− t1)Cj1,m1

s,s+1 Ts+1(t1 − t2)Cj2,m2

s+1,s+2

. . . Cjk,mks+k−1,s+kTs+k(tk − tk+1)11Eε(Zs+k)≤R2f
(s+k)
N,0 dTkdVs ,

where FN,0 = (f
(s)
N,0)1≤s≤N satisfies

‖FN,0‖ε,β0,µ0
:= sup

s∈N
sup
Zs∈Ds

(
exp(β0E0(Zs) + µ0s)f

(s)
N,0(Zs)

)
< +∞ ;

– in the case of a smooth interaction potential Φ:

IR,δs,k (t, J,M)(Xs) :=

∫
ϕs(Vs)

∫
Tk,δ(t)

Hs(t− t1)Cj1,m1

s,s+1 Hs+1(t1 − t2)Cj2,m2

s+1,s+2

. . . Cjk,mks+k−1,s+kHs+k(tk − tk+1)11Eε(Zs+k)≤R2 f̃
(s+k)
N,0 dTkdVs ,

where F̃N,0 = (f̃
(s)
N,0)1≤s≤N satisfies

‖F̃N,0‖ε,β0,µ0
:= sup

s∈N
sup
Zs

(
exp(β0Eε(Zs) + µ0s)f̃

(s)
N,0(Zs)

)
< +∞ .

Since both formulas are quite similar, we shall deal with the case of smooth potentials and will indicate

– if need be – simplifications arising in the case of hard spheres.

Thanks to Proposition 13.1.1, we have

IR,δs,k (t, J,M)(Xs) =

∫
BR\Ms(Xs)

ϕs(Vs)

∫
Tk,δ(t)

Ss(t− t1)11Gs(ε0)Cj1,m1

s,s+1 Hs+1(t1 − t2)Cj2,m2

s+1,s+2

. . . Cjk,mks+k−1,s+kHs+k(tk − tk+1)11Eε(Zs+k(0))≤R2 f̃
(s+k)
N,0 dTkdVs

+O

(
ck,J,MRs

2

((
R
ε

ε0

)d−1

+
(ε0

δ

)d−1
)
‖F̃N,0‖ε,β0,µ0

)
,

where recall that ck,J,M denotes a sequence of positive real numbers satisfying
∑
k

∑
J,M

ck,J,M = 1.
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Then using the notation introduced in the previous paragraph for the Boltzmann pseudo-trajectory,

let us define the approximate functionals

JR,δs,k (t, J,M)(Xs) :=

∫
BR\Ms(Xs)

ϕs(Vs)

∫
Tk,δ(t)

Ss(t− t1)11Gs(ε0)C̃j1,m1

s,s+1 Hs+1(t1 − t2)

. . . C̃jk,mks+k−1,s+kHs+k(tk − tk+1)11Eε(Zs+k(0))≤R2 f̃
(s+k)
0 dTkdVs ,

where the modified collision operators are obtained by elimination of the pathological set of impact

parameters and velocities(
C̃±,mks+k−1,s+kg

(s+k)
)
(Zs+k−1) := (N − s− k + 1)εd−1

∫
cBmks+k−1(Z0

s+k−1(tk))

(νs+k · (vs+k − vmk(tk)))±

×g(s+k)(·, xmk(tk) + ενs+k, vs+k(tk))
∏

1≤j≤s+k−1
j 6=mk

11|(xj−xmk )(tk)−ενs+k|≥ε dνs+kdvs+k .

By construction, we know that the remaining collision trees are nice, in the sense that collisions involve

only two particles and are well-separated in time. Using the pre/post-collisional change of variables,

we can rewrite the gain terms as follows

11Gs+k−1(ε0/2)

(
C̃+,mk
s+k−1,s+kHs+k(tk − tk+1)g(s+k)

)
(Zs+k−1)

:= (N − s− k + 1)εd−111Gs+k−1(ε0/2)

∫
cBmks+k−1(Z0

s+k−1(tk))

(νs+k · (vs+k − vmk(tk)))+

×Hs+k(tk − tk+1 − tε(Zs+k))g(s+k)(·, x∗mk , v
∗
mk
, . . . , x∗s+k, v

∗
s+k)

×
∏

1≤j≤s+k−1
j 6=mk

11|(xj−xmk )(tk)−ενs+k|≥ε dνs+kdvs+k.

denoting as previously by (x∗mk , v
∗
mk
, x∗s+k, v

∗
s+k) the pre-image by the scattering operator σε of the

point (xmk , vmk(tk), xmk(tk) + ενs+k, vs+k(tk)).

Note that this last step is obvious in the case of hard spheres since there is no time shift : tε ≡ 0.

As in the Boltzmann case described above, the following result is an immediate consequence of Propo-

sition 12.1.1 together with the continuity estimates for the BBGKY collision operator in Proposi-

tions 5.4.1 and 10.3.1.

Proposition 13.3.1. — Let a, ε0, η � 1 satisfying (12.1.1). Then, for ε sufficiently small, we have

the following error estimates for the observables associated to the BBGKY dynamics:

– in the case of hard-spheres∣∣∣ n∑
k=0

∑
J,M

11∆s(ε0)

(
IR,δs,k − J

R,δ
s,k

)
(t, J,M)

∣∣∣ ≤ Cn2(s+ n)
(
Rηd−1 +Rd

( a
ε0

)d−1

+R
(ε0

δ

)d−1)
‖FN,0‖ε,β0,µ0

,

– in the case of some smooth short-range potential Φ∣∣∣ n∑
k=0

∑
J,M

11∆s(ε0)

(
I0,R,δ
s,k − J0,R,δ

s,k

)
(t, J,M)

∣∣∣ ≤ Cn2(s+ n)

×
(
Rηd−1 + C(Φ, η, R)Rd

( a
ε0

)d−1

+ C(Φ, η, R)R
(ε0

δ

)d−1)
‖F̃N,0‖ε,β0,µ0

.
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The functional JR,δs,k can be written in terms of pseudo-trajectories, as in (13.2.3). Let us therefore

introduce some notation which we shall be using constantly from now on: given Zs ∈ ∆s(ε0), we

call Z0
s (τ) the position of the backward free flow initiated from Zs, at time t1 ≤ τ ≤ t. Then

given j1 ∈ {+,−}, m1 ∈ [1, s], an angle νs+1 (or equivalently a position xs+1 = x0
m1

(t1) + ενs+1) and

a velocity vs+1 we call Zεs+1(τ) the position at time t2 ≤ τ < t1 of the BBGKY pseudo-trajectory

initiated by the adjunction of the particle zs+1 to the particle z0
m1

(t1).

Similarly by induction given Zs ∈ ∆s(ε0), T, J and M we denote for each 1 ≤ k ≤ n by Zεs+k(τ) the

position at time tk+1 ≤ τ < tk of the BBGKY pseudo-trajectory initiated by the adjunction of the

particle zs+k to the particle zmk(tk). We have

(13.3.4)

JR,δs,k (t, J,M)(Xs) =
(N − s)!

(N − s− k)!
εk(d−1)

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1(t1)))j1
∏

1≤j≤s
j 6=m1

11|(xj−xm1
)(t1)−ενs+1|≥ε

. . .

∫
cBjks+k−1(Z0

s+k−1(tk))

dνs+kdvs+k (νs+k · (vs+k − vmk(tk)))jk

×
∏

1≤j≤s+k−1
j 6=mk

11|(xj−xmk )(tk)−ενs+k|≥ε11Eε(Zs+k(0))≤R2 f̃
(s+k)
N,0 (Zεs+k(0)) .

Thanks to Propositions 13.2.1 and 13.3.1 the proof of Theorems 8 and 11 reduces to the proof of the

convergence to zero of JR,δs,k − J
0,R,δ
s,k . This is the object of the next chapter.



CHAPTER 14

CONVERGENCE PROOF

In this chapter we conclude the proof of Theorems 8 and 11 by proving that JR,δs,k − J
0,R,δ
s,k goes to zero

in the Boltzmann-Grad limit, with the notation of the previous chapter, namely (13.2.3) and (13.3.4).

The main difficulty lies in the fact that in contrast to the Boltzmann situation, collisions in the BBGKY

configuration are not pointwise in space (nor in time in the case of the smooth Hamiltonian system).

At each collision time tk a small error is therefore introduced, which needs to be controlled.

We recall that, as in the previous chapters, we consider dynamics

– involving only a finite number s+ k of particles,

– with bounded energies (at most R2 � 1),

– such that the k additional particles are adjoined through binary collisions at times separated at

least by δ � 1.

The additional truncation parameters a, ε0, η � 1 satisfy (12.1.1).

14.1. Proximity of Boltzmann and BBGKY trajectories

This paragraph is devoted to the proof, by induction, that the BBGKY and Boltzmann pseudo-

trajectories remain close for all times, in particular that there is no recollision for the BBGKY dynamics.

We recall that the notation Z0
k(t) and Zk(t) were defined in Paragraphs 13.2 and 13.3 respectively.

Lemma 14.1.1. — Fix T ∈ Tn,δ(t), J , and M and given Zs in ∆s(ε0), consider for all i ∈ {1, . . . n},
an impact parameter νs+i and a velocity vs+i such that (νs+i, vs+i) /∈ Bs+i−1(Z0

s+i−1(ti)). Then, for ε

sufficiently small, for all i ∈ [1, n], and all k ≤ s+ i,

– for the hard sphere dynamics

(14.1.1) |xεk(ti+1)− x0
k(ti+1)| ≤ εi and vk(ti+1) = v0

k(ti+1) ,

– for the hamiltonian dynamics associated to Φ

(14.1.2) |xεk(ti+1)− x0
k(ti+1)| ≤ C(Φ, R, η)εi and vk(ti+1) = v0

k(ti+1) ,

where the constant C(Φ, R, η) depends only on Φ, R, and η.



114 CHAPTER 14. CONVERGENCE PROOF

Proof. — We proceed by induction on i, the index of the time variables ti+1 for 0 ≤ i ≤ n.

We first notice that by construction, Zs(t1) − Z0
s (t1) = 0, so (14.1.2) holds for i = 0. The initial

configuration being a good configuration, we indeed know – by definition – that there is no possible

recollision.

Now let i ∈ [1, n] be fixed, and assume that for all ` ≤ i

(14.1.3) ∀k ≤ s+ `− 1, |xεk(t`)− x0
k(t`)| ≤ Cε(`− 1) and vk(t`) = v0

k(t`) ,

with C = 1 for hard spheres.

Let us prove that (14.1.3) holds for ` = i+ 1. We shall consider two cases depending on whether the

particle adjoined at time ti is pre-collisional or post-collisional.

• As usual, the case of pre-collisional velocities (vs+i, vmi(ti)) at time ti is the most simple to handle.

We indeed have ∀τ ∈ [ti+1, ti]

∀k < s+ i , x0
k(τ) = x0

k(ti) + (τ − ti)v0
k(ti) , v0

k(τ) = v0
k(ti) ,

x0
s+i(τ) = x0

mi(ti) + (τ − ti)vs+i , v0
s+i(τ) = vs+i .

Now let us study the BBGKY trajectory. We recall that the particle is adjoined in such a way

that (νs+i, vs+i) belongs to cBs+i−1(Z0
s+i−1(ti)). Provided that ε is sufficiently small, by the induction

assumption (14.1.3), we have

∀k ≤ s+ i− 1, |xεk(ti)− x0
k(ti)| ≤ Cε(i− 1) ≤ a ,

with C = 1 for hard spheres.

Since Z0
s+i−1(ti) belongs to Gs+i−1(ε0) (see Paragraph 13.2), we can apply Proposition 12.1.1 which

implies that backwards in time, there is free flow for Zεs+i. In particular,

∀k < s+ i , xk(τ) = xk(ti) + (τ − ti)vk(ti) , vk(τ) = vk(ti) ,

xs+i(τ) = xmi(ti) + ενs+i + (τ − ti)vs+i , vs+i(τ) = vs+i .

We therefore obtain

(14.1.4) ∀k ≤ s+ i , ∀τ ∈ [ti+1, ti] , vk(τ)− v0
k(τ) = vk(ti)− v0

k(ti) = 0 ,

and

(14.1.5) ∀k ≤ s+ i , ∀τ ∈ [ti+1, ti] , |xk(τ)− x0
k(τ)| ≤ Cε(i− 1) + ε ,

with C = 1 in the case of hard spheres.

• The case of post-collisional velocities (vs+i, vmi(ti)) at time ti for the hard sphere dynamics is very

similar. We indeed have ∀τ ∈ [ti+1, ti[

∀k < s+ i, k 6= mi , x0
k(τ) = x0

k(ti) + (τ − ti)v0∗
k (ti) , v0

k(τ) = v0
k(ti) ,

x0
mi(τ) = x0

mi(ti) + (τ − ti)v0∗
mi(ti) , v0

k(τ) = v0∗
mi(ti) ,

x0
s+i(τ) = x0

mi(ti) + (τ − ti)v∗s+i , v0
s+i(τ) = v∗s+i .

Now let us study the BBGKY trajectory. We recall that the particle is adjoined in such a way

that (νs+i, vs+i) belongs to cBmis+i−1(Z0
s+i−1(ti)). Provided that ε is sufficiently small, by the induction

assumption (14.1.3), we have

∀k ≤ s+ i− 1, |xεk(ti)− x0
k(ti)| ≤ ε(i− 1) .
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Since Z0
s+i−1(ti) belongs to Gs+i−1(ε0) (see Paragraph 13.2), we can apply Proposition 12.1.1 which

implies that backwards in time, there is free flow for Zεs+i. In particular,

(14.1.6) ∀k ≤ s+ i , ∀τ ∈ [ti+1, ti[ , vk(τ)− v0
k(τ) = vk(t−i )− v0

k(t−i ) = 0 ,

and

(14.1.7) ∀k ≤ s+ i , ∀τ ∈ [ti+1, ti[ , |xk(τ)− x0
k(τ)| ≤ ε(i− 1) + ε ≤ iε .

• The case of post-collisional velocities is a little more complicated since there is a (small) time interval

during which interaction occurs.

Let us start by describing the Boltzmann flow. By definition of the post-collisional configuration, we

know that the following identities hold:

∀ti+1 ≤ τ < ti ,


(v0
mi , v

0
s+i)(τ) = (v0∗

mi(ti), v
∗
s+i) with (ν∗s+i, v

0∗
mi(ti), v

∗
s+i) := σ−1

0 (νs+i, v
0
mi(ti), vs+i)

x0
mi(τ) = x0

mi(ti) + (τ − ti)v0∗
mi(ti) , x

0
s+i(τ) = x0

s+i(ti) + (τ − ti)v∗s+i
∀j /∈ {mi, s+ 1} , v0

j (τ) = v0
j (ti) , x

0
j (τ) = x0

j (ti) + (τ − ti)v0
j (ti) ,

where σ0 denotes the scattering operator defined in Definition 8.2.1 in Chapter 8.

First, by Proposition 12.1.1, we know that for j /∈ {mi, s+ i} and ∀τ ∈ [ti+1, ti],

xj(τ) = xj(ti) + (τ − ti)vj(ti) , vj(τ) = vj(ti) ,

so that by the induction assumption (14.1.3) we obtain

(14.1.8)
∀j /∈ {mi, s+ i} , ∀τ ∈ [ti+1, ti] , |xj(τ)− x0

j (τ)| = |xj(ti)− x0
j (ti)| ≤ Cε(i− 1)

and vj(τ) = v0
j (τ) .

We now have to focus on the pair (s + i,mi). According to Chapter 8, the relative velocity evolves

under the nonlinear dynamics on a time interval [ti − tε, ti] with tε ≤ C(Φ, R, η)ε (recalling that by

construction, the relative velocity |vs+i − vmi(ti)| is bounded from above by R and from below by η,

and that the impact parameter is also bounded from below by η). Then, for all τ ∈ [ti+1, ti − tε],

(14.1.9) vs+i(τ) = v∗s+i = v0
s+i(τ) , vmi(τ) = v∗mi(ti) = v0∗

mi(ti) = v0
mi(τ) .

In particular,

(14.1.10) vs+i(ti+1) = v0
s+i(ti+1) and vmi(ti+1) = v0

mi(ti+1) .

The conservation of total momentum as in Paragraph 12.3.3 shows that∣∣∣1
2

(xεmi(ti − tε) + xεs+i(ti − tε))−
1

2
(x0
mi(ti − tε) + x0

s+i(ti − tε))
∣∣∣

=
∣∣∣1
2

(xεmi(ti) + xεs+i(ti)−
1

2
(x0
mi(ti) + x0

s+i(ti))
∣∣∣

=
∣∣∣xεs+i(ti)− x0

s+i(ti)
∣∣∣+

ε

2
≤ Cε(i− 1) +

ε

2
·

On the other hand, by definition of the scattering time tε,

|xεmi(ti − tε)− x
ε
s+i(ti − tε)| = ε ,

|x0
mi(ti − tε)− x

0
s+i(ti − tε)| = tε|v∗mi − v

∗
s+i| ≤ C(Φ, R, η) ε .

We obtain finally

(14.1.11) |xεmi(ti − tε)− x
0
mi(ti − tε)| ≤ Cεi and |xεs+i(ti − tε)− x0

s+i(ti − tε)| ≤ Cεi

provided that C is chosen sufficiently large (depending on Φ, R and η).
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Now let us apply Proposition 12.1.1, which implies that for all τ ∈ [ti+1, ti − tε] the backward in time

evolution of the two particles xεs+i(ti − tε) and xεmi(ti − tε), is that of free flow: we have therefore,

using (14.1.9),

xεmi(ti+1)− x0
mi(ti+1) = xεmi(ti − tε)− x

0
mi(ti − tε) ,

xεs+i(ti+1)− x0
s+i(ti+1) = xεs+i(ti − tε)− x0

s+i(ti − tε) .

From (14.1.11) we therefore deduce that the induction assumption is satisfied at time step ti+1, and

the proposition is proved.

Note that, by construction,

Z0
s+k(0) ∈ Gs+k(ε0) ,

so that an obvious application of the triangular inequality leads to

Zεs+k(0) ∈ Gs+k(ε0/2) .

Note also that the indicator functions are identically equal to 1 for good configurations. We therefore

have the following

Corollary 14.1.2. — Under the assumptions of Lemma 14.1.1, the functional JR,δs,n (t, J,M) defined

in (13.3.4) may be written as follows:

JR,δs,k (t, J,M)(Xs) =
(N − s)!

(N − s− k)!
εk(d−1)

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1
(t1)))j1

. . .

∫
cBmks+k−1(Z0

s+k−1(tn))

dνs+kdvs+k (νs+n · (vs+k − vmk(tk)))jk

× 11Eε(Zs+k(0))≤R211Zs+k(0)∈Gs+k(ε0/2)f̃
(s+k)
N,0 (Zεs+k(0)) .

14.2. Proof of convergence for the hard sphere dynamics: proof of Theorem 8

In this section we prove Theorem 8, which concerns the case of hard spheres. The potential case will

be treated in the following section.

From Corollary 7.4.1, we know that any observable associated to the BBGKY hierarchy can be ap-

proximated by a finite sum : more precisely, given s and t ∈ [0, T ], there are two positive constants C

and C ′ such that

(14.2.12)
∥∥Is(t)− n∑

k=0

IR,δs,k (t)
∥∥
L∞(Rds)

≤ C
(

2−n + e−C
′β0R

2

+
n2

T
δ

)
‖ϕ‖L∞(Rds)‖FN,0‖ε,β0,µ0

.

Similarly, for the Boltzmann hierarchy, we get

(14.2.13)
∥∥I0
s (t)−

n∑
k=0

IR,δ0,s,k(t)
∥∥
L∞(Rds)

≤ C
(

2−n + e−C
′β0R

2

+
n2

T
δ

)
‖ϕ‖L∞(Rds)‖F0‖0,β0,µ0 .



14.2. PROOF OF CONVERGENCE FOR THE HARD SPHERE DYNAMICS: PROOF OF THEOREM 8 117

Then, from Propositions 13.2.1 and 13.3.1, we obtain the error terms corresponding to the elimination

of pathological velocities and impact parameters

(14.2.14)

∣∣∣11∆s(ε0)

n∑
k=0

∑
J,M

(
I0,R,δ
s,k − J0,R,δ

s,k

)
(t, J,M)

∣∣∣ ≤ Cn2(s+ n)

×
(
Rηd−1 +Rd

( a
ε0

)d−1

+R
(ε0

δ

)d−1)
‖F0‖0,β0,µ0‖ϕ‖L∞(Rds) ,

and

(14.2.15)

∣∣∣11∆s(ε0)

n∑
k=0

∑
J,M

(
IR,δs,k − J

R,δ
s,k

)
(t, J,M)

∣∣∣ ≤ Cn2(s+ n)

×
(
Rηd−1 +Rd

( a
ε0

)d−1

+R
(ε0

δ

)d−1)
‖FN,0‖ε,β0,µ0

‖ϕ‖L∞(Rds) .

The end of the proof of Theorem 8 consists in estimating the error terms in JR,δs,k − J0,R,δ
s,k coming

essentially from the micro-translations described in the previous paragraph and from the initial data.

14.2.1. Error coming from the initial data. —

Let us replace the initial data in JR,δs,k by that of the Boltzmann hierarchy, defining:

J̃R,δs,k (t, J,M)(Xs) :=
(N − s)!

(N − s− k)!
εk(d−1)

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1(t1)))j1

. . .

∫
cBmks+k−1(Z0

s+k−1(tk))

dνs+kdvs+k (νs+k · (vs+k − vmk(tk)))jk

× 11E0(Zs+k(0))≤R211Zεs+k(0)∈Gs+k(ε0/2)f
(s+k)
0 (Zs+k(0)) .

Since, by definition of admissible Boltzmann data, we have for any fixed s

f
(s)
0,N −→ f

(s)
0 as N →∞ with Nεd−1 ≡ 1 , locally uniformly in Ωs ,

we expect that

JR,δs,k (t, J,M)(Xs)− J̃R,δs,k (t, J,M)(Xs)→ 0

as N →∞ with Nεd−1 ≡ 1, locally uniformly in Ωs.

Lemma 14.2.1. — Let F0 be an admissible Boltzmann datum and F0,N an associated BBGKY datum.

Then, in the Boltzmann-Grad scaling Nεd−1 = 1, for all fixed s, k ∈ N and t < T ,

JR,δs,k (t, J,M)(Xs)− J̃R,δs,k (t, J,M)(Xs)→ 0 ,

locally uniformly in Ωs.

For tensorized initial data

f
(N)
0,N (ZN ) = Z−1

N 11ZN∈DN f
⊗N
0 (ZN ) with

∥∥f0 exp(β0|v|2)
∥∥
L∞

< +∞ ,
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we further have the following error estimate :∣∣11∆X
s (ε0)

n∑
k=0

∑
J,M

(JR,δs,k − J̃
R,δ
s,k )(t, J,M)(Xs)

∣∣ ≤ Cε(s+ n)‖F0‖0,β0,µ0
‖ϕ‖L∞(Rds) .

Proof. — By definition of the good sets Gk(c), the positions in the argument of f
(s+k)
N,0 − f (s+k)

0 satisfy

the separation condition |xi − xj | ≥ ε0/2 > ε for i 6= j :

11Gs+k(ε0/2)(f
(s+k)
N,0 − f (s+k)

0 ) = 11Gs+k(ε0/2)11∆X
s+k(ε0/2)(f

(s+k)
N,0 − f (s+k)

0 ) .

So we can write

(JR,δs,k (t, J,M)− J̃R,δs,k (t, J,M))(Xs) =
(N − s)!

(N − s− k)!
εk(d−1)

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1(νs+1 · (vs+1 − vm1
(t1)))j1

. . .

∫
cBmks+k−1(Z0

s+k−1(tk))

dνs+kdvs+k (νs+k · (vs+k − vmk(tk)))jk

× 11Eε(Zεs+k(0))≤R211∆s+k(ε0/2)(f
(s+k)
N,0 − f (s+k)

0 ) ,

and we find directly that∣∣∣11∆X
s (ε0)(J

R,δ
s,k (t, J,M)− J̃R,δs,k (t, J,M))(Xs)

∣∣∣ ≤ CRk(d+1)tk

k!

∥∥∥11∆s+k(ε0/2)(f
(s+k)
N,0 − f (s+k)

0 )
∥∥∥
L∞

.

Note that, summing all the elementary contributions (i.e. summing over J , M and k), we get the

convergence to 0, but with a very bad dependence with respect to R and n.

In the case of tensorized initial data, this estimate can be improved using some explicit control on the

convergence of the initial data. Looking at the proof of Proposition 6.1.2, we indeed see that

11Zs∈Dsf
⊗s
0 − f (s)

0,N =
(

1−Z−1
N ZN−s

)
11Zs∈Dsf

⊗s
0 + Z−1

N Z
[
(s+1,N)11Zs∈Dsf

⊗s
0

with ∣∣∣1−Z−1
N ZN−s

∣∣∣ ≤ (1− εκd|f0|L∞L1)−s − 1 ≤ εsκd|f0|L∞L1

(
1− εκd|f0|L∞L1

)−(s+1)

according to Lemma 6.1.2, and

Z−1
N Z

[
(s+1,N) ≤ εsκd|f0|L∞L1

(
1− εκd|f0|L∞L1

)−(s+1)
.

Using the continuity estimate in Proposition 5.4.1, we then deduce that∣∣∣11∆X
s (ε0)(J

R,δ
s,k (t, J,M)− J̃R,δs,k (t, J,M))(Xs)

∣∣∣
≤ ε(s+ k)κd|f0|L∞L1‖F0‖0,β0,µ0

‖ϕ‖L∞(Rds)ck,J,M .

denoting by (ck,J,M ) a sequence of nonnegative real numbers such that
∑
k

∑
J,M ck,J,M = 1. This

concludes the proof of Lemma 14.2.1.
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14.2.2. Error coming from the prefactors in the collision operators. —

As ε→ 0 in the Boltzmann-Grad scaling, we have

(N − s)!
(N − s− k)!

εk(d−1) → 1 .

Defining

(14.2.16)

J
R,δ

s,k (t, J,M)(Xs) =

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1 (νs+1 · (vs+1 − vm1
(t1)))j1

. . .

∫
cBmks+k−1(Z0

s+k−1(tk))

dνs+kdvs+k (νs+k · (vs+k − vmk(tk)))jk

× 11E0(Zs+k(0))≤R211Zεs+k(0)∈Gs+k(ε0/2)f
(s+k)
0 (Zs+k(0)) ,

and using again the continuity estimate in Proposition 5.4.1, we have the following obvious convergence.

Lemma 14.2.2. — In the Boltzmann-Grad scaling Nεd−1 = 1,∣∣11∆X
s (ε0)

n∑
k=0

∑
J,M

(J̃R,δs,k − J
R,δ

s,k )(t, J,M)(Xs)
∣∣ ≤ C (s+ n)2

N
‖ϕ‖L∞(Rds)‖F0‖0,β0,µ0

.

14.2.3. Error coming from the divergence of trajectories. —

We can now compare the definition (13.2.3) of J0,R,δ
s,k (t, J,M):

J0,R,δ
s,k (t, J,M)(Xs) =

∫
BR\Ms(Xs)

dVsϕs(Vs)

∫
Tk,δ(t)

dTk

∫
cBm1
s (Z0

s (t1))

dνs+1dvs+1((vs+1 − v0
m1

(t1) · νs+1)j1

. . .

∫
cBmks+k−1(Z0

s+k−1(tk))

dνs+kdvs+k((vs+k − v0
mk

(tn) · νs+k)jk

× 11E0(Z0
s+k(0))≤R2f

(s+k)
0 (Z0

s+k(0)) .

and the formulation (14.2.16) for the approximate BBGKY hierarchy.

Lemma 14.1.1 implies that at time 0 we have

|Xs+k(0)−X0
s+k(0)| ≤ Ckε , and Vs+k(0) = V 0

s+k(0) .

Since f
(s+k)
0 is continuous, we obtain the expected convergence as stated in the following lemma.

Lemma 14.2.3. — In the Boltzmann-Grad scaling Nεd−1 = 1, for all fixed s, k ∈ N and t < T ,

J̄R,δs,k (t, J,M)(Xs)− J0,R,δ
s,k (t, J,M)(Xs)→ 0 .

For tensorized Lipschitz initial data, we further have the following error estimate :∣∣11∆X
s (ε0)

n∑
k=0

∑
J,M

(J̄R,δs,k − J
0,R,δ
s,k )(t, J,M)(Xs)

∣∣ ≤ Cεn‖∇xf0‖∞‖F0‖0,β0,µ0
‖ϕ‖L∞(Rds) .
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Notice that putting together Lemmas 14.2.1, 14.2.2 and 14.2.3, along with the estimates (14.2.12)-

(14.2.13) and (14.2.14)-(14.2.15), end the proof of Theorem 8 up to the rate of convergence. This is

the object of the next paragraph.

14.2.4. Optimization for tensorized Lipschitz initial data. — We can now conclude the

proof of Theorem 8. Gathering the results of Lemmas 14.2.1, 14.2.2 and 14.2.3, together with the

estimates (14.2.12)-(14.2.13) and (14.2.14)-(14.2.15), we get∥∥Is(t)− I0
s (t)

∥∥
L∞(Rds)

≤C
(

2−n + e−C
′β0R

2

+
n2

T
δ

)
‖ϕ‖L∞(Rds) sup

N
‖FN,0‖ε,β0,µ0

+ Cn2(s+ n)
(
Rηd−1 +Rd

( a
ε0

)d−1

+R
(ε0

δ

)d−1)
‖FN,0‖ε,β0,µ0

‖ϕ‖L∞(Rds)

+ Cε(s+ n)‖F0‖0,β0,µ0‖ϕ‖L∞(Rds)

+ C
(s+ n)2

N
‖ϕ‖L∞(Rds)‖F0‖0,β0,µ0

+ Cnε‖∇xf0‖L∞‖ϕ‖L∞(Rds)‖F0‖0,β0,µ0

Therefore, choosing

n ∼ C1| log ε|, R2 ∼ C2| log ε|
for some sufficiently large constants C1 and C2, and

δ = ε(d−1)/(d+1), ε0 = εd/(d+1)

we find that the total error is smaller than Cεα for any α < (d− 1)/(d+ 1).

This ends the proof of Theorem 8.

14.3. Convergence in the case of a smooth interaction potential: proof of Theorem 11

Let us now prove Theorem 11.

The same arguments as in the previous section provide the convergence for any smooth short-range

potential satisfying (8.3.1). Let us only sketch the proof and point out how to deal with the following

minor differences.

– The elimination of multiple collisions gives an additional error term : from Propositions 11.3.1

and 11.3.2, we indeed deduce the analogue of (14.2.12):

(14.3.17)
∥∥Is(t)− IR,δs,n (t)

∥∥
L∞(Rds)

≤ C
(
ε+ 2−n + e−C

′β0R
2

+
n2

T
δ

)
‖ϕ‖L∞(Rds)‖F̃N,0‖ε,β0,µ0 .

– The error term coming from the elimination of pathological velocities and impact parameters

depends (in a non trivial way) on the local L∞ norm of the cross-section: estimate (14.2.14)

becomes∣∣∣11∆s(ε0)

n∑
k=0

∑
J,M

(
I0,R,δ
s,k − J0,R,δ

s,k

)
(t, J,M)

∣∣∣
≤ Cn2(s+ n)

(
Rηd−1 + C(Φ, R, η)Rd

( a
ε0

)d−1

+ C(Φ, R, η)R
(ε0

δ

)d−1)
‖F0‖0,β0,µ0

‖ϕ‖L∞(Rds) .
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– Additional error terms come from the difference between truncated marginals and true marginals

(namely on the initial data) : by Lemma 11.1.2, there holds the convergence

f
(s)
0,N − f̃

(s)
0,N −→ 0 , for fixed s ≥ 1 , as N →∞ with Nεd−1 ≡ 1 , uniformly in Ωs .

Together with Lemma 14.2.1, this implies that

JR,δs,k (t, J,M)(Xs)− J̃R,δs,k (t, J,M)(Xs)→ 0 .

– The micro-translations between the “good” Boltzmann and BBGKY pseudo-trajectories depend

on the maximal duration of the interactions to be considered

|Xs+k(0)−X0
s+k(0)| ≤ C(Φ, R, η)kε , and Vs+k(0) = V 0

s+k(0) ,

so that the convergence

J̄R,δs,k (t, J,M)(Xs)− J0,R,δ
s,k (t, J,M)(Xs)→ 0

may be very slow.

Combining all estimates shows that for any fixed s ∈ N and any t < T

Is(t)(Xs)− I0
s (t)(Xs)→ 0

locally uniformly in Ωs, which concludes the proof of Theorem 11.





CHAPTER 15

CONCLUDING REMARKS

15.1. On the time of validity of Theorems 9 and 8

Let us first note that, for any fixed N , the BBGKY hierarchy has a global solution since it is formally

equivalent to the Liouville equation in the phase space of dimension 2Nd, which is nothing else than a

linear transport equation. The fact that we obtain a uniform bound on a finite life span only, is therefore

due to the analytical-type functional spaces Xε,β,µ we consider. Belonging to such a functional space

requires indeed a strong control on the growth of marginals.

An important point is that the time of convergence is exactly the time for which these uniform a priori

estimates hold. By definition of the functional spaces, we are indeed in a situation where the high order

correlations can be neglected (see (14.2.12) and (14.3.17)), so that we only have to study the dynamics

of a finite system of particles. The term-by-term convergence relies then on geometrical properties of

the transport in the whole space, which do not introduce any restriction on the time of convergence.

A natural question is therefore to know whether or not it is possible to get better uniform a priori

estimates and thus to improve the time of convergence. Let us first remark that such a priori estimates

would hold for the Boltzmann hierarchy and thus for the nonlinear non homogeneous Boltzmann

equation. As mentioned in Chapter 2, Remark 2.3.2, the main difficulty is to control the possible

spatial concentrations of particles, which would contradict the rarefaction assumption and lead to an

uncontrolled collision process.

15.2. More general potentials

A first natural extension to this work concerns the case of a compactly supported, repulsive potential,

but no longer satisfying (8.3.1). As explained in Chapter 8, that assumption guarantees that the cross

section is well defined everywhere, since the deflection angle is a one-to-one function of the impact

parameter. If that is no longer satisfied, additional decompositions are necessary to split the integration

domain in subdomains where the cross-section is well-defined : as mentioned in Remark 3.1.3, we then

expect to be able to extend the convergence proof, up to some technical complications due to the

resummation procedures (see [39] for an alternative method). Note that, if the deflection angle can be

locally constant as a function of the impact parameter, the method does not apply, which is consistent
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with the fact that we do not expect the Boltzmann equation to be a good approximation of the

dynamics (see the by now classical counterexample by Uchiyama [15]).

From a physical point of view it would be more interesting to study the case of long-range potentials.

Then the cross section actually becomes singular, so a different notion of limit must be considered,

possibly in the spirit of Alexandre and Villani [3]. One intermediate step, as in [16], would be to

extend this work to the case when the support of the potential goes to infinity with the number of

particles. Then one could try truncating the long-range potential and showing that the tail of the

potential has very little effect in the convergence.

Note that in the case when grazing collisions become predominant, then the Boltzmann equation

should be replaced by the Landau equation, whose derivation is essentially open; a first result in that

direction was obtained very recently by A. Bobylev, M. Pulvirenti and C. Saffirio in [4], where a time

zero convergence result is established.

15.3. Other boundary conditions

As it stands, our analysis is restricted to the whole space (namely XN ∈ RdN ). It is indeed important

that free flow corresponds to straight lines (see in particular Lemmas 12.2.1 and 12.2.3 as well more

generally as the analysis of pathological trajectories in Chapter 12).

It would be very interesting to generalize this work to more general geometries. A first step in that

direction is to study the case of periodic flows in XN . The geometric lemmas must be adapted to that

framework, and in particular it appears that a finite life span must a priori be given before the surgery

of the collision integrals may be performed (see [5]).

The case of a general domain is again much more complicated, and results from the theory of billiards

would probably need to be used.
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aux Dérivées Partielles”, Exp. No. IX, 47 pp., Univ. Nantes, Nantes, 2003.

[22] F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a
transport equation, J. Funct. Anal. 76 (1988), no. 1, 110125.

[23] H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik 12, Thermodynamik der
Gase p. 205-294 Springer-Verlag, Berlin-Gottingen-Heidelberg, 1958.

[24] H. Grad, On the kinetic theory of rarefied gases, Comm. Pure Appl. Math. 2 (1949), p. 331-407.

[25] M. Hauray, P.-E. Jabin, N-particles approximation of the Vlasov equations with singular potential,
Arch. Ration. Mech. Anal.183 (2007), no. 3, p. 489524.

[26] E. Hewitt, L. Savage, Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80
(1955), p. 470-501.
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NOTATION INDEX

BR, ball of radius R centered at zero in Rd,
page 26

BsR, ball of radius R centered at zero in Rds,
page 26

BR(x), ball of radius R centered at x in Rd,
page 82

Bk(Zk) a small set of angles and velocities of a par-
ticle adjoined to Zk (or a neighboring configura-
tion), leading to pathological trajectories, page 98

b(w,ω)/|w|, cross-section, page 69

CN , BBGKY hierarchy collision operator, page 29
for the hard-spheres case and page 78 for the po-
tential case

C0, Boltzmann hierarchy collision operator,
page 31 for the hard-spheres case and page 79 for
the potential case

Cs,s+1, BBGKY collision operator, page 29 for the
hard-spheres case and page 77 for the potential
case

Cs,s+m, BBGKY collision operator involvingm ad-
ditional particles, page 77

C0
s,s+1, Boltzmann collision operator, page 31 for

the hard-spheres case and page 70 for the potential
case

DN , domain on which the hard-spheres dynamics
take place, page 25

DsN , artificial set in XN variables on which the
Hamiltonian dynamics take place, page 72

∆m(Xs), m-particle cluster based on Xs, page 76

∆s, well-separated initial configurations, page 107

∆X
s , well-separated initial positions, page 107

dσi,jN , surface measure on ΣsN (i, j), page 73

dσ, surface measure on Sε(xi), page 77

dZ(i,j), 2d(j − i + 1)-dimensional Lebesgue mea-
sure, page 47

E(Xs, Xn), ε-closure of Xs in XN , page 76

E<i0,j0>(Xs, Xn), ε-closure of Xs in XN with a
weak link at (i0, j0), page 76

Eε(Zs), s-particle Hamiltonian, page 84

E0(Zs), s-particle free Hamiltonian, page 38

f
(s)
N , marginal of order s of the N -particle distri-

bution function, page 27 for the hard-spheres case,
page 71 for the potential case

f̃
(s)
N , truncated marginal of order s of the N -

particle distribution function, page 72

f (s), marginal of order s associated with the Boltz-
mann hierarchy, page 31

Φε, rescaled potential, page 84

Gk, set of good configurations of k particles,
page 98



130 NOTATION INDEX

Hs(t), s-particle flow in the potential case, page 78

H(t), BBGKY hierarchy flow in the potential case,
page 78

Iϕ, observable (average with respect to momentum
variables), page 51

Is(t)(Xs) BBGKY observable, page 55 for the
hard-spheres case, page 92 for the potential case

I0
s (t)(Xs) Boltzmann observable, page 56

IR,δs,k (t)(Xs) reduced BBGKY observable, page 59
for the hard-spheres case, page 92 for the potential
case

I0,R,δ
s,k (t)(Xs) reduced Boltzmann observable,

page 59

K(w, y, ρ), cylinder of origin w ∈ Rd, of axis
y ∈ Rd and radius ρ > 0, page 99

κd, volume of the unit ball in Rd, page 41

ni,j , outward normal to ΣN (i, j), page 28

νi,j , direction of xi − xj , page 3

Ms(Xs), good set of initial velocities associated
with well separated positions, page 107

P, the set of continuous densities of probability in
R2d, page 49

ρ∗, distance of minimal approach, page 64

Ss(t), s-particle free flow, page 31

S(t), total free flow, page 31

Sd−1
1 , unit sphere in Rd, page 9

Sε(xi), sphere in Rd of radius ε, centered at xi,
page 77

σ, scattering operator in the hard-spheres case,
page 31

σε, scattering operator in the case of a potential,
page 66

σ0, Boltzmann scattering operator, page 66

ΣN (i, j), boundary of DN , page 28

ΣsN (i, j), boundary of the artificial set DsN , page 73

Ts(t), s-particle flow for hard spheres, page 30

T(t), total flow for hard spheres, page 30

tε = ετ∗, nonlinear interaction time, page 64

Tn(t), set of collision times, page 58

Tn,δ(t), set of well-separated collision times,
page 58

Xε,s,β function space for BBGKY marginals,
page 38 for the hard-spheres case and page 84 for
the potential case

X0,s,β function space for Boltzmann marginals,
page 38

Xε,β,µ function space for the BBGKY hierarchies,
page 38 for the hard-spheres case and page 84 for
the potential case

X0,β,µ function space for the Boltzmann hierar-
chies, page 38

Xε,β,µ function space for the uniform existence
to the BBGKY hierarchies, page 39 for the hard-
spheres case and page 84 for the potential case

X0,β,µ function space for the uniform existence to
the Boltzmann hierarchies, page 39

Ψs(t), s-particle hard-spheres flow, page 30

ω, direction of the apse line, page 65

ΩN , phase space for the Liouville equation,
page 45

ZN , partition function, page 46

| · |ε,s,β norm for the BBGKY marginal of order s,
page 38 for the hard-spheres case and page 84 for
the potential case

| · |0,s,β norm for the Boltzmann marginal of or-
der s, page 38

‖·‖ε,β,µ norm for the BBGKY hierarchy, page 38
for the hard-spheres case and page 84 for the po-
tential case

‖·‖0,β,µ norm for the Boltzmann hierarchy, page 38

|‖ · |‖ε,β,µ, norm in Xε,β,µ, page 39 for the hard-
spheres case and page 84 for the potential case

|‖ · |‖0,β,µ, norm in X0,β,µ, page 39
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N -particle distribution function, 4
ε-closure, 75

activity, 82

admissible initial data, 45, 89
apse line, 65

artificial boundary, 20

BBGKY hierarchy, 18, 29, 78
Boltzmann

collision operator, 9, 70

equation, 9
H theorem, 11

renormalized solution, 13
Boltzmann-Grad scaling, 7

chemical potential, 20, 39

cluster, 75
cluster estimates, 81

collision

kernel, 69
operator, 29, 31, 77

conditioning on energy surfaces, 46

convergence in the sense of observables, 18
cross-section, 12, 69

deflection angle, 68

empirical measure, 4
exclusion, 3, 46
good configuration, 98
Hewitt-Savage theorem, 49
impact parameter, 64, 68

inverse temperature, 20
irreversibility, 11, 52

iterated Duhamel formula, 52
King theorem, 17

Lanford theorem, 17

Liouville equation, 5
loss continuity estimates, 39

low density limit, 6

marginals, 27
Maxwellian distribution, 11

mean field approximation, 5

partition function, 46
pathological

deflection angle, 98

pseudo-trajectory, 60, 94
trajectory, 25

velocity, 98
post-collisional, 63

pre-collisional, 63

pseudo-trajectory, 59
quasi-independence, 18, 45

recollision, 60, 93, 97

reflection condition, 3
scattering

angle, 68

cross-section, 69
map, 66
operator, 66

short-range potential, 6
truncated marginals, 72

weak link, 76

weighted norms, 38, 83


