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1. Introduction

The local and global well-posedness of semilinear dispersive equations has at-
tracted a lot of attention for the past years. In general, when global well-
posedness is established, the existence of a scattering operator, comparing the
nonlinear dynamics and the linear one, is a rather direct by-product. Unlike in
the linear case (see e.g. [45,56,64]), besides continuity, very few properties of
these nonlinear scattering operators are known. A first natural question, which
can be found in [55, pp. 121–122], consists in investigating the real analyticity
of the scattering operators. A positive answer is available in some very specific
cases: see [7,8,44] for the cubic wave and Klein–Gordon equation in 3D, and
[48] for the Hartree equation in 3D. In this paper, we extend these results to a
more general class of dispersive equations, including the nonlinear Schrödinger
equation and the nonlinear wave equation, in space dimension n 6 4 (such an
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assumption is needed for the power nonlinearity to be both analytic and energy-
subcritical or critical). Moreover, unlike in [7,8,44,48], we do not use an abstract
analytic implicit function theorem: we construct directly the terms of the series
via a general abstract lemma, thus extending the approach of S. Masaki [47]. We
then show that the series is converging, working in suitable spaces based on dis-
persive properties provided by Strichartz estimates. In general, these estimates
are a direct by-product of the proof of the existence of a nonlinear scattering
operator.

Before being more precise about the results presented here, we briefly recall
the approach for (short range) scattering theory in the context of semilinear
dispersive equations. The main examples we have in mind are the nonlinear
Schrödinger equation

i∂tu +
1
2
∆u = λ|u|p−1u, (t, x) ∈ R× Rn, (1.1)

the Hartree equation

i∂tu +
1
2
∆u = λ

(
|x|−γ ∗ |u|2

)
u, (t, x) ∈ R× Rn, (1.2)

the nonlinear wave and Klein–Gordon equations

∂2
t u−∆u + λup = 0, (t, x) ∈ R× Rn (1.3)

∂2
t u−∆u + u + λup = 0, (t, x) ∈ R× Rn. (1.4)

Up to considering the unknown (u, ∂tu) instead of u alone in (1.3), (1.4), Duhamel’s
formula reads, in all these examples,

u(t) = U(t)u0 +
∫ t

t0

U(t− s) (F (u(s)) ds, (1.5)

where U(·) is the group associated to the linear equation (λ = 0), and t0 corre-
sponds to the time for which initial data are prescribed:

U(−t)u(t)
∣∣
t=t0

= u0. (1.6)

In the study of the Cauchy problem, one usually considers the case t0 = 0. In
scattering theory, the first standard step consists in solving the Cauchy problem
near infinite time: t0 = ±∞. To consider forward in time propagation, assume
t0 = −∞. To define the wave operator W−, one has to solve the Cauchy problem
(1.5)-(1.6) with t0 = −∞, on some time interval of the form ]−∞, T ], for some
finite T . Classically, this step is achieved by a fixed point argument in suitable
function spaces. This may yield a time T � −1, that is, “close” to −∞ (but
finite). Suppose that the classical Cauchy problem enables us to define u up to
time t = 0. Then the wave operator W− is defined by

W−u0 = u|t=0.

The second step consists in inverting the wave operators. For initial data pre-
scribed at time t = 0, suppose that we can construct a solution which is defined
globally in time (or in the future only, for our purpose). Inverting the wave op-
erators (that is, proving the asymptotic completeness) consists in showing that
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nonlinear effects become negligible for large time, and that we can find u+ such
that u(t) ∼ U(t)u+ as t → +∞:

u+ = W−1
+ u|t=0.

The scattering operator S is then defined by

Su0 = W−1
+ W−u0 = u+.

In general, for small data, the scattering operator S can be constructed in one
step only, thanks to a bootstrap argument in spaces based on Strichartz esti-
mates. For large data, one must expect T � −1 in general. The solution is then
made global thanks to a priori estimates, such as the conservation of a positive
energy (λ > 0 in the above examples). The proof of asymptotic completeness
usually relies on different arguments: Morawetz estimates, or existence of an
extra evolution law (e.g. pseudo-conformal evolution law). In many cases, these
arguments make it possible to define the scattering operator. The continuity of
this operator is usually an easy consequence of its construction (provided that
the proof does not rely on compactness arguments). Finer properties, such as
real analyticity, are not straightforward. We emphasize again that contrary to
the case of the wave operators, real analyticity of the scattering operator (for
arbitrary data) cannot be a mere consequence of the fixed point method used to
construct solutions; we show here that real analyticity of the scattering operator
is very often a consequence of the (global in time) estimates which are estab-
lished in order to show that there is scattering. In all this paper, by “analytic”,
we mean “real analytic”:

Definition 1.1. Let X and Y be Banach spaces, and consider an operator A :
X → Y . We say that A is real analytic (or simply analytic) from X to Y
if A is infinitely Fréchet-differentiable at every point of X, with a locally norm-
convergent series: for all f ∈ X, there exists ε0 > 0, such that for all g ∈ X,
‖g‖X 6 1, we can find (wj)j∈N ∈ Y N such that for 0 < ε 6 ε0,

∞∑
j=0

εj‖wj‖Y < ∞, and A(f + εg) = A(f) + ε
∞∑

j=0

εjwj .

First, it should be noted that the analyticity of scattering operators near the
origin can be obtained rather directly in general, by applying a fixed point ar-
gument with analytic parameters. Of course, if the nonlinearity is not analytic,
one must not expect the scattering operator to be analytic. As an illustration,
consider the nonlinear Schrödinger equation (1.1). As noticed in [17] (in the case
n = 1), and following the approach of [25], the first terms of the asymptotic
expansion of the nonlinear scattering operator S near the origin are given by:

S (εu−) = εu− − iεp

∫ +∞

−∞
e−i t

2 ∆

(∣∣∣ei t
2 ∆u−

∣∣∣p−1

ei t
2 ∆u−

)
dt +OL2

(
ε2p−1

)
.

The complete proof of this relation is available in [18] in the L2-critical case
p = 1+4/n, for any n > 1. This shows that if p is not an integer, the operator S
is not analytic near the origin: it is Hölder continuous, of order p and not better.
We shall therefore consider only analytic nonlinearities: in (1.3), (1.4), we shall
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always assume that p is an integer, and in (1.1), we shall assume that p is an
odd integer. We can now state two typical results of our approach. Denote

Σ = {f ∈ H1(Rn), x 7→ |x|f(x) ∈ L2(Rn)}.

This space is naturally a Hilbert space. The main results of the paper are the
following.

Theorem 1.2. Let 1 6 n 6 4 and λ > 0. Assume that p > 3 is an odd integer,
with in addition

– p > 5 if n = 1.
– p = 3 or 5 if n = 3.
– p = 3 if n = 4.

Then the wave and scattering operators associated to the nonlinear Schrödinger
equation (1.1) are analytic from Σ to Σ. If moreover p > 7 for n = 1 and p > 5
for n = 2, then the wave and scattering operators associated to (1.1) are analytic
from H1(Rn) to H1(Rn).

Theorem 1.3. Let n > 3 and λ > 0. Assume that 2 6 γ < min(4, n). Then
the wave and scattering operators associated to the Hartree equation (1.2) are
analytic from Σ to Σ. If moreover γ > 2, then the wave and scattering operators
associated to (1.2) are analytic from H1(Rn) to H1(Rn).

Theorem 1.4. Let λ > 0. Assume that either (n, p) = (3, 5) or (n, p) = (4, 3).
Then the wave and scattering operators associated to the nonlinear wave equa-
tion (1.3) are analytic Ḣ1(Rn)× L2(Rn) to Ḣ1(Rn)× L2(Rn).

Theorem 1.5. Let 1 6 n 6 4 and λ > 0. Assume that p > 3 is an odd integer,
with

– p > 7 if n = 1.
– p > 5 if n = 2.
– p = 3 or 5 if n = 3.
– p = 3 if n = 4.

The wave and scattering operators associated to the nonlinear Klein–Gordon
equation (1.4) are analytic from H1(Rn)× L2(Rn) to H1(Rn)× L2(Rn).

Notation. If A and B are two real numbers, we will write A . B if there is
a universal constant C, which does not depend on varying parameters of the
problem, such that A 6 CB. If A . B and B . A, then we will write A ∼ B.

2. An abstract result

In this section we intend to study an abstract semilinear equation, and to present
the assumptions we will make in order to conclude to the analyticity of the non-
linear scattering operator associated to the equation. We begin (in Section 2.1)
by writing down in an informal way the equations and the expected expansion of
the solution around a given state. That will motivate the computations of Sec-
tion 2.2 in which an abstract result is proved, showing under what assumptions
on the equation one can justify such an expansion.
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2.1. Setting of the problem. Consider a first order partial differential equation,
of the form

∂tu = L(∂x)u, (t, x) ∈ R× Rn, u : R× Rn → C or Rd, d > 1.

We assume that the evolution of the solution to this linear equation is described
by a group U(t). In the semilinear equations we have in mind, the nonlinearity
will be a power law Φ of degree p > 2. Let us consider any solution u to the
following equation

∂tu = L(∂x)u + Φ(u).

Introduce the Duhamel formula associated to this equation:

u(t) = U(t)u0 + N(u)(t), (2.1)

where we have defined

N(u)(t) :=
∫ t

t0

U(t− s)Φ (u(s)) ds. (2.2)

In scattering theory, one must think of the initial time as being infinite, t0 = −∞,
in which case u0 = u− is an asymptotic state.

Example 2.1. To make our discussion a little more concrete, we illustrate it with
the case of a nonlinear Schrödinger equation

i∂tu +
1
2
∆u = |u|p−1u. (2.3)

In this case, U(t) = ei t
2 ∆, and Φ(u) = −i|u|p−1u.

Example 2.2. In the case of the nonlinear wave equation

∂2
t u−∆u + up = 0, (2.4)

we set u = t(u, ∂tu). Denote

ω = (−∆)1/2 ; W (t) = ω−1 sin (ωt) ; Ẇ (t) = cos (ωt) .

Then (2.4) takes the form (2.1)–(2.2), with

U(t) =
(

Ẇ (t) W (t)
−ω2W (t) Ẇ (t)

)
; Φ(u) =

(
0
−up

1

)
=
(

0
−up

)
.

The same holds in the case of the nonlinear Klein–Gordon equation

∂2
t u−∆u + u + up = 0.

The only adaptation needed in this case consists in substituting ω with Λ =
(1−∆)1/2.



Analyticity of the scattering operator 7

We suppose that this semilinear equation has global solutions in time and that
a nonlinear scattering theory is available (examples are provided in Section 3
below). The discussion that follows is purely formal, and is intended as a moti-
vation to the computations carried out in the coming paragraph.

Let us construct a solution to the equation associated with an initial data
which is a perturbation of u0, written u0 + εu0 where ε is a small parameter,
and let us write the solution uε under the form uε = u + wε. We are looking for
an expansion of the perturbation wε in powers of ε. Writing Φ(u + wε) in terms
of Φ(u) using Taylor’s formula yields easily that the equation on wε must be of
the following type:

wε(t) = U(t)(εu0) +
p∑

j=1

∫ t

t0

U (t− s) Φj (u(s), wε(s), . . . , wε(s)) ds, (2.5)

where from now on Φj(α0, α1, . . . , αj) denotes a multi-linear form, which is (p−
j)-linear in α0 and linear in its j last arguments. In general, this multi-linearity
is on R only, since in the case of the nonlinear Schrödinger equation, conjugation
is involved in the above formula. To ease the notations, we introduce

Nj(u,w, . . . , w)(t) =
∫ t

t0

U (t− s) Φj (u(s), w(s), . . . , w(s)) ds. (2.6)

Our aim is now to write an expansion of wε in powers of ε, wε =
∑
k∈N

εk+1wk.

Two different situations can occur, according to the value of u0: either u0 is
identically zero (and the situation corresponds to the case of small data), or it
is not.

Case 1: Expansion around zero. Suppose u0 vanishes identically. In that case
the only Φj in (2.5) which is not identically zero is when j = p, and each wk

can be computed explicitly: the only non vanishing terms in the expansion are
terms of the type wk(p−1), for k ∈ N, with

w0(t) = U(t)u0,

and where the other terms of the expansion are given by an explicit algorithm,
of the form

w(k+1)(p−1)(t) = Gk

(
w0(t), wp−1(t), . . . , wk(p−1)(t)

)
, k > 0.

Typically, w0 and wp−1 are given by

w0(t) = U(t)u0 ; wp−1(t) = Np (w0(t), . . . , w0(t)) .

Example 2.3. In the above example of the nonlinear Schrödinger equation (2.3),
this yields

w0(t, x) = ei t
2 ∆u0(x),

wp−1(t, x) = −i

∫ t

−∞
ei t−s

2 ∆
(
|ei s

2 ∆u0(x)|p−1ei s
2 ∆u0(x)

)
ds.
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In other words, w0 and wp−1 solve

i∂tw0 +
1
2
∆w0 = 0 ; U(−t)w0(t)

∣∣
t=−∞ = u0.

i∂twp−1 +
1
2
∆wp−1 = |w0|p−1w0 ; U(−t)w1(t)

∣∣
t=−∞ = 0.

It is obvious that e−i t
2 ∆w0(t, x) converges as t → +∞, and part of the game

consists in showing that so does e−i t
2 ∆w1(t, x).

Case 2: Expansion around any initial data. In that case all the Φj ’s have to be
taken into account in (2.5), so the series will be full if u 6= 0. Moreover the wk’s
are not computed explicitly. For instance the first two terms w0 and w1 of the
expansion satisfy

w0(t) = U(t)u0 + N1 (u,w0) (t) ; w1(t) = N1 (u,w1) (t) + N2 (u,w0, w0) (t).

Example 2.4. In our Schrödinger example (2.3), this means that w0 must solve

i∂tw0 +
1
2
∆w0 = p|u|p−1w0 + (p− 1)u(p+1)/2u(p−1)/2w0,

U(−t)w0(t)
∣∣
t=−∞ = u0.

Note that the above Hamiltonian is not self-adjoint in general. However, this
aspect will not be an obstruction to our analysis.

Conclusion. To summarize the above considerations, the solution to the equa-
tion

uε(t) = U(t)(εu0) + N (uε) (t)

can be expanded as

uε = ε
∞∑

k=0

εk(p−1)wk(p−1),

where the wk(p−1) satisfy linear equations and can be computed explicitly by
induction. On the other hand, the solution to the equation

uε(t) = U(t)(u0 + εu0) + N (uε) (t)

can be expanded as

uε = u + ε
∞∑

k=0

εkwk,

where again the wk satisfy linear equations, but this time are only known implic-
itly (again by induction). Those expansions allow to conclude that the scattering
operator is analytic, around any given state (small or large). In order to make
those heuristical remarks rigorous, we need to prove the convergence of the series
formally obtained above. This is performed in the next section, where we prove
an abstract result stating under what conditions the series does converge.
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2.2. An abstract lemma. In this section we adapt [47, Theorem 3.2] to the case
of a perturbation around any given state (in [47], the perturbation is around
zero only).

We keep the notation of the previous paragraph. Let us define D as the
Banach space in which the data lies, and F the space in which the linear flow
transports the data. The space F is a space-time Banach space, which we will
write as F = F1 ∩ F2, where

F1 := (C ∩ L∞)(R;D)

corresponds to the energy space, while

F2 = Lq1(R;X1) ∩ Lq2(R;X2), 1 6 q1, q2 < ∞.

for some Banach spaces X1 and X2. Typically F2 should be thought of as a
Strichartz space, taking into account dispersive effects. In several applications,
we will consider q1 = q2 and X1 = X2. The main assumption on the linear
evolution is that

Assumption (H1). There exists C0 > 0 such that for all g ∈ D,

‖U(·)g‖F 6 C0‖g‖D.

This assumption will always be satisfied thanks to Strichartz estimates.

Example 2.5. Suppose that we consider the nonlinear Schrödinger at the L2 level.
A natural choice is then D = L2(Rn), F = (C∩L∞)(R;L2(Rn))∩Lq(R;Lr(Rn))
for some Strichartz admissible pair (q, r) (with r = p + 1).

As in the previous paragraph we consider a family of p-linear forms denoted
by (Nj)16j6p, who are (p − j)-linear in the first variable and linear in each of
the j remaining variables. We recall that the family (Nj)16j6p is constructed as
follows:

∀(a, b), N(a + b)−N(b) =
p∑

j=1

Nj(a, b, . . . , b). (2.7)

We will consider the second assumption:

Assumption (H2). There exists δ, C > 0 such that for all u, u1, . . . , uj ∈ F and
for all I interval in R, we have:

‖1t∈INj(u, u1, . . . , uj)‖F 6 C‖1t∈Iu‖δ
F2
‖u‖p−δ−j

F

j∏
`=1

‖u`‖F if j 6 p− 1,

‖1t∈INp(u1, . . . , up)‖F 6 C

p∑
`=1

‖1t∈Iu`‖δ
F2
‖u`‖1−δ

F

p∏
`′ 6=`

‖u`′‖F .

Remark 2.6. The definition of F implies that if A and B are two disjoint intervals
of R, then

‖1t∈A∪Bf‖F ∼ ‖1t∈Af‖F + ‖1t∈Bf‖F . (2.8)

Moreover Lebesgue’s theorem implies that

∀v ∈ F2, lim
T→+∞

‖1t>T v‖F2 = 0. (2.9)
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Similarly, we notice that (H2), applied to j = 1, implies that R may be decom-
posed into a finite, disjoint union of K intervals (Ik)16k6K such that

∀u, v ∈ F, ‖1t∈Ik
N1(u, v)‖F 6

1
2
‖1t∈Ik

v‖F . (2.10)

Fix u0 in D. We construct by induction a family (wk)k∈N:

w0(t) = U(t)u0 + N1(u,w0)(t),

wm =
p∑

j=1

∑
j+`1+···+`j=m+1

`i>0

Nj(u,w`1 , . . . , w`j ),

with the convention that
∑
∅

= 0. We have the following important lemma.

Lemma 2.7. Let u ∈ F solve (2.1) with initial data u0 ∈ D, and let u0 be
a given function in D, with ‖u0‖D 6 M . Assume (H1) and (H2) hold. Then
there exists ε0 = ε0 (‖u‖F ,M) > 0 such that for 0 < ε 6 ε0, the series

∑
k∈N

εkwk

converges normally in F , and

uε := u + ε
∑
k∈N

εkwk solves: uε(t) = U(t)(u0 + εu0) + N (uε) (t).

Remark 2.8. Lemma 2.7 implies in particular the real analyticity of the wave
operators as functions of D, by considering the above result at time t = 0, since
for t0 = −∞, uε

|t=0 = W− (u0 + εu0).

Proof. Let us start by finding a bound on w0 in F . Inequality (2.10) allows to
write that

‖1t∈Ik
w0‖F 6 ‖1t∈Ik

U(·)u0‖F + ‖1t∈Ik
N1(u,w0)‖F

6 ‖1t∈Ik
U(·)u0‖F +

1
2
‖1t∈Ik

w0‖F .

This implies directly, using (2.8), that

‖w0‖F . ‖U(·)u0‖F

so by (H1) we infer that
‖w0‖F . C0‖u0‖D. (2.11)

We prove by induction that there exists Λ > 1 such that for all m > 1,

‖wm‖F 6 Λm. (Rm)

We notice that if that is the case, then the convergence of the series
∑
k∈N

εkwk

in F is obvious as soon as εΛ < 1.
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Let us start by proving (R1). We have by definition

w1 = N1(u,w1) + N2(u,w0, w0),

and the same argument as in the case of w0 gives

‖1t∈Ik
w1‖F 6 ‖1t∈Ik

N1(u,w1)‖F + ‖1t∈Ik
N2(u,w0, w0)‖F

6
1
2
‖1t∈Ik

w1‖F + ‖1t∈Ik
N2(u,w0, w0)‖F .

By (2.8), we infer that

‖w1‖F . ‖N2(u,w0, w0)‖F .

The continuity property (H2) then implies that

‖w1‖F . C2‖u‖p−2
F ‖w0‖2F

so finally by (2.11)
‖w1‖F . C2‖u‖p−2

F (C0‖u0‖D)2.

So we can choose Λ & 1 + C2‖u‖p−2
F (C0‖u0‖D)2 to get

‖w1‖F 6 Λ.

Now let us turn to the hierarchy of equations on wm, for m > 2. Supposing
that (R`) holds for all 1 6 ` 6 m − 1, let us prove (Rm). To simplify the
notation we define

Ñ(u,w0, . . . , wm−1) :=
p∑

j=2

∑
j+`1+···+`j=m+1

`i>0

Nj(u,w`1 , . . . , w`j ).

The same argument as above yields

‖1t∈Ik
wm‖F 6 ‖1t∈Ik

N1(u,wm)‖F + ‖1t∈Ik
Ñ(u,w0, . . . , wm−1)‖F

6
1
2
‖1t∈Ik

wm‖F + ‖1t∈Ik
Ñ(u,w0, . . . , wm−1)‖F .

Obviously this implies, using (2.8), that

‖wm‖F . ‖Ñ(u,w0, . . . , wm−1)‖F .

By (H2) and defining C := max16j6p Cj , we get that

‖wm‖F . C

p∑
j=2

‖u‖p−j
F

∑
j+`1+···+`j=m+1

`i>0

j∏
i=1

‖w`i
‖F

. C

p∑
j=2

‖u‖p−j
F

∑
j+`1+···+`j=m+1

`i>0

j∏
i=1

Λ`i(C0‖u0‖D)]{i,`i=0}

. C(1 + C0‖u0‖D + ‖u‖F )p

p∑
j=2

Λm+1−j

. C(1 + C0‖u0‖D + ‖u‖F )pΛm−1
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since Λ > 1. To summarize, choosing

Λ & 1 + C(1 + C0‖u0‖D + ‖u‖F )p

we have ‖wm‖F 6 Λm, and (Rm) is proved for all m > 1. As remarked above,
this enables us to infer that as soon as ε is small enough, the series of general
term εkwk is convergent.

To conclude the proof of the lemma, let us prove that the solution of

uε(t) = U(t)(u0 + εu0) + N (uε) (t) (2.12)

satisfies
uε = u + ε

∑
k∈N

εkwk.

We show that the solution uε of (2.12) satisfies

lim
n→∞

∥∥∥∥∥uε − u− ε
n∑

k=0

εkwk

∥∥∥∥∥
F

= 0,

by writing the equation satisfied by w̃ε
n := uε − u− ε

∑n
k=0 εkwk. It is here that

the exact definition of the multi-linear operators Nj given in (2.7) is used. First,
we know that for εΛ < 1, the series

∑
εkwk converges normally in F . Therefore,

w̃ε
n has a limit in F as n → ∞, provided that ε is fixed such that εΛ < 1. On

the other hand, by the definition of w̃ε
n,

w̃ε
n = N

(
u + ε

n∑
k=0

εkwk + w̃ε
n

)
−N(u)

− ε

n∑
k=0

εk

p∑
j=1

∑
j+`1+···+`j=k+1

`i>0

Nj(u,w`1 , . . . , w`j )

=
p∑

j=1

Nj

u, ε
n∑

`1=0

ε`1w`1 + w̃ε
n, . . . , ε

n∑
`j=0

ε`j w`j
+ w̃ε

n


− ε

n∑
k=0

εk

p∑
j=1

∑
j+`1+···+`j=k+1

`i>0

Nj(u,w`1 , . . . , w`j
)

From the above estimates, we can write

p∑
j=1

Nj

u, ε

n∑
`1=0

ε`1w`1 + w̃ε
n, . . . , ε

n∑
`j=0

ε`j w`j + w̃ε
n

 = Gn (w̃ε
n)

+
p∑

j=1

Nj

u, ε

n∑
`1=0

ε`1w`1 , . . . , ε

n∑
`j=0

ε`j w`j

 ,
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where Gn is such that we can decompose R as a finite, disjoint union of intervals
Jq, 1 6 q 6 Q, independent of n, such that

‖1t∈Jq
Gn (w̃ε

n)‖F 6
1
2
‖1t∈Jq

w̃ε
n‖F .

We infer

w̃ε
n = Gn (w̃ε

n) +
p−1+pn∑
k=n+1

ε1+k

p∑
j=1

∑
j+`1+···+`j=k+1

06`i6n

Nj(u,w`1 , . . . , w`j ).

Using (2.8) and summing over the intervals Jq, we conclude

‖w̃ε
n‖F = O

(
(εΛ)n+2

)
.

Since εΛ < 1 in order for all the above estimates to hold, Lemma 2.7 follows
from uniqueness for (2.12) in F , which in turn is a consequence of (H2).

This result allows us to infer the analyticity of the scattering operator, as
shown in the following lemma.

Lemma 2.9. Let the assumptions (H1) and (H2) be satisfied. Assume further-
more that U(·) is uniformly continuous in D. Then U(−t)u(t) converges to a
limit u+ in D as t → +∞, and for all k > 0, U(−t)wk(t) has a limit in D, de-
noted by w+

k . Moreover, for ε sufficiently small, the series
∑

k∈N εkw+
k converges

normally in D and the function

uε
+ := u+ + ε

∑
k∈N

εkw+
k

is the limit of U(−t)uε(t) in D as t → +∞.
In particular, the scattering operator is analytic from D to D.

Proof. Let us start by proving the existence of u+. We have

‖U(−t2)u(t2)− U(−t1)u(t1)‖D =
∥∥∥∥∫ t2

t1

U(−s)Φ(u) ds

∥∥∥∥
D

=
∥∥1[t1,t2]U(−t)N(u)

∥∥
D

.
∥∥1[t1,t2]N(u)

∥∥
F1

6
∥∥1[t1,t2]N(u)

∥∥
F

.
∥∥1[t1,t2]u

∥∥δ

F2
‖u‖p−δ

F ,

by assumption (H2). We conclude by the fact that the right-hand side goes to
zero as t1, t2 go to infinity.

Now we prove the result on U(−t)wk(t) by induction on k. For k = 0 we have,
in the same fashion as above,

‖U(−t2)w0(t2)− U(−t1)w0(t1)‖D =
∥∥1[t1,t2]U(−t)N1(u,w0)

∥∥
D

.
∥∥1[t1,t2]N1(u,w0)

∥∥
F

.
∥∥1[t1,t2]u

∥∥δ

F2
‖u‖p−1−δ

F ‖w0‖F ,
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since w0 belongs to F due to (2.11). We conclude as above.
Now suppose that for m > 1 and for all 0 6 ` 6 m − 1, U(−t)w`(t) has a

limit. We prove the result for U(−t)wm(t). We have as above

‖U(−t2)wm(t2)− U(−t1)wm(t1)‖D 6

6
p∑

j=1

∑
j+`1+···+`j=m+1

`i>0

∥∥1[t1,t2]U(−t)Nj(u,w`1 , . . . , w`j )
∥∥

D

.
p∑

j=1

∑
j+`1+···+`j=m+1

`i>0

∥∥1[t1,t2]Nj(u,w`1 , . . . , w`j
)
∥∥

F

.
p−1∑
j=1

∑
j+`1+···+`j=m+1

`i>0

∥∥1[t1,t2]u
∥∥δ

F2
‖u‖p−δ−j

F

j∏
k=1

‖w`k
‖F

+
∑

p+`1+···+`p=m+1
`i>0

p∑
k=1

∥∥1[t1,t2]u`k

∥∥δ

F2
‖u`k

‖1−δ
F

∏
k′ 6=k

‖w`k′‖F .

The result follows as previously.
The convergence of the series defining uε

+ is due to Lemma 2.7, and Lemma 2.9
follows directly.

2.3. An easy and useful adaptation. For nonlinear Schrödinger and wave equa-
tions, Lemmas 2.7 and 2.9 are well adapted to study the wave and scattering
operators in energy spaces. On the other hand, as recalled in the introduction,
weighted Sobolev spaces are very useful in scattering theory for these equations.
Typically, for the nonlinear Schrödinger equation, the natural energy space is
H1(Rn), but more results concerning scattering are available in Σ, defined in
the introduction. In the case of the energy space H1, we will see that the natural
choice for the space F is

F = C ∩ L∞
(
R;H1(Rn)

)
∩ L

4p+4
n(p−1)

(
R;W 1,p+1(Rn)

)
,

which is of the form considered in §2.2, with X = W 1,p+1(Rn). When working
on Σ, the natural choice for F is

F̃ = F ∩
{

f ∈ C(R;Σ), J(t)f ∈ L
4p+4

n(p−1)
(
R;Lp+1(Rn)

)}
,

where J(t) = x+it∇ is the Galilean operator. It satisfies the important property
J(t) = U(t)xU(−t). The situation is fairly similar in the case of the nonlinear
wave equation.

It is therefore natural to adapt the framework of §2.2. For the same spaces D
and F , introduce

F̃ = F ∩ F3, where ‖f‖F3 = ‖Jf‖L∞(R;E) + ‖Jf‖Lq(R;Y ),
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for some Banach spaces E and Y , and some operator J depending on time.
Define the space D̃ and F̃2 by their norms

‖g‖ eD = ‖g‖D + ‖J(0)g‖E ; ‖f‖ eF2
= ‖f‖F2 + ‖Jf‖Lq(R;Y ).

It is easy to check that Lemmas 2.7 and 2.9 remain valid if F is replaced by F̃ ,
provided that (H1) and (H2) are replaced by:

∃C0, ∀g ∈ D̃, ‖U(·)g‖ eF 6 C0‖g‖ eD. (H̃1)

and

Assumption (H̃2). There exists δ, C > 0 such that for all u, u1, . . . , uj ∈ F̃ and
for all I interval in R, we have:

‖1t∈INj(u, u1, . . . , uj)‖ eF 6 C‖1t∈Iu‖δeF2
‖u‖p−δ−jeF

j∏
`=1

‖u`‖ eF if j 6 p− 1,

‖1t∈INp(u1, . . . , up)‖ eF 6 C

p∑
`=1

‖1t∈Iu`‖δeF2
‖u`‖1−δeF

p∏
`′ 6=`

‖u`′‖ eF .

In the applications, we shall also use the following lemma, whose proof follows
the same lines as the proofs of Lemmas 2.7 and 2.9, and is left out.

Lemma 2.10. Let u ∈ F̃ solve (2.1) with initial data u0 ∈ D̃, and let u0 be
a given function in D̃, with ‖u0‖ eD 6 M . Assume (H̃1) and (H̃2) hold. Then
there exists ε0 = ε0 (‖u‖F ,M) > 0 such that for 0 < ε 6 ε0, the series

∑
k∈N

εkwk

converges normally in F̃ , and

uε := u + ε
∑
k∈N

εkwk solves: uε(t) = U(t)(u0 + εu0) + N (uε) (t).

Assume furthermore that U(·) is uniformly continuous in D̃. Then U(−t)u(t)
converges to a limit u+ in D̃ as t → +∞, and for all k > 0, U(−t)wk(t)
converges to w+

k in D̃. Moreover, for ε sufficiently small, the series
∑

k∈N εkw+
k

converges in D̃ and the function

uε
+ := u+ + ε

∑
k∈N

εkw+
k

is the limit of U(−t)uε(t) in D̃ as t → +∞.
In particular, the scattering operator is analytic from D̃ to D̃.

3. Application to semilinear dispersive equations

3.1. The Schrödinger equation.
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3.1.1. General presentation. We consider the nonlinear Schrödinger equation
with gauge invariant nonlinearity presented in the introduction:

i∂tu +
1
2
∆u = |u|p−1u, (t, x) ∈ R× Rn. (3.1)

In order for the nonlinearity to be analytic, we assume that p is an odd integer,
with p > 3. Note that compared to Eq. (1.1), we have imposed the value λ = +1
for the coupling constant. We consider defocusing nonlinearities, for which the
scattering theory is much richer than in the focusing case, where the existence
of solitons and finite time blow-up phenomenon may prevent the solution u from
scattering at infinity.

Two different frameworks seem particularly well suited to study scattering
for (3.1): H1(Rn), and

Σ = {f ∈ H1(Rn), x 7→ |x|f(x) ∈ L2(Rn)}.

We apply Lemmas 2.7 and 2.9 in the first case, and Lemma 2.10 in the second
case. Note that another framework should be well suited as well, which is the L2

case. If p > 1+4/n, then the nonlinearity in (3.1) is L2-supercritical: the results
of [23] show that a scattering theory in L2 with continuous dependence on the
data is hopeless. If p < 1 + 4/n, then scattering is not known at the L2 level,
and does fail if p 6 1 + 2/n ([13,26,61,62]). In the L2-critical case p = 1 + 4/n,
scattering is known for small data [20]. Note that p = 1 + 4/n is an odd integer
only when n = 1 or 2. For n = 1, scattering for large L2 data is not known so
far. For n = 2, scattering for large L2 radial data was proved in [43]. To avoid
an endless numerology, we leave out the discussion on the L2 case at this stage.

Note also that the case of non-Euclidean geometries could be considered. In
[12], the existence of scattering operators was established in H1 for solutions
to the nonlinear Schrödinger equation on hyperbolic space, in space dimension
three, for energy-subcritical nonlinearities: the nonlinearity is analytic if it is
cubic (and only in that case, since the energy-critical case has not been treated
so far). Also, from the results in [40], scattering in H1 is available on the two-
dimensional hyperbolic space. The analyticity of wave and scattering operators
in these cases can then be established by the same argument as in §3.1.2 below.

3.1.2. The case of H1. For p > 1 + 4/n, with p < 1 + 4/(n− 2) when n > 3, the
existence and continuity of wave operators was established in [29]. If we assume
moreover that p > 1+4/n, then asymptotic completeness holds: this was proved
initially in [29] for n > 3 (see also [63] for a simplified proof), and in [51,53] for
n = 1, 2 (see also [19]). We assume 1 + 4/n < p < 1 + 4/(n − 2). In order to
prove the second part of Theorem 1.2 in the energy-subcritical case, it suffices to
exhibit spaces D and F2 such that (H1) and (H2) are satisfied. We consider the
energy-critical case p = 1 + 4/(n− 2) in a different paragraph, since the proof is
slightly different.

We set naturally D = H1(Rn), hence F1 = (C ∩L∞)(R;H1(Rn)). The space
F2 is motivated by Strichartz estimates:

F2 = L
4p+4

n(p−1)
(
R;W 1,p+1(Rn)

)
.
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Note that the pair (q, r) = ( 4p+4
n(p−1) , p + 1) is L2-admissible:

2
q

= n

(
1
2
− 1

r

)
=: δ(r), 2 6 r 6

2n

n− 2
, (n, q, r) 6= (2, 2,∞).

The fact that (H1) is satisfied is a consequence of homogeneous Strichartz in-
equalities ([30,42]). To check (H2), we use inhomogeneous Strichartz inequali-
ties, and the following algebraic lemma:

Lemma 3.1. Let p > 1 + 4/n, with p < 1 + 4/(n− 2) if n > 3. Set

(q, r) =
(

4p + 4
n(p− 1)

, p + 1
)

.

Then (q, r) is admissible. Set

θ =
p + 1
p− 1

× n(p− 1)− 4
n(p− 1)

.

Then θ ∈ [0, 1[. Define s = r = p + 1 and k = q/(1− θ). Obviously,

1
s

=
1− θ

r
+

θ

p + 1
;

1
k

=
1− θ

q
+

θ

∞
,

and we have:
1
r′

=
1
r

+
p− 1

s
, and

1
q′

=
1
q

+
p− 1

k
.

Recall that the nonlinear terms Nj stem from an inhomogeneous term in integral
form, (2.6). For a time interval I ⊂ R, inhomogeneous Strichartz estimates yield,
for 1 6 j 6 p,

‖1t∈INj (u, u1, . . . , uj)‖L∞(R;L2)∩Lq(R;Lr) 6 C

∥∥∥∥∥1t∈I |u|p−j
j∏

`=1

|u`|

∥∥∥∥∥
Lq′ (R;Lr′ )

,

for some constant C independent of I, and u, u1, . . . , uj ∈ F . Using Lemma 3.1,
we infer, if j 6 p− 1:

‖1t∈INj (. . .)‖L∞L2∩LqLr . ‖1t∈Iu‖LqLr ‖1t∈Iu‖p−1−j
LkLs

j∏
`=1

‖1t∈Iu`‖LkLs

. ‖1t∈Iu‖LqLr ‖u‖(1−θ)(p−1−j)
LqLr ‖u‖θ(p−1−j)

L∞Lp+1 ×

×
j∏

`=1

‖u`‖1−θ
LqLr ‖u`‖θ

L∞Lp+1

Using the embedding H1(Rn) ↪→ Lp+1(Rn), we deduce:

‖1t∈INj (. . .)‖L∞L2∩LqLr . ‖1t∈Iu‖LqLr ‖u‖p−1−j
F

j∏
`=1

‖u`‖F .
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The estimate for Np in L∞L2 ∩ LqLr follows from the same computation. To
estimate Nj in L∞H1 ∩ LqW 1,r, we mimic the above computation. To simplify
the presentation, and to explain why Assumption (H2) is stated in such an
apparently intricate way, we consider only the case j = 1. All the other cases
can be deduced in the same fashion. We have obviously

|1t∈I∇N1 (u, u1)| .
∣∣1t∈Iu

p−2u1∇u
∣∣+ ∣∣1t∈Iu

p−1∇u1

∣∣ .
Proceeding as above, we consider the L∞L2 ∩ LqLr norm, and use Hölder’s in-
equality, as suggested by Lemma 3.1. However, we do not have the same room
to balance the different Lebesgue’s norms: we do not want to use Sobolev em-
bedding to control the derivatives. We find

‖1t∈I∇N1 (u, u1)‖L∞L2∩LqLr . ‖∇u‖LqLr ‖1t∈Iu‖p−2
LkLs ‖1t∈Iu1‖LkLs

+ ‖∇u1‖LqLr ‖1t∈Iu‖p−1
LkLs

. ‖u‖F ‖1t∈Iu‖(1−θ)(p−2)
LqLr ‖u‖θ(p−2)

L∞Lp+1 ‖u1‖F

+ ‖u1‖F ‖1t∈Iu‖(1−θ)(p−1)
LqLr ‖u‖θ(p−1)

L∞Lp+1

. ‖1t∈Iu‖1−θ
LqLr ‖u‖p+θ−2

F ‖u1‖F ,

where we have used the same estimates as above (recall that p > 3). Therefore,
Assumption (H2) is satisfied, with δ = 1−θ. Note that δ > 0 because we consider
the energy-subcritical case, p < 1 + 4/(n− 2).

Therefore, we can apply Lemmas 2.7 and 2.9 with F as above. This yields
the second part of Theorem 1.2, except for the energy-critical case. Note that in
the following two cases:

– n = 1 and p = 5 (quintic nonlinearity),
– n = 2 and p = 3 (cubic nonlinearity),

which are L2 critical p = 1+4/n, Lemma 2.7 shows that the wave operators are
analytic on H1(Rn). However, scattering in the energy space for arbitrary data
is not known in these cases.

3.1.3. The case of Σ. To overcome the drawback mentioned at the end of the
previous paragraph, we shall consider the weighted Sobolev space Σ. Generally
speaking, working in Σ makes it possible to decrease the admissible values for p
in order to have scattering, from p > 1 + 4/n, to p > p0(n), for some 1 + 2/n <
p0(n) < 1 + 4/n; see [22,27,36,54]. However, the gain in the present context is
rather weak, since we consider only integer values for p: the gain corresponds
exactly to the two cases pointed out above.

As suggested in §2.3, we consider the space

F̃ = F ∩
{

f ∈ C(R;Σ), J(t)f ∈ L
4p+4

n(p−1)
(
R;Lp+1(Rn)

)}
,

where J(t) = x + it∇, and F was defined in the previous paragraph. We can
then mimic the above computation, in order to apply Lemma 2.10. We recall
two important properties of the operator J which make it possible to check
Assumptions (H̃1) and (H̃2):
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– It commutes with the linear Schrödinger group: J(t) = U(t)xU(−t).
– It acts on gauge invariant nonlinearities like a derivative, since

J(t) = itei|x|2/(2t)∇
(
e−i|x|2/(2t)·

)
, ∀t 6= 0.

Lemma 2.10 and the results of [27] yield Theorem 1.2 in all the cases, but the
energy critical one, which is considered in the next paragraph.

3.1.4. The energy-critical case. To complete the proof of Theorem 1.2, two cases
remain, which correspond to the case p = 1 + 4/(n− 2):

– n = 3 and p = 5.
– n = 4 and p = 3.

Global existence and scattering for arbitrary data in H1(Rn) were established in
[24] and [57], respectively. A crucial tool in the energy critical case is the existence
of Strichartz estimates for Ḣ1-admissible pairs, as opposed to the notion of
L2-admissible pairs used above. It is fairly natural that our definition for F is
adapted in view of this notion. Recall that for n > 3, a pair (q, r) is Ḣ1-admissible
if

2
q

+
n

r
=

n

2
− 1.

Denote

γ0 = 2 +
4
n

and γ1 = 2 +
8

n− 2
.

The pair (γ0, γ0) is L2-admissible, and (γ1, γ1) is Ḣ1-admissible. We set

F = F1 ∩ F2, with F1 = (C ∩ L∞)
(
R;H1(Rn)

)
, and

F2 = Lγ0
(
R;W 1,γ0(Rn)

)
∩ Lγ1(R× Rn).

With such a space F , Assumption (H1) is satisfied, thanks to Strichartz esti-
mates, along with the Sobolev embedding Ḣ1(Rn) ↪→ L2n/(n−2)(Rn). To check
that Assumption (H2) is satisfied as well, we distinguish the two cases we con-
sider, for a more convenient numerology.

The quintic case, with n = 3. In this case, we have γ0 = 10/3 and γ1 = 10.
For u1, . . . , u5 ∈ F , we have, for k = 0 or 1, thanks to Strichartz estimates and
Hölder’s inequality:

∥∥∥∇k

∫ t

t0

U(t− s) (u1 × . . .× u5) (s)ds
∥∥∥

L∞(I;L2)∩L10/3(I×Rn)

.
∥∥∇k (u1 × . . .× u5)

∥∥
L10/7(I×Rn)

.
5∑

j=1

∥∥∇kuj

∥∥
L10/3(I×Rn)

∏
` 6=j

‖u`‖L10(I×Rn) .
5∏

j=1

‖1t∈Iuj‖F2
.
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We also have, in view of Sobolev embedding,∥∥∥∫ t

t0

U(t− s) (u1 × . . .× u5) (s)ds
∥∥∥

L10(I×Rn)

.
∥∥∥∫ t

t0

U(t− s) (u1 × . . .× u5) (s)ds
∥∥∥

L10(I;W 1,30/13)

.
1∑

k=0

∥∥∇k (u1 × . . .× u5)
∥∥

L10/7(I×Rn)
,

thanks to Strichartz estimates. Using the above computation, we infer that As-
sumption (H2) is satisfied.

The cubic case, with n = 4. In this case we have γ0 = 3 and γ1 = 6. For
u1, u2, u3 ∈ F , we have, for k = 0 or 1, thanks to Strichartz estimates and
Hölder’s inequality:∥∥∥1t∈I∇k

∫ t

t0

U(t− s) (u1u2u3) (s)ds
∥∥∥

L∞t L2
x∩L3

t,x

.
∥∥∇k (u1u2u3)

∥∥
L3/2(I×Rn)

.
3∑

j=1

∥∥∇kuj

∥∥
L3(I×Rn)

∏
` 6=j

‖u`‖L6(I×Rn) .
3∏

j=1

‖1t∈Iuj‖F2
.

We also have, in view of Sobolev embedding,∥∥∥∫ t

t0

U(t− s) (u1u2u3)(s)ds
∥∥∥

L6(I×Rn)

.
∥∥∥∫ t

t0

U(t− s) (u1u2u3)(s)ds
∥∥∥

L6(I;W 1,12/5)
.

1∑
k=0

∥∥∇k (u1u2u3)
∥∥

L3(I×Rn)
,

thanks to Strichartz estimates. Using the above computation, we infer that As-
sumption (H2) is satisfied.

Finally, it is easily checked that we can replace H1 with Σ, as in the previous
paragraph. This completes the proof of Theorem 1.2.

Remark 3.2. At the level of H1, it is possible to have a unified presentation, that
is, without distinguishing the H1-subcritical and H1-critical cases. The price
to pay consists in considering Besov spaces for the definition of F2, instead of
Sobolev spaces. We have chosen to work in Sobolev for the simplicity and the
explicit form of the computations. A more synthetic approach would consist in
setting

F2 = Lγ0
(
R;B1

γ0,2(Rn)
)
∩ Lγ1 (R× Rn) ,

with γ0 = 2 +
4
n

and
p− 1
γ1

+
1
γ0

=
1
γ′0

.

Sobolev and Strichartz inequalities are replaced by

‖u‖L∞(R;H1) + ‖u‖F2 6 C

(
‖u0‖H1 +

∥∥∥i∂tu +
1
2
∆u
∥∥∥

Lγ′0
(

R;B1
γ′0,2

(Rn)
)) ,
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an estimate established in [51, §3]. Note that in the energy-critical case p =
1 + 4

n−2 , this is the estimate which we have used, up the replacing Besov spaces
B1

p,2 with W 1,p (a modification which is non-trivial since p 6= 2).

3.2. The Hartree equation. We now consider the Hartree equation (1.2) with a
defocusing nonlinearity, λ = +1, in space dimension n > 3:

i∂tu +
1
2
∆u =

(
|x|−γ ∗ |u|2

)
u. (3.2)

Note that the nonlinearity u 7→
(
|x|−γ ∗ |u|2

)
u is always a smooth homogeneous

(cubic) function of u. We assume 2 6 γ < min(4, n). A complete scattering
theory is available in the space Σ; see [28,37]. If we assume moreover γ > 2,
then Σ can be replaced by H1(Rn); see [34,50]. The counterpart of Lemma 3.1
is:

Lemma 3.3. Let n > 3 and 2 6 γ < min(4, n). Set

(q, r) =
(

8
γ
, 4n

2n− γ

)
.

Then (q, r) is L2-admissible. Set θ = 2− 4/γ. Then θ ∈ [0, 1[. Define s = r and
k = q/(1− θ). Obviously,

1
s

=
1− θ

r
+

θ

r
;

1
k

=
1− θ

q
+

θ

∞
,

and we have s <
2n

n− γ
, with

1
r′

=
1
r

+
2
s

+
γ

n
− 1 and

1
q′

=
1
q

+
2
k
.

We can then proceed as in the energy-subcritical case for the nonlinear Schrödinger
equation (3.1), in order to prove Theorem 1.3. The only difference is the use of
the Hardy–Littlewood–Sobolev inequality. Since the computations are very sim-
ilar to those presented in §3.1, we shall be rather sketchy, and detail only the
most important computation. We set

F1 = (C ∩ L∞)(R;H1(Rn)) ; F2 = Lq
(
R;W 1,r(Rn)

)
,

where (q, r) is now given by Lemma 3.3. It follows from Strichartz estimates that
(H1) is satisfied. For t ∈ R and I an interval in R, we have, for ` = 0 or 1:∥∥∥∥∥1t∈I∇`

∫ t

t0

U(t− τ)
((
|x|−γ ∗ (u1u2)

)
u3

)
(τ)dτ

∥∥∥∥∥
L∞t L2

x∩Lq
t Lr

x

.
∥∥1t∈I∇`

(
|x|−γ ∗ (u1u2)

)
u3

∥∥
Lq′

t Lr′
x

.
∥∥∥‖u1∇`u2‖L

s/2
x
‖u3‖Lr

x

∥∥∥
Lq′

t (I)
+
∥∥∥‖u2∇`u1‖L

s/2
x
‖u3‖Lr

x

∥∥∥
Lq′

t (I)

+
∥∥∥‖u1u2‖L

s/2
x
‖∇`u3‖Lr

x

∥∥∥
Lq′

t (I)

.
3∑

j=1

∥∥∥‖∇`uj‖Lr
x

∏
j′ 6=j

‖uj′‖Lr
x

∥∥∥
Lq′

t (I)
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where we have used Hölder and Hardy–Littlewood–Sobolev inequalities in the
space variable. Using Hölder’s inequality in time, we can estimate each term of
the above sum by:∥∥∥∇`uj

∥∥∥
Lq(I;Lr)

∏
j′ 6=j

‖uj′‖Lk(I;Lr)

.
∥∥∥∇`uj

∥∥∥
Lq(I;Lr)

∏
j′ 6=j

(
‖uj′‖1−θ

Lq(I;Lr)‖uj′‖L∞(I;Lr)

)

.
3∏

j=1

‖1t∈Iuj‖1−θ
F2

‖uj‖θ
F ,

where we have used the embedding H1 ↪→ Lr. This estimate suffices to check
that Assumption (H2) is satisfied (with δ = 1 − θ > 0), hence Theorem 1.3 in
the case of H1(Rn). In the case of Σ (which allows to consider the value γ = 2),
one uses the operator J(t) = x + it∇ like in §3.1.3, to complete the proof of
Theorem 1.3.

3.3. The wave equation. We now turn to the case of the nonlinear wave equation

∂2
t u−∆u + up = 0, (t, x) ∈ R× Rn. (3.3)

In order for the nonlinearity to be analytic, we assume that p is an integer.
Moreover, for the anti-derivative of the nonlinearity to have a constant sign, we
need to assume that p is odd; without this assumption, scattering for arbitrary
large data does not hold.

The existence of wave and scattering operators in

Σ2 = {(f, g) ∈ H1(Rn)× L2(Rn), x 7→ |x|∇f(x), x 7→ |x|g(x) ∈ L2(Rn)}

was established in [31], under the assumption

1 +
4

n− 1
6 p < 1 +

4
n− 2

.

As a matter of fact, some values for p < 1+4/(n−1) are also allowed there. See
also [6] and [39] for n = p = 3. With these results, we could certainly prove that
the wave and scattering operators are analytic from Σ2 to Σ2, for 2 6 n 6 4
and

– p > 5 if n = 2.
– p = 3 or 5 if n = 3.
– p = 3 if n = 4.

We leave out the discussion at this stage, since the estimates based on the con-
formal decay are fairly long to write.

The existence of wave and scattering operators in Ḣ1(Rn) × L2(Rn) was
established in [9,41,59,60] for the energy-critical case

p = 1 +
4

n− 2
, n = 3, 4.
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(The space dimensions 3 and 4 are the only ones for which the energy-critical
nonlinearity corresponds to an odd integer p.) As stated in Theorem 1.4, we shall
content ourselves with these two cases. Note also that from [32], the existence of
scattering operators in the energy space is known for energy-subcritical nonlin-
earities. However, this range for p does not include odd integers, and we are left
with the above two cases. Also, if we considered only small data scattering, then
more results would be available. We choose not to distinguish too many cases,
and restrict our attention to the framework of Theorem 1.4.

Naturally, we have D = Ḣ1(Rn)× L2(Rn), and

F1 = (C ∩ L∞)(R; Ḣ1(Rn))× (C ∩ L∞)(R;L2(Rn)).

As in the case of the Schrödinger equations studied above, the space F2 is defined
using Strichartz estimates: we set

F2 =

{
L5
(
R;L10(R3)

)
× L∞

(
R;L2(R3)

)
if n = 3,

L3
(
R;L6(R4)

)
× L∞

(
R;L2(R4)

)
if n = 4.

Recall that for n > 3, and (q, r) satisfying

1
q

+
n

r
=

n

2
− 1, 6 6 r < ∞ if n = 3,

2n

n− 2
6 r 6

2n + 2
n− 3

if n > 4,

Strichartz estimates yield (see e.g. [33,42])

‖u‖Lq(I;Lr) + ‖u‖L∞(I;Ḣ1) + ‖∂tu‖L∞(I;L2)

6 Cr

(∥∥u|t=0

∥∥
Ḣ1 +

∥∥∂tu|t=0

∥∥
L2 +

∥∥(∂2
t −∆

)
u
∥∥

L1(I;L2)

)
,

for some constant Cr independent of the time interval I. Note that the pairs
(5, 10) and (3, 6) are admissible for n = 3 and n = 4, respectively.

In the case n = 3, and in view of Example 2.2, it is enough to control
‖u1u2u3u4u5‖L1(I;L2) by the product of the ‖uj‖L5(I;L10), to verify Assump-
tion (H2). Such an estimate if of course trivially satisfied. Similarly, for n = 4,
‖u1u2u3‖L1(I;L2) is controlled by the product of the ‖uj‖L3(I;L6). Therefore,
Theorem 1.4 follows from Lemmas 2.7 and 2.9.

3.4. The Klein–Gordon equation. We conclude with the case of the Klein–Gordon
equation

∂2
t u−∆u + u + up = 0, (t, x) ∈ R× Rn. (3.4)

As above, we assume that p is an odd integer. The natural energy space is
D = H1(Rn)×L2(Rn). For n > 3, scattering in the energy space was established
in [16] for

1 +
4
n

< p 6 1 +
4

n− 1
,

and in [30] for

1 +
4
n

< p < 1 +
4

n− 2
.
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The case of the low dimensions n = 1 or 2 was treated by K. Nakanishi [51] (see
also [53]), for p > 1+4/n. The existence of wave and scattering operators in the
energy-critical case p = 1 + 4/(n− 2) in space dimension n > 3 was established
in [52]. All in all, scattering in the energy space is known for p > 1 + 4/n, and
p 6 1+4/(n−2) when n > 3. Such values for p corresponding to an odd integer
are exactly those considered in Theorem 1.5.

As pointed out in [31], this numerology is the same as in the case of the non-
linear Schrödinger equation (3.1). The proof of Theorem 1.5 follows essentially
the same lines as the proof of Theorem 1.2, up to the following adaptation. For
the space F1, we keep

F1 = (C ∩ L∞)
(
R;H1(Rn)

)
.

For the space F2, Sobolev spaces are replaced by Besov spaces:

F2 = Lγ0

(
R;B1/2

γ0,2(R
n)
)
∩ Lγ1 (R× Rn) ,

with γ0 = 2 +
4
n

and
p− 1
γ1

+
1
γ0

=
1
γ′0

.

Equation (3.9) in [51] yields the analogue of the estimate recalled in Remark 3.2:

‖u‖L∞(R;H1)+‖∂tu‖L∞(R;L2) + ‖u‖F2

6 C

(
‖u0‖H1 + ‖u1‖L2 +

∥∥∥∂2
t u−∆u + u

∥∥∥
Lγ′0
(

R;B
1/2
γ′0,2

(Rn)
)) ,

The proof of Theorem 1.5 then follows the same lines as the proof of Theorem 1.2,
up to the technical modifications which can be found in [51].

4. Some consequences

4.1. Invariant skew-symmetric forms. Let

ωwave (u1, u2) (t) :=
∫

Rn

(u1∂tu2 − u2∂tu1) (t, x)dx. (4.1)

It is proved in [49] that for the cubic three-dimensional Klein–Gordon equation
(Eq. (3.4) with n = p = 3), ωwave induces a skew-symmetric differential form on
some space F (based on the energy space), which is invariant under S. In [8],
the space F was replaced by the energy space, in the small data case. Following
the proof of [49], we have the following extension:

Proposition 4.1. For m > 0, consider the equation (wave or Klein–Gordon)

∂2
t u−∆u + m2u + up = 0.

Then under the algebraic assumptions of Theorem 1.4 (case m = 0) or Theo-
rem 1.5 (case m > 0), ωwave induces a skew-symmetric differential form on the
energy space, which is invariant under S.
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Proof (Sketch of the proof). Since the proof follows the same lines as in [49], we
shall simply recall the main steps. At least for smooth solutions, we compute

d

dt
ωwave(u1, u2) =

∫
Rn

(u2u
p
1 − u1u

p
2) dx.

If u1, u2 and u3 solve the above equation, then using the above relation and
expanding

ωwave (u2 − u1, u3 − u1) = ωwave (u2, u3) + ωwave (u1, u2)− ωwave (u1, u3) ,

we find

d

dt
ωwave (u2 − u1, u3 − u1) =

∫ ((
up−1

2 − up−1
3

)
(u2 − u1)u3

)
dx

+
∫ ((

up−1
2 − up−1

1

)
(u3 − u2)u1

)
dx.

(4.2)

Elementary computations show that (u1−u2)(u1−u3)(u2−u3) can be factored
out in the above expression. Now let u−, v− and w− be in the energy space
(whose definition varies whether m = 0 or m > 0). In (4.2), we consider u1, u2

and u3 with asymptotic states as t → −∞ given by u−, u−+εv− and u−+εw−,
respectively. The results of Section 2 show that the image of v− under dS(u−)
is v+, which is the asymptotic state as t → +∞ of v, satisfying

∂2
t v −∆v + m2v + pup−1v = 0,

with asymptotic state v− as t → −∞ (v+ = v− if u ≡ 0: S is almost the identity
near the origin; v+ is implicit otherwise, see §2.1). Integrating (4.2) over all t,
we get:

ωwave ((u2 − u1)+, (u3 − u1)+)− ωwave (εv−, εw−) = O
(
ε3
)
,

from the factorization mentioned above. Simplifying by ε2, the result follows by
letting ε → 0.

In the case of the Schrödinger operator, introduce

ωSchröd (u1, u2) (t) = Im
∫

Rn

(u1u2) (t, x)dx.

Like above, if u1 and u2 solve

i∂tuj +
1
2
∆uj = Fj ,

then we have:

d

dt
ωSchröd (u1, u2) = Re

∫
Rn

(
F 1u2 − u1F2

)
.
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If u1, u2 and u3 solve (3.1), we find:

d

dt
ωSchröd (u2 − u1, u3 − u1) =

∫ (
|u2|p−1 − |u3|p−1

)
Re(u2 − u1)u3

+
∫ (

|u2|p−1 − |u1|p−1
)
Re(u3 − u2)u1.

Viewing the right hand side as a polynomial in three unknowns u1, u2 and u3,
we note that it is zero for u1 = u2, u3 = u1 and u2 = u3. We can then use the
same argument as above, to claim that it yields a contribution of order O(ε3).
Proceeding as above, we have:

Proposition 4.2. Consider the equation

i∂tu +
1
2
∆u = |u|p−1u.

Under the algebraic assumptions of Theorem 1.2, ωSchröd induces a skew-symmetric
differential form on H1(Rn) (or Σ), which is invariant under S, the scattering
operator associated to the above equation.

Finally, if u1, u2 and u3 solve

i∂tuj +
1
2
∆uj =

(
V ∗ |uj |2

)
uj ,

then we find

d

dt
ωSchröd (u2 − u1, u3 − u1) =

∫ (
V ∗

(
|u2|2 − |u3|2

))
Re(u2 − u1)u3

+
∫ (

V ∗
(
|u2|2 − |u1|2

))
Re(u3 − u2)u1.

Proposition 4.3. Consider the equation

i∂tu +
1
2
∆u =

(
|x|−γ ∗ |u|2

)
u.

Under the algebraic assumptions of Theorem 1.3, ωSchröd induces a skew-symmetric
differential form on H1(Rn) (or Σ), which is invariant under S, the scattering
operator associated to the above equation.

4.2. Infinitely many conserved quantities. In [5,8], the authors consider the Klein-
Gordon equations (1.4) with p = 3, and prove that the analyticity of the scat-
tering operator (which at the time was only known for small data) implies the
existence of a complete set of conserved quantities with vanishing Poisson brack-
ets. The proof of [8] relies upon the construction of invariant skew-symmetric
forms, as in the previous section. Once the form ωwave is known, one can con-
struct explicitly a complete set of integrals of motion Fj , with vanishing Poisson
brackets. The statement is given below, in all the cases studied in the paper.
We refer to [8] for the proof of the result, which can be directly adapted to the
skew-symmetric form ωSchröd.
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Proposition 4.4. For each of the equations (1.1) to (1.4) considered in this
paper, and under the algebraic assumptions of Theorems 1.2 to 1.5 respectively
there is a family Fj of analytic functionals acting from the space of initial data D
into R, invariant under the nonlinear evolution, and such that there is a vector
field vj in D such that

dFj = ω(vj , ·)

where ω denotes respectively ωSchröd and ωwave. Moreover, generically in u, for
any couple of vector fields (v, w) in TuD such that dFjv = dFjw = 0, we
have ω(v, w) = 0.

This result can be understood as the existence of a Birkhoff normal form (see
e.g. [10,35] for a general definition and a presentation of results). However, for
nonlinear equations, Birkhoff normal forms are usually employed to establish
long time existence results (see e.g. [15,11]), whereas in our case, they come as
a consequence of asymptotic properties of solutions which are already known to
exist globally.

4.3. Inverse scattering. As noticed in [49, Theorem 2], knowing the scattering
operator near the origin for a nonlinear equation with analytic nonlinearity suf-
fices to determine the nonlinearity, since the coefficients of its Taylor series can
be computed by induction.

In [58], the first term of the asymptotic expansion of the scattering operator is
shown to fully determine a nonlocal nonlinearity whose form is known in advance
(Hartree type nonlinearity). This approach is applied in the Schrödinger case,
as well as in the Klein–Gordon case. In that case, the nonlinearity need not be
analytic, and only the first nontrivial term of the asymptotic expansion of S
near the origin is needed. Typically, in the same spirit, consider the nonlinear
Schrödinger equation

i∂tu +
1
2
∆u = λ|u|p−1u, (4.3)

with λ ∈ R (possibly negative), p > 1 + 4/n and p 6 1 + 4/(n − 2) if n > 3,
not necessarily an integer. For small data, solutions to (4.3) are global in time,
and admit scattering states. To see this, recall that the nonlinearity in (4.3) is
Hs-critical, with

s =
n

2
− 2

p− 1
> 0.

In the small data case, Strichartz and Sobolev inequalities show that global
existence and scattering follow from a simple bootstrap argument (see e.g. [20]
in the case of s = 0, [21] in the case s > 0). In addition, we have

W± (εφ) = εφ + iλεp

∫ ±∞

0

e−i t
2 ∆

(∣∣∣ei t
2 ∆φ

∣∣∣p−1

ei t
2 ∆φ

)
dt +OHs

(
ε2p−1

)
,

hence

S (εφ) = εφ− iλεp

∫ +∞

−∞
e−i t

2 ∆

(∣∣∣ei t
2 ∆φ

∣∣∣p−1

ei t
2 ∆φ

)
dt +OHs

(
ε2p−1

)
.
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See [18] for the proof in the case s = 0. The proof for s > 0 follows the same
lines, up to the modifications which can be found in [21]. Loosely speaking, the
leading order term of S(εφ)− εφ suffices to determine λ and p. For instance,

p = lim
ε→0

log‖S(εφ)− εφ‖L2

log ε
,

for φ a Gaussian function, so that the term in εp cannot be zero.

4.4. On the complete integrability. When speaking of complete integrability, one
has to be rather cautious: several notions are present in the literature [4,65]. The
weakest definition (which is in fact useful mainly in a finite dimensional situation)
consists in saying that there exists as many conserved quantities as the number
of degrees of freedom (infinitely many in infinite dimensional situations), with
vanishing Poisson brackets; this corresponds to the discussion in Section 4.2
above. One can observe that those conserved quantities may not be relevant
in terms of Sobolev norms (see for example [14]). In the Hamiltonian case, the
quantities are the Hamiltonian and first integrals; see e.g. [1,2,3]. At a higher
(in the infinite dimensional case) level of precision, there may exist a nonlinear
change of variables which makes the original equation linear. This is typically the
case of one-dimensional Schrödinger equations with cubic nonlinearity [66], and
is related to the existence of Lax pairs [46]. The strongest notion of integrability
consists in trivializing the equation on some Lie algebra; see e.g. [38].

Acknowledgments. The authors are grateful to Prof. Tohru Ozawa for pointing
out several references, and to Satoshi Masaki for an early view of his result [47].
They also thank Prof. Frédéric Hélein for useful explanations on the notion of
complete integrability.
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Courses], vol. 8, Société Mathématique de France, Paris, 2001.
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38. F. Hélein, Four lambda stories, an introduction to completely integrable systems,
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