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Abstract. We consider the equations governing incompressible, viscous fluids in three space dimen-

sions, rotating around an inhomogeneous vector B(x): this is a generalization of the usual rotating

fluid model (where B is constant). In the case when B has non degenerate critical points we prove the

weak convergence as the rotation rate tends to infinity, of Leray–type solutions towards a vector field

which satisfies a heat equation. The method of proof uses weak compactness arguments, which also

enable us to recover the usual 2D Navier-Stokes limit in the case when B is constant.

Résultats de convergence faible

pour des équations des fluides tournants non homogènes

Résumé. On considère les équations modélisant des fluides incompressibles et visqueux en trois

dimensions d’espace, en rotation rapide autour d’un vecteur non homogène B(x): on généralise ainsi le

modèle habituel des fluides tournants (où B est constant). Dans le cas où B a des points critiques non

dégénérés, on démontre la convergence des solutions de Leray, quand la vitesse de rotation tend vers

l’infini, vers un champ de vecteurs qui vérifie une équation de la chaleur. La méthode de démonstration

repose sur des arguments de compacité faible, qui nous permettent de retrouver également la limite

habituelle Navier-Stokes 2D quand B est constant.

1. Introduction

The aim of this article is to study the asymptotics of solutions of rotating fluid equations, in
the case when the rotation vector is not homogeneous. We consider a domain Ω = Ωh × Ω3,
where Ωh denotes either the whole space R2 or any periodic domain of R2, and similarly Ω3

denotes R or T, where T denotes the one-dimensional torus. We are interested in the following
system:

(1.1)

∂tu+ u·∇u− ν∆u+
1

ε
u ∧B + ∇p = 0 on R+ × Ω,

∇· u = 0 on R+ × Ω,

u|t=0 = u0 on Ω

where B = be3 is the adimensionalized rotation vector, and b is a smooth function defined
in Ωh. We shall suppose throughout this paper that b does not vanish; more assumptions on b
will be made as we go along. In the case when Ω is unbounded, we suppose that the vector
fields vanish at infinity.
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Before stating the result we shall prove here, let us recall some well-known facts in the constant
case (b = 1). The rotating fluid equations, with b constant and homogeneous, modelize the
movement of the atmosphere or the oceans at mid-latitudes (see for instance [11] or [18]). The
fluid is supposed to be incompressible (which corresponds to the hydrostatic approximation),
and its viscosity is ν > 0. The vector field u is the velocity and the scalar p is the pressure,
both are unknown. Denoting by U and L the characteristic velocity and length scales of the
motion, and by f the local vertical component of the Earth rotation, the parameter ε, known
as the Rossby number, is the ratio

ε =
U

2fL
·

Taking the limit ε→ 0 means that the scale of motion of the fluid is much smaller than that
of the Earth. In the constant case, those equations have been studied by a number of authors.
We refer for instance to the works of A. Babin, A. Mahalov and B. Nicolaenko [2]-[4], P. Embid
and A. Majda [7], I. Gallagher [8], E. Grenier [12] for the periodic case, and J.-Y. Chemin,
B. Desjardins, I. Gallagher and E. Grenier [5] for the whole space case as well as [6] for the
case of horizontal plates with Dirichlet boundary conditions (for such boundary conditions we
refer also to the work of E. Grenier and N. Masmoudi [13] as well as N. Masmoudi [17]). We
also refer to the survey paper of R. Temam and M. Ziane [20], and the references therein. The
results in those papers concern both weak and strong solutions; in this article we shall only
be concerned with Leray–type weak solutions ([14]): we will see in Section 2 below that their
existence is an easy adaptation of the proof of Leray’s existence theorem [14]. In the constant
case, it is known that weak solutions converge towards the solution of the two–dimensional
Navier-Stokes equations. Such a result in the whole space case is due to Strichartz-type
estimates (which are obtained by writing the solution of the linearized problem in Fourier
space), whereas in the periodic case it follows from the study of the (discrete) spectrum of
the rotating fluid operator (following methods introduced by S. Schochet in [19]).

In this paper we are interested in the case when the rotation operator is not homoegenous.
This is physically motivated by the fact that the vertical component of the rotation depends
in fact on the latitude, hence larger geographical zones can be considered with such a model.
Moreover new physical phenomena appear when the variation of the rotation is taken into
account, namely the presence of Rossby waves (see [9] for a presentation of the various waves
present in geophysical flows). Our goal here is not to describe those waves precisely, but
rather to show that their presence does not disturb the mean flow. One would like to follow
the same methods as in the constant case, described above, but the problem is that it does
not seem a good idea to take the Fourier transform of the Coriolis operator

Lu
def
= P (u ∧B), ∇ · u = 0,

when B is not homogeneous (here P denotes the projector onto divergence free vector fields);
moreover the study of the spectrum of L is not an easy matter. So our strategy to study
this problem is first to try and recover the well-known results of the constant case without
using any information on the spectrum of L (other than the determination of its kernel), and
without using the Fourier transform. This will be achieved in Section 3. Then the study of
the variable case will be an adaptation of the constant case, in Section 4.

Before stating the results we shall prove in this paper, let us comment on the difficulties
compared with the constant case: as stated above, it is easy to construct a bounded family
of weak solutions to our problem, whether b is constant or not. Hence one can construct a
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weak limit point u, and the question we want to address is to find the equation satisfied by u.
Of course the problem consists in taking the limit in the non linear part of the equation. As
noted above, we do not wish to study the spectrum of the operator L since that seems to
be a difficult issue. So we cannot apply the usual, constant b methods, as to our knowledge
they all involve spectral properties of L. The idea therefore is to turn to what is known as
“weak compactness methods”, in the spirit of P.-L. Lions and N. Masmoudi [15]-[16] (for the
incompressible limit). We shall recall briefly below what those methods are, and then we shall
state the main results of this paper.

1.1. Weak compactness methods. Let us explain what weak compactness methods are all
about. The idea is as follows: as usual the trouble to find the limit of the equation comes
from the bilinear terms. They can be separated into three categories:

• products involving only elements of the kernel of the penalization L, which can be
shown to be compact;

• products of elements of the kernel against elements of (KerL)⊥, for which one can take
the limit since elements of (KerL)⊥ converge weakly to zero;

• products involving only elements of (KerL)⊥, which are the problem.

The idea now is to prove that in the last situation, the limit is in fact zero for algebraic
reasons: in previous works on rotating fluids, that result was proved essentially by writing the
product of two elements of (KerL)⊥ by projection onto eigenvectors of L. In the periodic case,
a “miracle” in the formulation yielded the result (see [2]-[4] or [8]), whereas in the whole space
case, Strichartz estimates did the job (and the convergence was strong), see [5]. In this paper
we will show that the result has in fact not much to do with spectral properties of L, but is
due to simple algebraic properties. Let us recall the result in the case of the incompressible
limit, where such properties were first used (see [15]).

Proposition 1.1. [15] Let (ρε), (uε), (θε) be bounded families of L2([0, T ],H1(Ω)) such that

ρε ⇀ ρ, uε ⇀ u, θε ⇀ θ as ε→ 0.

Assume that
ε∂tρε + ∇· uε = 0,
ε∂tuε + ∇(ρε + θε) = εsε,

ε∂tθε +
2

3
∇· uε = εs′ε,

where sε and s′ε are bounded in L1([0, T ],H−s(Ω)) for some s > 0. Then

P∇· (uε ⊗ uε) → P∇· (u⊗ u) and ∇· (uεθε) → ∇· (uθ)

in the sense of distributions, where P is the Leray projector onto divergence free vector fields.

Proof. This result has to be compared with the so-called “compensated compactness” the-
orems, in the sense that the convergences of some quadratic quantities in ρε, uε, θε are es-
tablished under the assumption that some combinations of the derivatives of these functions
converge strongly in time to 0. The proof consists in checking that the acoustic oscillations do
not bring any contribution to the limiting terms. We introduce the following decompositions:

uε = Puε + ∇ψε, and θε =
3θε − 2ρε

5
+ πε,
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so that

Puε and
3θε − 2ρε

5
are bounded in W 1,1([0, T ],H−s(Ω)), and

ε∂t∇ψε + ∇πε = ε(Id− P )sε → 0, ε∂tπε +
2

3
∆ψε =

2ε

5
s′ε → 0 in L1([0, T ],H−s(Ω)).

We shall note in the following Sε
def
= (Id − P )sε and S′

ε
def
=

2

5
s′ε. The incompressibility and

Boussinesq relations

∇· u = 0, ∇(ρ+ θ) = 0

allow to identify the limits

Puε → u,
3θε − 2ρε

5
→ θ in L2([0, T ] × Ω),

∇ψε ⇀ 0, πε ⇀ 0 in w − L2([0, T ] × Ω),

from which we deduce that, in the sense of distributions

uε ⊗ uε −∇ψε ⊗∇ψε → u⊗ u,

θεuε − πε∇ψε → θu.

The key argument is therefore the following formal computation (which can be made rigorous
by introducing regularizations with respect to the space variable x)

P∇.(∇ψε ⊗∇ψε) =
1

2
P∇|∇ψε|

2 + P (∆ψε∇ψε)

=
3

2
P (−∂t(επε∇ψε) − πε∇πε + πεεSε + εS′

ε∇ψε)

=
3

2
P (−∂t(επε∇ψε) + πεεSε + εS′

ε∇ψε),

∇.(πε∇ψε) = πε∆ψε + ∇ψε.∇πε

=
3

2
πε(εS

′
ε − ε∂tπε) + ∇ψε · (εSε − ε∂t∇ψε)

=
3

2
πεεS

′
ε + ∇ψε · εSε −

3ε

4
∂t|πε|

2 −
ε

2
∂t|∇ψε|

2,

which shows that the contribution of the acoustic oscillations is negligible. �

Inspired by the previous computation, we shall in this article try to use a similar method
in the case of rotating fluids: we refer to the proofs of Propositions 3.4 and 4.3 for precise
computations.

1.2. Main results. Since we consider incompressible flows, we introduce the following sub-
spaces of L2(Ω) and H1(Ω)

H(Ω) = {u ∈ L2(Ω) /∇· u = 0}, V(Ω) = {u ∈ H1(Ω) /∇· u = 0}.

Finally V′(Ω) will denote the dual space of V. We will omit the mention of the space Ω in
the notation, whenever no confusion is possible. We will also use the following notation for
the inhomogeneous Sobolev spaces

Hs(Ω) = {u ∈ D′(Ω) / (Id − ∆)s/2u ∈ L2(Ω)}.
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We will also use the homogeneous couterpart

Ḣs(Ω) = {u ∈ D′(Ω) / (−∆)s/2u ∈ L2(Ω)}.

It will appear clearly in the following that the horizontal variables play a special role in
this problem. Consequently we shall use the following notation: if x is a point in Ω, then
we shall note its cartesian coordinates by (x1, x2, x3), and the horizontal part of x will be

denoted xh
def
= (x1, x2) ∈ Ωh. Similarly we will denote the horizontal part of any vector

field f by fh, the horizontal gradient by ∇h
def
= (∂1, ∂2) and its orthogonal by ∇⊥

h = (∂2,−∂1),

and the horizontal divergence and Laplacian respectively by divhf
def
= ∂1f1 + ∂2f2 = ∇h · fh

and ∆h
def
= ∂2

1 + ∂2
2 .

Finally as usual, C will denote a constant which can change from line to line, and ∇p will
denote the gradient of a function which can also change from line to line.

Now we are ready to state the main theorems of this paper. The first result, rather standard,
shows that there are weak solutions to the system (1.1).

Theorem 1. Let u0 be any vector field in H. Then for all ε > 0, Equation (1.1) has at

least one weak solution uε ∈ L∞(R+,H) ∩L2(R+, Ḣ1). Moreover, for all t > 0, the following
energy estimate holds:

(1.2) ‖uε(t)‖
2
L2 + 2ν

∫ t

0
‖∇uε(t

′)‖2
L2dt

′ ≤ ‖u0‖2
L2 .

The aim of the paper is to describe the limit of uε as ε goes to zero. We will first concentrate
on the constant case.

Theorem 2. Suppose that B = be3 where b is constant and homogeneous.

Let u0 be any vector field in H, and let uε be any weak solution of (1.1) in the sense of
Theorem 1. Then uε converges weakly in L2

loc(R
+ × Ω) to a limit u which if Ω3 = R is zero,

and if Ω3 = T is the solution of the two dimensional Navier–Stokes equations

(NS2D) ∂tu− ν∆hu+ uh · ∇hu = (−∇hp, 0), divhuh = 0,

u|t=0 =

∫

T

u0(xh, x3) dx3 −

∫

Ωh×T

(u0
h(x), 0) dx.

Remark 1.2. This theorem is by no means a novelty, it is even rather less precise than other
such results one can find in the literature ([2]-[4], [5], [8], [12]). As we will see in Section 3, the
interest of this result lies in its proof, which contrary to the references above, does not depend
on the boundary conditions (which can be the whole space or periodic, in each direction).

Now let us state the new result of this paper, concerning the case when b is not homogeneous.
We will suppose that B = be3 where b = b(xh) is a smooth function, with non degenerate
critical points in the following sense: denoting by µ(X) the Lebesgue measure of any set X
we suppose that

(1.3) lim
δ→0

µ ({x ∈ Ωh / |∇b(x)| ≤ δ}) = 0.
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Theorem 3. Suppose that B = be3 where b = b(xh) is a smooth function, with non degenerate
critical points in sense of (1.3).

Let u0 be any vector field in H, and let uε be any weak solution of (1.1) in the sense of
Theorem 1. Then uε converges weakly in L2

loc(R
+ × Ω) to a limit u which if Ω3 = R is zero,

and if Ω3 = T is defined as follows: u belongs to ∩Ker(L) and its third component u3 ∈

L∞(R+;L2) ∩ L2(R+; Ḣ1) satisfies the transport-diffusion equation

∂tu3 − ν∆hu3 + uh · ∇hu3 = 0, ∂3u3 = 0, u3|t=0 =

∫

T

u0
3(xh, x3) dx3 in R+ × Ω,

while the horizontal component uh ∈ C(R+; V′(Ωh))∩L2
loc(R

+; V(Ωh)) satisfies the following
property: for any vector field Φ ∈ V(Ωh) ∩ Ker(L) and for any time t > 0,

(1.4) (uh(t)|Φh)L2(Ωh) + ν

∫ t

0
(∇huh(t′)|∇hΦh)L2(Ωh) dt

′ = (u0
h|Φh)L2(Ωh).

Remark 1.3. Formally Equation (1.4) can be written as a heat equation on Ker(L), as
writing Π the orthogonal projector in L2 onto Ker(L) the equation formally reads

∂tuh − νΠ∆huh = 0.

That result is surprising as all non linear terms have disappeared in the limiting process. This
can be understood as some sort of turbulent behaviour, where all scales are mixed due to the
variation of b. Technically the result is due to the fact that the kernel of L is very small as
soon as b is not a constant, which induces a lot of rigidity in the limit equation.

The structure of the paper is as follows. In the next section, we present the operator L
and study its main properties (proof of Theorem 1, study of the kernel of L). The following
section is devoted to the proof of Theorem 2. Although the result is not new, we present an
alternative proof which holds regardless of the domain (with no boundary). This serves as a
warm–up to the final section, in which the general variable case is presented, with the proof
of Theorem 3.

Remark 1.4. A more physical problem is the case when the direction of B is not fixed, in
other words when B is a three component vector, depending on all three variables. Then
geometrical problems appear, simply to determine the kernel of L ; this will be dealt with in
a forecoming paper.

2. Study of the singular perturbation

2.1. Energy estimate. In this section we shall prove Theorem 1 stated in the introduction.

Proof. The structure of Equation (1.1) governing the rotating fluids is very similar to the
one of the usual Navier-Stokes equation, since the singular perturbation is just a linear skew-
symmetric operator. Therefore weak solutions “ à la Leray ” can be constructed by the
approximation scheme of Friedrichs : approximate solutions are obtained by a standard trun-
cation Jn of high frequencies. In order to obtain uniform bounds on these approximate solu-
tions, we have just to check that the energy inequality is still satisfied. Computing formally
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the L2 scalar product of (1.1) by u leads to

1

2

d

dt
‖u‖2

L2 = −

∫ (
1

2
(u·∇)|u|2 − νu·∆u+

1

ε
u·u ∧B + u·∇p

)
dx.

Integrating by parts (without boundary) and using the incompressibility constraint, we get

1

2

d

dt
‖u‖2

L2 = −ν‖∇u‖2
L2 ,

which holds for any smooth solution of (1.1).

The energy inequality for weak solutions is obtained by taking limits in the approximation
scheme. �

In particular, the energy estimate provides uniform bounds in L∞(R+,H) ∩ L2(R+, Ḣ1) on
any family (uε)ε>0 of weak solutions of (1.1) provided that the initial data u0 belongs to H.

Corollary 2.1. Let u0 be any vector field in H. For all ε > 0, denote by uε a weak solution
of (1.1). Then there exists u ∈ L∞(R+,H) ∩ L2(R+, Ḣ1), such that, up to extraction of a
subsequence,

uε ⇀ u weakly in L2
loc(R

+;L2(Ω)) as ε→ 0.

2.2. Study of the kernel. We are interested in describing the asymptotic behaviour of (uε),
i.e. in characterizing its limit points. Of course, the equations satisfied by such a limit point u
depend strongly on the structure of the singular perturbation

(2.1) L : u ∈ H 7→ P (u ∧B) ∈ H

where P denotes the Leray projection from L2(Ω) onto its subspace H of divergence-free
vector fields. In particular, we will prove that u belongs to the kernel Ker(L) of L, which is
characterized in the following proposition.

Proposition 2.2. Define the linear operator L by (2.1). If u ∈ H belongs to Ker(L) then u
is in L2(Ωh) and satisfies the following properties:





divh uh = 0,
uh · ∇hb = 0,∫

Ωh

uh ∧B dxh = 0.

Remark 2.3. In the case when Ω3 = R, Proposition 2.2 shows that the kernel of L is reduced
to zero. Indeed there are no vector fields other than 0 which are in L2(Ωh ×R) and which do
not depend on the vertical variable.

Remark 2.4. The fact that divh uh = 0 does not necessarily mean that uh can be written
as uh = ∇⊥

hϕ for some function ϕ because the horizontal mean of uh is not preserved by the
equation.

Proof. If u belongs to Ker(L) then we have

P (u ∧B) = 0,

so in particular ∫

Ω
uh ∧B dx = 0.
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Moreover in the sense of distributions,

rot (u ∧B) = 0,

which can be rewritten

(∇· B)u+ (B ·∇)u− (u·∇)B − (∇· u)B = 0.

As ∇·B = ∇· u = 0 and B = be3, we get

(2.2) b∂3u− (u·∇)be3 = 0.

In particular, ∂3u1 = ∂3u2 = 0 from which we deduce that

(2.3) u1, u2 ∈ L2(Ωh).

Note that in the case where Ω3 = R, the invariance with respect to x3 and the fact that u
belongs to L2(Ω) imply that u1 = u2 = 0 (and therefore u3 = 0 by the divergence free
condition).

Differentiating the incompressibility constraint with respect to x3 leads then to

∂2
33u3 = −∂2

13u1 − ∂2
23u2 = 0

in the sense of distributions. The function ∂3u3 depends only on x1 and x2, and satis-

fies

∫
∂3u3dx3 = 0. So ∂3u3 = 0 and

(2.4) u3 ∈ L2(Ωh), ∂1u1 + ∂2u2 = 0.

Finally we have proved that divh uh = 0, as well as the fact that by (2.2)

uh · ∇hb = 0

and ∫

Ωh

uh ∧B dxh = 0.

The proposition is proved. �

Before applying this result to the characterization of the weak limit u, let us just specify it in
two important cases. If ∇b = 0 almost everywhere, u ∈ H belongs to Ker(L) if and only if

u = ∇⊥
h ϕ+ αe3,

for some ∇hϕ ∈ L2(Ωh) and α ∈ L2(Ωh). If ∇b 6= 0 almost everywhere, then the condition
arising on u is much more restrictive : if u ∈ H belongs to Ker(L) then it can be written

u =
uh · ∇⊥b

|∇⊥b|2
∇⊥b+ αe3

for some α ∈ L2(Ωh), with the additionnal condition that

divh

(
uh · ∇⊥b

|∇⊥b|2
∇⊥b

)
= 0 and

∫
b
uh · ∇⊥b

|∇⊥b|2
∇⊥b dx = 0.

From this characterization of Ker(L), we deduce some constraints on the weak limit u.
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Corollary 2.5. Let u0 be any vector field in H. Denote by (uε)ε>0 a family of weak solutions
of (1.1), and by u any of its limit points. Then

u ∈ L∞(R+;L2(Ωh)) ∩ L2(R+; Ḣ1(Ωh))

and satisfies the following properties: for almost all t ∈ R+,




divh uh = 0,
uh · ∇hb = 0,∫

Ωh

uh ∧B dxh = 0.

Remark 2.6. Due to Remark 2.3, if Ω3 = R then necessarily all weak limit points u are
identically zero.

Proof. Let χ ∈ D(R+ × Ω) be any divergence-free test function. Multiplying (1.1) by εχ and
integrating with respect to all variables leads to

∫∫
uε(ε∂tχ+ εuε ·∇χ+ εν∆χ+ χ ∧B)dxdt = 0.

Because of the bounds coming from the energy estimate, we can take limits in the previous
identity as ε→ 0 to get ∫

u ∧B ·χdxdt = 0.

This means that there exists some p such that

u ∧B = ∇p.

As uε satisfies the incompressibility relation for all ε > 0,

∇· u = 0.

Then u(t) ∈ Ker(L) for almost all t ∈ R+, and we conclude by Proposition 2.2. �

2.3. Remarks concerning the regularity.

2.3.1. Comparison with the gyrokinetic approximation. As mentioned in the introduction, the
study of the asymptotics for an inhomogeneous penalization is a natural question in the
magnetohydrodynamic framework, when B represents the magnetic field. Such a study has
been performed for the gyrokinetic approximation [10], that is for a kinetic model perturbed
by a singular magnetic constraint :

• in the case where B = b(xh)e3, the singular limit is exactly the same as in the constant
case : the fast rotation has an averaging effect in the plane orthogonal to the magnetic
lines;

• in the case where B has constant modulus but variable direction, extra drift terms are
obtained due to the curvature of the field.

A simplified version of this result can be written as follows.
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Theorem 4. [10] Let f 0 be a function of L∞(Ω ×R3), and (fε) be a family of solutions of

∂tfε + v · ∇xfε +
1

ε
v ∧B · ∇vfε = 0, t ∈ R∗

+, (x, v) ∈ Ω ×R3,

with initial condition

fε|t=0 = f0.

Then the family (fε) is relatively compact in L∞(R+ × Ω × R3), as well as the family (gε)
defined by

gε(t, x, w) = fε(t, x,R(x,−
t

ε
)w)

where R(x, θ) denotes the rotation of angle θ around the oriented axis of direction B(x).
Moreover,

• if B = be3 with b ∈ C1(Ωh,R
∗
+), any limit point of (gε) satisfies

∂tg + v3∂x3
g = 0;

• if B ∈ C1(Ω) with ∇x ·B = 0 and |B| ≡ 1, any of its limit points satisfies

∂tg + (w · B)B · ∇xg =
1

2
w ∧

(
3(w.B)(B ∧∇BB) −B ∧∇wB −∇B∧wB

)
· ∇wg

with the notation ∇V Φ
def
= V · ∇Φ.

The result obtained in this paper is very different because of the incompressibility constraint,
which imposes a lot of rigidity to the system. In particular, the kernel of the penalization is
much smaller and the limiting system has less degrees of freedom.

2.3.2. A remark in the inviscid case. The weak compactness method used here allows to
study the singular limit without regularity with respect to the time variable. However it uses
crucially the strong compactness in x given by the energy estimate (1.2). Implicitly we have
actually considered the penalization

Lε : u ∈ V 7→ P (u ∧B) − ε∆u ∈ H−1(Ω).

That rules out the possibility to manage an analogous study for inviscid rotating fluids, the
first obstacle being to prove the existence of solutions for

∂tuε + (uε ·∇)uε +
1

ε
uε ∧B + ∇p = 0, ∇· uε = 0

on a uniform time interval [0, T ]. Indeed it is not at all clear that the operator exp(tL/ε) is
bounded on Hs(Ω) for s > 3

2 (which is the regularity required to apply usual techniques for

hyperbolic systems). Actually even a bound in H s(Ω) for s ≥ 1
2 seems ruled out, although we

will not pursue this issue here.
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3. The case of a constant vector field B :

the 2D Navier-Stokes limit

In the previous section, we have obtained a constraint equation on the limiting velocity field,
which expresses that u belongs to the kernel of the singular perturbation L. This comes from
the fact that the projection of uε onto (KerL)⊥ has fast oscillations with respect to time, and
consequently converges weakly to 0. In the case where Ω3 = R, this characterizes completely
the weak limit u = 0.

Then it remains to get an evolution equation for u in the case where Ω3 = T. In the case of a
constant vector field B, the action of the Coriolis operator on vector fields depending only on
the horizontal variables is identically zero. It follows that all such, mean free vector fields are
in the kernel of the Coriolis operator, hence oscillations are essentially due to vertical modes
(and depend on b of course). The first step of the proof of the convergence result consists
in proving the compactness of the vertical average of uε. The second step then consists in
proving a compensated-compactness type argument to show that there are no constructive
interferences of x3-dependent vector fields. This involves a precise description of the waves
(see Lemma 3.3 below), which allows to derive formally the following limit (see Proposition 3.4
for a precise statement):

P

∫

T

div (uε ⊗ uε) dx3 → divh(u⊗ uh),

where ∂3u = 0. The proof of that result requires a preliminary smoothing in space, and is
written in Sections 3.2 and 3.3.

The convergence result established here is not so precise as the ones given in [2]-[4], [8] or [12],
since it does not describe the oscillating component and consequently does not provide any
strong convergence. Nevertheless the proof is interesting in the sense that it does not require
any knowledge on the spectral structure of L, which allows to consider more general cases in
the sequel.

3.1. Compactness of vertical averages. Let us start by proving the following proposition,
which shows that the defect of compactness of the sequence of solutions uε is due to functions

depending on the vertical variable. In the following we normalize T so that

∫

T

dx3 = 1.

Proposition 3.1. Let u0 be any vector field in H. For all ε > 0, denote by uε a weak solution
of (1.1), and define

uε(xh)
def
=

∫

T

uε(x) dx3 and uε
def
=

1

|Ωh|

∫

Ωh×T

(uε,h(x), 0) dx.

Then the sequence (uε − uε)ε>0 is strongly compact in L2([0, T ] × Ωh), for all times T .

Remark 3.2. Note that in the case when Ωh = R2 then of course uε = 0.

Proof. Let us take the vertical average of (1.1). In the case where b is constant we have seen in
the previous section that horizontal mean free, x3-independent vector fields are in the kernel
of L. We infer that∫

T

P (uε ∧B) dx3 −

∫

Ωh×T

P (uε ∧B) dx = P
(
(uε − uε) ∧B

)
= 0.
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It follows that

(3.1) ∂t(uε − uε) − ν∆huε + P

∫

T

uε(x) · ∇uε(x) dx3 = 0.

First one notices that the energy estimate implies clearly that

uε is uniformly bounded in L2([0, T ],H1)

for all times T , which provides regularity with respect to space variables.

The second step consists in getting regularity with respect to time. We claim that uε · ∇uε is
bounded in L2(R+;H−3/2(Ω)). Indeed since uε is divergence-free, we have

uε · ∇uε = div (uε ⊗ uε)

and by Sobolev embeddings we can write

‖∇· (uε ⊗ uε)‖Ḣ−3/2(Ω) ≤ ‖uε ⊗ uε‖Ḣ−1/2(Ω)

≤ C‖uε ⊗ uε‖L3/2(Ω)

≤ C‖uε‖L2(Ω)‖uε‖L6(Ω)

≤ C‖uε‖L2(Ω)‖∇uε‖L2(Ω)

which proves the claim.

Since of course ∆uε is bounded in L2(R+; Ḣ−1(Ω)) ⊂ L2(R+;H−3/2(Ω)), we infer finally

that ∂t(uε − uε) is uniformly bounded in L2(R+;H−3/2(Ωh)), which provides the expected
regularity in t.

Aubin’s lemma [1] then gives the following interpolation result

(uε − uε)ε>0 is strongly compact in L2
loc(R

+;L2(Ωh)),

which proves the proposition. �

3.2. Description of the oscillations. In the previous section we proved that mean free,
x3-independent vector fields are compact. So the oscillations are due to x3-dependent vector
fields, and to prove Theorem 2 we need to show that such vector fields do not interfere
constructively in the non linear term of the equation.

The proof of that result requires some preparation, which this section is devoted to: we will
rewrite the equations in a convenient way for the algebraic computations of the next part,
by introducing a regularization of the equations and getting a control of the source terms in
some strong norm.

In the following for any vector field f we will write

f(x) = f(xh) + f̃(x), where f(xh)
def
=

∫

T

f(x) dx3.

It will be useful to notice that f̃ has a zero vertical average, hence can be written, for some F̃ ,

f̃(x) = ∂3F̃ (x) with

∫

T

F̃ (x) dx3 = 0.
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Lemma 3.3. Let u0 be any vector field in H. For all ε > 0, denote by uε a weak solution
of (1.1) in L∞(R+,H) ∩L2(R+, Ḣ1). Then, for all ε > 0, there is a family (uδ

ε)δ>0 of smooth
vector fields in L2(R+,∩sH

s(Ω)) such that

lim
δ→0

uδ
ε = uε in L2

loc(R
+, Lp(Ω)) for all p ∈ [2, 6[, uniformly in ε,

and such that the functions

ωδ
ε

def
= ∂1u

δ
ε,2 − ∂2u

δ
ε,1 and ∂3Ω̃

δ
ε,h

def
=
(
rot ũε

δ
)

h
, with

∫

T

Ω̃δ
ε,h(x) dx3 = 0

satisfy the following equations (in the distribution sense):

ε∂tω
δ
ε = εrδ

ε,

ε∂tω̃
δ
ε − bdivhũ

δ
ε,h = εr̃δ

ε,

and ε∂tΩ̃
δ
ε,h + bũδ

ε,h = εR̃δ
ε,h

where for all δ > 0, the function rδ
ε = rδ

ε + r̃δ
ε and the vector field R̃δ

ε,h are uniformly bounded

in ε in the space L2(R+, L2(Ω)).

Proof. The first step of the proof consists in taking the rotational of the equation and in
computing the source terms, and the second step consists in the regularization of the equation
obtained.

Taking the rotational of the equation is of course an easy matter. Let us define

ωε
def
= ∂1uε,2 − ∂2uε,1 and ∂3Ω̃ε,h

def
= (rot ũε)h = ∇⊥

h ũε,3 − ∂3ũ
⊥
ε,h,

with as usual

∫

T

Ω̃ε,h(x) dx3 = 0.

Equation (3.1) derived in the previous section implies that

ε∂tωε = ε(∂1F ε,2 − ∂2F ε,1)

where Fε denotes the flux term

(3.2) Fε
def
= ν∆uε − P∇· (uε ⊗ uε).

As in the previous section (∂1Fε,2−∂2Fε,1) is bounded in L2(R+,H−5/2(Ω)). So we can write

(3.3) ε∂tωε = εrε, where rε is uniformly bounded in L2(R+,H−5/2(Ω)).

Similarly an easy computation joint with the above bounds yields the following equation
for ω̃ε:

(3.4) ε∂tω̃ε − divhũε,hb = εr̃ε, where r̃ε is uniformly bounded in L2(R+,H−5/2(Ω)).

For the other components of the vorticity vector, the computations are similar: since

∇∧ (u ∧ b) = b∂3u,

we find after integration in the vertical variable

(3.5) ε∂tΩ̃ε,h + bũε,h = εR̃ε, where R̃ε is uniformly bounded in L2(R+,H−5/2(Ω)).
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Now let us proceed with the regularization: let κ ∈ C∞
c (R3;R+) such that κ(x) = 0 if |x| ≥ 1

and

∫
κdx = 1. We define

κδ : x 7→
1

δ3
κ
( .
δ

)

as well as

ωδ
ε

def
= ωε ∗ κδ = ωδ

ε + ω̃δ
ε , and Ω̃δ

ε
def
= Ω̃ε ∗ κδ.

We clearly have ωδ
ε = ∂1u

δ
ε,2 − ∂2u

δ
ε,1 and ∂3Ω̃

δ
ε,h =

(
rot ũε

δ
)

h
, where

uδ
ε = uε ∗ κδ.

Let us prove the strong convergence of uδ
ε towards uε in L2

loc(R
+, Lp(Ω)) for any p ∈ [2, 6[

as δ goes to zero, uniformly in ε: by the energy estimate, for all T > 0, the sequence uε is
uniformly bounded in L2([0, T ],H1(Ω)). It follows that

‖uδ
ε(t) − uε(t)‖L2(Ω) ≤ sup

|h|≤δ
‖τhuε(t) − uε(t)‖L2(Ω),

where τh denotes the space-translation operator τhuε(t, x) = uε(t, x+h). In particular we can
write that

∀ε > 0, ‖uδ
ε − uε‖L2([0,T ]×Ω) ≤ δ‖∇uε‖L2([0,T ]×Ω)

and the result follows for p = 2. The result for p ∈ [2, 6[ simply follows from the fact that uδ
ε

and uε are both uniformly bounded in ε and in δ, in the space L2([0, T ],H1(Ω)) which is
continuously embedded in L2([0, T ], L6(Ω)). So for all p ∈ [2, 6[, we can write

∀ε > 0, ‖uδ
ε − uε‖L2([0,T ],Lp(Ω)) ≤ C(p)‖uδ

ε − uε‖
3

p
− 1

2

L2([0,T ]×Ω)
‖uδ

ε − uε‖
3

2
− 3

p

L2([0,T ],H1(Ω))

≤ C(p)δ
3

p
− 1

2 .

That proves the convergence of uδ
ε towards uε in L2

loc(R
+, Lp(Ω)) for any p ∈ [2, 6[ as δ goes

to zero, uniformly in ε.

Regularizing (3.3), (3.4) and (3.5) leads to

ε∂tω
δ
ε = εrε ∗ κδ,

ε∂tω̃
δ
ε − bdivhũ

δ
ε,h = εr̃ε ∗ κδ,

ε∂tΩ̃
δ
ε,h + bũδ

ε,h = εR̃ε ∗ κδ,

because b is homogeneous. Then we notice that for all T > 0 and for δ small enough,

‖rδ
ε‖L2([0,T ],L2(Ω)) = ‖rε ∗ κδ‖L2([0,T ],L2(Ω))

≤ C‖κδ‖W 5/2,1(R3)‖rε‖L2([0,T ],H−5/2(Ω))

≤
C

δ5/2
‖rε‖L2([0,T ],H−5/2(Ω)).

And, in the same way,

‖Rδ
ε‖L2([0,T ],L2(Ω)) ≤

C

δ5/2
‖Rε‖L2([0,T ],H−5/2(Ω)).

For any fixed δ, the uniform bounds derived above on rε and Rε provide the expected con-
vergences. Lemma 3.3 is proved. �
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3.3. Computation of the coupling term. Equipped with this preliminary result, we are
now ready to study the coupling between the oscillating terms and to prove the following
proposition.

Proposition 3.4. Let u0 be any vector field in H. For all ε > 0, denote by uε a weak solution
of (1.1), and by (uδ

ε)δ>0 the approximate family of Lemma 3.3. Then for any ε > 0 and
any δ > 0, the vertical average of the nonlinear term in (1.1) can be decomposed as follows:
∫

T

(
uδ

ε · ∇u
δ
ε

)
h
dx3 = ωδ

ε,h(uδ
ε,h)⊥+∇h

∫

T

|uδ
ε|

2

2
dx3+∇h

|uδ
ε,3|

2

2
+

1

b
ε∂t

∫

T

ω̃δ
ε(Ω̃

δ
ε,h)⊥dx3+ερδ

ε,h,

and ∫

T

(
uδ

ε · ∇u
δ
ε

)
3
dx3 = divh(uδ

ε,3u
δ
ε,h) −

1

2b
ε∂t

∫

T

(Ω̃δ
ε,h · ∂3(Ω̃

δ
ε,h)⊥) dx3 + ερδ

ε,3,

where the vector field ρδ
ε satisfies

∀δ > 0, ∀T > 0, sup
ε>0

‖ρδ
ε‖L1([0,T ],L6/5(Ω)) < +∞.

Proof. Since uδ
ε is divergence free, we have

uδ
ε · ∇u

δ
ε = ∇ · (uδ

ε ⊗ uδ
ε) = ∇

|uδ
ε|

2

2
− uδ

ε ∧ (∇ ∧ uδ
ε),

so we shall now restrict our attention to the term uδ
ε ∧ (∇ ∧ uδ

ε).

That term can in turn be separated into three different types of terms :

uδ
ε ∧ (∇ ∧ uδ

ε) = uδ
ε ∧ (∇∧ uδ

ε) +
(
uδ

ε ∧ (∇∧ ũδ
ε) + ũδ

ε ∧ (∇∧ uδ
ε)
)

+ ũδ
ε ∧ (∇∧ ũδ

ε).

Obviously the second term in the decomposition is of vanishing vertical mean, and therefore

(3.6)

∫

T

uδ
ε ∧ (∇ ∧ uδ

ε) dx3 = uδ
ε ∧ (∇∧ uδ

ε) +

∫

T

ũδ
ε ∧ (∇ ∧ ũδ

ε) dx3.

Let us concentrate first on the first term in (3.6). A direct computation gives

uδ
ε ∧ (∇∧ uδ

ε) =
1

2
∇|uδ

ε,3|
2 + ωδ

ε,h(uδ
ε,h)⊥ − divh(uδ

ε,3u
δ
ε,h)e3.

To compute the second term in (3.6), we will use the equations derived in Lemma 3.3. Indeed
we have

(3.7) ũδ
ε ∧ (∇ ∧ ũδ

ε) =

(
(ũδ

ε,h)⊥ω̃δ
ε − ∂3(ũ

δ
ε,3(Ω̃

δ
ε,h)⊥) + divhũ

δ
ε,h(Ω̃δ

ε,h)⊥

−(ũδ
ε,h)⊥ · ∂3Ω̃

δ
ε,h

)
.

Let us study first the horizontal components in (3.7): by Lemma 3.3 we have

(ũδ
ε,h)⊥ω̃δ

ε − divhũ
δ
ε,h(Ω̃δ

ε,h)⊥ = −
1

b
ε∂t(Ω̃

δ
ε,h)⊥ω̃δ

ε + ε(Rδ
ε,h)⊥ω̃δ

ε − divhũ
δ
ε,h(Ω̃δ

ε,h)⊥.

Now on the one hand we can estimate the remainder term in the following way :

‖(Rδ
ε,h)⊥ω̃δ

ε‖L1([0,T ],L6/5(Ω)) ≤ ‖(Rδ
ε,h)⊥‖L2([0,T ],L2(Ω))‖ω̃

δ
ε‖L2([0,T ],L3(Ω)).

By Sobolev embeddings we have ‖ω̃δ
ε‖L2([0,T ],L3(Ω)) ≤ C‖ω̃δ

ε‖L2([0,T ],H1/2(Ω)), hence by the
regularization kernel and the energy estimate we infer that

‖(Rδ
ε,h)⊥ω̃δ

ε‖L1([0,T ],L6/5(Ω)) ≤ Cδ−1/2‖(Rδ
ε,h)⊥‖L2([0,T ],L2(Ω)) ≤ C(δ)
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where the constant depends on δ but is uniform in ε. The term (Rδ
ε,h)⊥ω̃δ

ε can therefore

generically be written ρδ
ε,h as in the statement of the proposition.

On the other hand, still by Lemma 3.3 we have

−divhũ
δ
ε,h =

ε

b
rδ
ε,h −

1

b
ε∂tω̃

δ
ε .

Noticing that exactly as above, the term
1

b
rδ
ε,h(Ω̃δ

ε,h)⊥ can generically be written ρδ
ε,h, we have

therefore
∫

T

(
ũδ,⊥

ε,h ω̃
δ
ε − divhũ

δ
ε,hΩ̃δ,⊥

ε,h

)
dx3 = −

1

b
ε∂t

∫

T

Ω̃δ,⊥
ε,h dx3ω̃

δ
ε + ερδ

ε,h −
1

b
ε∂t

∫

T

ω̃δ
ε dx3.

Finally we have proved that

∫

T

(
ũδ,⊥

ε,h ω̃
δ
ε − divhũ

δ
ε,h(Ω̃δ

ε,h)⊥
)
dx3 = −

1

b
ε∂t

∫

T

(Ω̃δ
ε,h)⊥ω̃δ

ε dx3 + ερδ
ε,h.

Now we are left with the last term in (3.7), which is the third component: we can write, by
Lemma 3.3,

ũδ
ε,h = εRδ

ε,h −
1

b
ε∂tΩ̃

δ
ε,h,

so

(ũδ
ε,h)⊥ · ∂3Ω̃

δ
ε,h = −

1

b
ε∂t(Ω̃

δ
ε,h)⊥ · ∂3Ω̃

δ
ε,h + ε(Rδ

ε,h)⊥ · ∂3Ω̃
δ
ε,h.

As before, the term (Rδ
ε,h)⊥ · ∂3Ω̃

δ
ε,h is a ρδ

ε,h-type remainder term. Moreover we notice that

ε∂t(Ω̃
δ
ε,h)⊥ · ∂3Ω̃

δ
ε,h = −

1

2
ε∂t

(
Ω̃δ

ε,h · (∂3Ω̃
δ
ε,h)

⊥
)

+
1

2
∂3

(
Ω̃δ

ε,h · (ε∂tΩ̃
δ
ε,h)

⊥
)
.

Putting those computations together yields finally

∫

T

(ũδ
ε,h)⊥ · ∂3Ω̃

δ
ε,h dx3 = −

1

b

∫

T

ε∂t(Ω̃
δ
ε,1 · ∂3Ω̃

δ
ε,2) dx3 + ερδ

ε,h,

and the proposition is proved. �

3.4. Passage to the limit. Now we can prove Theorem 2. In order to do so we need to
take the limit of Equation (3.1). The nonlinear term will be dealt with using the following
proposition.

Proposition 3.5. Let u0 be any vector field in H. For all ε > 0, denote by uε a weak solution
of (1.1). Then for any vector field φ ∈ V∩Ker(L), we have the following limit in W −1,1([0, T ]):

lim
ε→0

(∫

Ω
∇ · (uε ⊗ uε) · φ(xh) dx−

∫

Ωh

∇h · (uε ⊗ uε) · φ(xh) dxh

)
= 0.
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Proof. Let us use the same regularization procedure as previously and split the integral in the
following way:

(3.8)

∫

Ω
∇ · (uε ⊗ uε) · φ(xh) dx−

∫

Ωh

∇h · (uε ⊗ uε) · φ(xh) dxh

=

∫

Ω
∇ · (uδ

ε ⊗ uδ
ε) · φ(xh) dx−

∫

Ωh

∇h · (uδ
ε ⊗ uδ

ε) · φ(xh) dxh

+

∫

Ω
∇ · ((uε − uδ

ε) ⊗ uε) · φ(xh)dx−

∫

Ω
∇h ·

(
(uε − uδ

ε) ⊗ uε

)
· φ(xh) dxh

+

∫

Ω
∇ · (uδ

ε ⊗ (uδ
ε − uε)) · φ(xh) dx−

∫

Ω
∇h · (uδ

ε ⊗ (uε − uδ
ε)) · φ(xh) dxh.

Let us start by noticing that the four last terms converge to 0 as δ → 0 uniformly in ε :
indeed, a Hölder estimate yields
∥∥∥∥
∫

Ω
∇ · ((uε − uδ

ε) ⊗ uε) · φdx

∥∥∥∥
L1([0,T ])

≤ ‖∇φ‖L2(Ω)‖uε‖L2([0,T ],L6(Ω))‖u
δ
ε − uε‖L2([0,T ],L3(Ω))

and Lemma 3.3, along with the energy bound on uε, implies the result.

Now let us compute the difference between the first two terms. We can use Proposition 3.4
to find that
(3.9)∫

Ω
∇ · (uδ

ε ⊗ uδ
ε) · φ(xh)dx−

∫

Ωh

∇h · (uδ
ε ⊗ uδ

ε) · φ(xh) dxh

=

∫

Ω

(
ερδ

ε,h + ε∂t(ω̃
δ
ε(Ω̃

δ
ε)

⊥)
)
· φh(xh)dx+

∫

Ω

(
ερδ

ε,3 −
1

2b
ε∂t(Ω̃

δ
ε,h · (∂3Ω̃

δ
ε,h)⊥)

)
· φ3(xh)dx

where we have used the fact that φ is divergence free and does not depend on the third
variable.

The terms involving the remainder ρδ
ε are easily proved to go to zero, simply as

‖

∫

Ω
ρδ

ε · φ(xh)dx‖L1([0,T ]) ≤ ε‖φ‖L6‖ρδ
ε‖L1([0,T ],L6/5) ≤ C(δ)ε.

We now just have to consider the two remaining terms, which we can easily prove go to zero
in the space W−1,1([0, T ]). A Hölder estimate in space gives for instance

ε

∣∣∣∣
∫

Ω

1

2b
Ω̃δ

ε,h · (∂3Ω̃
δ
ε,h)

⊥ · φ(xh)dx

∣∣∣∣ ≤ Cε‖φ‖L6‖Ω̃δ
ε‖L3‖∂3Ω̃

δ
ε‖L2 ≤ C(δ)ε.

The result follows. �

The proof of Theorem 2 follows in an obvious manner from the previous results: we have seen
in Section 2.2 that uε converges weakly in L2([0, T ] × Ω) towards a vector field u depending
only on the horizontal variable. Then in Section 3.1 we proved that uε−uε converges strongly
towards u in the space L2([0, T ] × Ω). Finding the equation satisfied by the limit is therefore
a matter of computing the limit of Equation (3.1). The linear terms converge in the sense of
distributions of course, so

∂t(uε − uε) ⇀ ∂tu and ∆huε ⇀ ∆hu.
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Finally to find the limit of the nonlinear term we use Proposition 3.5 as well as the following
weak-strong limit argument: we have

∇ · (uε ⊗ uε) = ∇ · (uε ⊗ (uε − uε)) + ∇ · ((uε − uε) ⊗ uε))) + ∇ · ((uε − uε) ⊗ (uε − uε)).

The two first terms converge towards zero in D ′(Ω) since uε −uε is compact and uε converges
weakly to zero, whereas the last term satisfies

∇ · ((uε − uε) ⊗ (uε − uε)) → ∇ · (u⊗ u) in D′(Ω).

That gives the expected result: the limit u satisfies the two dimensional Navier-Stokes equation

∂tu− ν∆hu+ P∇h · (u⊗ u) = 0.

Theorem 2 is proved.

4. The case of a variable vector field B :

a turbulent behaviour

In this section we shall prove Theorem 3 stated in the introduction, concerning the case when
the rotation vector B = b(xh)e3 is inhomogeneous. If Ω3 = R, then u = 0 simply because
it is in L2(Ω) but only depends on the horizontal variables. So from now on we can suppose
that Ω3 = T.

The strategy of proof is quite similar to the constant case : we have first to give a precise
description of the different oscillating modes, and then to prove that these oscillations do not
occur in the limiting equation.

As in the constant case, vertical modes generate fast oscillations in the system, meaning that
the whole part of the velocity field corresponding to Fourier modes with k3 6= 0 converges
weakly to zero. The corresponding vertical oscillations depend directly on the order of mag-
nitude of b. The main difference comes then from the fact that, in the case of a heterogeneous
rotation, the kernel of the penalization is much smaller : restricting our attention to the hori-
zontal modes (k3 = 0), we see that the Coriolis term penalizes all the fields which are parallel
to ∇b, which implies in particular that the vertical average of the horizontal velocity is no
longer strongly compact. The corresponding two-dimensional oscillations are then governed
by ∇b, and possibly become singular if ∇b cancels.

In the following we will therefore only be able to prove that the vertical average of the
vertical velocity is strongly compact, and the use of that information alone, coupled with some
compensated compactness argument, will enable us to establish the equation satisfied by the
weak limit of the velocity field, in a similar way to the constant case studied previously. The
additional difficulty due to the possible cancellation of ∇b is dealt with by using a truncation
operator around those cancellation points, as well as the non degeneracy assumption (1.3).

4.1. Strong compactness of the averaged vertical velocity.

Lemma 4.1. Let u0 be a vector field in H(Ω). For all ε > 0, denote by uε a weak solution

of (1.1) and by uε
def
=

∫

T

uεdx3.

Then, for all T > 0, (uε,3) is strongly compact in L2([0, T ] × Ω).
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Proof. By the energy estimate, uε and consequently uε are uniformly bounded in L2([0, T ],V).

The computation is similar to the constant case studied in Section 3.1, only for the fact that
one must restrict one’s attention to the vertical component only. Integrating with respect
to x3 the vertical component of the penalized Navier-Stokes equation leads to

∂tuε,3 +

∫
∇ · (uεuε,3)dx3 − ν∆huε,3 = 0,

from which we deduce that ∂tuε,3 is uniformly bounded in L2([0, T ],H−3/2(Ω)).

Aubin’s lemma [1] then gives the following interpolation result

(uε,3)ε>0 is strongly compact in L2([0, T ] × Ω),

and Lemma 4.1 is proved. �

4.2. Description of the oscillations and regularization.

Lemma 4.2. Let u0 be a vector field in H(Ω). For all ε > 0, denote by uε a weak solution
of (1.1), by uε =

∫
uεdx3 and by ũε = uε − uε.

Define as previously

ωε = ∂1uε,2 − ∂2uε,1, ωε =

∫

T

ωεdx3, ω̃ε = ωε − ωε,

∂3Ω̃ε,h = ∇⊥
h ũε,3 − ∂3ũ

⊥
ε,h,

∫

T

Ω̃ε,hdx3 = 0.

Then, regularizing by a kernel κδ , we get the following description of the oscillations

(4.1)

ε∂tω
δ
ε − uδ

ε,h · ∇b = −εrε,δ − sε,δ

∇h · uδ
ε,h = 0

ε∂tΩ̃
δ
ε,h + bũδ

ε,h = −εrε,δ − sε,δ

ε∂tω̃
δ
ε −∇ · (bũδ

ε,h) = −εrε,δ − sε,δ

denoting generically by rε,δ and sε,δ some quantities satisfying

∀δ > 0, ∀T > 0, sup
ε

‖rε,δ‖L2([0,T ]×Ω) < +∞,

∀T > 0, sup
ε,δ

δ−1‖sε,δ‖L2([0,T ]×Ω) < +∞.

Proof. Denote, as in (3.2), by Fε the flux term

Fε = −∇ · (uε ⊗ uε) + ν∆uε.

As in Section 3, the energy inequality and standard bilinear estimates yield

‖Fε‖L2([0,T ],H−3/2(Ω)) ≤ C0.
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Using this notation, (1.1) can be simply rewritten

ε∂tuε + uε ∧ b+ ∇hpε = εF ε,

∇h · uε,h = 0,

ε∂tũε + ũε ∧ b+ ∇p̃ε = εF̃ε,

∇ · ũε = 0,

splitting the purely 2D modes (k3 = 0) and the vertical Fourier modes (k3 6= 0).

Using the vorticity formulation for the horizontal component of uε, we get

(4.2)
ε∂tωε + uε,h · ∇b = −ε∇⊥

h · F ε,h,

∇h · uε,h = 0.

Then taking the rotational of the other part of the equation

ε∂t∇∧ ũε + ∇∧ (ũε ∧ b) = ε∇∧ F̃ε

and integrating the horizontal component with respect to x3 leads to

(4.3)
ε∂tΩ̃ε,h + bũε,h = ε(∇ ∧ G̃ε)h,

ε∂tω̃ε + ∇ · (ũε,hb) = −ε∇⊥
h · F̃ε,h

where G̃ε is just defined by ∂3G̃ε = F̃ε and

∫

T

G̃εdx3 = 0, and thus satisfies the same uniform

estimates as F̃ε.

The second step of the proof consists then in regularizing the previous wave equations (4.2)
and (4.3). We therefore introduce - as in the previous section - a smoothing family κδ defined
by

κδ(x) = δ−3κ(δ−1x)

where κ is a function of C∞
c (R3,R+) such that κ(x) = 0 if |x| ≥ 1 and

∫
κdx = 1.

By convolution, we then obtain

(4.4)
ε∂tω

δ
ε + uδ

ε,h · ∇b = −ε∇⊥
h · F

δ
ε,h + uδ

ε,h · ∇b− (uε,h · ∇b)δ,

∇h · uδ
ε,h = 0.

and

(4.5)
ε∂tΩ̃

δ
ε,h + bũδ

ε,h = ε(∇ ∧ G̃δ
ε)h + bũδ

ε,h − (bũε,h)δ,

ε∂tω̃
δ
ε −∇h · (ũδ

ε,hb) = −ε∇⊥
h · F̃ δ

ε,h + ∇h · (ũδ
ε,hb) −∇h · (ũε,hb)

δ

It remains only to check that the source terms satisfy the convenient a priori estimates.

From the uniform bound on Fε and the definition of G̃ε, we deduce that

∇⊥
h · F ε,h, (∇∧ G̃ε)h and ∇⊥

h · F̃ε,h are uniformly bounded in L2([0, T ],H−5/2(Ω)).

By a scaling argument,

‖κδ‖W 5/2,1(R3) ≤ δ−5/2‖κ‖W 5/2,1(R3),

and consequently the terms generically called rε,δ satisfy a uniform bound for any fixed δ :

∇⊥
h ·F

δ
ε,h, (∇∧G̃δ

ε)h and ∇⊥
h · F̃ δ

ε,h are uniformly bounded in L2([0, T ]×Ω) (of order δ−5/2).
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We then have to estimate quantities of the form uδ
εψ − (uεψ)δ for smooth functions ψ

|uδ
εψ(x) − (uεψ)δ(x)| =

∣∣∣∣
∫
κδ(y)uε(x− y)(ψ(x) − ψ(x− y))dy

∣∣∣∣

≤ δ‖∇ψ‖L∞(Ω)(κ
δ ∗ |uε|)(x).

In particular,

‖uδ
ε,h · ∇b− (uε,h · ∇b)δ‖L2([0,T ]×Ω) ≤ δ‖D2b‖L∞(Ω)‖uε‖L2([0,T ]×Ω)

‖bũδ
ε,h − (bũε,h)δ‖L2([0,T ]×Ω) ≤ δ‖Db‖L∞(Ω)‖uε‖L2([0,T ]×Ω)

‖∇h · (ũδ
ε,hb) −∇h · (ũε,hb)

δ‖L2([0,T ]×Ω) ≤ δ(‖Db‖L∞(Ω) + ‖D2b‖L∞(Ω))‖uε‖L2([0,T ],H1(Ω))

meaning that the terms generically called sε,δ converge to 0 as δ → 0 uniformly in ε, according
to the bound

∀T > 0, sup
ε,δ

δ−1‖sε,δ‖L2([0,T ]×Ω) < +∞.

Lemma 4.2 is proved. �

4.3. Computation of the coupling term and truncation.

Proposition 4.3. Let u0 be any vector field in H. For all ε > 0, denote by uε a weak solution
of (1.1).

Define the truncation χδ by

χδ(x) = χ(δ−1/4∇b(x))

where χ is a function of C∞
c (R3,R+) such that χ(x) = 1 if |x| ≤ 1.

Then, with the same notations as in Lemma 4.2, the averaged nonlinear term in (1.1) can be
rewritten

(4.6)

∫ (
∇ · (uδ

ε ⊗ uδ
ε) −∇

|uδ
ε|

2

2

)
dx3

=∇h · (uδ
ε,hu

δ
ε,3)e3 −∇

|uδ
ε,3|

2

2
+ ερε,δ + σε,δ

−
ε

2
∂t|ω

δ
ε|

2(1 − χδ)
∇⊥b

|∇b|2
+ (1 − χδ)(u

δ
ε,h · ∇⊥b)

∇b

|∇b|2

+
ε

b
∂t

∫
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3 +

ε

2b2
∂t

∫
(Ω̃δ

ε,h · ∇b)2dx3
∇⊥b

|∇b|2

−
1

b2

∫
(Ω̃δ

ε,h · ∇⊥b)(ε∂tΩ̃
δ
ε,h · ∇b)dx3

∇b

|∇b|2
−

ε

2b
∂t

∫
(Ω̃δ

ε,h · (∂3Ω̃
δ
ε,h)⊥)dx3e3

where ρε,δ and σε,δ are quantities satisfying the following estimates

∀δ > 0, ∀T > 0, sup
ε→0

‖ρε,δ‖L1([0,T ],L6/5Ω)) < +∞,

and ∀T > 0, lim
δ→0

sup
ε

‖σε,δ‖L1([0,T ],L6/5Ω)) = 0.
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Proof. Proposition 4.3 lies on a proper decomposition of the nonlinear term ∇ · (uδ
ε ⊗ uδ

ε) and
on the identities derived in Lemma 4.2, in a similar way to Section 3.2 (though the analysis
is more complicated due to the variations of b).

Let us first remark that∫
∇ · (uδ

ε ⊗ uδ
ε)dx3 = ∇ · (uδ

ε ⊗ uδ
ε) +

∫
∇ · (ũδ

ε ⊗ ũδ
ε)dx3

which allows us to consider separately purely 2D modes and vertical modes.

Because of the identity

∇ · (u⊗ u) = ∇
|u|2

2
− u ∧ (∇∧ u)

which holds for any divergence-free vector field u, we can further restrict our attention to

both quantities −uδ
ε ∧ (∇ ∧ uδ

ε) and

∫
uδ

ε,3 ∧ (∇∧ uδ
ε,3)dx3.

(i) We start with the study of the purely 2D modes. A simple computation leads to

(4.7)

−uδ
ε ∧ (∇∧ uδ

ε) = −uδ
ε ∧ (∇⊥

h u
δ
ε,3 + ωδ

εe3)

= −ωδ
ε(u

δ
ε,h)⊥ −∇h

|uδ
ε,3|

2

2
+ ∇h · (uδ

ε,hu
δ
ε,3)e3

We can decompose uδ
ε,h as follows

uδ
ε,h = (uδ

ε,h · ∇b)
∇b

|∇b|2
+ (uδ

ε,h · ∇⊥b)
∇⊥b

|∇b|2

as soon as ∇b 6= 0, and we will actually do so, using the truncation χ, only if |∇b| ≥ δ1/4.

Using the first identity in (4.1), we obtain

uδ
ε,h = (ε∂tω

δ
ε + εrε,δ + sε,δ)

∇b

|∇b|2
+ (uδ

ε,h · ∇⊥b)
∇⊥b

|∇b|2

and replacing in (4.7) provides finally

(4.8)

−uδ
ε ∧ (∇∧ uδ

ε) = − (1 − χδ)

(
ε∂t

|ωδ
ε|

2

2
+ ωδ

ε(εrε,δ + sε,δ)

)
∇⊥b

|∇b|2

+ (1 − χδ)(u
δ
ε,h · ∇⊥b)

∇b

|∇b|2

− χδω
δ
ε(u

δ
ε,h)⊥ −∇h

|uδ
ε,3|

2

2
+ ∇h · (uδ

ε,hu
δ
ε,3)e3.

That concludes the first step of the proof since∥∥∥∥εω
δ
εrε,δ

(1 − χε)

|∇b|

∥∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖ωδ
ε‖L2([0,T ],L3(Ω))‖εrε,δ‖L2([0,T ]×Ω)

∥∥∥∥
(1 − χδ)

|∇b|

∥∥∥∥
L∞(Ω)

≤ Cεδ−13/4,
∥∥∥∥ω

δ
εsε,δ

(1 − χδ)

|∇b|

∥∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖ωδ
ε‖L2([0,T ],L3(Ω))‖sε,δ‖L2([0,T ]×Ω)

∥∥∥∥
(1 − χδ)

|∇b|

∥∥∥∥
L∞(Ω)

≤ Cδ1/4,
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and ∥∥∥χδω
δ
εu

δ
ε,h

∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖χδ‖L6(Ω)‖ω
δ
ε‖L2([0,T ]×Ω)‖u

δ
ε,h‖L2([0,T ],L6(Ω))

≤ C
(
µ{x ∈ Ωh / |∇b(x)| ≤ δ

1

4 }
) 1

6

,

which goes to zero with δ according to Assumption (1.3).

(ii) We have now to deal with the vertical modes. A simple computation leads to

−ũδ
ε ∧ (∇ ∧ ũδ

ε) = −ũδ
ε ∧ (∂3Ω̃

δ
ε,h + ω̃δ

εe3)

= −ω̃δ
ε(ũ

δ
ε,h)⊥ + ũδ

ε,3∂3(Ω̃
δ
ε,h)⊥ + (ũδ

ε,h · (∂3Ω̃
δ
ε,h)⊥)e3

so that
(4.9)

−

∫
ũδ

ε ∧ (∇∧ ũδ
ε)dx3 =

∫ (
−ω̃δ

ε(ũ
δ
ε,h)⊥ + (Ω̃δ

ε,h)⊥(∇h · ũδ
ε,h)
)
dx3 +

∫
(ũδ

ε,h · (∂3Ω̃
δ
ε,h)⊥)dx3e3.

In order to determine the horizontal component, we then use the last two identities in (4.1)

−

∫
(ũδ

ε ∧ (∇ ∧ ũδ
ε))hdx3 =

∫
ω̃δ

ε

1

b
(ε∂tΩ̃

δ
ε,h + εrε,δ + sε,δ)

⊥dx3

+

∫
(Ω̃δ

ε,h)⊥
1

b
(ε∂tω̃

δ
ε − ũδ

ε,h · ∇b+ εrε,δ + sε,δ)dx3

=
ε

b
∂t

∫
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3

+

∫
(Ω̃δ

ε,h)⊥
1

b2
(ε∂tΩ̃

δ
ε,h + εrε,δ + sε,δ) · ∇bdx3

+

∫
ω̃δ

ε

1

b
(εrε,δ + sε,δ)

⊥dx3 +

∫
(Ω̃δ

ε,h)⊥
1

b
(εrε,δ + sε,δ)dx3

We can decompose Ω̃δ
ε,h as follows

Ω̃δ
ε,h = (Ω̃δ

ε,h · ∇b)
∇b

|∇b|2
+ (Ω̃δ

ε,h · ∇⊥b)
∇⊥b

|∇b|2

as soon as ∇b 6= 0, that is almost everywhere by assumption. Finally we get

(4.10)

−

∫
(ũδ

ε ∧ (∇ ∧ ũδ
ε))hdx3 =

ε

b
∂t

∫
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3 +

ε

2b2
∂t

∫
(Ω̃δ

ε,h · ∇b)2dx3
∇⊥b

|∇b|2

−
1

b2

∫
(Ω̃δ

ε,h · ∇⊥b)(ε∂tΩ̃
δ
ε,h · ∇b)dx3

∇b

|∇b|2

+

∫
(Ω̃δ

ε,h)⊥
1

b2
(εrε,δ + sε,δ) · ∇bdx3

+

∫
ω̃δ

ε

1

b
(εrε,δ + sε,δ)

⊥dx3 +

∫
(Ω̃δ

ε,h)⊥
1

b
(εrε,δ + sε,δ)dx3
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which is the expected formula since
∥∥∥∥εrε,δΩ̃

δ
ε,h

|∇b|

b2

∥∥∥∥
L1([0,T ],L6/5(Ω))

+

∥∥∥∥εrε,δω̃
δ
ε

1

b

∥∥∥∥
L1([0,T ],L6/5(Ω))

+

∥∥∥∥εrε,δΩ̃
δ
ε,h

1

b

∥∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖εrε,δ‖L2([0,T ]×Ω)

(∥∥∥Ω̃δ
ε,h

∥∥∥
L2([0,T ],L3(Ω))

(∥∥∥∥
∇b

b2

∥∥∥∥
L∞(Ω)

+

∥∥∥∥
1

b

∥∥∥∥
L∞(Ω)

)
+
∥∥∥ω̃δ

ε

∥∥∥
L2([0,T ],L3(Ω))

∥∥∥∥
1

b

∥∥∥∥
L∞(Ω)

)

≤ Cεδ−3,

and
∥∥∥∥sε,δΩ̃

δ
ε,h

|∇b|

b2

∥∥∥∥
L1([0,T ],L6/5(Ω))

+

∥∥∥∥sε,δω̃
δ
ε

1

b

∥∥∥∥
L1([0,T ],L6/5(Ω))

+

∥∥∥∥sε,δΩ̃
δ
ε,h

1

b

∥∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖sε,δ‖L2([0,T ]×Ω)

(∥∥∥Ω̃δ
ε,h

∥∥∥
L2([0,T ],L3(Ω))

(∥∥∥∥
∇b

b2

∥∥∥∥
L∞(Ω)

+

∥∥∥∥
1

b

∥∥∥∥
L∞(Ω)

)
+
∥∥∥ω̃δ

ε

∥∥∥
L2([0,T ],L3(Ω))

∥∥∥∥
1

b

∥∥∥∥
L∞(Ω)

)

≤ Cδ1/2.

In order to determine the vertical component, we use the third identity in (4.1) and an
integration by parts with respect to x3

∫
ũδ

ε,h · (∂3Ω̃
δ
ε,h)

⊥dx3 = −

∫
1

b
(ε∂tΩ̃

δ
ε,h + εrε,δ + sε,δ) · (∂3Ω̃

δ
ε,h)

⊥dx3

= −

∫
1

2b
((ε∂tΩ̃

δ
ε,h) · (∂3Ω̃

δ
ε,h)

⊥ − (ε∂t∂3Ω̃
δ
ε,h) · (Ω̃δ

ε,h)⊥)dx3

−

∫
1

b
(εrε,δ + sε,δ) · (∂3Ω̃

δ
ε,h)

⊥dx3,

from which we deduce

(4.11)

∫
ũδ

ε,h ·(∂3Ω̃
δ
ε,h)⊥dx3 = −

ε

2b
∂t

∫
(Ω̃δ

ε,h ·(∂3Ω̃
δ
ε,h)

⊥)dx3−

∫
1

b
(εrε,δ+sε,δ)·(∂3Ω̃

δ
ε,h)⊥dx3,

which is the expected formula since
∥∥∥∥εrε,δ

1

b
∂3Ω̃

δ
ε,h

∥∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖εrε,δ‖L2([0,T ]×Ω)

∥∥∥∂3Ω̃
δ
ε,h

∥∥∥
L2([0,T ],L3(Ω))

∥∥∥∥
1

b

∥∥∥∥
L∞(Ω)

≤ Cεδ−3,

and
∥∥∥∥sε,δ

1

b
∂3Ω̃

δ
ε,h

∥∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖sε,δ‖L2([0,T ]×Ω)

∥∥∥∂3Ω̃
δ
ε,h

∥∥∥
L2([0,T ],L3(Ω))

∥∥∥∥
1

b

∥∥∥∥
L∞(Ω)

≤ Cδ1/2.

Combining (4.8), (4.10) and (4.11) gives finally the proper decomposition of the averaged
nonlinear term. Proposition 4.3 is proved. �
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4.4. Passage to the limit.

Proposition 4.4. Let u0 be any vector field in H(Ω). For all ε > 0, denote by uε a weak
solution of (1.1) and by uε =

∫
uεdx3.

Then, for all φ ∈ H1(Ω) ∩ Ker(L), we have the following limit in W−1,1([0, T ]):

(4.12)

∫

Ω
∇ · (uε ⊗ uε) · φdx−

∫

Ω
∇h · (uε,huε,3)φ3dx→ 0 as ε→ 0.

Proof. We first introduce the same regularization as in the previous paragraphs, and split the
integral as follows

(4.13)

∫

Ω
∇ · (uε ⊗ uε) · φdx−

∫

Ω
∇h · (uε,huε,3)φ3dx

=

∫

Ω
∇ · (uδ

ε ⊗ uδ
ε) · φdx−

∫

Ω
∇h · (uδ

ε,hu
δ
ε,3)φ3dx

+

∫

Ω
∇ · ((uε − uδ

ε) ⊗ uε) · φdx−

∫

Ω
∇h · ((uε,h − uδ

ε,h)uε,3)φ3dx

+

∫

Ω
∇ · (uδ

ε ⊗ (uδ
ε − uε)) · φdx−

∫

Ω
∇h · (uδ

ε,h(uε,3 − uδ
ε,3))φ3dx.

From the energy estimate, we deduce that the four last terms converge to 0 as δ → 0 uniformly
in ε : indeed,
∥∥∥∥
∫

Ω
∇ · ((uε − uδ

ε) ⊗ uε) · φdx

∥∥∥∥
L1([0,T ])

≤ ‖∇φ‖L2(Ω)‖uε‖L2([0,T ],L6(Ω))‖u
δ
ε − uε‖L2([0,T ],L3(Ω))

≤ ω(δ)‖∇φ‖L2(Ω)‖uε‖
2
L2([0,T ],H1(Ω)),

where according to Lemma 3.3, the function ω(δ) goes to zero as δ goes to zero.

We are then interested in the difference between the first two terms. By Proposition 4.3, it
can be rewritten

(4.14)

∫

Ω
∇ · (uδ

ε ⊗ uδ
ε) · φdx−

∫

Ω
∇h · (uδ

ε,hu
δ
ε,3)φ3dx

=

∫

Ω
φ · (ερε,δ + σε,δ)dx−

ε

2
∂t

∫

Ω
|ωδ

ε|
2(1 − χδ)

∇⊥b

|∇b|2
· φdx

+ ε∂t

∫

Ω

1

b
ω̃δ

ε(Ω̃
δ
ε,h)⊥ · φdx+ ε∂t

∫

Ω

1

2b2
(Ω̃δ

ε,h · ∇b)2
∇⊥b

|∇b|2
· φdx

− ε∂t

∫

Ω

1

2b
(Ω̃δ

ε,h · (∂3Ω̃
δ
ε,h)⊥)φ3dx

because

∂3φ = 0, ∇ · φ = 0 and φ · ∇b = 0,

using as previously the notations ρε,δ and σε,δ for quantities satisfying the following estimates

∀δ > 0, ∀T > 0, sup
ε→0

‖ρε,δ‖L1([0,T ],L6/5Ω)) < +∞,

∀T > 0, lim
δ→0

sup
ε

‖σε,δ‖L1([0,T ],L6/5Ω)) = 0.
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In particular, the second term in the right-hand side of (4.14) converges to 0 as δ → 0 uniformly
in ε : ∥∥∥∥

∫

Ω
σε,δ · φdx

∥∥∥∥
L1([0,T ])

≤ ‖φ‖L6(Ω)‖σε,δ‖L1([0,T ],L6/5(Ω)) ≤ Cδ1/24.

It remains only to check that, for any fixed δ > 0, the other terms in the right-hand side of
(4.14) converge to 0 as ε→ 0 in the sense of distributions. We have

∥∥∥∥
∫

Ω
φ · (ερε,δ)dx

∥∥∥∥
L1([0,T ])

≤ ε‖φ‖L6(Ω)‖ρε,δ‖L1([0,T ],L6/5(Ω)) ≤ Cεδ−13/4,

∥∥∥∥ε∂t

∫

Ω
|ωδ

ε|
2(1 − χδ)

∇⊥b

|∇b|2
· φdx

∥∥∥∥
W−1,1([0,T ])

≤ ε‖φ‖L6(Ω)‖ω
δ
ε‖

2
L2([0,T ],L12/5(Ω))

∥∥∥∥
(1 − χδ)

|∇b|

∥∥∥∥
L∞(Ω)

≤ Cεδ−3/4,

and the three other terms are bounded in W−1,1([0, T ]) by some constant Cb (depending on
the L∞-norm of b−1 and ∇b) times

ε‖φ‖L6(Ω)‖∇ ∧ uε‖
2
L2([0,T ],L12/5(Ω))

≤ Cεδ−1/4.

Taking limits as ε → 0 and then as δ → 0 in (4.13)-(4.14) shows that, for all φ ∈ H 1(Ω) ∩
Ker(L), ∫

Ω
∇ · (uε ⊗ uε) · φdx−

∫

Ω
∇h · (uε,huε,3)φ3dx→ 0 as ε→ 0

in W−1,1([0, T ]).

�

4.5. End of the proof of Theorem 3. Theorem 3 is an easy consequence of the various
results established up to now.

From Corollaries 2.1 and 2.5 in Section 2, we deduce that, up to extraction of a subsequence,

uε ⇀ u weakly in L2([0, T ] × Ω)

where u belongs to L2([0, T ],H1(Ω) ∩ Ker(L)). And, by Lemma 4.1,

uε,3 → u3 = u3 strongly in L2([0, T ] × Ω).

Let φ be any vector-field in H1(Ω)∩Ker(L). Integrating the penalized Navier-Stokes equation
against φ leads to

∂t

∫

Ω
uε · φdx+

∫

Ω
∇ · (uε ⊗ uε) · φdx− ν

∫

Ω
∆uε · φdx = 0,

which can be rewritten

(4.15)

∂t

∫

Ω
uε · φdx+

∫

Ω
∇ · (uε,huε,3)φ3dx− ν

∫

Ω
∆uε · φdx

=

∫

Ω
∇ · (uε,h uε,3)φ3dx−

∫

Ω
∇ · (uε ⊗ uε) · φdx.
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By Proposition 4.4, the right-hand side in (4.15) converges to 0 in the sense of distributions
as ε → 0. The weak convergence of (uε) and the strong convergence of (uε,3) allow then to
take limits in the left-hand side :

(4.16) ∀φ ∈ H1(Ω) ∩ Ker(L), ∂t

∫

Ω
u · φdx+

∫

Ω
∇ · (uhu3)φ3dx− ν

∫

Ω
∆u · φdx = 0.

Therefore any weak limit point of (uε) is the unique u ∈ L2([0, T ],H1(Ω) ∩ Ker(L)) solution
of (4.16). The whole sequence is converging, which concludes the proof of Theorem 3.
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