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Introduction

The aim of this survey is to describe the influence of the Earth’s rotation on geophysical flows,
both from a physical and a mathematical point of view.

In the first chapter, we gather from the physical literature the main pieces of information con-
cerning the physical understanding of oceanic and atmospheric flows. For the scales consid-
ered, i.e., on domains extending over many thousands of kilometers, the forces with dominating
influence are the gravity and the Coriolis force. The question is therefore to understand how
they counterbalance each other to impose the so-called geostrophic constraint on the mean
motion, and to describe the oscillations which are generated around this geostrophic equi-
librium. The main equations are then introduced, along with the approximations commonly
used by Physicists. The rest of the survey is devoted to the mathematical study of those
equations.

At mid-latitudes, on “small” geographical zones, the variations of the Coriolis force due to the
curvature of the Earth are usually neglected, which leads to a problem of singular perturbation
with constant coefficients. The study of that problem is the object of Chapter 2, which consists
in the recollection of rather classical mathematical results and the methods leading to them.
We are therefore interested in the wellposedness of the three dimensional Navier-Stokes system,
penalized by a constant-coefficient Coriolis force, as well as in the asymptotics of the solutions
as the amplitude of the force becomes large. We focus on two types of boundary conditions,
which lead to two very different types of convergence results. In the case when the equations
are set in R3, we exhibit an interesting dispersive behaviour for the Coriolis operator which
enables one to deduce a strong convergence result towards a vector field satisfying the two
dimensional Navier-Stokes system. In the periodic case, dispersion cannot hold; it is replaced
by a highly oscillatory behaviour, where the oscillations are linked to the eigenvalues of the
Coriolis operator. Once those oscillations have been filtered out, a strong convergence result
can also be proved. In both situations (the whole space case and the periodic case), the global
existence of smooth solutions for a large enough rotation is also proved, using the special
structure of the limiting system in each case. References to more general, constant coefficient
situations are given at the end of Chapter 2.

A first step in order to a get a more realistic description, is to take into account the geometry
of the Earth (variations of the local vertical component of the Earth rotation). Chapter 3 is
therefore devoted to the study of the three dimensional Navier-Stokes system with a variable
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Coriolis force. We assume that the direction of the force is constant (taking into account only
the vertical component of the Earth’s rotation), and that its amplitude depends on the latitude
only (and does not vanish). The price to pay is that the analysis can no longer be as precise
as in the constant case, and in particular we have no way in general of describing precisely
the waves generated by such a variable-coefficient rotation. As in the previous chapter, the
questions of the uniform existence of weak or strong solutions are addressed, and we study
their asymptotic behaviour as the amplitude of the rotation goes to infinity.

In the last chapter we focus on equatorial, oceanic flows. In view of the typical horizontal
and vertical length scales, it is relevant to consider in a first approximation a two dimensional
model with free surface, known as the shallow-water model, supplemented with the Coriolis
force. In such an approximation all the vertical oscillations are neglected; this (unjustified)
simplification seems to be nevertheless consistent with experimental measures. The question
here is then to understand the combination of the effects due to the free surface, and of the
effects due to the variations of the Coriolis force. Contrary to Chapter 3, the particularity
of such flows is that the Coriolis force vanishes at the equator. Note that, for the sake of
simplicity, we will not discuss the effects of the interaction with the boundaries, describing
neither the vertical boundary layers, known as Ekman layers, nor the lateral boundary layers,
known as Munk and Stommel layers. We indeed consider a purely horizontal model, assume
periodicity with respect to the longitude (omitting the stopping conditions on the continents)
and infinite domain for the latitude (using the exponential decay of the equatorial waves to
neglect the boundary). As in the previous chapters, the questions addressed are first to solve
this system, and then to understand the asymptotic behaviour of the solutions. Using the
betaplane approximation of the Coriolis force, we are able to carry out computations further
than in the abstract case studied in the previous chapter. In particular we recover rigorously
the well-known trapping of the equatorial waves.

Acknowledgements. The authors are very grateful to D. Gérard-Varet for his careful
reading of a previous version of this work, and for his useful comments.
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Chapter 1

Modelling geophysical flows

The first chapter of this survey is essentially descriptive, it aims at familiarizing the reader
with the basic notions of geophysics, both from the experimental and the theoretical points
of view.

In the first part, we collect from the books of J. Pedlosky [50] and A. E. Gill [27] the main
pieces of information concerning the physical understanding of the oceanic and atmospheric
flows. This understanding is based upon a comparison between the orders of magnitude of the
various measurable physical parameters. A heuristic study allows then to separate the mean
flows on large time scales (which obey some strong constraint, called geostrophic equilibrium)
from the deviations consisting of fast oscillations which can be classified.

In the second part of the chapter we introduce the fundamental mathematical models which
should allow in the sequel to describe systematically the observed qualitative features of the
geophysical flows. This formalism lies essentially on the classical fluid mechanics theory. The
main points to be considered are the occurence of the Coriolis force, and the determination of
relevant boundary conditions. We will also introduce simplified models (which are expected
to provide a good approximation of the fundamental ones under some conditions) to be used
to analyze mathematically some precise phenomenon.

1.1 Physical background

In a first approximation the atmosphere and oceans rotate with the earth with small but
significant deviations which we, also rotating with the earth, identify as winds and currents.
It is useful to recognize explicitly that the interesting motions are small departures from solid-
body rotation by describing the motions in a rotating coordinate frame which kinematically
eliminates the rigid rotation. Since such a rotating frame is an accelerating rather than an
inertial frame, certain well-known forces will be sensed, namely the centrifugal force and the
subtle and important Coriolis force.

Before discussing further the effects of rotation, let us introduce some basic notation. Both
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8 Chapter 1: Physical background

in the case of the atmosphere and of oceans, the situation to be considered is that of a thin
layer of fluid close to the earth’s surface. It appears therefore that the direction which is
orthogonal to the earth’s surface, i.e. radial in the spherical approximation, is somewhat
special. In the sequel, it is called “vertical”, and is denoted x3. In this direction, the length
scales are characterized by the parameter D. Conversely, we call “horizontal” and denote
by the subscript h the vector components parallel to the earth’s surface. More precisely, we
use generally the notations x1 and x2 respectively for the eastward and northward directions.
The corresponding length scales are characterized by L. The coordinates considered here and

g

D

X3

X2

L

X1

!
"

Figure 1.1: Description of a thin spherical layer of fluid

depicted on Figure 1.1 are therefore

(i) neither associated with an inertial frame because of the rotation of the earth;

(ii) nor cartesian coordinates because of the curvature of the earth.

These facts have of course important repercussions on the dynamics that are naturally taken
into account in the heuristic description and will be discussed in a more formal way in the
second part of this chapter.
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1.1.1 Geostrophic and Hydrostatic approximations

The gravitational force

A first force with dominating influence is gravity. In the absence of relative motion, it must
be balanced by the pressure p, so that the pressure is given by the hydrostatic law :

ρ = ρ0(x3), p = p0(x3), with
∂p0

∂x3
= −ρ0g,

where ρ is the density of the fluid and g the gravitational acceleration. Note that we consider
in this text atmospheric or oceanic flows, that are motions occuring in a thin layer of fluid
close to the surface of the earth, so that we can assume that the gravitational acceleration is
a constant

g = 9.8 ms−2.

It actually comes out that the vertical distribution of density ρ0(x3) in both the atmosphere
and the oceans is almost always gravitationally stable, meaning that heavy fluid underlies
lighter fluid. Such a stable stratification implies in particular that motion parallel to the local
direction of gravity is inhibited and this constraint tends to produce large scale motions which
are nearly horizontal.

A measure of this stratification is given by the Burger number

S = g
∆ρ
ρ

D

4Ω2L2
, (1.1.1)

where ∆ρ/ρ is a characteristic density-difference ratio for the fluid over its vertical scale of
motion D, while L is its horizontal scale and Ω is the angular speed of rotation of the earth.
The nondimensional parameter S may be written in terms of the ratio of length scales,

S =
(
LD

L

)2

,

where the length LD is called the Rossby deformation radius.

Figure 1.2 shows a typical height profile of density in the atmosphere : the density decrease
indicates gravitational stability of vertically displaced elements even if the compressibility of
air weakens this stability. Major atmospheric phenomena have a characteristic vertical scale
D ∼ 10km, while L ∼ 1000km. For such phenomena, the Burger number is S ∼ 1.

Figure 1.3 shows a similar depth density profile for the ocean. The depth of the ocean rarely
exceeds six kilometers, and the vertical extent D of major current systems is usually much
less than that. Yet the horizontal scale L is hundreds of kilometers. For such currents, the
Burger number is S ∼ 0.1.
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Figure 1.2: Distribution of density with height in the atmosphere (from NASA, 1962)
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Figure 1.3: Distribution of density with depth in the ocean (from Pedlosky [50])



Chapter 1: Physical background 11

Remark 1.1 Note that in both situations and more generally for almost all large-scale geo-
physical flows, there is an important disparity between horizontal and vertical scales of motion,
which is measured by the aspect ratio

δ =
D

L
·

The Coriolis force

When considering winds or currents, i.e., relative motions of the oceans or atmosphere, because
the reference frame is rotating, another force has to be taken into account, namely the Coriolis
force. An important measure of the Coriolis force, i.e. of the significance of rotation for
a particular phenomenon is the Rossby number, which is defined as follows. Let L be a
characteristic horizontal length scale of the motion under consideration, or in other words
a length scale that characterizes the horizontal spatial variations of the dynamic fields (for
instance the distance between a pressure peak and a succeeding trough). Similarly let U be a
horizontal velocity scale characteristic of the motion. The time it takes a fluid element moving
with speed U to cross the distance L is L/U . If that period of time is much less than the
period of rotation |Ω|−1 of the earth, the fluid can scarcely sense the earth’s rotation over the

time scale of motion. For rotation to be important, then, we anticipate that
L

U
≥ |Ω|−1, or

equivalently we expect the Rossby number to be small

ε =
U

2|Ω|L
≤ 1. (1.1.2)

For the purpose of this text we will only consider large-scale motions, namely those which are
significantly influenced by the earth’s rotation :

|Ω| = 7.3× 10−5s−1.

Note that the smaller the characteristic velocity U is, the smaller L can be and yet still qualify
for a large-scale flow.

For the troposphere, the characteristic length scales are D ∼ 10km and L ∼ 1000km. The
distribution of wind speed along latitude circles (called zonal wind ) given in Figure 1.4 shows
that U ∼ 20ms−1. The Rossby number is therefore ε = 0.137 and we can expect the earth’s
rotation to be important.

The Gulf Stream has velocities of order U ∼ 1ms−1. Although its characteristic horizontal
scale as shown in Figure 1.5 is only L ∼ 100km, the associated Rossby number is ε = 0.07.
Although the use of the local normal component of the earth’s rotation would double this
value at a latitude of 30o, it is still clear that such currents meet the criterion of large-scale
motion.
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Figure 1.4: Distribution of wind speed along latitude circles, (from Palmén & Newton [49])

Balance between gravity and rotation

• General considerations on rotating fluids allow to determine some constraints in order that
motions with time scales long compared to the rotation period and with relative vorticity ω
small with respect to 2|Ω| can persist.

- In the absence of friction the production of vorticity due to the pressure must indeed cancel
the production of relative vorticity by the stretching and twisting terms. This constraint can
be written

(Ω · ∇)u− Ω∇ · u = −(∇ρ ∧∇p)
2ρ2

,

where u denotes the local velocity of the fluid, ρ its density and p its pressure.

- If the relative motion has a small aspect ratio δ, which is generally satisfied by currents and
winds, only the local vertical component of the earth’s rotation f = |Ω| sin θ where θ denotes
the latitude, is dynamically significant (the horizontal Coriolis acceleration due to the vertical
motion and the vertical Coriolis acceleration due to the horizontal motion are both small
terms when compared to the pressure gradients in their respective equations). The constraint
states therefore

(fe3 · ∇)uh = −(∇ρ ∧∇p)h

2ρ2
,

fe3∇ · uh = 0,
(1.1.3)

where f is the Coriolis parameter or inertial frequency defined as the local component of the
planetary vorticity normal to the earth’s surface. Since the density variations are commonly
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Figure 1.5: Structure of the current velocity through the Gulf Stream (from Fuglister [19])
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connected with temperature variations, the winds or currents satisfying the first equation
relating the variation of the horizontal velocity to the density variation are called the thermal
wind.

- If in addition the fluid is barotropic, meaning that the pressure p is a function of the density ρ,
then

(fe3 · ∇)uh = 0,

which implies that a material line once parallel to Ω must always remain so.

- If the fluid is essentially incompressible, the incompressibility constraint implies further that

(fe3 · ∇)u3 = 0,

so that all three components of the relative velocity are independent of the vertical coordinate.
This constraint is called the Taylor-Proudman theorem. If the vertical component of the
velocity is zero at some level, for example at a rigid surface, the motion is then completely
two dimensional and can be pictured as moving in columns parallel to the rotation axis referred
to as Taylor columns. The simplest situation in which such motions can occur is in the slow
relative motion of a homogeneous fluid.

• Specifying conservative forces leads to a more explicit constraint, expressing the balance
between gravity, pressure and the Coriolis force (in the absence of friction) :

ρ2Ω ∧ u = −∇p− ρge3. (1.1.4)

In the absence of relative motion, such a constraint reduces to the Archimedian principle for
a static fluid.

- If the relative motion has a small aspect ratio δ, we have seen that only the local vertical
component of the earth’s rotation fe3 is dynamically significant. Furthermore the pressure
and density are small departures from their basic states, the magnitude of which is of the
order of

ε
Ω2L2

gD

with the previous notations. Then (1.1.4) can be approximated by

uh =
1
fρ0

e3 ∧∇p,

ρg = −∂3p.

(1.1.5)

The first relation is the geostrophic approximation expressing the balance between the hori-
zontal pressure gradient and the horizontal component of the Coriolis acceleration. It gives
no direct information about the vertical velocity (without further assumption on the ther-
modynamic properties of the fluid). The other equation does not involve the velocity at all,
it is just the hydrostatic approximation describing a balance between the vertical pressure
gradient and gravity.
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• The geostrophic approximation is very useful to predict the motion of geophysical flows :
once the pressure field is known, the horizontal velocities, their vertical shear and the vertical
component of the vorticity are immediately determined. Nevertheless

(i) the approximation fails in the vicinity of the equator since f cancels. A more complicated
dynamical framework is then required in the equatorial regions.

(ii) even at higher latitudes, the geostrophic relations do not allow to calculate the pressure
field nor predict its evolution with time. Consideration of small departures from complete
geostrophy is then required to complete the dynamical determination of the motion. These
small departures involve either the relative acceleration terms, of the order of the Rossby
number, or the frictional forces.

1.1.2 Departures from geostrophy

Waves arising in the case of shallow water

In order to determine the corrections to the geostrophic motion, we first consider the case
of a shallow rotating layer of homogeneous, incompressible and inviscid fluid. Such a fluid is
described by its height H which is assumed to be a fluctuation η around a reference height
H0, and by its purely horizontal velocity u.

The specification of incompressibility and constant density immediately decouples the dynam-
ics from the thermodynamics, and imposes a condition of non divergence on the velocity u.

The shallow-water assumption, based on the smallness of the aspect ratio δ << 1 consists in
ignoring stratification and considering only the two-dimensional motion of the fluid. Such a
simple case contains some of the important dynamical features of the atmosphere and ocean.
Of course it does not allow to catch physical phenomena which depend in a crucial way on
stratification.

In this framework, the geostrophic approximation reduces to

u · ∇
(
f

H0

)
= 0,

where H0 is the reference depth (in absence of relative motion), meaning that streamlines are
the isobaths. Of course real motions are not precisely geostrophic and we now consider what
happens when the constraint of steadiness is relaxed.

Perturbations (η, u) to this geostrophic approximation satisfy

∂t

(
(∂2

tt + f2)η +∇ · (C2
0∇η)

)
− gf (∂1H0∂2η − ∂2H0∂1η) = 0,

(∂2
tt + f2)u1 = −g

(
∂2

1tη + f∂2η
)
,

(∂2
tt + f2)u2 = −g

(
∂2

2tη − f∂1η
)

where f denotes the Coriolis parameter and C0 =
√
gH0 is the classical shallow-water phase

speed.
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Wave solutions which are periodic in x and t can be sought in the form

exp(i(σt+ k1x1 + k2x2))

where σ is the wave frequency and k is the wave vector (which is possibly quantized if the
domain under consideration is a partially bounded region). These free oscillations can actually
be classified into three types, planetary waves, gravity waves and non-rotating waves, as shown
in Figure 1.6.

• Gravity waves, also known as Poincaré waves, satisfy the dispersion relation

σ2 = f2 + C2
0k

2, (1.1.6)

They depend crucially neither on the geometry of the domain, nor on the variations of f .

The presence of rotation increases the wave speed. Indeed it is clear that all these waves
have frequencies σ which exceed f , i.e. have periods less than half a rotation period and
consequently are at frequencies considerably in excess of those of large-scale, slow atmospheric
and oceanic flows. In particular these waves are far from being in geostrophic balance.

For instance, in a channel of width L oriented parallel to the x1-axis, the boundary conditions
constrain k2 to take discrete values, namely nπ/L with n ∈ Z, and the corresponding modes
are given by

η = η0

(
cos
(nπx2

L

)
− fL

nπ

k1

σ
sin
(nπx2

L

))
cos(k1x1 − σt+ φ),

u1 =
η0

H0

(
C2

0k1

σ
cos
(nπx2

L

)
− fL

nπ
sin
(nπx2

L

))
cos(k1x1 − σt+ φ),

u2 = − η0

H0

L

σnπ

(
f2 +

C2
0n

2π2

L2

)
sin
(nπx2

L

)
sin(k1x1 − σt+ φ),

meaning that the fluid flow is primarily in the direction of the pressure gradient. Note however
that the Poincaré wave corresponding to the value k2 = 0 is not physically relevant for a
rotating fluid (boundary conditions cannot be taken into account).

• In this last case (i.e. when the domain has at least one internal boundary), the set of
Poincaré modes is supplemented by the so-called Kelvin waves. They satisfy the dispersion
relation

σ2 = C2
0k

2
1, (1.1.7)

which is also the dispersion relation for gravity waves in a non-rotating fluid.

The corresponding modes are given by

η = η0 exp
(
±fx2

C0

)
cos(k1(x1 ± C0t) + φ),

u1 =
η0C0

H0
exp

(
±fx2

C0

)
cos(k1(x1 ± C0t) + φ),

u2 = 0.
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Figure 1.6: Dispersion diagram for shallow water in a channel (from Pedlosky [50])

There are several extraordinary features to note. The cross-channel velocity u2 is identically
zero, whereas the flow in the x1-direction is in precise geostrophic balance even though the
frequency is not, in general, small with respect to f . More precisely, the Coriolis acceleration
is balanced by a free surface slope. This cross-channel slope is exponential, with intrinsic
length scale R = C0/f which is independent of any property of the wave field. This intrinsic
length scale is linked to the Rossby deformation radius. Note that R→∞ as f → 0, so that
the Kelvin waves become in that limit the missing gravest modes of the Poincaré set.

These two types of waves give a complete picture of the departures from geostrophy in the
simplest case, when the Coriolis parameter can be considered as a constant. Such an approxi-
mation is relevant at mid-latitudes for small geographical zone such as lakes or small portions
of the oceans.

• When considering more extended domains, the variations of the Coriolis parameter has to
be taken into account and a third family of waves appear. The planetary waves, also called
Rossby waves, whose existence requires both f and ∇f to be nonzero, have a very different
dynamical structure.

They are low-frequency oscillations, in the sense that their periods are greater than a rota-
tion period, or in other words that σ/f << 1. To lowest order in σ/f , the velocity fields,
though changing with time, remain continuously in geostrophic balance with the pressure
field. Thus the motion is quasigeostrophic and it is the very small cross-isobath flow, which
is a nongeostrophic effect, which produces the oscillation.
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Another characteristic property of the Rossby waves is that, for high wave numbers, the
frequency decreases as the wave number increases, in contradistinction to both the Poincaré
and Kelvin waves. For instance, if the Coriolis parameter depends linearly on the northward
coordinate x2

f(x2) = f0 + βx2 with f0 = f(x0
2) and β = ∂2f(x0

2)

(which is locally a good approximation, known as beta-plane approximation), the dispersion
relation for the Rossby waves states

σ =
βk1C

2
0

f2 + C2
0k

2
· (1.1.8)

The last feature of the Rossby waves we would like to mention here is that their phase speeds
in the x1-direction are always negative, as shown by the dispersion relation (1.1.8).

In the particular case of a channel of width L oriented parallel to the x1-axis, the explicit
formulas for the Rossby modes to lowest order are

η = η0 sin
(nπx2

L

)
cos(k1x1 − σt+ φ) +O

(
βL

f

)
,

u1 = − g
f

nπ

L
η0 cos

(nπx2

L

)
cos(k1x1 − σt+ φ) +O

(
βL

f

)
,

u2 = − g
f
kη0 sin

(nπx2

L

)
sin(k1x1 − σt+ φ) +O

(
βL

f

)
.

Equatorial trapping

As mentioned in the first section of this chapter, the adjustment processes are expected to
be somewhat special in the vicinity of the equator when the Coriolis acceleration vanishes. A
very important property of the equatorial zone is that it acts as a waveguide, i.e., disturbances
are trapped in the vicinity of the equator. The waveguide effect is due entirely to the variation
of the Coriolis parameter with the latitude.

• The simplest wave that illustrates this property is the equatorial Kelvin wave. As for the
usual Kelvin waves, the motion is unidirectional, being everywhere parallel to the equator. At
each fixed latitude, the motion is exactly the same as that in a non-rotating fluid. Nevertheless,
because of the variations (and the cancellation) of the Coriolis parameter

f(x2) ∼ βex2 with βe = ∂2f(0) =
2Ω
R

,

rotation effects do not allow the motion at each latitude to be independent : a geostrophic
balance is required between the eastward velocity and the north-south pressure gradient. The
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equatorial Kelvin wave shows therefore an exponential decay in a distance of order ae, where ae

is given by

ae =
(
C0

2βe

)1/2

(1.1.9)

and is called the equatorial deformation radius because of its relationship with the decay scale
for the usual Kelvin waves.

• In addition to the Kelvin wave, there is an infinite set of other equatorially trapped waves,
with trapping scale of the same order that for Kelvin waves, namely, the equatorial defor-
mation radius defined by (1.1.9). Note that another important effect of the waveguide is the
separation into a discrete set of modes n = 0, 1, 2, ... as occurs in a channel. The dispersion
curves for equatorial waves are given in Figure 1.7.

- For n ≥ 1, the waves subdivide into two classes. For the upper branches, the appropriate
dispersion relation has the same form as that for Poincaré waves, approximately

σ2 ∼ (2n+ 1)βC0 + k2
1C

2
0 , (1.1.10)

and so these waves are called equatorially trapped Poincaré waves.

On the lower branches of the curves, the dispersion curves are given approximately by

σ ∼ βC0k1

C0k2
1 + (2n+ 1)β

· (1.1.11)

The corresponding waves are called equatorially trapped Rossby waves.

Note that there is a large gap between the minimum gravity wave frequency and the maximum
planetary wave frequency, so these waves are easily distinguished. The frequency gap for
wave n involves a factor of 2(2n+ 1), which is equal to 6 for the lowest value n = 1.

- For n = 0, the solution is somewhat special. The dispersion curve, given by

σ

C0
+ k1 −

β

σ
= 0, (1.1.12)

is unique in that for large positive k1 it behaves like a gravity wave, whereas for large nega-
tive k1 it behaves like a planetary wave. For this reason it is called a mixed Rossby-gravity
wave. The phase velocity can be to the east or west, but the group velocity is always eastward,
being a maximum for short waves with eastward group velocity (gravity waves). Particles fol-
low anticyclonic orbits everywhere.
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Figure 1.7: Dispersion diagram for shallow water in the equatorial waveguide (from Gill [27])

Effects of stratification

The large-scale field of vertical motion in the atmosphere is of great importance because strong
upward motion is associated with the development of severe weather conditions. Note that
the vertical motion cannot be easily measured (due to its smallness compared to horizontal
scales), but deductions can be made from properties of the pressure field. We therefore have to
study the adjustment processes for continuously stratified fluids, i.e., fluids with continuously
varying density.

The fluids to be considered will be actually restricted to a class such that the density depends
only on entropy and on composition. The motion that takes place is assumed to be isentropic
and without change of phase, so that ρ is constant for a material element. Such a fluid is
therefore incompressible. The equilibrium state to be perturbed is the state of rest, so the
distribution of density and pressure is the hydrostatic equilibrium given by :

ρ = ρ0(x3), p = p0(x3) with ∂3p0 = ρ0g.

For such an incompressible stratified fluid, free oscillations exhibit different behaviours ac-
cording to the frequency regime to be considered.

A first relation between the vertical velocity u3 and the pressure perturbation p′ is associated
with the vertical part of the motion, and thus is unaltered by rotation effects :

∂2
ttu3 +N2u3 = −ρ−1

0 ∂t3p
′,
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where N(x3) is a quantity of fundamental importance to this problem, defined by

N2 = −gρ−1
0

d

dx3
ρ0. (1.1.13)

N has the dimensions of a frequency, and is known as the buoyancy frequency since it is
the frequency of oscillation for purely vertical motion. The restoring force that produces the
oscillation is the buoyancy force.

The other equation relating u3 and p′ is provided by the horizontal part of the motion, and
more precisely combining the equation for the vertical vorticity and the incompressibility
constraint :

∂2
tt∂3u3 + f2∂3u3 = ρ−1

0 ∂t∆hp
′,

which involves the inertial frequency f but not the buoyancy frequency N .

• The dispersion relation for internal Poincaré waves in a rotating fluid with uniform buoyancy
frequency N is therefore

σ2 =
f2k2

3 +N2k2
h

k2
. (1.1.14)

In the atmosphere and ocean, N usually exceeds f by a large factor, typically of order 100,
so the contribution of the Coriolis parameter in (1.1.14) is essentially negligible, and the
dispersion curves will not look any different because of rotation, except that the vertical axis
would have to be labeled σ/N = 0.01 instead of zero.

More precisely, when N/f is large, different regimes appear according to the value of σ/f as
shown in Figure 1.8.
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Figure 1.8: Effects of stratification on a rotating fluid (from Gill, 1982)
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- The nonhydrostatic wave regime is defined as the range of frequencies for which σ is of order
N but σ ≤ N . In this range the dispersion relation is approximated by

σ2 ∼ Nδ2

1 + δ2
,

which is the relation obtained when rotation effects are ignored.

- The hydrostatic “non-rotating” wave regime is defined as the range of frequencies for which
f << σ << N . In this range the dispersion relation is approximated by

σ2 ∼ N2δ2.

Rotation effects do not appear to this order of approximation, which is the reason for calling
this a “non-rotating” regime, although it must be remembered that rotation does have an
effect at the next order of approximation, and it is sometimes important to consider this.

- The rotating wave regime is defined as the range of frequencies for which σ is of order f
but σ ≥ f . Since f/N is small, α is small and the hydrostatic approximation applies. The
approximate dispersion relation reads

σ2 ∼ f2 +N2δ2,

which is effectively the dispersion relation for Poincaré waves.

• If the variations of Coriolis parameter are taken into account

f(x2) ∼ f0 + βx2 with f0 = f(x0
2) and β = ∂2f(x0

2),

we have to consider furthermore the vertical propagation of planetary waves.

As previously, in the case of a uniformly stratified incompressible fluid, the dispersion relation
for vertically propagating waves is the same as that for a single mode, but with the wave
speed C0 replaced by N/k3. In other words, for vertically propagating Rossby waves, it reads

σ =
βk1

k2
h + f2

0k
2
3/N

2
· (1.1.15)

Such upward-propagating waves have a very particular structure, with phase lines tilting
toward the west with height, meaning that warm air is carried poleward and cold air equa-
torward, so that there is an apparent net poleward transport of heat. The corresponding
buoyancy fluxes play an important role in the atmosphere, in the phenomenon known as a
sudden stratospheric warming, which occurs in winter.

The classification of vertically propagating waves begun previously can now be carried to
larger scale k−1

1 that correspond to lower encounter frequencies

σ = Uk1
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for an observer traveling with the mean flow at speed U . If this flow is uniform, the distur-
bances are trapped (evanescent) at scales k−1

1 larger than that given by Uk1 ∼ f , i.e., for
scales greater than about 100km. This is because gravity waves (also called Poincaré waves
and defined by (1.1.14)) are negligible at such frequencies (see Figure 1.8).

If, however, the scale k−1
1 is further increased, thereby reducing the encounter frequency to

levels at which variations with latitude of the Coriolis parameter become important in the
dynamics, the situation is changed once again because planetary waves may now be possible.
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Figure 1.9: Effects of stratification on an inhomogeneous rotating fluid (from Gill, 1982)

It is then clear that

- the f -plane quasi-geostrophic regime occupies the spectral gap defined by |U/f | << k−1
1 <<

|U/β|1/2,

- the so-called β-plane quasi-geostrophic regime is a new regime to be considered for k−1
1

of order |U/β|1/2. This is about 1000km for the atmosphere, i.e., the scale of the major
topographic features of the earth’s surface, so the response to these features falls within this
regime. The corresponding scale for the ocean is 30 to 100km. Note that in this new regime,
there is a major asymmetry between eastward and westward directions of the undisturbed
flow. Westward currents are in the same direction as the phase propagation of planetary
waves, so stationary waves are not possible : disturbances remain evanescent no matter how
small the wavenumber.
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1.1.3 Prediction of the observed motion

Contribution of small scales

Although a single wave of arbitrary amplitude is an exact solution of the quasigeostrophic
equation, a superposition of waves will not be. The nonlinear interaction between the waves,
by which the velocity field of one advects the vorticity of another, leads to a nonlinear coupling
and energy transfer between the waves.

When the Rossby number ε << 1, the characteristic period of the waves describing the
departures from geostrophy is much less than the advective time : the nonlinear coupling
term can be therefore considered as a perturbation of the linear equation governing the waves.
In particular, on can try to proceed by successive approximations and to characterize the
resulting motion as a perturbation of the linear superposition of waves. The interaction of
the mth and nth waves produces then a forcing term in the problem for the first correction
which oscillates with the sum and difference of their two phases, i.e., a forcing term with wave
vector

Kmn = Km ±Kn

and frequency
σmn = σm ± σn.

The problem for the first correction is a linear, forced problem, and therefore the response
to each forcing term can be considered separately and the results summed. If the forcing
frequency σmn is not equal to the natural frequency of oscillation of a free wave with the wave
number Kmn of the forcing, such a process converges : these interactions merely produce a
small-amplitude background jangle of forced waves whose amplitudes are small. Otherwise a
resonance occurs, that is, two waves then combine to force a third wave with a wave number
and frequency appropriate to a free, linear oscillation. A simple example is the case of the
Kelvin waves. Such interactions, called resonant interactions are of great interest because of
the slow growth of the first correction on the nonlinear advective time : the approximation
process is then clearly invalid. This means that, filtering the high frequency waves, one obtains
a motion on the advective time-scale which is nonzero.

Note that to the lowest order the filtered motion conserves both the energy (defined as half
the average of the square of the velocity) and the enstrophy (defined as half the average of
the square of the vorticity), or in other words that the resonant interaction is an energy and
enstrophy preserving mechanism.

In naturally occuring situations, there is usually a whole spectrum of waves, i.e., a superpo-
sition of waves with wavenumbers varying continuously over some range of values. In such
cases, wave interactions occur in the same way as they do when a small number of waves
is present, and provided that the wave amplitude is not too large, the transfer of energy is
dominated by those waves that are associated with the resonant triads (if such are present).
The phases of the different wavenumber components in the spectrum are often assumed to
be distributed randomly and this assumption can be used to calculate the evolution of the
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spectrum with time. This behaviour can be largely understood by considering the following
three mechanisms :

- Induced Diffusion occurs when two nearly identical waves interact with another wave of
much lower frequency and much smaller wavenumber. The shear of the latter wave acts to
diffuse wave action (wave energy divided by frequency) among vertical wavenumbers.

- Elastic Scattering occurs when two waves with wavenumbers that are almost mirror images
in the horizontal plane interact with a wave of much slower frequency and double the vertical
wavenumber. The latter wave tends to equalize the energy between upward- and downward-
propagating waves. The conditions for elastic scattering to occur are satisfied only for waves
with frequency substantially greater that f , so near-inertial frequency waves are little affected.

- Parametric Subharmonic Instability occurs when two waves of nearly opposite wavenumber
interact with a wave of much smaller wavenumber and of twice the frequency. The process
transfers energy from low-wavenumber energetic waves to high-wavenumber waves of half
frequency, and so tends to produce inertial frequency waves with high vertical wavenumber.

These processes have a strong influence on the internal wave spectrum, and one result is that
the spectrum has a shape that varies rather little.

Dissipation coming from viscosity

The observed persistence over several days of large-scale waves in the atmosphere, and the
oceans shows that frictional forces are weak, almost everywhere, when compared with the
Coriolis acceleration and the pressure gradient. Friction rarely upsets the geostrophic balance
to lowest order.

Nevertheless friction, and the dissipation of mechanical energy it implies, cannot be ignored.
For the time-averaged flow, i.e., for the general circulation of both the atmosphere and the
oceans, the fluid motions respond to a variety of essentially steady external forcing. The
atmosphere, for example, is set in motion by the persistent but spatially nonuniform solar
heating. This input of energy produces a mechanical response, namely kinetic energy of the
large-scale motion, and eventually this must be dissipated if a steady state - or at least a
statistically stable average state of motion - is to be maintained.

Finally, even though friction may be weak compared with other forces, its dissipative nature,
qualitatively distinct from the conservative nature of the inertial forces, require its consider-
ation if questions of decay of free motions are to be studied.

• To estimate the frictional force a representation of F must be specified. Considering the dis-
sipation due to the interactions at the microscopic level, this force is proportional to the spatial
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derivative of the stress tensor, with a coefficient depending in principle of the thermodynamic
state variables, the so-called molecular viscosity. Then

F
ρ
∼ νU

L2

where ρ is the local density, L the length scale characterizing the variations of the velocity
field, and ν is the order of magnitude of the molecular viscosity. The ratio of the frictional
force per unit mass to the Coriolis force acceleration is a nondimensional parameter, called
the Ekman number, E :

E =
νU/L2

2ΩU
=

ν

2ΩL2
· (1.1.16)

If ν is the molecular kinematic viscosity of water, for example, a straightforward estimate for
E for oceanic motions, would be, for L = 1000km, ν = 10−6m2s−1,

E ∼ 10−14.

This is a terribly small number, and such frictional forces are clearly negligible for large scale
motions.

• The important issue is whether this representation of F is adequate if the state variables are
to describe only the large-scale motions. The previous paragraph shows indeed that motions
on one spatial scale interact with motions on other scales. There is therefore an a priori
possibility that small scale motions, which are not the focus of our interest, may yet influence
the large-scale motions. One common but not very precise notion is that small-scale motions,
which appear sporadic or on longer time scales, act to smooth and mix properties on the
larger scales by processes analogous to molecular, diffusive transports.

For the present purposes it is only necessary to note that one way to estimate the dissipative
influence of smaller-scale motions is to retain the same representation of the frictional force
but replace ν by a turbulent viscosity, of much larger magnitude than the molecular value,
supposedly because of the greater efficiency of momentum transport by macroscopic chunks
of fluid. This is, of course, an empirical concept very hard to quantify.

Influence of boundary conditions

Rotation effects have thus far been studied in the absence of boundaries. If now a boundary
is inserted that crosses the isobars, further adjustment would have to take place because no
flow is possible accross the boundary. This indicates that the adjustment process is strongly
affected by the presence of boundaries, at least in the neighborhood of those boundaries.

• Consider first the action of a stress at the horizontal surface. For instance, on the ocean
surface, this stress is due to the action of the wind. It produces a direct response called



Chapter 1: Physical background 27

the Ekman transport, which is principally confined to a thin layer near the ocean surface.
In fact, the Ekman transport is thought to be usually found within the upper mixed layer
of the ocean, which is mostly between 10 and 100m deep. A sudden change of wind can
cause oscillations in the Ekman transport of inertial period, or can reduce the amplitude of
preexisting oscillations.

If the wind stress were spatially uniform, the ocean below the mixed layer would be little
affected by the wind, which would produce a time-varying Ekman transport that is confined
to the near-surface region. However spatial variations in the wind (which of course occur)
cause spatial variations in Ekman transport. In other words, the Ekman flow will cause mass
to flow horizontally into some regions and out of others. This results in vertical motion. For
instance, if the horizontal flow is converging in a particular region, vertical motion away from
the boundary is required in order to conserve mass. The vertical velocity just outside the
boundary layer which is so produced is called the Ekman pumping velocity. It is this velocity
in the ocean that distorts the density field of the ocean and thereby causes the wind-driven
currents.

The stress at the underlying ocean (or land) surface, from the atmospheric point of view, is
a frictional drag whose magnitude is dependent on the strength of the wind, usually called
bottom friction. With the stress is associated an Ekman transport in the atmosphere whose
horizontal mass flux is opposite to that in the underlying ocean. Consequently variations in
Ekman transport produce Ekman pumping with a vertical mass flux that is the same in the
atmosphere as in the ocean.

Such a bottom friction exists also for the ocean. The boundary layer at the bottom of the
ocean (the benthic boundary layer) is much thinner than is the atmospheric boundary layer,
typically in the range 2 to 10m, which affects the relative importance of topographic effects.
Detailed modeling of the velocity structure of the boundary layer is therefore particularly
difficult.

The important feature of this process, called spin-down, is that the presence of (turbulent)
friction in general tends to reduce motion and make the system tend toward a state of rest.

• The second mechanism to be understood is the adjustment process in presence of side
boundaries. In fact, the presence of such a boundary implies that the longshore component
of the Coriolis acceleration vanishes at the boundary so that the mutual adjustment of the
longshore velocity field and the pressure field along the boundary is more like in a non-rotating
fluid than like in a rotating one.

This is certainly true in the extreme case in which there are two boundaries close together, as
in a narrow gulf or estuary. The rotation effects can be neglected at the first approximation
because the motion is mainly along the gulf and the component of the Coriolis acceleration in
this direction is negligible. At the next order of approximation, rotation modifies the flow in
two ways. One is to give a cross-channel pressure gradient in order to geostrophically balance
the longshore flow. The other is to produce a shear whenever the surface elevation departs
from its equilibrium level, this being required in order that potential vorticity be conserved.
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The narrow channel approximation can be applied with success to studies of tides and seiches
in gulfs, estuaries, and lakes, and even to tides in the Atlantic Ocean.

When the two sides of a channel are not close together, the question arises as how far from
the shore the longshore component of the Coriolis force can be neglected. The answer is a
distance of the order of the Rossby deformation radius, so channels must have width small
compared with this scale for the narrow-channel approximation to be valid. For wide channels,
there is a special form of adjustment near the boundary by means of a Kelvin wave whose
peculiarity is that it can travel along the coast in one direction only, and whose amplitude
is only significant within a distance of the order of the Rossby deformation radius from the
boundary. Note that the presence of boundaries also affects the Poincaré waves, but effects
of the end of the channel can be quite difficult to work out. Of course details are strongly
influenced by the complicated shape of the world’s oceans.

1.2 Mathematical modelling

The starting point of geophysical fluid dynamics is the premise that the dynamics of meteoro-
logical and oceanographic motions are determined by the systematic application of the fluid
continuum equations of motion. The dynamic variables generally required to describe the
motion are the density ρ, the vector velocity u, and certain further thermodynamic variables
like the temperature T or the internal energy per unit mass e.

1.2.1 Introducing a general mathematical framework

In the absence of sources or sinks of mass within the fluid, the condition of mass conservation
is expressed by the continuity equation

∂tρ+∇ · (ρu) = 0. (1.2.1)

Newton’s law of motion written for a fluid continuum takes the form

ρ(∂t + u · ∇)u = −∇p+ ρ∇φ+ F(u), (1.2.2)

meaning that the mass per unit volume times the acceleration is equal to the sum of the
pressure gradient force, the body force ρ∇φ where φ is the potential by which conservative
force such as gravity can be represented, and the frictional force F .

Unless the density is considered a constant, the momentum and continuity equation are insuf-
ficient to close the dynamical system. The first law of thermodynamics must be considered;
it can be written as

ρ(∂t + u · ∇)e = −pρ(∂t + u · ∇)ρ−1 + k∇2T + χ+ ρQ, (1.2.3)

where k is the thermal conductivity, T is the temperature, Q is the rate of heat addition per
unit mass by internal heat sources, and χ is the addition of heat due to viscous dissipation -
which is negligible in all situations to be discussed.



Chapter 1: Physical background 29

To complete the system, further thermodynamic state relations expressing the physical nature
of the fluid are required.

Mathematical features of geophysical fluids

For example, in the atmosphere the state relation for dry air is well-represented by the ideal-
gas law

ρ =
p

RT
, (1.2.4)

where R is the gas constant for dry air. The local conservation of energy then becomes

(∂t + u · ∇)θ =
θ

CpT

{
k

ρ
∇2T +Q

}
,

where the potential temperature θ is defined by

θ = T

(
p0

p

)R/Cp

,

for some reference pressure p0. We have denoted by Cp the specific heat at constant pres-
sure.Note that in the absence of conductive and internal heating θ is a conserved quantity for
each fluid element.

For the oceans, density differences are so slight that they have a negligible effect on the mass
balance, so that the local conservation of mass can be approximated by

∇ · u = 0, (1.2.5)

which is the incompressibility relation. Note that the incompressibility constraint does not
imply that the fluid is homogeneous, meaning that (∂t + u · ∇)ρ is generally not assumed to
vanish.

The Navier-Stokes model with Coriolis force

We noted earlier that the most natural frame for which to describe atmospheric and oceanic
motions is one which rotates with the planetary angular velocity Ω.

Let r be the position vector of an arbitrary fluid element. We have(
dr

dt

)
I

=
(
dr

dt

)
R

+ Ω ∧ r,

where the subscript I denotes rates of change as seen by the observer in the non-rotating
inertial frame. The velocity seen in the non-rotating frame uI is therefore equal to the velocity
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observed in the rotating frame augmented by the velocity imparted to the fluid element by
the solid-body rotation Ω ∧ r. We may write this as

uI = uR + Ω ∧ r,

where uR is called the relative velocity. As Newton’s law of motion equates the applied forces
per unit mass to the acceleration in inertial space, we have then to express this acceleration
in terms of quantities which are directly observed in the rotating frame :(

duI

dt

)
I

=
(
duI

dt

)
R

+ Ω ∧ uI

=
(
duR

dt

)
R

+ 2Ω ∧ uR + Ω ∧ (Ω ∧ uR) +
dΩ
dt

∧ r.

The discrepancy between the accelerations perceived in the different frames is equal to the
three additional terms on the right-hand side. They are the Coriolis acceleration 2Ω∧uR, the
centripetal acceleration Ω∧ (Ω∧ r) and the acceleration due to variations in the rotation rate
itself, which can be neglected for most oceanographic or atmospheric phenomena. Since the
centrifugal force can be written as a potential

Ω ∧ (Ω ∧ r) = −∇|Ω ∧ r|
2

2
,

it is included with the force potential. The Coriolis acceleration 2Ω ∧ r is therefore the only
new term which explicitly involves the fluid velocity, and it is responsible for the structural
change of the momentum equation.

If we note that spatial gradients are perceived identically in rotating and non-rotating coor-
dinate frames, the momentum equation becomes

ρ ((∂t + u · ∇)u+ 2Ω ∧ u) = −∇p+ ρ∇φ+ F . (1.2.6)

It is important to note that the total time rate change of any scalar such as the temperature
is the same in rotating as in non-rotating frames. Thus the equation of conservation of mass
and the various thermodynamic equations are unaffected by the choice of coordinate frame.

Boundary conditions

In most cases of interest the (turbulent) Ekman number E is sufficiently small that it might
appear that friction could be neglected. However, the viscosity ν is the coefficient of the
highest spatial derivatives and thus the fact that it is nonzero is quite important as regards
the mathematical structure of the equations of motion, and the number of boundary conditions
to be imposed.

If the surface ∂3O of the fluid layer is in contact with a solid surface, for instance in the
case of the bottom boundary of the ocean, the natural condition to be considered is a no-slip
condition :

u|∂3O ≡ 0.
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If the surface ∂3O of the fluid layer is free rather than in contact with a solid surface, for
instance in the case of the interface between the ocean and the atmosphere, the appropriate
boundary condition is continuity of pressure and continuity of frictional stress accross the
fluid surface

u|∂3O · n = 0, (ν(∇u+ (∇u)T )− p Id)|∂3O · n = constraint.

Then, for models of atmospheric phenomena the Ekman layer or some more elaborate model of
the friction layer at the lower boundary usually suffices to represent the frictional interaction
of the fluid and the boundary.

Models of oceanic (or lake) dynamics which explicitly recognize the fact that the water is
gathered together in basins have to be supplemented by a no-slip boundary condition at the
lateral boundaries :

u|∂hO ≡ 0.

In such a framewok one has generally to introduce side-wall friction layers whose structure
differ considerably from that of the Ekman layer.

1.2.2 Taking into account the geometry of the earth

The situation to be described is schematically depicted in Figure 1.10.

We consider motions on a sphere of radius r0, meaning that we will ignore ab initio the slight
departures of the figure of the earth from sphericity. The characteristic vertical scale of the
motion, D, is in all cases of interest small compared to r0 so that the effective gravitational
acceleration g can be considered constant over the depth of the fluid. The horizontal scale
motion L is large in the sense described in the first section (i.e., L is large enough so that the
Rossby number is small), but in the sequel we will focus our attention on the situation where
L is considerably smaller than r0.

The equations of motion in spherical coordinates

The coordinate system to be used in the spherical system is shown in Figure 1.11. The position
of any point in the fluid is fixed by r, θ and φ, which are the distance from the earth’s centre,
the latitude and the longitude respectively. The velocities in the eastward, northward, and
vertical directions are uφ, uθ and ur, as shown.

The equation for conservation of mass (1.2.1) in these spherical coordinates is

d

dt
ρ+ ρ

(
∂rur +

2ur

r
+
∂θ(uθ cos θ)
r cos θ

+
∂φuφ

r cos θ

)
= 0, (1.2.7)
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Figure 1.11: Spherical coordinates for the description of geophysical flows
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where the total time derivative is defined by

d

dt
= ∂t +

uφ

r cos θ
∂φ +

uθ

r
∂θ + ur∂r.

The momentum equations are

d

dt
uφ +

uφ(ur − uθ tan θ)
r

− 2Ω sin θuθ + 2Ω cos θur = − 1
ρr cos θ

∂φp+
Fφ

ρ
,

d

dt
uθ +

uruθ + u2
φ tan θ

r
+ 2Ω sin θuφ = − 1

ρr
∂θp+

Fθ

ρ
,

d

dt
ur −

u2
φ + u2

θ

r
− 2Ω cos θuφ = − 1

ρr
∂rp− g +

Fr

ρ
,

(1.2.8)

where Fφ,Fθ,Fr are the three components of the frictional forces acting on the fluid. The
equations of motion must as previously be completed with the addition of a thermodynamic
equation, for example the incompressibility constraint

∂rur +
2ur

r
+
∂θ(uθ cos θ)
r cos θ

+
∂φuφ

r cos θ
= 0. (1.2.9)

Consider now the description of a motion, in either the ocean or the atmosphere, whose
horizontal spatial scale of variation is given by the length scale L and whose horizontal ve-
locities are characterized by the velocity scale U . Geometrical considerations imply that if
the vertical scale of motion is D, the corresponding slope of a fluid element’s trajectory will
not exceed D/L, so that appropriate scaling for the vertical velocity is DU/L (note that the
actual scale of the vertical velocity may be less than DU/L if other dynamical constraints act
to reduce the vertical motion). The scaling of the pressure and density is more subtle. For
small Rossby number, the relative velocities are small and the pressure is expected to be only
slightly disturbed from the value it would have in the absence of motion, whereas the hori-
zontal pressure gradients should be of the same order as the Coriolis acceleration. Similarly
we may anticipate that the buoyancy force per unit mass will be of the same order as the
vertical pressure gradient, since an observed feature of large-scale motions is the excellence of
the hydrostatic approximation. Such considerations allow to scale the equations so that the
relative order of each term is clearly measured by the nondimensional parameter multiplying
it. It is then possible to systematically exploit the smallness of the parameters ε (Rossby
number), δ (aspect ratio), L/r0 and F = (2Ω sin θ0)2L2/gD. Note that these parameters are
all independent, and their relative orders will vary from phenomenon to phenomenon. The
nature of the approximations will depend on these relative orders. Below we present the
shallow water approximation, and refer for instance to [42] or [56] for other simplified models.
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Some geometrical approximations

• If the motion occurs in a mid-latitude region, distant from the equator, around a central
latitude θ0, it becomes convenient to introduce new longitude and latitude coordinates as
follows.

Define x1 and x2 by
x1 = φ

r0
L

cos θ0, x2 = (θ − θ0)
r0
L
. (1.2.10)

They are however measures of eastward and northward distance only at the earth’s surface
(r = r0) and at the central latitude θ0. Although x1 and x2 are in principle simply new
longitude and latitude coordinates in terms of which the equations of motion may be rewritten
without approximation, they are obviously introduced in the expectation that for small L/r0
and D/r0 they will be the Cartesian coordinates of the β-plane approximation as introduced
page 18. It is also convenient to introduce

x3 =
1
D

(r − r0),

so that
∂φ =

r0
L

cos θ0∂1, ∂θ =
r0
L
∂2, ∂r =

1
D
∂3.

To this point no approximation has been made.

As we focus our attention on the situation where L is considerably smaller than r0, the
trigonometric functions can be expanded about the latitude θ0 :

sin θ = sin θ0 +
L

r0
x2 cos θ0 −

(
L

r0

)2 x2
2

2
sin θ0 + ...,

cos θ = cos θ0 −
L

r0
x2 sin θ0 −

(
L

r0

)2 x2
2

2
cos θ0 + ...,

tan θ = tan θ0 +
L

r0
x2(cos θ0)−2 −

(
L

r0

)2 x2
2

2
tan θ0(cos θ0)−2 + ....

This allows to simplify system (1.2.7)(1.2.8) and (1.2.9) in the following way (where the
Coriolis force has not yet been approximated):

d

dt
ρ = 0,

d

dt
u1 − 2Ω sin

(
θ0 +

Lx2

r0

)
u2 + 2Ω cos

(
θ0 +

Lx2

r0

)
u3 =

1
ρL

∂1p+
F1

ρ
,

d

dt
u2 + 2Ω sin

(
θ0 +

Lx2

r0

)
u1 + 2Ω cos

(
θ0 +

Lx2

r0

)
u3 =

1
ρL

∂2p+
F2

ρ
,

d

dt
u3 − 2Ω cos

(
θ0 +

Lx2

r0

)
u1 + 2Ω cos

(
θ0 +

Lx2

r0

)
u2 =

1
ρD

∂3p− g +
F3

ρ
,

1
L

(∂1u1 + ∂2u2) +
1
D
∂3u3 = 0,

(1.2.11)
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where
d

dt
= ∂t +

1
L

(u1∂1 + u2∂2) +
1
D
u3∂3.

We then introduce

f0 = 2Ω sin θ0, β0 =
2ΩL
r0

cos θ0 =
(
L

r0

d

dθ
f

)
θ=θ0

as the reference Coriolis acceleration and northward gradient of the Coriolis parameter at the
latitude θ0. Note that

β0/f0

ε
∼ L

r0ε
·

Thus while ε measures the ratio of the relative vorticity and the planetary vorticity normal to
the sphere at θ0, the magnitude of the relative-vorticity gradient and the planetary vorticity
gradient is measured by the parameter εr0/L. While εmay be small, εr0/Lmay be large, order
one, or small, and each of these possibilities gives rise to a quite different quasigeostrophic
dynamical system.

- If the geographical zone to be considered is small, meaning that εr0/L >> 1, we will neglect
the variations of the Coriolis parameter and use the f -plane approximation :

sin θ ∼ sin θ0.

Most of the mathematical studies on geophysical flows deal with this framework. As the
Rossby operator has constant coefficients, one can make use of a powerful mathematical tool
to study the asymptotic behaviour of the fluid as the rotation rate tends to infinity : the
Fourier transform allows indeed to carry out explicit computations and to establish qualita-
tive properties of the Poincaré waves (dispersion, resonances...). Thereby, the rotating fluid
equations in the f -plane approximation have been the object of a number of mathematical
works in the past decade, and the second chapter of this survey aims at giving an overview
of the main results as well as the methods of proof.

- If the geographical zone to be considered is more extended, meaning that L/εr0 = O(1), more
subtle adjustment processes due to the variations of the Coriolis parameter, and characterized
by time scales large compared with f−1

0 have to be taken into account, which is done using
the mid-latitude β-plane approximation :

sin θ ∼ sin θ0 + β0x2.

This situation is much more complicated to study from a mathematical point of view than
the previous one, since the techniques based on the Fourier transform can no longer be used.
The works devoted to this study are presented in the third chapter, they essentially allow
to determine the mean motion of the fluid in the absence of boundaries : in particular we
do not get any description of the boundary layers. Concerning the waves, we obtain some
informations about the oscillating modes (which are the eigenmodes of the Rossby operator),
but nothing on their shape equations.
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• For motions near the equator, the approximations

sin θ ∼ θ, cos θ ∼ 1

may be used, giving what is called the equatorial β-plane approximation :

f ∼ β0x2 with β0 =
2ΩL
r0

= 2.3× 10−11m−1s−1 (1.2.12)

Note that half of the earth’s surface lies at latitudes of less then 30o and the maximum
percentage error in the above approximation in that range of latitudes is only 14 percent. In
particular, this approximation can usefully be applied over the whole of the tropics.

The shallow-water approximation

- Assuming that the aspect ratio is very small δ << 1, vertical motion can be neglected in view
of the scalings imposed by the incompressibility constraint. Indeed it is natural to consider
the non dimensional unknowns

ũ1 =
τ

L
u1, ũ2 =

τ

L
u2 and ũ3 =

τ

D
u3,

where τ is the order of the times to be considered. Rescaling time and plugging the previous
formulas in (1.2.11) leads to

(∂t + ũ · ∇)ρ = 0,

(∂t + ũ · ∇)ũ1 − 2Ω sin
(
θ0 +

Lx2

r0

)
ũ2 + 2Ω cos

(
θ0 +

Lx2

r0

)
δũ3 =

1
ρ
∂1p̃+

F1

ρ
,

(∂t + ũ · ∇)ũ2 + 2Ω sin
(
θ0 +

Lx2

r0

)
ũ1 + 2Ω cos

(
θ0 +

Lx2

r0

)
δũ3 =

1
ρ
∂2p̃+

F2

ρ
,

(∂t + ũ·)δũ3 − 2Ω cos
(
θ0 +

Lx2

r0

)
ũ1 + 2Ω cos

(
θ0 +

Lx2

r0

)
ũ2 =

1
ρδ
∂3p̃−

τ2

L
g +

F3

ρ
,

∇ · ũ = 0,

In particular, if the vertical viscosity is strong enough (for instance independent on δ), we
expect u to be asymptotically independent on the vertical variable. Thus taking formally
limits as δ → 0 we obtain the horizontal momentum equations

(∂t + ũh · ∇h)ũ1 − 2Ω sin
(
θ0 +

Lx2

r0

)
ũ2 =

1
ρ
∂1p̃+

F̃1

ρ
,

(∂t + ũh · ∇h)ũ2 + 2Ω sin
(
θ0 +

Lx2

r0

)
ũ1 =

1
ρ
∂2p̃+

F̃2

ρ
,

∂3uh = 0.

(1.2.13)

Note that this accounts for the fact that only the vertical component of the rotation of the
Earth f = 2Ω sin θ is considered.
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- If we suppose moreover that the Rossby deformation radius is very small S << 1 or in other
words that the fluid is almost homogeneous ρ ∼ ρ0, the pressure is given at leading order by
the hydrostatic law

p̃ = ρ0g̃η,

where g̃ is the non dimensional gravity constant, η is the depth variation due to the free surface,
and the continuity equation is, taking into account the form for the divergence operator,

∂tη +∇h · ((D + η)ũh) = 0 (1.2.14)

These sets of equations are the ones derived by Laplace, but with the tide-generating terms
omitted. Because a shallow layer is considered, r can be taken as a constant equal to the
radius of the earth.

Note that, from a theoretical point of view, it is not clear that the use of the shallow water
approximation is relevant in this context since the Coriolis force is known to generate vertical
oscillations which are completly neglected in such an approach. Indeed the components of the
Coriolis acceleration that are associated with the horizontal component of the rotation vector
are not everywhere small compared with the terms retained.

That very particular case is the matter of the mathematical works presented in the last
chapter. The results obtained are close to that of the third chapter, but because of the
equatorial trapping, the waves - in particular the Rossby waves - have decay properties which
allow to get a more precise strong convergence result. That is due to the fact that explicit
compputations can be written in that framework.
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Chapter 2

A simplified model for midlatitudes

2.1 Introduction

In this chapter we intend to study a model for the movement of the ocean at midlatitudes.
As explained in the introduction, at such latitudes the Coriolis acceleration can in a crude
approximation be considered as a constant, which makes the analysis much simpler than in
the case of the full model. This chapter is therefore devoted to the analysis of the so-called
“rotating fluid equations”, consisting in the three-dimensional Navier-Stokes system in which
a constant coefficient penalization operator has been added to account for the Earth rotation.
The model is the following:

(RFε)

{
∂tu+ u · ∇u−∆u+

1
ε
u⊥ = −1

ε
∇p

div u = 0,

where u⊥ = (u2,−u1, 0). We will be interested in the wellposedness of this system for a
fixed ε, as well as in the asymptotics of the solutions as ε goes to zero. We will by no
means be exhaustive in the presentation, neither in the various results that can be found
in the literature nor in the proofs. The aim of this chapter is rather to give an insight to
the questions usually addressed when dealing with this type of system, and to the methods
commonly used to answer them. Those methods will be used in the coming chapters in more
realistic situations (the Coriolis force will no longer be constant), and we feel it can be useful
to present them first in this easier, though unrealistic model.

The question of the wellposedness of this system can be dealt with quite easily, considering
the skew-symmetry of the rotation operator. This is explained in Paragraph 2.3 below. More
interesting is the question of the asymptotic behaviour of the solutions as ε goes to zero. As
noted in the introduction, we expect by the Taylor-Proudman theorem a two dimensional
behaviour at the limit. We show in Paragraph 2.4 that this is indeed the case, as long as weak
limits are considered, rather than strong. Paragraph 2.5 is devoted to strong asymptotics,
where we will see that it all depends on the boundary conditions imposed on the system. We

39
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will mainly focus on two types of boundary conditions, which lead to two very different types
of convergence results. In Section 2.5.1 we consider the case when the equations are set in R3.
This is highly unrealistic, but the fact that the rotation is constant allows to write explicit
calculations in Fourier space, and in particular the formulas found for the eigenvalues of the
Coriolis operator enable us to exhibit an interesting dispersive behaviour for the Coriolis
operator; thus we are able to deduce a strong convergence result towards a vector fields
satisfying the two dimensional Navier-Stokes system. Section 2.5.2 is devoted to the periodic
case: the three variables are supposed to be periodic, and in that case dispersion cannot
hold; it is replaced by a highly oscillatory behaviour, where the oscillations are linked to the
eigenvalues of the Coriolis operator; once again those can be explicitly computed, due to the
absence of boundary conditions and to the fact that the rotation is constant. It is only once
those oscillations have been filtered out that a strong convergence result can also be proved.
In both situations (the whole space case and the periodic case), the global existence of smooth
solutions for a large enough rotation is also proved, using the special structure of the limiting
system in each case. A word on more general domains is said in Section 2.5.3, while references
can be found in Section 2.6. Finally the main results of this chapter are stated in the next
section.

2.2 Statement of the main results

As explained in the introduction of this chapter, we are interested in the uniform existence
of solutions to (RFε), as well as in the asymptotic behaviour of the solutions in the limit of
a fast rotation, that is, as ε goes to zero. To simplify the presentation, we will restrict our
attention to the case when the equations are set in a domain with no boundary. We will call Ω
such a domain, and we will denote by Ωh the space of horizontal coordinates xh = (x1, x2).
Then Ωh will be indifferently the space R2 or T2, and Ω3, defined by Ω = Ωh × Ω3, will be
indifferently R or T, unless specified otherwise. Let us start by stating the uniform existence
theorem, which will be easily proved in Section 2.3 below.

Theorem 2.1 Let u0 be a divergence free vector field in L2(Ω). Then there is a solution u (in
the sense of distributions) to (RFε) with u|t=0 = u0, and which satisfies the following energy
estimate, uniformly in ε:

∀t ≥ 0, ‖u(t)‖2
L2 + 2

∫ t

0
‖∇u(t′)‖2

L2 dt
′ ≤ ‖u0‖2

L2 .

In particular u is bounded in L2
loc(R

+, Lq(Ω)) for any q ∈ [2, 6].

Furthermore if u0 ∈ H
1
2 (Ω), then there is a time T > 0 independent of ε such that u

belongs to C([0, T ],H
1
2 (Ω))∩L2([0, T ],H

3
2 (Ω)), with a norm independent of ε, and all solutions

associated with u0 coincide with u on [0, T ].

Remark 2.1 As usual the pressure is not considered as an unknown in this system, since
once u is known, p is retrieved through the formula

−∆p = div (u · ∇u) +
1
ε
div u⊥.
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The important point to notice in that statement is the fact that all bounds are uniform in ε.
It therefore makes sense to inquire on the limiting behaviour of the solution as ε goes to zero.
In particular can one describe the dependence of the life span T on ε? Can one find a limit to
the system as ε goes to zero? In the following we will emphasize the dependence on ε of the
solutions given by Theorem 2.1 by denoting them uε. They will therefore be seen as a bounded
(in L2) family of divergence free vector fields, whose asymptotics as ε goes to zero we want to
explore. We will start by studying the weak asymptotics, and recover the Taylor-Proudman
theorem, stating that as rotation increases, the mean flow becomes two dimensional. The
proof of the following result can be found in Section 2.4 below. We have noted ∇h

def= (∂1, ∂2),

divh
def= ∇h·, and ∆h

def= ∂2
1 + ∂2

2 . Moreover for any vector field u = (u1, u2, u3) we define uh =
(u1, u2). In the next theorem we have defined |Ω| as the measure of the set Ω if it is bounded,
and |Ω|−1 = 0 otherwise.

Theorem 2.2 Let u0 be any divergence free vector field in L2, and let uε be any weak solution
of (RFε). Then uε converges weakly in L2

loc(R
+×Ω) to a limit u which if Ω3 = R is zero, and

if Ω3 = T is the solution of the two dimensional Navier–Stokes equations in Ωh

(NS2D)


∂tu−∆hu+ uh · ∇hu = (−∇hp, 0)

divhuh = 0

u|t=0 =
∫
T
u0(xh, x3) dx3 −

1
|Ω|

∫
Ω
(u0

h(x), 0) dx.

Remark 2.2 We recall that J. Leray proved in [37] that a unique, global solution to the two
dimensional Navier-Stokes equations exists, as soon as the initial data is in L2.

Once the mean flow has been described, it is natural to address the question of the strong
convergence of solutions. In fact the answer to that question depends strongly on the boundary
conditions. We will be mainly interested in two very different situations here: the case when
the equations are posed in the whole space, and the periodic case. Let us state the theorem
concerning each situation, starting by the whole space case which is studied in Section 2.5.1.

Theorem 2.3 Let u0 and w0 be two divergence free vector fields, respectively in L2(R2)
and in L2(R3). Let u be the unique solution of the two dimensional Navier-Stokes equations
associated with u0, and let uε be any weak solution to (RFε) associated with u0 + w0 (such
a solution may be constructed as in Theorem 2.1 above). Then for any q ∈]2, 6[ and for any
time T , we have

lim
ε→0

∫ T

0
‖uε(t)− u(t)‖2

Lq(R3)
dt = 0.

Remark 2.3 Theorem 2.3 shows that the weak convergence result stated in Theorem 2.2 is
in fact strong. All x3-dependent vector fields converge strongly to zero as ε goes to zero, and
at the limit remains only the two- dimensional behaviour — note that the presence of u0 in
the initial data enables one to understand precisely that two-dimensional behaviour; if the
initial data is purely three-dimensional (that is, if u0 = 0), then Theorem 2.3 states that all
weak solutions uε converge strongly to zero with ε.



42 Chapter 2: A simplified model at midlatitudes

The main ingredient in the proof of that result is a dispersive estimate, implying that the
eigenvectors corresponding to the oscillatory modes created by the Coriolis operator converge
strongly to zero. That fact, when applied to strong solutions, will enable us to prove the global
wellposedness of (RFε), despite its likeness to the 3D Navier-Stokes equations for which such
a result is unknown. We state the result in an unprecise way here, and refer to Theorem 2.7
page 55 for a precise statement.

Theorem 2.4 Let u0 and w0 be two divergence free vector fields, respectively in L2(R2)
and H

1
2 (R3). Then a positive ε0 exists such that for all ε ≤ ε0, there is a unique global

solution uε to the system (RFε) associated with u0 + w0.

We will also be interested in the periodic situation. In that case the equations are set in a
periodic box T3 def= (R/Z)3, and we will also be able to prove the global existence of strong
solutions; however the asymptotic behaviour of the solutions is less easy to describe: due to
the absence of dispersion, we need to filter out the oscillatory modes before taking the strong
limit. In the next theorem we have defined the operator L(t) = etL where L is the Coriolis
operator

L : u ∈ L2 7→ P(u⊥) ∈ L2 (2.2.1)

and P denotes the Leray projection from L2(Ω) onto its subspace of divergence-free vector
fields. In that statement, a limit system is also referred to, which will be studied in Sec-
tion 2.5.2. That system is presented page 58, and the main steps of the result are described
in Section 2.5.2.

Theorem 2.5 Let u0 be a divergence free vector field in H
1
2 (T3). Then a positive ε0

exists such that for all ε ≤ ε0, there is a unique global solution to the system (RFε)
in Cb(R+;H

1
2 (T3)) ∩ L2(R+;H

3
2 (T3)) associated with u0. Moreover we have

lim sup
ε→0

(
uε − L(

t

ε
)u
)

= 0 in L∞(R+;H
1
2 (T3)) ∩ L2(R+;H

3
2 (T3)),

where u is the unique, global solution of the limit system (RFL) page 58 associated with u0.

Remark 2.4 Let us compare this theorem with Theorem 2.4 stated above. As far as the life
span of the solutions is concerned, those two theorems state essentially the same result: for
any initial data, if the rotation is large enough, then the rotating fluid equations are globally
wellposed, although they are very like the 3D Navier-Stokes equations, for which that is an
open question. In other words, the rotation term has a stabilizing effect. In the case of the
whole space R3 this global wellposedness for small enough ε is due to the fact that the Rossby
waves go to infinity immediately; that is a dispersive effect. In the case of the torus, there is of
course no such dispersive effect (at least for uniform time intervals). The global wellposedness
comes in a totally different way: it is a consequence of the analysis of resonances of Poincaré
waves in the non linear term v · ∇v, using again the explicit formulation of the eigenvalues
of the Coriolis operator, in Fourier variables. As far as the asymptotics are concerned, the
statements of Theorems 2.3 and 2.5 are very different since in the whole space case, there is
no trace of the rotation at the limit whereas in the periodic case, the limit system includes
spectral information on the rotation operator.
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The rest of this chapter is devoted to the proof of those results.

2.3 Uniform existence

In this short section we address the question of the wellposedness of system (RFε) and we
prove Theorem 2.1. This system is very like the three dimensional Navier-Stokes system, for
which it is well known that global (possibly not unique) weak solutions exist if the initial data
is of finite energy (meaning it belongs to L2). Furthermore local in time, unique solutions exist
if the initial data is smooth enough (say in the Sobolev space H

1
2 ). The proof of both those

results relies on energy estimates, the main ingredient consisting (formally) in the first case
in multiplying scalarly the system by u, and by ∇u in the second — of course there is much
more to the proofs than that calculation, and we refer to [36] and [20] for the original proofs,
and for instance to [13] for a more recent presentation (as well as the application to (RFε)).
Since the Coriolis operator is skew-symmetric in every Sobolev space, in the sense that for
any s ∈ R,

(u⊥ | u)Hs = 0,

the previous proofs go unchanged if we add the rotation term to the Navier-Stokes equa-
tions. Theorem 2.1 follows therefore immediately, once the corresponding proofs for the three
dimensional Navier-Stokes system are known.

2.4 Weak asymptotics

In this section we are going to describe the weak limiting behaviour of uε, and prove Theo-
rem 2.2. Let us start by making some general comments on the asymptotics of uε as ε goes
to zero. As the family (uε)ε>0 is bounded in the energy space, up to the extraction of a
subsequence it has a weak limit point u. Formally taking the limit in the equation satisfied
by uε allows to expect the weak limit points u to satisfy

div u = 0 and u⊥ = −∇p

for some function p. It is easy to see that, in the absence of nonvanishing boundary conditions,
this is equivalent to the fact that ∂3u = 0 and divh uh = 0. We therefore formally recover the
Taylor-Proudman theorem: the mean motion at the limit is governed by a two-dimensional,
divergence free vector field. Let us now find rigorously the nature of the weak limit points
of uε. Below Ḣ1(Ω) denotes the homogeneous Sobolev space of order one, made of the
distributions f such that ∇f belongs to L2(Ω).

Proposition 2.5 Let u0 be any divergence free vector field in L2(Ω). Denote by (uε)ε>0

a family of weak solutions of (RFε), and by u any of its limit points. Then u is a three
component, divergence free vector field satisfying

u ∈ L∞(R+;L2(Ωh) ∩ L2(Ω)) ∩ L2(R+; Ḣ1(Ωh)).
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Moreover we have

∫
Ωh

uh(t, xh) dxh = 0.

Remark 2.6 If Ω3 = R then the only possible limit point is 0. Indeed there are no vector
fields other than 0 which are in L2(Ωh ×R) and do not depend on the vertical variable.

Proof of Proposition 2.5. The proof simply consists in multiplying (RFε) by a divergence-
free test function εχ, where χ ∈ D(R+×Ω). Integrating with respect to t and x gives directly,
using the bounds coming from the energy estimate, that u ∈ Ker(L), where L was defined
in (2.2.1). Then it is just a matter of determining the kernel of L, and an easy computation
gives the following proposition. We omit the proof here (for the interested reader, it is written
in Chapter 3 in a more general case, see Proposition 3.3).

Proposition 2.7 If u is a divergence free vector field in L2(Ω) belonging to Ker(L), then u
is in L2(Ωh) and satisfies the following properties:

divh uh = 0 and

∫
Ωh

uh dxh = 0.

The next question consists in finding the evolution equation satisfied by u. Due to Remark 2.6,
we shall now consider only the case when Ω3 = T. Moreover to simplify we normalize T in

the following so that
∫
T
dx3 = 1.

The idea to find the limit equation is to take weak limits in (RFε), the difficulty coming of
course from the nonlinear terms. The first step of the analysis consists in proving the compact-
ness of the vertical average of uε. The second step then consists in proving a compensated-
compactness type result to show that there are no constructive interferences of x3-dependent
vector fields.

2.4.1 Compactness of vertical averages

Let us start by proving the following proposition, which shows that the defect of compactness
of the sequence of solutions uε can only be due to functions depending on the vertical variable.

Proposition 2.8 Let u0 be any divergence free vector field in L2. For all ε > 0, denote by uε

a weak solution of (RFε), and define

uε(xh) def=
∫
T
uε(x) dx3 and uε

def=
1
|Ωh|

∫
Ωh×T

(uε,h(x), 0) dx.

Then the sequence (uε − uε)ε>0 is strongly compact in L2([0, T ]× Ωh), for all times T .

Proof of Proposition 2.8. Let us take the vertical average of (RFε). Since horizontal
mean free, x3-independent vector fields are in the kernel of L due to Proposition 2.7, we have∫

T
P(u⊥ε ) dx3 −

1
|Ωh|

∫
Ωh×T

P(u⊥ε ) dx = P
(
(uε − uε)⊥

)
= 0.
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It follows that
∂t(uε − uε)−∆huε + P

∫
T
uε(x) · ∇uε(x) dx3 = 0. (2.4.1)

Regularity with respect to space variables follows from the energy estimate, since uε is uni-
formly bounded in L2([0, T ],H1(Ω)) for all times T . Regularity with respect to time is
obtained classically by finding an a priori bound on ∂t(uε − uε). It is indeed easy to see
that uε·∇uε is bounded in L2(R+;H−3/2(Ω)), and that ∆uε is bounded in L2(R+; Ḣ−1(Ω)) ⊂
L2(R+;H−3/2(Ω)), so ∂tuε is uniformly bounded in L2(R+;H−3/2(Ωh)). We can therefore
infer by interpolation (using Aubin’s lemma for instance) that (uε−uε)ε>0 is strongly compact
in L2

loc(R
+;L2(Ωh)), which proves the proposition.

We infer from that result that x3-dependent vector fields are the only obstacles to taking
the limit in the non linear term. We are going to see that such vector fields do not interfere
constructively in the non linear term of the equation.

2.4.2 The weak limit of the nonlinear term

This section is the main step of the analysis of the weak limiting behaviour of (RFε), since it
consists in proving that when taking the limit of the nonlinear term, there are no constructive
interferences of oscillations. We will start by giving the general strategy of the proof, before
going into the details.

Strategy of the proof

Our aim is to prove that the limit of the nonlinear term only involves the nonlinear interaction
of the weak limit. More precisely we want to prove that as ε goes to zero, we have

P
∫
T
uε · ∇uεdx3 → P(u · ∇u),

where u is a weak limit of uε. Of course that convergence must be made more precise, in
particular we need to determine in what function space it holds. In fact since we are dealing
with nonlinear quantities involving weak solutions to our system, it will be convenient to
start by regularizing the family uε by introducing a smooth vector field uδ

ε which converges
uniformly towards uε in L2

loc(R
+;L2(Ω)) as δ goes to zero. That is possible due to the

additional smoothness of uε given by the Laplacian. Then we will be able to carry out
computations on nonlinear quantities involving uδ

ε without worrying about regularity issues
(only at the very end of the argument will we let δ go to zero). Those computations consist
in writing out the nonlinear term uδ

ε · ∇uδ
ε as the expected limit u · ∇u, to which one needs to

add error terms. Those error terms naturally involve functions which are oscillatory in time,
and using the algebraic properties of the wave equations associated with those oscillatory
functions (see Lemma 2.9), it is possible to prove that they contribute to negligible quantities,
up to gradient terms. The precise statement is given in Proposition 2.10 below.

In the following we will therefore start by writing out those wave equations, applied to
smoothened vector fields. It turns out that the computations are best carried out on the
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vorticity formulation of the equation (since the vector fields are smooth for a fixed δ, that
does not create additional regularity problems). Using those equations given in Lemma 2.9,
we are then able to prove the expected convergence of the quadratic term (Proposition 2.10).

Convergence of the quadratic term

The proof of that result requires some preparation, and we will start this study by rewriting
the equations in a convenient way for future algebraic computations. Let us start by taking
the rotational of the equation, by defining

ωε
def= ∂1uε,2 − ∂2uε,1 and ∂3Ω̃ε,h

def= (rot ũε)h = ∇⊥
h ũε,3 − ∂3ũ

⊥
ε,h,

with
∫
T

Ω̃ε,h(x) dx3 = 0. We write, for any vector field a,

a(xh) =
∫
T
a(xh, x3) dx3 and ã = a− a, with

∫
T
ã(xh, x3) dx3 = 0.

In particular we have ã = ∂3Ã, with
∫
T
Ã(xh, x3) dx3 = 0. Equation (2.4.1) derived in the

previous section implies that

ε∂tωε = ε(∂1F ε,2 − ∂2F ε,1)

where Fε denotes the flux term

Fε
def= ∆huε −P∇· (uε ⊗ uε).

It is easy to see that (∂1Fε,2 − ∂2Fε,1) is bounded in L2(R+;H−5/2(Ω)) (see for instance the
proof of Proposition 2.8), so we can write

ε∂tωε = εrε, where rε is uniformly bounded in L2(R+;H−5/2(Ω)).

Similarly an easy computation yields the following equation for ω̃ε:

ε∂tω̃ε − divhũε,h = εr̃ε, where r̃ε is uniformly bounded in L2(R+;H−5/2(Ω)).

For the other components of the vorticity, the computations are similar: since ∇∧u⊥ε = ∂3uε,
we find after integration in the vertical variable

ε∂tΩ̃ε,h + ũε,h = εR̃ε, where R̃ε is uniformly bounded in L2(R+;H−5/2(Ω)).

Now let us proceed with the regularization: let κ ∈ C∞c (R3;R+) such that κ(x) = 0 if |x| ≥ 1

and
∫

Ω
κdx = 1. We define

κδ : x 7→ 1
δ3
κ
( .
δ

)
(2.4.2)

as well as
ωδ

ε
def= ωε ∗ κδ = ωδ

ε + ω̃δ
ε , and Ω̃δ

ε
def= Ω̃ε ∗ κδ.

It is not difficult to see that the following result holds. We leave the details to the reader
(see [24]).
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Lemma 2.9 Let u0 be any divergence free vector field in L2. For all ε > 0, denote by uε a
weak solution of (RFε). Then, for all ε > 0, there is a family (uδ

ε)δ>0 of smooth vector fields
in L2(R+;∩sH

s(Ω)) such that

lim
δ→0

uδ
ε = uε in L2

loc(R
+;Lp(Ω)) for all p ∈ [2, 6[, uniformly in ε,

and such that the functions

ωδ
ε

def= ∂1u
δ
ε,2 − ∂2u

δ
ε,1 and ∂3Ω̃δ

ε,h
def=
(
rot ũδ

ε

)
h
, with

∫
T

Ω̃δ
ε,h(x) dx3 = 0

satisfy the following equations:

ε∂tω
δ
ε = εrδ

ε,

ε∂tω̃
δ
ε − divhũ

δ
ε,h = εr̃δ

ε ,

and ε∂tΩ̃δ
ε,h + ũδ

ε,h = εR̃δ
ε,h

where for all δ > 0, the functions rδ
ε and r̃δ

ε , as well as the vector field R̃δ
ε,h are uniformly

bounded in ε in the space L2(R+;L2(Ω)).

With that lemma we are ready to study the limit of the non linear term. Let us give the main
steps of the proof of the following result.

Proposition 2.10 Let u0 be any divergence free vector field in L2. For all ε > 0, denote
by uε a weak solution of (RFε), and by (uδ

ε)δ>0 the approximate family of Lemma 2.9. Then
for any ε > 0 and any δ > 0, we have∫
T

(
uδ

ε · ∇uδ
ε

)
h
dx3 = −ωδ

ε,h(uδ
ε,h)⊥+∇h

∫
T

|uδ
ε|2

2
dx3−∇h

|uδ
ε,3|2

2
+ε∂t

∫
T
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3+ερδ

ε,h,

and ∫
T

(
uδ

ε · ∇uδ
ε

)
3
dx3 = divh(uδ

ε,3u
δ
ε,h) +

1
2
ε∂t

∫
T

(Ω̃δ
ε,h · ∂3(Ω̃δ

ε,h)⊥) dx3 + ερδ
ε,3,

where the vector field ρδ
ε satisfies

∀δ > 0, ∀T > 0, sup
ε>0

‖ρδ
ε‖L1([0,T ];L6/5(Ω)) < +∞.

Proof of Proposition 2.10. Since uδ
ε is divergence free, we have

uδ
ε · ∇uδ

ε = ∇ · (uδ
ε ⊗ uδ

ε) = ∇|u
δ
ε|2

2
− uδ

ε ∧ (∇∧ uδ
ε), (2.4.3)

so we shall now restrict our attention to the term uδ
ε ∧ (∇∧ uδ

ε). We have of course∫
T
uδ

ε ∧ (∇∧ uδ
ε) dx3 = uδ

ε ∧ (∇∧ uδ
ε) +

∫
T
ũδ

ε ∧ (∇∧ ũδ
ε) dx3. (2.4.4)
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Let us start by considering the first term in the right-hand side of (2.4.4). A direct computation
gives

uδ
ε ∧ (∇∧ uδ

ε) =
1
2
∇|uδ

ε,3|2 + ωδ
ε,h(uδ

ε,h)⊥ − divh(uδ
ε,3u

δ
ε,h)e3.

To compute the second term in the right-hand side of (2.4.4), we will use the equations derived
in Lemma 2.9. To simplify the presentation we shall set to zero all remainder terms appearing
in that lemma. We have

ũδ
ε ∧ (∇∧ ũδ

ε) =

(
(ũδ

ε,h)⊥ω̃δ
ε − ∂3(ũδ

ε,3(Ω̃
δ
ε,h)⊥)− divhũ

δ
ε,h(Ω̃δ

ε,h)⊥

−(ũδ
ε,h)⊥ · ∂3Ω̃δ

ε,h

)
. (2.4.5)

Let us study first the horizontal components in (2.4.5): by Lemma 2.9, neglecting all remainder
terms, we have

(ũδ
ε,h)⊥ω̃δ

ε − divhũ
δ
ε,h(Ω̃δ

ε,h)⊥ = −ε∂t(Ω̃δ
ε,h)⊥ω̃δ

ε − divhũ
δ
ε,h(Ω̃δ

ε,h)⊥.

But by Lemma 2.9 again, we have

−divhũ
δ
ε,h = −ε∂tω̃

δ
ε ,

so ∫
T

(
ũδ,⊥

ε,h ω̃
δ
ε − divhũ

δ
ε,h(Ω̃δ

ε,h)⊥
)
dx3 = −ε∂t

∫
T

(Ω̃δ
ε,h)⊥ω̃δ

ε dx3.

Now we are left with the last term in (2.4.5), which is the third component: we can write, by
Lemma 2.9,

ũδ
ε,h = −ε∂tΩ̃δ

ε,h,

so
(ũδ

ε,h)⊥ · ∂3Ω̃δ
ε,h = −ε∂t(Ω̃δ

ε,h)⊥ · ∂3Ω̃δ
ε,h.

Then we just need to notice that

ε∂t(Ω̃δ
ε,h)⊥ · ∂3Ω̃δ

ε,h = −1
2
ε∂t

(
Ω̃δ

ε,h · (∂3Ω̃δ
ε,h)⊥

)
+

1
2
∂3

(
Ω̃δ

ε,h · (ε∂tΩ̃δ
ε,h)⊥

)
.

Putting those computations together yields finally the proposition. Note that the regulariza-
tion procedure is useful here, as the (omitted) remainder terms go to zero in the expected
functional space as ε goes to zero, for all δ > 0. The parameter δ will go to zero at the very
end of the argument leading to the theorem.

That result enables us easily to infer the following corollary.

Corollary 2.11 Let u0 be any divergence free vector field in L2. For all ε > 0, denote by uε

a weak solution of (RFε). Then for any vector field φ ∈ H1 ∩Ker (L), we have the following
limit in W−1,1([0, T ]) for any T > 0:

lim
ε→0

(∫
Ω
∇ · (uε ⊗ uε) · φ(xh) dx−

∫
Ωh

∇h · (uε ⊗ uε) · φ(xh) dxh

)
= 0.
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Now we are ready to prove the convergence theorem.

Proof of Theorem 2.2. The proof of Theorem 2.2 follows quite easily from the previous
results: we have seen that uε converges weakly in L2([0, T ] × Ω) towards a vector field u
depending only on the horizontal variable and mean free, due to Proposition 2.5. Then
we proved that uε − uε is strongly compact, therefore converges strongly towards u in the
space L2([0, T ] × Ω) (since u = u and u = 0). Finding the equation satisfied by the limit
is therefore a matter of computing the limit of Equation (2.4.1). The linear terms converge
in the sense of distributions of course, and to find the limit of the nonlinear term we use
Proposition 2.11 as well as the following weak-strong limit argument: we have

∇ · (uε ⊗ uε) = ∇ · (uε ⊗ (uε − uε)) +∇ · ((uε − uε)⊗ uε))) +∇ · ((uε − uε)⊗ (uε − uε)).

The two first terms converge towards zero in D′(Ω) since uε−uε is compact and uε converges
weakly to zero, whereas the last term satisfies

∇ · ((uε − uε)⊗ (uε − uε)) → ∇ · (u⊗ u) in D′(Ω).

That gives the expected result: the limit u satisfies the two dimensional Navier-Stokes equation

∂tu−∆hu+ P∇h · (u⊗ u) = 0.

Theorem 2.2 is proved.

We therefore recover as expected the Taylor-Proudman theorem. Now the question consists in
making that convergence result more precise, by describing more finely the oscillations of uε.
We have seen that they do not contribute to the limiting behaviour of the system, but it
remains to understand if they are actually an obstruction to the strong convergence or not.
The answer to that question depends on the boundary conditions, as shown in the following
section where the case of the whole space R3 and the periodic case are studied. As pointed
out in the introduction, the fact that the rotation is constant will enable us to describe very
precisely the oscillations, by use of the Fourier transform.

2.5 Strong asymptotics

In this section we are going to prove precised versions of Theorem 2.2, by analyzing the strong
asymptotics of uε. We will mainly focus on two situations, first the case when the equations
are set in the whole space R3 (proving Theorems 2.3 and 2.4), and then the periodic case
(proving Theorem 2.5). Comments on more general boundary conditions can be found in
Paragraph 2.5.3.

2.5.1 The whole space case

Let us suppose here that the equations are set in R3, and let us consider again a family of
weak solutions to (RFε). Due to the result proved in the previous section, we know that
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the weak limit of any such family is necessarily zero, and the question is to know whether it
converges strongly or not. The answer is given in Theorem 2.3, where in order to give a more
general statement we have considered the case when the initial data is the sum of a purely
two-dimensional vector field (with possibly three components) and a three dimensional vector
field.

Proof of Theorem 2.3. We shall leave as an exercise to the reader the proof of the
existence of a solution to (RFε) with initial data u0 + w0 in L2(R2) + L2(R3), which is an
easy adaptation of Proposition 2.3. The main ingredient of the proof of the strong convergence
result is a so-called “Strichartz estimate” on the Coriolis operator, which we will write now.
Let us consider the linearized equations

(LRε)


∂tv −∆v +

v⊥

ε
+∇p = f

div v = 0
v|t=0 = v0,

which yields in Fourier variables ξ ∈ R3 ∂tv̂ + |ξ|2v̂ +
ξ3v̂ ∧ ξ
ε|ξ|2

= f̂

v̂|t=0 = v̂0.

We will denote by f̂ or Ff the Fourier transform of any function or vector field f , defined by

Ff(ξ) =
∫
R3
e−ix·ξf(x) dx.

The matrix Mv
def=

ξ3v ∧ ξ
|ξ|2

has three eigenvalues, 0 and ±i ξ3
|ξ|
· The associate eigenvectors are

e0(ξ) = t(0, 0, 1) and

e±(ξ) =
1√

2|ξ||ξh|
t
(
ξ1ξ3 ∓ iξ2|ξ|, ξ2ξ3 ± iξ1|ξ|,−|ξh|2

)
.

The precise value of those vectors will not be necessary for our study; all we shall need to
know is that the last two are divergence free, in the sense that ξ · e±(ξ) = 0. Furthermore
they are orthogonal, in the sense that if v belongs to L2(R3) then

‖v‖2
L2 = ‖v+‖2

L2 + ‖v−‖2
L2 where v±

def= F−1
(
(v̂(ξ) · e±(ξ))e±(ξ)

)
.

We are now led to studying the application

Gε,±(τ) : g 7→
∫
R3

ξ

ĝ(ξ)e±iτ
ξ3
|ξ|−τε|ξ|2+ix·ξ

dξ =
∫
R3

ξ ×R3
y

g(y)e±iτ
ξ3
|ξ|−τε|ξ|2+i(x−y)·ξ

dξdy,

and we will start by considering the case when ĝ is supported in Cr,R for some r < R, where

Cr,R = {ξ ∈ R3 / |ξ3| ≥ r and |ξ| ≤ R}. (2.5.1)
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In that situation we can multiply ĝ(ξ) in the previous formula by a function ψ in D(R3 \{0}),
such that ψ ≡ 1 in a neighborhood of Cr,R, and which is radial with respect to the horizontal
variable ξh = (ξ1, ξ2). For instance we suppose that ψ is supported in the set Cr/2,2R. We are
now led to studying the following function:

K±(t, τ, z) def=
∫
R3

ξ

ψ(ξ)e±iτa(ξ)+iz·ξ−t|ξ|2 dξ, where a(ξ) def=
ξ3
|ξ|
·

The following result is the main step of the proof of Strichartz estimates; it is a dispersion
estimate.

Lemma 2.12 For any (r,R) such that 0 < r < R, a constant Cr,R exists such that ∀z ∈ R3,

|K±(t, τ, z)| ≤ Cr,R min{1, τ−
1
2 }e−

1
2
r2t.

Proof of Lemma 2.12. For the sake of simplicity we will only consider K+, the term K−

being dealt with exactly in the same way. This proof is very like the proof of the more usual
dispersive estimate for the wave equation. First using the rotation invariance in ξh, we restrict
ourselves to the case when z2 = 0. Next, denoting α(ξ) def= −∂ξ2a(ξ) = ξ2ξ3/|ξ|3, we introduce
the following differential operator:

X def=
1

1 + τα2(ξ)
(1 + iα(ξ)∂ξ2) ,

which satisfies X (eiτa) = eiτa. Integrating by parts, we obtain

K+(t, τ, z) =
∫
R3
eiτa(ξ)+iz1ξ1+iz3ξ3

(
tX (ψ(ξ)e−t|ξ|2)

)
dξ.

Easy computations yield

tX
(
ψ(ξ)e−t|ξ|2

)
=
(

1
1 + τα2

− i(∂ξ2α)
1− τα2

(1 + τα2)2

)
ψ(ξ)e−t|ξ|2 − iα

1 + τα2
∂ξ2

(
e−t|ξ|2ψ(ξ)

)
.

As ξ belongs to the support of ψ, which is supposed to be included in Cr/2,2R as defined
in (2.5.1), we can prove that ∣∣∣tX (ψ(ξ)e−t|ξ|2

)∣∣∣ ≤ Cr,R

1 + τξ22
e−

1
2
tr2

so we obtain, for all z ∈ R3 ,

|K+(t, τ, z)| ≤ Cr,Re
− 1

2
tr2

∫
R

dξ2
1 + τξ22

,

which proves Lemma 2.12.

Lemma 2.12 yields the following theorem, whose proof is quite classical in the context of
Strichartz estimates (it is based on the so-called TT ∗ argument) and is omitted.
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Theorem 2.6 For any positive constants r and R such that r < R, let Cr,R be the frequency
domain defined in (2.5.1). Then a constant Cr,R exists such that if v0 ∈ L2(R3) and f ∈
L1(R+;L2(R3)) are two vector fields whose Fourier transform is supported in Cr,R, and if v
is the solution of the linear equation (LRε) with forcing term f and initial data v0, then for
all p ∈ [1,+∞],

‖v‖Lp(R+;L∞(R3)) ≤ Cr,R ε
1
4p

(
‖v0‖L2(R3) + ‖f‖L1(R+;L2(R3))

)
.

We see that the solution of the linearized equations converges strongly to zero as ε goes to
zero. Now let us conclude the proof of Theorem 2.3. We define wε = uε−u, and we are going
to prove that wε goes to zero as ε goes to zero, in L2

loc(R
+;Lq(R3)) for any 2 < q < 6. One

can prove, by an energy estimate on the equation satisfied by wε, that

∀t ≥ 0, ‖wε(t)‖2
L2 +

∫ t

0
‖∇wε(t′)‖2

L2 dt
′ ≤ ‖w0‖2

L2 exp
(
C‖u0‖2

L2(R2)

)
.

Indeed we have formally

‖wε(t)‖2
L2 + 2

∫ t

0
‖∇wε(t′)‖2

L2 dt
′ =

∫ t

0

∣∣∣∣∫
R3

(wε · ∇)u · wε(t′, x) dx
∣∣∣∣ dt′,

and using the two-dimensional Gagliardo-Nirenberg inequality we can write∣∣∣∣∫
R3

(wε · ∇)u · wε dx

∣∣∣∣ ≤
∫
R
‖∇u‖L2‖wε(·, x3)‖2

L4(R2)
dx3

≤ ‖∇u‖L2

∫
R
‖wε(·, x3)‖L2(R2)‖∇wε(·, x3)‖L2(R2) dx3

≤ ‖∇wε‖2
L2(R3)

+ C‖∇u‖2
L2‖wε‖2

L2(R3)
,

and the above estimate follows from Gronwall’s inequality.

In order to use the Strichartz estimates of Theorem 2.6, we have to get rid of high frequencies
and low vertical frequencies. Let us define the following truncation operator

PRf
def= χ

(
D

R

)
f, where χ ∈ D(]− 2, 2[), χ(x) = 1 for |x| ≤ 1.

In other words we have

FPRf(ξ) = χ

(
ξ

R

)
f(ξ).

Let us observe that, thanks to Sobolev embeddings and the energy estimate, we have, for
any q ∈ [2, 6[,

‖wε − PRwε‖L2(R+;Lq(R3)) ≤ C‖wε − PRwε‖
L2(R+;Ḣ

3( 1
2−

1
q ))

≤ CR−αq‖wε‖L2(R+;Ḣ1) (2.5.2)

≤ CR−αq‖w0‖L2 exp
(
C‖u0‖2

L2(R2)

)
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with αq
def=

3
q
− 1

2
· Now let us define χ

(D3

r

)
f

def= F−1
(
χ
(ξ3
r

)
f̂(ξ)

)
. We have

∥∥∥χ(D3

r

)
PRwε

∥∥∥
L2(R+;L∞)

≤
∥∥∥χ(ξ3

r

)
F(PRwε)

∥∥∥
L2(R+;L1)

so using the fact that |ξ| ≤ R and a Cauchy-Schwartz inequality one can prove that∥∥∥χ(D3

r

)
PRwε

∥∥∥
L2(R+;L∞)

≤ CR r
1
2 ‖w0‖L2 exp

(
C‖u0‖2

L2(R2)

)
. (2.5.3)

Let us define Pr,R
def=
(

Id−χ
(D3

r

))
PR. The following lemma, whose proof is postponed for

a moment, describes the dispersive effects due to fast rotation.

Lemma 2.13 For any positive real numbers r, R and T , and for any q in ]2,+∞[,

∀ε > 0 ,
∥∥∥Pr,R wε

∥∥∥
L2([0,T ];Lq(R3))

≤ Cε
1
8

“
1− 2

q

”
,

the constant C above depending on r, q, R, T , ‖u0‖L2 and ‖w0‖L2 but not on ε.

Together with Inequalities (2.5.2) and (2.5.3), this lemma implies that, for any positive r, R
and T , for q ∈]2, 6[,

∀ε > 0 , ‖wε‖L2([0,T ];Lq) ≤ CR−αq + CR r
1
2 + C3ε

1
8

“
1− 2

q

”
,

the constant C3 above depending on r, R, T , ‖u0‖L2 and ‖w0‖L2 but not on ε. We deduce
that, for any positive r, R and T , for q ∈]2, 6[,

lim sup
ε→0

‖wε‖L2([0,T ];Lq) ≤ CR−αq + CR r
1
2 .

Passing to the limit when r tends to 0 and then when R tends to ∞ gives Theorem 2.6,
provided of course we prove Lemma 2.13.

Proof of Lemma 2.13. Thanks to Duhamel’s formula we have,

Pr,Rwε(t) =
3∑

j=1

Pj
r,Rwε(t) with

P1
r,Rwε(t)

def= Gε
( t
ε

)
Pr,Rw

0,

P2
r,Rwε(t)

def=
∫ t

0
Gε
( t− t′

ε

)
Pr,RQ(wε(t′), wε(t′)) dt′ and

P3
r,Rwε(t)

def=
∫ t

0
Gε
( t− t′

ε

)
Pr,R

(
Q(wε(t′), u(t′)) +Q(u(t′), wε(t′))

)
dt′.

We have defined Q(a, b) = P(a · ∇b). Theorem 2.6 implies that

‖P1
r,Rwε‖L2(R+;L∞) ≤ Cr,R ε

1
8 ‖w0‖L2 .
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By interpolation with the energy bound, we infer that

‖P1
r,Rwε‖L2([0,T ];Lq) ≤ Cr,R,T ε

1
8

“
1− 2

q

”
‖w0‖L2 exp

(
C‖u0‖2

L2(R2)

)
.

Using again Theorem 2.6, we have

‖P2
r,Rwε‖L2([0,T ];L∞) ≤ Cr,R ε

1
8 ‖PRQ(wε, wε)‖L1([0,T ];L2).

Let us recall Bernstein’s lemma : if a function F has its Fourier transform supported in a ball
of radius R, then for all k ∈ N and all 1 ≤ p ≤ q ≤ ∞,

sup
|α|=k

‖∂αF‖Lq(Rd) ≤ CR
k+d( 1

p
− 1

q
)‖F‖Lp(Rd).

That lemma together with the energy estimate implies that

‖PRQ(wε, wε)‖L1([0,T ];L2) ≤ CR‖PR(wε ⊗ wε)‖L1([0,T ];L2)

≤ CR1+ 3
2 ‖wε ⊗ wε‖L1([0,T ];L1)

≤ CRT‖w0‖2
L2(R3)

exp
(
C‖u0‖2

L2(R2)

)
.

By interpolation with the energy bound, we infer

‖P2
r,Rwε‖L2([0,T ];Lq) ≤ Cr,R,T ε

1
8

“
1− 2

q

”
‖w0‖

2(1− 1
q
)

L2 exp
(
C‖u0‖2

L2(R2)

)
.

Still using Theorem 2.6, we have

‖P3
r,Rwε‖L2([0,T ];L∞) ≤ Cr,R ε

1
8 ‖PR

(
Q(wε, u) +Q(u,wε)

)
‖L1([0,T ];L2).

Similarly, using an anisotropic-type Bernstein inequality, we can prove that

‖P3
r,Rwε‖L2([0,T ];L∞) ≤ Cr,R,T ε

1
8 ‖u0‖L2‖w0‖L2 exp

(
C‖u0‖2

L2

)
,

and by interpolation with the energy bound, we get

‖P3
r,Rwε‖L2([0,T ];Lq) ≤ Cr,R,T ε

1
8

“
1− 2

q

”
‖u0‖

1− 2
q

L2 ‖w0‖L2 exp
(
C‖u0‖2

L2

)
.

The lemma is proved.

Once the behaviour of weak solutions has been investigated, it is natural to consider strong
solutions. The question of their convergence is easily settled due to Theorem 2.3 (in partic-
ular if the initial data is in H

1
2 (R3) then the strong solutions converge to zero, and if it is

in L2(R2)+H
1
2 (R3) then they will converge towards a two-dimensional vector field satisfying

the two dimensional Navier-Stokes equations). However since that limit system is known to
be globally well posed, one can try to use this information to recover a better bound on the
life span of the solutions to the rotating fluid equations in H

1
2 (R3), depending on ε. This is

achieved through the following theorem, which is a precised version of Theorem 2.4 stated in
Section 2.2.
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Theorem 2.7 Let u0 and w0 be two divergence free vector fields, respectively in L2(R2)
and H

1
2 (R3). Then a positive ε0 exists such that for all ε ≤ ε0, there is a unique global

solution uε to the system (RFε). More precisely, denoting by u the (unique) solution of the
two dimensional Navier- Stokes equations associated with u0, by vF the solution of (LRε)

with initial data w0 (with f = 0), and defining wε
def= uε − u, then for ε small enough, wε is

unique in L∞(R+, Ḣ
1
2 (R3)) ∩ L2(R+, Ḣ

3
2 (R3)) and we have, as ε goes to zero,

wε ∈ Cb(R+;H
1
2 (R3)) and ∇wε ∈ L2(R+;H

1
2 (R3)),

wε − vF → 0 in L∞(R+; Ḣ
1
2 (R3))

and ∇(wε − vF ) → 0 in L2(R+; Ḣ
1
2 (R3)).

Proof of Theorem 2.7. We will not give the details of the proof here but simply some
indications. The first step consists in checking that there is indeed a unique solution uε =
u + wε to (RFε) in H

1
2 (R3) for some finite time. This is achieved in a similar way to the

case of the Navier-Stokes equations (up to the presence of the perturbation term involving u,
which is not in L∞(R+;H

1
2 ) but only in the energy space; however it only depends on two

variables so an anisotropic Gagliardo-Nirenberg inequality gives the desired estimates). To
prove that wε exists globally in time one needs to use more than an energy estimate, since
such an estimate would be similar to the case of the 3D Navier-Stokes system, for which the
global existence in time of a unique solution is not known. The idea is to subtract from wε

the solution vF of (LRε), which we know goes to zero (at least for restricted frequencies)
by Strichartz estimates. We are then led to solving the system satisfied by wε − vF , which
has small data (involving the extreme frequencies of w0) and small source terms (due to the
Strichartz estimates of Theorem 2.6). The usual methods for the 3D Navier-Stokes equations
can then be used. Of course there are a few additional difficulties, the main one being that
one needs to cope with the interaction of two dimensional and three dimensional vector fields;
for that an anistropic-type Strichartz estimate is needed, but we shall not pursue this question
here and refer to [13] for details.

2.5.2 The periodic case

This paragraph deals with the rotating fluid equations (RFε) in a purely periodic setting: we

define the periodic box T3 def= (R/Z)3. All the vector fields considered in this paragraph will
be supposed to be mean free. We are interested in the (strong) asymptotic behaviour of uε

as ε goes to zero, proving Theorem 2.5. The first step of the analysis consists in deriving a
limit system for (RFε), which will enable us to state and prove a convergence theorem for
weak solutions. The main issue will then consist in studying the behaviour of strong solutions.
The proof of Theorem 2.5 relies on the construction of families of approximate solutions. Let
us state the key lemma, where we have used the following notation:

‖u‖2
1
2

def= sup
t≥0

(
‖u(t)‖2

H
1
2

+ 2
∫ t

0
‖∇u(t′)‖2

H
1
2
dt′
)
.
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Lemma 2.14 Let u0 be a divergence free vector field inH
1
2 . For any positive real number η, a

family (uapp)ε,η exists such that lim sup
η→0

lim sup
ε→0

‖uapp‖
H

1
2
<∞.Moreover, the families (uapp)ε,η

are approximate solutions of (RFε) in the sense that uapp satisfies ∂tuapp −∆uapp + P(uapp · ∇uapp) +
1
ε
P(u⊥app) = R in T3

lim
η→0

lim
ε→0

‖uapp|t=0 − u0‖
H

1
2

= 0,
(2.5.4)

with
lim
η→0

lim
ε→0

‖R‖L2(R+,H−1/2) = 0

Remark 2.15 The stability of strong solutions to the Navier-Stokes equations enables us to
prove that as soon as ε and η are small enough, the solution uε to (RFε) remains arbitrarily
close to the solution uapp of (2.5.4): indeed both equations are the same up to the initial data
and forcing terms, which can be made arbitrarily close. In particular uε satisfies

lim
η→0

lim sup
ε→0

‖uε − uapp‖
H

1
2

= 0,

which implies directly the global existence result of Theorem 2.5. It follows that the con-
struction of the families (uapp)ε,η is the main step in the analysis of (RFε) in a periodic box.
Moreover it will also enable us to further describe the asymptotics of uε as ε goes to zero,
thus achieving the proof of Theorem 2.5.

Let us give the main steps of the construction of the approximate family. Fast time oscillations
prevent any result of strong convergence to a fixed function. In order to bypass this difficulty,
we are going to introduce a procedure of filtering of the time oscillations. This will lead us to
the concept of limit system. So we start by defining the filtering operator, the limit system
and to establish that the weak closure of (uε)ε>0 is included, after filtration, in the set of weak
solutions of the limit system. Then we prove that the nonlinear terms in the limit system have
a special structure, very close to the structure of the nonlinear term in the 2D Navier–Stokes
equations, which makes it possible to prove the global wellposedness of the limit system. The
families (uapp)ε,η can then be constructed.

So let us start by finding a limit system. We know that there is a bounded family of solu-
tions (uε)ε>0 associated with the initial data, so one can extract a subsequence and find a
weak limit to (uε)ε>0. Then we will need some refined analysis to understand the asymptotic
behaviour of (uε)ε>0. Let L be the evolution group associated with the Coriolis operator L
defined in (2.2.1): the vector field L(t)v0 is the solution at time t of the equation

∂tv + Lv = 0, v|t=0 = v0.

As L is skew–symmetric, the operator L(t) is unitary for all times t, in all spaces Hs(T3). In
particular the “filtered solution” associated with uε

ũε
def= L

(
− t
ε

)
uε ,
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is uniformly bounded in the space L∞(R+;L2(T3))∩L2(R+; Ḣ1(T3)). It satisfies the following
system:

(R̃F ε)
{
∂tũε −Qε(ũε, ũε)−∆ũε = 0

ũε|t=0 = u0,

noticing that L(t/ε) is equal to Identity when t = 0. We have used the fact that the operator L
commutes with all derivation operators, and we have noted

Qε(a, b)
def= −1

2

(
L(− t

ε
)P
(
L(
t

ε
) a · ∇L(

t

ε
) b
)

+ L(− t
ε
)P
(
L(
t

ε
) b · ∇L(

t

ε
) a
))

. (2.5.5)

The point in introducing the filtered vector field ũε is that one can find a limit system to (R̃F ε)
(contrary to the case of (RF ε)): if u0 is in L2(T3), it is not difficult to see that contrary to the
original system, the family (∂tũε)ε>0 is bounded, for instance in the space L

4
3 ([0, T ];H−1(T3))

for all T > 0. A compactness argument enables us, up to the extraction of a subsequence, to
obtain a limit to the sequence ũε, called u. The linear terms ∂tũε and ∆ũε converge towards ∂tu
and ∆u respectively in D′((0, T ) × T3), so the point is to find the limit of the quadratic
form Qε(ũε, ũε). Let us study that term more precisely. For any vector field u = (u1, u2, u3),
u is the quantity

u(xh) def=
∫
T
u(xh, x3) dx3.

Note that if u is divergence free, then so is uh = (u1, u2). Finally we decompose u into

u = u+ uosc,

where the notation uosc stands for the “oscillating part” of u. Now in order to derive formally
the limit of Qε, let us compute more explicitly the operators L and L. As in Paragraph 2.5.1,
the eigenvalues of Ln (where n ∈ Z3 denotes the Fourier variables) are 0, in3/|n|, and−in3/|n|.
We will call e±(n) the associate eigenvectors, as defined in the previous paragraph. Now we are

ready to find the limit of the quadratic form Qε. In the following, we denote σ def= (σ1, σ2, σ3) ∈
{+,−}3 any triplet of pluses or minuses, and for any vector field h, its projection (in Fourier
variables) along those vector fields is denoted

∀n ∈ Z3, ∀j ∈ {1, 2, 3}, hσj (n) def= (Fh(n) · eσj (n)) eσj (n).

Proposition 2.16 Let Qε be the quadratic form defined in (2.5.5), and let a and b be two
smooth vector fields on T3. Then one can define

Q(a, b) def= lim
ε→0

Qε(a, b) in D′(R+×T3),

and we have

FQ(a, b)(n) = −
∑

σ∈{+,−}3
k∈Kσ

n

[aσ1(k) · (n− k)] [bσ2(n− k) · eσ3(n)]eσ3(n),

where Kσ
n is the “resonant set” defined, for any n in Z3 and any σ in {+,−}3, as

Kσ
n

def=
{
k ∈ Z3 / σ1

k3

|k|
+ σ2

n3 − k3

|n− k|
− σ3

n3

|n|
= 0
}
· (2.5.6)
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Proof of Proposition 2.16. We shall write the proof for a = b to simplify. We can write

−FQε(a, a)(n)(t) =
∑

(k,m)∈Z6,σ∈{+,−}3
k+m=n

e
−i t

ε

“
σ1

k3
|k|+σ2

m3
|m|−σ3

n3
|n|

”
[aσ1(k) ·m] [aσ2(m) ·eσ3(n)]eσ3(n).

To find the limit of that expression in the sense of distributions as ε goes to zero, one integrates
it against a smooth function ϕ(t). That can be seen as the Fourier transform of ϕ at the

point
1
ε

(
σ1
k3

|k|
+ σ2

m3

|m|
− σ3

n3

|n|

)
, which clearly goes to zero as ε goes to zero, if σ1

k3

|k|
+

σ2
m3

|m|
− σ3

n3

|n|
is not zero. That is also known as the non stationary phase theorem. In

particular defining, for any (n, σ) ∈ Z3 \{0} × {+,−}3,

ωσ
n(k) def= σ1

k3

|k|
+ σ2

n3 − k3

|n− k|
− σ3

n3

|n|
,

we get

−FQ(a, a)(n) =
∑

σ∈{+,−}3

∑
k∈Z3

ωσ
n(k)=0

[aσ1(k) · (n− k)][aσ2(n− k) · eσ3(n)]eσ3(n),

and Proposition 2.16 is proved.

So the limit system is the following:

(RFL)
{
∂tu−∆u−Q(u, u) = 0

u|t=0 = u0,

and we have proved the following theorem.

Theorem 2.8 Let u0 be a divergence free vector field in L2(T3), and let (uε)ε>0 be a family
of weak solutions to (RFε). Then as ε goes to zero, the weak closure of (L(− t

ε)uε)ε>0 is
included in the set of weak solutions of (RFL).

Now let us concentrate on the quadratic form Q: we are going to see that it has particular
properties which make it very similar to the two dimensional product arising in the 2D incom-
pressible Navier–Stokes equations. We state the following fundamental result without proof
— its proof requires a careful analysis of the resonances in the nonlinear term, and is based
on the fact that if the frequencies n ∈ Z3, k1 ∈ Z and k2 ∈ Z are fixed, then there is a finite
number of k3 satisfying the resonance condition (2.5.6), contrary to a classical product with
no such condition, where the number of k3 is infinite.

Proposition 2.17 The quadratic form Q given in Proposition 2.16 satisfies the following
properties.

1) For any smooth divergence free vector field h, we have

−
∫
T
Q(h, h) dx3 = P(h · ∇h).
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2) If u, v and w are three divergence free vector fields, then

∀s ≥ 0,
(
Q(u, vosc)

∣∣(−∆)svosc

)
L2(T3)

= 0, and∣∣∣(Q(uosc, vosc)
∣∣wosc

)
H

1
2

∣∣∣ ≤ C
(
‖uosc‖

H
1
2
‖vosc‖H1 + ‖vosc‖

H
1
2
‖uosc‖H1

)
‖wosc‖

H
3
2
.

Remark 2.18 1) The first result of Proposition 2.17 is no surprise if one recalls Proposi-
tion 2.10: we saw indeed in Section 2.4.2 that the vertical average of the non linear term at
the limit can only involve interactions between two-dimensional vector fields.

2) The second result of Proposition 2.17 is a typical two dimensional product rule, although the
setting here is three dimensional. The estimate means indeed that one gains half a derivative
when one takes into account the special structure of the quadratic form Q compared with a
usual product.

Notice that the limit system (RFL) can be split into two parts: indeed if u solves (RFL) then
one can decompose u into u = u+ uosc, where u satisfies the two dimensional Navier–Stokes
equation

(NS2D)
{
∂tu−∆hu+ Ph(uh · ∇hu) = f

u|t=0 = u0,

where Ph denotes the two dimensional Leray projector onto two dimensional divergence free
vector fields, and uosc satisfies the coupled system{

∂tuosc −∆uosc −Q(2u+ uosc, uosc) = fosc

uosc|t=0 = u0
osc .

Of course here u0 = u0 + u0
osc where u0 the vertical mean of u0, and similarly f = f + fosc,

where f is the vertical mean of f . Using the proposition stated above on the limit Q, it is
not difficult to prove the following global wellposedness result.

Proposition 2.19 Let u0 be a divergence free vector fields in H
1
2 (T3). Let us consider also

an external force f in L2(R+;H− 1
2 (T3)). Then there exists a unique global solution u to the

system (RFL), in Cb(R+;H
1
2 (T3)) ∩ L2(R+;H

3
2 (T3)).

Let us now give the strategy to describe the asymptotic behaviour of uε. It is natural to
write an asymptotic expansion of uε as L( t

ε)u + εU1 + . . . and to identify the powers of ε
after plugging that expansion into the equation. Unfortunately a few drawbacks appear
instantly. First such a method is regularity-consuming, since the equation involves derivatives
and nonlinear terms, so one needs to start by smoothing out u. That is possible because of
the special properties of Q pointed out above, which in particular imply the stability of the
limit system. More precisely one can prove that if uN converges towards u (in our case uN will
be spectrally supported in a ball of radius N), then Q(uN , uN ) converges towards Q(u, u), in
appropriate function spaces. The next difficulty, more serious than the previous one, is that
the quadratic form Q is only a weak limit of the original quadratic form. So it is not clear that
the next term in the expansion, εU1, does indeed exist (in other words it is not clear that the
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convergence of uε−L( t
ε)u to zero is strong, and is even a O(ε)). But the difference between Q

and the original quadratic form is oscillatory in time, and U1 will roughly correspond to a
time integral of that difference (which again can be defined because the frequencies of u have
been restricted to a fixed ball; only in the very end will we let N go to infinity).

To make this sketch more precise, we are going to construct the smooth, approximate fam-
ily (uapp)ε,η, and prove Lemma 2.14 using the previous results. In particular we will then only
be dealing with smooth functions. As we proceed in the construction we will in fact also show
that (uapp)ε,η is a (strong) approximation of the limit solution L( t

ε)u, by writing an Ansatz
of the type sketched above, and identifying the powers of ε in the equation. In doing so we
will prove the following theorem, which gives of course Lemma 2.14, and Theorem 2.5 due to
Remark 2.15.

Theorem 2.9 Let u0 be a divergence free vector field in H
1
2 and let u be the unique,

global solution of the limit system (RFL) associated with u0 constructed in Proposition 2.19
(with f = 0). For any positive real number η, a family (uapp)ε,η exists such that

lim
η→0

lim sup
ε→0

‖uapp − L(
t

ε
)u‖

H
1
2

= 0.

Moreover, the family (uapp)ε,η satisfies the conclusions of Lemma 2.14.

Proof of Theorem 2.9. Let η be an arbitrary positive number. We define, for any positive
integer N ,

uN = PNu
def= F−1

(
1|n|≤N û(n)

)
,

and obviously there is Nη > 0 such that

‖L(
t

ε
)(uNη − u)‖

H
1
2
≤ ρε,η,

where ρε,η denotes from now on any non negative quantity such that

lim
η→0

lim sup
ε→0

ρε,η = 0.

We will also denote generically by Rε,η any vector field satisfying

‖Rε,η‖
L2(R+;H− 1

2 )
= ρε,η.

We can, from now on, concentrate on uNη , and our goal is to approximate L( t
ε)uNη in such a

way as to satisfy system (2.5.4). So let us write

uapp = L(
t

ε
)uNη + εU1

where U1 is a smooth, divergence free vector field to be determined. To simplify we also define

U0 def= L(
t

ε
)uNη ,
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as well as the operator

Lεw
def= ∂tw −∆w +

1
ε
w⊥.

Then we have
Lεuapp + uapp · ∇uapp = LεU

0 + εLεU
1 + uapp · ∇uapp, (2.5.7)

and the only point left to prove is that there is a smooth, divergence free vector field U1 such
that the right-hand side of (2.5.7) is a remainder term. We notice that by definition of U0,

PLεU
0 = P(∂tU

0 −∆U0 +
1
ε
(U0)⊥)

= L(
t

ε
)(∂tuNη −∆uNη) +

1
ε
∂τL(

t

ε
)uNη +

1
ε
P
(
L(
t

ε
)uNη

)⊥
= L(

t

ε
)PNηQ(u, u).

But it is easy to prove (using the special form of Q) that

‖L(
t

ε
)PNηQ(u, u)− L(

t

ε
)Q(uNη , uNη)‖

L2(R+;H− 1
2 (T3))

≤ ρε,η.

We infer that

PLεuapp + P(uapp · ∇uapp) = Rε,η + L(
t

ε
)Q(uNη , uNη) + εPLεU

1 + P(uapp · ∇uapp).

Now we write, by definition of Qε,

P(uapp · ∇uapp) = −L(
t

ε
)Qε(uNη , uNη) + Fε,η,

where

Fε,η
def= −εL(

t

ε
)Qε

(
uNη ,L(− t

ε
)U1

)
− ε2Qε

(
L(− t

ε
)U1,L(− t

ε
)U1

)
.

Going back to the equation on uapp we find that

PLεuapp + P(uapp · ∇uapp) = Rε,η +L(
t

ε
)Q(uNη , uNη)−L

( t
ε

)
Qε(uNη , uNη) +Fε,η + εPLεU

1.

Let us postpone for a while the proof of the following lemma.

Lemma 2.20 Let η > 0 be given. There is a family of divergence free vector fields U1,
bounded in (L∞ ∩ L1)(R+;Hs(T3)) for all s ≥ 0, such that

L(
t

ε
)(Qε −Q)(uNη , uNη) = εPLεU

1 +Rε,η.

Lemma 2.20 implies that

PLεuapp + P(uapp · ∇uapp) = Rε,η + Fε,η

and the only point left to check is that Fε,η is a remainder term. But that is obvious due to
the smoothness of U1 and uNη . So the theorem is proved, up to the proof of Lemma 2.20.
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Proof of Lemma 2.20. We start by noticing that by definition,

(Qε −Q)(uNη , uNη) = −F−1
∑

k/∈Kσ
n

σ∈{+,−}3

e−i t
ε
ωσ

n(k)1|k|≤Nη
1|n−k|≤Nη

×[uσ1(k) · (n− k)][uσ2(n− k) · eσ3(n)]eσ3(n).

The frequency truncation implies that |ωσ
n(k)| is bounded from below, by a constant depending

on η. That enables us to define

Ũ1 def= F−1
∑

k/∈Kσ
n

σ∈{+,−}3

e−i t
ε
ωσ

n(k)

iωσ
n(k)

1|k|≤Nη
1|n−k|≤Nη

[uσ1(k)·(n− k)][uσ2(n− k)·eσ3(n)]eσ3(n),

and U1 def= L
( t
ε

)
Ũ1. Then

ε∂tŨ
1 = (Q−Qε)(uNη , uNη) + εRt,

where Rt is the inverse Fourier transform of

∑
k/∈Kσ

n

σ∈{+,−}3

e−i t
ε
ωσ

n(k)

iωσ
n(k)

1|k|≤Nη
1|n−k|≤Nη

[∂tu
σ1(k)·(n− k)][uσ2(n− k)·eσ3(n)]eσ3(n).

Notice that εŨ1 is defined as the primitive in time of the oscillating term Qε−Q, as explained
in the sketch of proof above, and it is precisely the time oscillations that imply that Ũ1 is
uniformly bounded in ε. We therefore have

ε∂tU
1 = εL(

t

ε
)∂tŨ

1 + ∂τL(
t

ε
)Ũ1

= L(
t

ε
)(Q−Qε)(uNη , uNη) + εL(

t

ε
)Rt −P

(
L(
t

ε
)Ũ1

)⊥
,

so finally

ε∂tU
1 + P

(
U1
)⊥ = L(

t

ε
)(Q−Qε)(uNη , uNη) + εL(

t

ε
)Rt.

Since U1 is arbitrarily smooth (for a fixed η) and so is Rt, Lemma 2.20 is proved, and so is
Theorem 2.5.

2.5.3 More general boundary conditions

We have presented above two different strong convergence results in the case of a constant
rotation, depending on the boundary conditions (whole space or periodic). Those boundary
conditions are of course highly unphysical, so it is natural to try to consider now more physical
cases. In this short section we will only list a few cases that have been studied in the literature
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and give references. We will also discuss a few open questions, still in the case of a constant
rotation.

The first more general situation was considered by E. Grenier and N. Masmoudi in [32]
where they studied the case of a fluid rotating between two horizontal plates, with vanishing
Dirichlet boundary conditions. In the case of initial data independent of x3 (so-called well
prepared initial data), they were able to prove the convergence of weak solutions towards a
two dimensional vector field satisfying a damped, two dimensional Navier-Stokes system. The
damping term is present when the initial viscosity is anisotropic (the vertical viscosity being
of the order of ε, or else everything converges strongly towards zero) and is known as the
Ekman pumping term (see the Introduction); it is due to the presence of boundary layers
which dissipate energy. The general, ill prepared case was first investigated by N. Masmoudi
in [44] in the case of periodic horizontal boundary conditions, while the study of both the
periodic and the whole space horizontal boundary conditions can be found in [13]: in the
case of horizontal variables in R2, dispersion occurs which gives at the limit the same system
as in the well prepared case, whereas in the periodic case, oscillating boundary conditions
have to be considered, and the limit system is more complicated (though still damped). One
should mention at this point the study of D. Gérard-Varet [26] who considered non smooth
boundaries, meaning that the horizontal plates are replaced by rugous plates with a periodic
rugosity of size ε. D. Bresch, B. Desjardins and D. Gérard-Varet [7] considered the case of a
cylindrical domain, and under a generic assumption on the domain and a spectral assumption
on the spectrum of the Coriolis operator they studied the asymptotics of the rotating fluid
equations. Note that more recently, C. Bardos, F. Golse, A. Mahalov and B. Nicolaenko were
able to prove in [5] that in the case of a cylindrical domain, the spectrum of the Coriolis
operator is discrete.

We leave out here the widely open cases concerning yet more general domains, like rotating
spheres for instance, and refer to [13] or [53] for a discussion on those subjects.

2.6 References and Remarks

The rotating fluid equations presented in this chapter have been the object of a number of
mathematical studies in the past decade. Let us mention the pionneering works of E. Gre-
nier [31] and of A. Babin, A. Mahalov and B. Nicolaenko [2]-[4], who were interested in the
wellposedness and the limiting behaviour as ε goes to zero, in the periodic case, using S.
Schochet’s method [54] presented in Section 2.5.2. The fact that the limiting system (RFL) is
globally wellposed is due to [4] and putting together the works [4] and [21] gives Theorems 2.5
and 2.9. The whole space case was studied a little later, mainly in [12], where the disper-
sive character of the Coriolis operator was pointed out, along with the strong convergence
theorems. The compensated compactness result can be found in [24].

It should be finally noted that the study of the asymptotics of rotating fluid equations in the
constant case is part of a general program analyzing the asymptotics of hyperbolic, parabolic,
or mixed hyperbolic-parabolic equations, penalized by a skew-symmetric operator. One has
to mention here the fundamental works of J.-L. Joly, G. Métivier and J. Rauch (among other
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references one can refer to [33] or [34]) concerning abstract equations, as well as the study of
the incompressible limit ([14],[16],[18],[22],[23],[41],[45]), or the gyrokinetic limit ([29])... Note
that we have not considered other models where similar methods can be used, like for example
the primitive equations (see [10], [11]).



Chapter 3

Taking into account spatial
variations at midlatitudes

3.1 Introduction

As noted in the introduction, one cannot reasonably study the movement of the atmosphere
or the ocean if one neglects the spatial variations of the Coriolis force. The preceding chapter
enabled us to go quite far in the description of the waves generated by a constant coefficient
rotation; in this chapter we shall replace that rotation by a variable one. Of course the price
to pay is that the analysis can no longer be so precise, and in particular we will have no way
in general of describing precisely the waves generated by a variable-coefficient rotation. We
will not be considering the most general penalization operators, but with the application to
geophysical flows in mind (or to magneto-hydrodynamics), we will suppose that the Coriolis
operator is

Lu = P(u ∧B), where B = b(xh)e3
and b is a smooth function, which does not vanish, and which only depends on the horizontal
coordinate xh = (x1, x2). We recall that P denotes the Leray projector onto divergence free
vector fields. More assumptions on b will be made as we go along. We will study the system

∂tu+ u·∇u−∆u+
1
ε
u ∧B +∇p = 0 on R+×Ω,

∇· u = 0 on R+×Ω,

u|t=0 = u0 on Ω

(3.1.1)

where Ω = Ωh×Ω3, and Ωh denotes either the whole space R2 or any periodic domain of R2,
and similarly Ω3 denotes R or T. As in the previous chapter, we will address the questions
of the uniform existence of weak or strong solutions, and we will study their asymptotic
behaviour as ε goes to zero. Considering the generality of the setting, we will not be able to
write as precise computations as in the constant case studied in the previous chapter, and in
particular the question of the strong convergence will not be raised except for some remarks
in Section 3.3.3.

65
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3.2 Statement of the main results

The first question to be addressed, and which is easily dismissed, concerns the existence of
uniformly bounded weak solutions. The Coriolis operator here is no longer skew-symmetric
in all Sobolev spaces, since it has variable coefficients, nevertheless it still disappears in L2

energy estimates, and it is therefore easy to prove the following theorem, which we leave as
an exercise to the reader.

Theorem 3.1 Let u0 be any divergence free vector field in L2(Ω). Then for all ε > 0,
Equation (3.1.1) has at least one weak solution uε ∈ L∞(R+, L2) ∩ L2(R+, Ḣ1). Moreover,
for all t > 0, the following energy estimate holds:

‖uε(t)‖2
L2 + 2

∫ t

0
‖∇uε(t′)‖2

L2 dt
′ ≤ ‖u0‖2

L2 .

The existence of strong solutions is a much more intricate problem, since the Coriolis operator
no longer disappears, as soon as one takes derivatives of the equation. We will see that it is
nevertheless possible to prove the uniform local existence and uniqueness of a solution in Hs

(global for small data), using the fact that B does not depend on the third variable. The
precise theorem is the following; it is proved in Section 3.4.

Theorem 3.2 Let s > 1/2 be given, and suppose that B = b(xh)e3 is a smooth, bounded
function. Then there is a constant c such that the following result holds. Suppose that u0

is a divergence free vector field in Hs(Ω), such that ‖u0‖Hs ≤ c. Then for all ε > 0, the
system (3.1.1) has a unique, global solution uε, which is bounded in the space Cb(R+;Hs)∩
L2(R+;Hs+1).

Moreover if B only depends on x2, then for any s > 1/2 and u0 in Hs(Ω) divergence free,
there is a time T > 0 such that for all ε > 0, the system (3.1.1) has a unique solution uε,
bounded in the space C([0, T ];Hs) ∩ L2([0, T ];Hs+1).

Remark 3.1 A more general theorem can in fact be proved, where the Laplacian in the
equation is replaced by ∆h only. To simplify the presentation we have chosen here to state
the less general result although it should be clear from the proof that the diffusion in the
vertical variable plays no role in the analysis.

The next question concerns the asymptotics of the solutions. We will only state results
concerning the weak asymptotics of Leray-type solutions. Before stating the theorem, let
us make the following additional assumption. We suppose that b has non degenerate critical
points in the following sense: denoting by µ(X) the Lebesgue measure of any set X we suppose
that

lim
δ→0

µ ({x ∈ Ωh / |∇b(x)| ≤ δ}) = 0. (3.2.1)

The convergence theorem is the following. It is proved in Section 3.3 below.
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Theorem 3.3 Suppose that B = be3 where b = b(xh) is a smooth function which does not
vanish, with non degenerate critical points in sense of (3.2.1). Let u0 be any divergence free
vector field in L2(Ω), and let uε be any weak solution of (3.1.1) in the sense of Theorem 3.1.
Then uε converges weakly in L2

loc(R
+×Ω) to a limit u belonging to KerL. If Ω3 = R then u

is identically zero, and if Ω3 = T it is defined as follows: the third component u3 belongs
to L∞(R+;L2) ∩ L2(R+; Ḣ1) satisfies the transport-diffusion equation

∂tu3 −∆hu3 + uh · ∇hu3 = 0, ∂3u3 = 0, u3|t=0 =
∫
T
u0

3(xh, x3) dx3 in R+×Ω,

while the horizontal component uh ∈ C(R+;H−1(Ωh)) ∩ L2
loc(R

+;H1(Ωh)) satisfies the fol-
lowing property: for any vector field Φ ∈ H1(Ωh) ∩Ker(L) and for any time t > 0,

(uh(t)|Φh)L2(Ωh) +
∫ t

0
(∇huh(t′)|∇hΦh)L2(Ωh) dt

′ = (u0
h|Φh)L2(Ωh). (3.2.2)

Remark 3.2 Formally Equation (3.2.2) can be written as a heat equation on Ker(L), as
writing Π the orthogonal projector in L2 onto Ker(L) the equation formally reads

∂tuh − (Π∆hu)h = 0.

That result is surprising as all non linear terms have disappeared in the limiting process. This
can be understood as some sort of turbulent behaviour, where all scales are mixed due to the
variation of b. Technically the result is due to the fact that the kernel of L is very small as
soon as b is not a constant, which induces a lot of rigidity in the limit equation.

The rest of this chapter is devoted to the proof of those results, starting with the weak
convergence result in the next section. The proof of that theorem will follow the same lines
as the proof of Theorem 2.2 in Chapter 2, with the additional difficulty of course that the
rotation vector is no longer homogeneous. The proof of Theorem 3.2 in Section 3.4 will only
be sketched, as it involves techniques which do not have much to do with the fast rotation
limit but consists in rather subtle anisotropic estimates, and are beyond the scope of this
review article.

3.3 Weak asymptotics

In this section we are concerned with the weak asymptotics of the solutions to the rotating
fluid equations with a variable Coriolis force, and we will prove Theorem 3.3. Let us start by
noticing that as soon as the initial data is in L2, it generates a bounded family uε of solutions
to (3.1.1), so up to the extraction of a subsequence there exists u ∈ L∞(R+, L2)∩L2(R+, Ḣ1),
such that

uε ⇀ u in w-L2
loc(R

+×Ω) as ε→ 0.

As in the constant case studied in the previous chapter, we will prove that u belongs to
the kernel Ker(L) of L, so in the next section we present the operator L and study its main
properties (in particular its kernel). The following section is devoted to the end of the proof of
Theorem 3.3, using a compensated-compactness argument to deal with the nonlinear terms.
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3.3.1 Study of the Coriolis operator

The kernel Ker(L) of L is characterized in the following proposition.

Proposition 3.3 If u is a divergence free vector field in L2(Ω) belonging to Ker(L), then u
is in L2(Ωh) and satisfies the following properties:

divh uh = 0
uh · ∇hb = 0∫

Ωh

uh ∧B dxh = 0.

Remark 3.4 1) In the case when Ω3 = R, Proposition 3.3 shows that the kernel of L is
reduced to zero since L2(Ωh) ∩ L2(Ω) = {0}.

2) In the case when Ωh = T2, the fact that divh uh = 0 does not necessarily mean that uh

can be written as uh = ∇⊥
h ϕ for some function ϕ because the horizontal mean of uh is not

preserved by the equation.

Proof of Proposition 3.3. If u belongs to Ker(L) then we have P(u ∧ B) = 0, so in
particular ∫

Ω
uh ∧B dx = 0.

Moreover in the sense of distributions, rot (u ∧B) = 0, which can be rewritten

(∇·B)u+ (B ·∇)u− (u·∇)B − (∇· u)B = 0.

As ∇·B = ∇· u = 0 and B = be3, we get

b∂3u− (u·∇)be3 = 0. (3.3.1)

In particular, ∂3u1 = ∂3u2 = 0 from which we deduce that uh belongs to L2(Ωh). Note that in
the case where Ω3 = R, the invariance with respect to x3 and the fact that u belongs to L2(Ω)
imply that u1 = u2 = 0 (and therefore u3 = 0 by the divergence free condition).

We suppose from now on that Ω3 = T. Differentiating the incompressibility constraint with
respect to x3 leads then to

∂2
33u3 = −∂2

13u1 − ∂2
23u2 = 0

in the sense of distributions. The function ∂3u3 depends only on x1 and x2, and satis-

fies
∫
∂3u3dx3 = 0. So ∂3u3 = 0, u3 belongs to L2(Ωh), and ∂1u1 + ∂2u2 = 0. Finally

by (3.3.1) we get uh · ∇hb = 0 and
∫

Ωh

uh ∧ b dxh = 0. The proposition is proved.

Remark 3.5 Before applying this result to the characterization of the weak limit u, let us
just specify it in two important cases. If ∇b = 0 almost everywhere (for instance if the
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Coriolis operator is constant, which corresponds to the case studied in the previous chapter),
then u ∈ L2 is a divergence free vector field in Ker(L) if and only if

u = ∇⊥h ϕ+ αe3,

for some ∇hϕ ∈ L2(Ωh) and α ∈ L2(Ωh). If ∇b 6= 0 almost everywhere, then the condition
arising on u is much more restrictive : if u ∈ L2 is a divergence free vector field in Ker(L)
then it can be written

u =
u · ∇⊥b

|∇⊥b|2
∇⊥b+ αe3

for some α ∈ L2(Ωh), with the additional condition that

divh

(
uh · ∇⊥b

|∇⊥b|2
∇⊥b

)
= 0 and

∫
b
uh · ∇⊥b

|∇⊥b|2
∇⊥b dx = 0.

Using this characterization of Ker(L), we deduce some constraints on the weak limit u. The
proof of the following result is exactly the same as in the constant case (Proposition 2.5
page 43), so we leave it to the reader.

Proposition 3.6 Let u0 be any divergence free vector field in L2(Ω). Denote by (uε)ε>0 a
family of weak solutions of (3.1.1), and by u any of its limit points. Then

u ∈ L∞(R+;L2(Ωh)) ∩ L2(R+; Ḣ1(Ωh))

and satisfies the following properties:
divh uh = 0
uh · ∇hb = 0∫

Ωh

uh ∧B dxh = 0.

3.3.2 Proof of the weak convergence theorem

In this section we shall prove Theorem 3.3. If Ω3 = R, then u = 0 due to Remark 3.4, so
from now on we can suppose that Ω3 = T. The strategy of the proof is quite similar to the
constant case: we have first to give a precise description of the different oscillating modes,
and then to prove that these oscillations do not occur in the limiting equation. Finally we
need to show that the limiting equation is in fact linear.

As in the constant case, vertical modes generate fast oscillations in the system, meaning that
the whole part of the velocity field corresponding to Fourier modes with k3 6= 0 converges
weakly to zero. The corresponding vertical oscillations depend directly on the order of mag-
nitude of b. The main difference comes then from the fact that, in the case of a heterogeneous
rotation, the kernel of the penalization is much smaller: restricting our attention to the hori-
zontal modes (k3 = 0), we see that the Coriolis term penalizes all the fields which are parallel
to ∇b, which implies in particular that the vertical average of the horizontal velocity is no
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longer strongly compact. The corresponding two-dimensional oscillations are then governed
by ∇b, and possibly become singular if ∇b cancels.

In the following we will therefore only be able to prove that the vertical average of the
vertical velocity is strongly compact, and the use of that information alone, coupled with
some compensated compactness argument, will enable us to establish the equation satisfied
by the weak limit of the velocity field.

Proposition 3.7 Let u0 be a divergence free vector field in L2(Ω). For all ε > 0, denote

by uε a weak solution of (3.1.1) and by uε
def=
∫
uεdx3. Then, for all T > 0, (uε,3)ε>0 is

strongly compact in L2([0, T ]× Ω).

Proof of Proposition 3.7. The computation is similar to the constant case studied in
the previous chapter (Proposition 2.8 page 44), only for the fact that one must restrict one’s
attention to the vertical component only. By the energy estimate, uε and consequently uε are
uniformly bounded in L2([0, T ];H1). Integrating with respect to x3 the vertical component
of the penalized Navier-Stokes equation leads to

∂tuε,3 +
∫
∇ · (uεuε,3)dx3 −∆huε,3 = 0,

from which we deduce that ∂tuε,3 is uniformly bounded in L2([0, T ],H−3/2(Ω)), and the result
follows by Aubin’s lemma.

Now let us describe the oscillations.

Lemma 3.8 Let u0 be a divergence free vector field in L2(Ω). For all ε > 0, denote by uε a
weak solution of (3.1.1), by uε =

∫
uεdx3 and by ũε = uε − uε. Define

ωε = ∂1uε,2 − ∂2uε,1, ωε =
∫
T
ωε dx3, ω̃ε = ωε − ωε,

and ∂3Ω̃ε,h = ∇⊥
h ũε,3 − ∂3ũ

⊥
ε,h, with

∫
T

Ω̃ε,h dx3 = 0.

Then, regularizing by a kernel κδ as in (2.4.2), we get the following description of the oscilla-
tions

ε∂tω
δ
ε − uδ

ε,h · ∇b = −εrδ
ε − sδ

ε

∇h · uδ
ε,h = 0

ε∂tΩ̃δ
ε,h + bũδ

ε,h = −εrδ
ε − sδ

ε

ε∂tω̃
δ
ε −∇ · (bũδ

ε,h) = −εrδ
ε − sδ

ε

(3.3.2)

denoting generically by rδ
ε and sδ

ε some quantities satisfying

∀δ > 0, ∀T > 0, sup
ε
‖rδ

ε‖L2([0,T ]×Ω) < +∞

and ∀T > 0, sup
ε,δ

δ−1‖sδ
ε‖L2([0,T ]×Ω) < +∞.
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Proof of Lemma 3.8. Denote, as in the previous chapter, by Fε the flux term

Fε = −∇ · (uε ⊗ uε) + ∆uε.

The energy inequality and standard bilinear estimates yield that Fε is uniformly bounded
in L2([0, T ],H−3/2(Ω)). Using that notation, (3.1.1) can be simply rewritten

ε∂tuε + uε ∧B +∇hpε = εF ε,

∇h · uε,h = 0,

ε∂tũε + ũε ∧B +∇p̃ε = εF̃ε,

∇ · ũε = 0,

splitting the purely 2D modes (k3 = 0) and the vertical Fourier modes (k3 6= 0). Using the
vorticity formulation for the horizontal component of uε, we get

ε∂tωε − uε,h · ∇b = −ε∇⊥
h · F ε,h,

∇h · uε,h = 0.
(3.3.3)

Then taking the rotational of the other part of the equation yields

ε∂t∇∧ ũε +∇∧ (ũε ∧B) = ε∇∧ F̃ε

and integrating the horizontal component with respect to x3 leads to

ε∂tΩ̃ε,h + bũε,h = ε(∇∧ G̃ε)h,

ε∂tω̃ε −∇h · (ũε,hb) = −ε∇⊥
h · F̃ε,h

(3.3.4)

where G̃ε is just defined by ∂3G̃ε = F̃ε and
∫
T
G̃εdx3 = 0, and thus satisfies the same uniform

estimates as F̃ε.

The second step of the proof consists then in regularizing the previous wave equations (3.3.3)
and (3.3.4). We therefore introduce, as in the previous chapter, a smoothing family κδ defined
by κδ(x) = δ−3κ(δ−1x) where κ is a function of C∞c (R3,R+) such that κ(x) = 0 if |x| ≥ 1
and

∫
κdx = 1. By convolution, we then obtain

ε∂tω
δ
ε − uδ

ε,h · ∇b = −ε∇⊥
h · F

δ
ε,h − uδ

ε,h · ∇b+ (uε,h · ∇b)δ,

∇h · uδ
ε,h = 0,

and
ε∂tΩ̃δ

ε,h + bũδ
ε,h = ε(∇∧ G̃δ

ε)h + bũδ
ε,h − (bũε,h)δ,

ε∂tω̃
δ
ε +∇h · (ũδ

ε,hb) = −ε∇⊥
h · F̃ δ

ε,h +∇h · (ũδ
ε,hb)−∇h · (ũε,hb)δ.

It remains only to check that the source terms satisfy the convenient a priori estimates. It is
easy to see that

‖κδ‖W 5/2,1(R3) ≤ δ−5/2‖κ‖L1(R3),
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so the terms generically called rδ
ε satisfy a uniform bound for any fixed δ :

∇⊥
h · F

δ
ε,h, (∇∧ G̃δ

ε)h and ∇⊥
h · F̃ δ

ε,h are uniformly bounded in L2([0, T ]×Ω) (of order δ−5/2),

since ∇⊥
h · F ε,h, (∇ ∧ G̃ε)h and ∇⊥

h · F̃ε,h are bounded in L2([0, T ];H−5/2(Ω)). We then have
to estimate quantities of the form uδ

εψ − (uεψ)δ for smooth functions ψ. We have

|uδ
εψ(x)− (uεψ)δ(x)| =

∣∣∣∣∫ κδ(y)uε(x− y)(ψ(x)− ψ(x− y))dy
∣∣∣∣

≤ δ‖∇ψ‖L∞(Ω)(κ
δ ∗ |uε|)(x),

so in particular,

‖uδ
ε,h · ∇b− (uε,h · ∇b)δ‖L2([0,T ]×Ω) ≤ δ‖D2b‖L∞(Ω)‖uε‖L2([0,T ]×Ω)

‖bũδ
ε,h − (bũε,h)δ‖L2([0,T ]×Ω) ≤ δ‖Db‖L∞(Ω)‖uε‖L2([0,T ]×Ω)

‖∇h · (ũδ
ε,hb)−∇h · (ũε,hb)δ‖L2([0,T ]×Ω) ≤ δ(‖Db‖L∞(Ω) + ‖D2b‖L∞(Ω))‖uε‖L2([0,T ],H1(Ω))

meaning that the terms generically called sδ
ε converge to 0 as δ → 0 uniformly in ε, according

to the bound
∀T > 0, sup

ε,δ
δ−1‖sδ

ε‖L2([0,T ]×Ω) < +∞.

Lemma 3.8 is proved.

Now let us compute the coupling term. As remarked in the introduction of this paragraph,
the fact that ∇b can get very small could lead to a defect of compactness of vertical averages.
The non degeneracy assumption (3.2.1) will enable us to deal with regions of space where ∇b
is small, simply using a cut-off function. Let us state the result.

Proposition 3.9 Let u0 be any divergence free vector field in L2(Ω). For all ε > 0, denote
by uε a weak solution of (3.1.1). Define the truncation χδ by

χδ(x) = χ(δ−1/4∇b(x))

where χ is a function of C∞c (R3,R+) such that χ(x) = 1 if |x| ≤ 1. Then, with the same
notation as in Lemma 3.8, the averaged nonlinear term in (3.1.1) can be rewritten∫ (

∇ · (uδ
ε ⊗ uδ

ε)−∇
|uδ

ε|2

2

)
dx3

=∇h · (uδ
ε,hu

δ
ε,3)e3 −∇

|uδ
ε,3|2

2
+ ερδ

ε + σδ
ε

− ε

2
∂t|ωδ

ε|2(1− χδ)
∇⊥b

|∇b|2
− (1− χδ)(uδ

ε,h · ∇⊥b)
∇b
|∇b|2

ωδ
ε

+
ε

b
∂t

∫
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3 +

ε

2b2
∂t

∫
(Ω̃δ

ε,h · ∇b)2dx3
∇⊥b

|∇b|2

− 1
b2

∫
(Ω̃δ

ε,h · ∇⊥b)(ε∂tΩ̃δ
ε,h · ∇b)dx3

∇b
|∇b|2

+
ε

2b
∂t

∫
(Ω̃δ

ε,h · (∂3Ω̃δ
ε,h)⊥)dx3e3
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where ρδ
ε and σδ

ε are quantities satisfying the following estimates

∀δ > 0, ∀T > 0, sup
ε→0

‖ρδ
ε‖L1([0,T ];L6/5Ω)) < +∞,

and ∀T > 0, lim
δ→0

sup
ε
‖σδ

ε‖L1([0,T ];L6/5Ω)) = 0.

Proof of Proposition 3.9. Let us first remark that∫
∇ · (uδ

ε ⊗ uδ
ε)dx3 = ∇ · (uδ

ε ⊗ uδ
ε) +

∫
∇ · (ũδ

ε ⊗ ũδ
ε)dx3

which allows us to consider separately purely 2D modes and vertical modes. As in the constant
case, due to (2.4.3) we can in fact further restrict our attention to the quantities −uδ

ε∧(∇∧uδ
ε)

and −
∫
ũδ

ε ∧ (∇ ∧ ũδ
ε)dx3. We will finally simplify the computations by neglecting all the

remainder terms in Lemma 3.8, and leave the precise computations to the reader, as in the
constant case in Chapter 2.

(i) We start with the study of the purely 2D modes. A simple computation leads to

−uδ
ε ∧ (∇∧ uδ

ε) = −uδ
ε ∧ (∇⊥

h u
δ
ε,3 + ωδ

εe3)

= −ωδ
ε(u

δ
ε,h)⊥ −∇h

|uδ
ε,3|2

2
+∇h · (uδ

ε,hu
δ
ε,3)e3.

(3.3.5)

We can decompose uδ
ε,h as follows

uδ
ε,h = (uδ

ε,h · ∇b)
∇b
|∇b|2

+ (uδ
ε,h · ∇⊥b)

∇⊥b

|∇b|2

as soon as ∇b 6= 0, and we will actually do so, using the truncation χ, only if |∇b| ≥ δ1/4.

Using the first identity in (3.3.2), and neglecting remainder terms, we obtain

uδ
ε,h = ε∂tω

δ
ε

∇b
|∇b|2

+ (uδ
ε,h · ∇⊥b)

∇⊥b

|∇b|2

and replacing in (3.3.5) provides finally

−uδ
ε ∧ (∇∧ uδ

ε) =− (1− χδ)ε∂t
|ωδ

ε|2

2
∇⊥b

|∇b|2
− (1− χδ)(uδ

ε,h · ∇⊥b)
∇b
|∇b|2

ωδ
ε

− χδω
δ
ε(u

δ
ε,h)⊥ −∇h

|uδ
ε,3|2

2
+∇h · (uδ

ε,hu
δ
ε,3)e3.

(3.3.6)

That concludes the first step of the proof since∥∥∥χδω
δ
εu

δ
ε,h

∥∥∥
L1([0,T ],L6/5(Ω))

≤ ‖χδ‖L6(Ω)‖ωδ
ε‖L2([0,T ]×Ω)‖uδ

ε,h‖L2([0,T ],L6(Ω))

≤ C
(
µ{x ∈ Ωh / |∇b(x)| ≤ δ

1
4 }
) 1

6
,
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which goes to zero with δ according to Assumption (3.2.1), hence can be incorporated in the
term σδ

ε .

(ii) We have now to deal with the vertical modes. A simple computation leads to

−ũδ
ε ∧ (∇∧ ũδ

ε) = −ũδ
ε ∧ (∂3Ω̃δ

ε,h + ω̃δ
εe3)

= −ω̃δ
ε(ũ

δ
ε,h)⊥ + ũδ

ε,3∂3(Ω̃δ
ε,h)⊥ − (ũδ

ε,h · (∂3Ω̃δ
ε,h)⊥)e3

so that using the divergence free condition,

−
∫
ũδ

ε ∧ (∇∧ ũδ
ε)dx3 =

∫ (
−ω̃δ

ε(ũ
δ
ε,h)⊥ + (Ω̃δ

ε,h)⊥(∇h · ũδ
ε,h)
)
dx3−

∫
(ũδ

ε,h · (∂3Ω̃δ
ε,h)⊥)dx3e3.

In order to determine the horizontal component, we then use the last two identities in (3.3.2)

−
∫

(ũδ
ε ∧ (∇∧ ũδ

ε))hdx3 =
∫
ω̃δ

ε

1
b
(ε∂tΩ̃δ

ε,h)⊥dx3 +
∫

(Ω̃δ
ε,h)⊥

1
b
(ε∂tω̃

δ
ε − ũδ

ε,h · ∇b)dx3

=
ε

b
∂t

∫
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3 +

∫
(Ω̃δ

ε,h)⊥
1
b2
ε∂tΩ̃δ

ε,h · ∇bdx3.

We can decompose Ω̃δ
ε,h as follows

Ω̃δ
ε,h = (Ω̃δ

ε,h · ∇b)
∇b
|∇b|2

+ (Ω̃δ
ε,h · ∇⊥b)

∇⊥b

|∇b|2

as soon as ∇b 6= 0, that is almost everywhere by assumption. Finally we get

−
∫

(ũδ
ε ∧ (∇∧ ũδ

ε))hdx3 =
ε

b
∂t

∫
ω̃δ

ε(Ω̃
δ
ε,h)⊥dx3 +

ε

2b2
∂t

∫
(Ω̃δ

ε,h · ∇b)2dx3
∇⊥b

|∇b|2

− 1
b2

∫
(Ω̃δ

ε,h · ∇⊥b)(ε∂tΩ̃δ
ε,h · ∇b)dx3

∇b
|∇b|2

,
(3.3.7)

which is the expected formula. In order to determine the vertical component, we use the third
identity in (3.3.2) and an integration by parts with respect to x3, to find∫

ũδ
ε,h · (∂3Ω̃δ

ε,h)⊥dx3 =−
∫

1
b
ε∂tΩ̃δ

ε,h · (∂3Ω̃δ
ε,h)⊥dx3

=− 1
2b

∫ (
(ε∂tΩ̃δ

ε,h) · (∂3Ω̃δ
ε,h)⊥ − (ε∂t∂3Ω̃δ

ε,h) · (Ω̃δ
ε,h)⊥

)
dx3,

from which we deduce∫
ũδ

ε,h · (∂3Ω̃δ
ε,h)⊥dx3 = − ε

2b
∂t

∫
(Ω̃δ

ε,h · (∂3Ω̃δ
ε,h)⊥)dx3. (3.3.8)

Combining (3.3.6), (3.3.7) and (3.3.8) gives finally the proper decomposition of the averaged
nonlinear term. Proposition 3.9 is proved (up to the computation of the remainder terms).

Now we are ready to take the limit.
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Proposition 3.10 Let u0 be any divergence free vector field in L2(Ω). For all ε > 0, denote

by uε a weak solution of (3.1.1) and by uε =
∫
uε dx3. Then, for all φ ∈ H1(Ω)∩Ker(L), we

have the following limit in W−1,1([0, T ]), for all T > 0:∫
Ω
∇ · (uε ⊗ uε) · φdx−

∫
Ω
∇h · (uε,huε,3)φ3dx→ 0 as ε→ 0.

Proof of Proposition 3.10. We first introduce the same regularization as in the previous
paragraphs, and split the integral as follows∫

Ω
∇ · (uε ⊗ uε) · φdx−

∫
Ω
∇h · (uε,huε,3)φ3dx

=
∫

Ω
∇ · (uδ

ε ⊗ uδ
ε) · φdx−

∫
Ω
∇h · (uδ

ε,hu
δ
ε,3)φ3dx

+
∫

Ω
∇ · ((uε − uδ

ε)⊗ uε) · φdx−
∫

Ω
∇h · ((uε,h − uδ

ε,h)uε,3)φ3dx

+
∫

Ω
∇ · (uδ

ε ⊗ (uε − uδ
ε)) · φdx−

∫
Ω
∇h · (uδ

ε,h(uε,3 − uδ
ε,3))φ3dx.

(3.3.9)

By the energy estimate, we deduce that the four last terms converge to 0 as δ → 0 uniformly
in ε : indeed,∥∥∥∥∫

Ω
∇ · ((uε − uδ

ε)⊗ uε) · φdx
∥∥∥∥

L1([0,T ])

≤ ‖∇φ‖L2(Ω)‖uε‖L2([0,T ],L6(Ω))‖uδ
ε − uε‖L2([0,T ],L3(Ω))

≤ ω(δ)‖∇φ‖L2(Ω)‖uε‖2
L2([0,T ],H1(Ω)),

where the function ω(δ) goes to zero as δ goes to zero.

We are then interested in the difference between the first two terms. By Proposition 3.9, and
using the fact that

∂3φ = 0, ∇ · φ = 0 and φ · ∇b = 0,

it can be rewritten∫
Ω
∇ · (uδ

ε ⊗ uδ
ε) · φdx−

∫
Ω
∇h · (uδ

ε,hu
δ
ε,3)φ3dx

=
∫

Ω
φ · (ερε,δ + σε,δ)dx−

ε

2
∂t

∫
Ω
|ωδ

ε|2(1− χδ)
∇⊥b

|∇b|2
· φdx

+ ε∂t

∫
Ω

1
b
ω̃δ

ε(Ω̃
δ
ε,h)⊥ · φdx+ ε∂t

∫
Ω

1
2b2

(Ω̃δ
ε,h · ∇b)2

∇⊥b

|∇b|2
· φdx

+ ε∂t

∫
Ω

1
2b

(Ω̃δ
ε,h · (∂3Ω̃δ

ε,h)⊥)φ3dx.

(3.3.10)

We just need to check that all the terms in the right-hand side of (3.3.10) can be made
arbitrarily small. For instance the second term in the right-hand side converges to 0 as δ → 0
uniformly in ε, since∥∥∥∥∫

Ω
σε,δ · φdx

∥∥∥∥
L1([0,T ])

≤ ‖φ‖L6(Ω)‖σε,δ‖L1([0,T ],L6/5(Ω)).
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The other terms are dealt with as easily, and are left to the reader. Taking limits as ε → 0
and then as δ → 0 in (3.3.9)-(3.3.10) shows that, for all φ ∈ H1(Ω) ∩Ker(L),∫

Ω
∇ · (uε ⊗ uε) · φdx−

∫
Ω
∇h · (uε,huε,3)φ3dx→ 0 as ε→ 0

in W−1,1([0, T ]), which proves Proposition 3.10.

Theorem 3.3 follows easily.

3.3.3 Some general remarks

Remarks on the strong convergence. Now that the weak asymptotic behaviour of weak
solutions has been understood, one can try to study the strong asymptotics, as in the constant
case. However this seems quite a difficult task, as we have no information in general on the
nature of the spectrum of the variable-coefficient Coriolis operator. As the next chapter will
show (in the case of a model for the tropics), it is possible to write explicit computations if
one relaxes the generality of the setting, even if the Fourier transform is not available.

A few general remarks are in order however. Due to the RAGE theorem [52] one can expect the
continuous spectrum to have no influence on the convergence. That was clear in the constant
case: in the case of the whole space, the spectrum is indeed continuous and a Strichartz
theorem (which one can understand as a precise version of the RAGE theorem) enabled us
to get rid of all oscillations and to find that the weak convergence was in fact strong. In the
periodic case however there is no continuous spectrum and the weak convergence only becomes
strong once the oscillations are filtered out. In the variable case one expects therefore to find
a strong convergence once the discrete spectrum has been “filtered out” in some way, but
the precise way to do so is not so clear. Furthermore even if one does manage to understand
precisely the oscillations and to introduce the corresponding filtering operator, the question
of the existence of solutions to the limit system is unclear: in the periodic case the terms that
could cause some trouble to solve the system miraculously satisfy 2D-type energy estimates. If
that were not the case then the limit system would only have a short time life span (supposing
the spectral projectors are continuous in H

1
2 , which is also far from clear). To understand

the limit system better one would probably have to introduce some non resonant conditions.
That program will be carried out in the coming chapter, in the particular case of the tropics.

Remarks on the role of b and ∇b. As suggested before, the parameter b is responsible
for the vertical waves, whereas ∇b rules horizontal waves. If ∇b vanishes on sets of nonzero
measure, one therefore expects to recover the constant b situation, that is, a limit satisfying
the 2D Navier-Stokes system inside such sets. Of course that generates transmission problems
on the boundary of those sets, with a possible degeneracy of the horizontal waves.

On the contrary if b vanishes on sets of nonzero measure, then the penalization itself disappears
from the equation in such regions. The equation being nonlocal this will have an incidence
everywhere in the system and can create coupling problems. If b vanishes at a point only,
with a non degenerate singularity, then one can make the weak compactness argument work,
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although one must be careful with the functional setting; a special case is considered in the
next chapter, with a model for the tropics.

The case when the direction of B is not fixed. It seems reasonable, from a physical
point of view, to retain only the vertical component of the rotation vector in the Coriolis
force. This should be mathematically justified by considering more general models where the
direction of the rotation vector is allowed to vary. The algebraic compensated- compactness
argument in that case seems to still hold (under the same type of non degeneracy condition as
that required in this chapter). However serious geometrical problems appear to understand
precisely the structure of the kernel of the rotation operator: the constraint established here
on the vertical averages should be replaced by a constraint on the averages over level lines
of B, which implies some geometrical understanding on those level lines (are they closed or
not, have they a finite length or not...).

3.4 Strong solutions

In this section we want to investigate the question of strong solutions to (3.1.1), and to prove
Theorem 3.2. The usual methods to prove the local existence and uniqueness of solutions for
the 3D Navier-Stokes equations yield the existence and uniqueness of a solution to (3.1.1) as
soon as the initial data is in H

1
2 (Ω), but unfortunately one realizes quickly that with such

methods, the life span of the solution decays to zero as ε goes to zero, while all norms (other
than the energy norm) blow up. On the contrary to ensure large time existence of a unique
solution one would need to require the norm of the initial data to go to zero with ε. That
is due to the fact that contrary to the case of a constant rotation studied in Chapter 2, the
Coriolis operator does not commute with derivatives, and creates large, unbounded terms in
the estimates. Our aim in this section is nevertheless to prove the existence and uniqueness
of a solution on a uniform time interval, or the global existence and uniqueness for small
initial data, independently of ε. For technical reasons, the local in time theorem only holds if
the rotation vector only depends on one variable, say x2 (which as noted in the introductory
chapter is consistent with some models of geophysical flows, like the tropics).

Let us explain the structure of the proof of Theorem 3.2. The idea is that since B does not
depend on x3, one is allowed as many vertical derivatives as one likes in the energy estimates.
Only horizontal derivatives create an unbounded commutator term. So the first step of the
analysis consists in proving the global existence and uniqueness of a solution for small data
in an anisotropic-type Sobolev space, where derivatives are only placed on x3. The local
existence and uniqueness for arbitrary data in such an anistropic Sobolev space can also be
proved, as long as B only depends on x1 — the proof is rather technical however, compared
to the global existence result. Once that step is accomplished, one proves a propagation of
regularity result, enabling the replacement of the anisotropic Sobolev space by Hs. Those
steps are explained in more detail in the next sections. To simplify the analysis we will place
ourselves in the case where Ω = R3; the periodic case can be proved by slight modifications
of that case. Moreover we will not be giving any details of the anisotropic-type estimates
involved in the proof, as they are quite technical and beyond the scope of this review article;
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we merely want to point out here the main ideas and estimates giving the result, and we refer
to [43] for all the details.

3.4.1 Global solutions for small data

Let us give the definition of the anisotropic Sobolev spaces we will be using. Calling as usual û
the Fourier transform of u, we define the Hilbert space Hs,s′ by the norm

‖u‖Hs,s′
def=
(∫

R3
(1 + |ξh|2)s(1 + |ξ3|2)s′ |û(ξ)|2 dξ

) 1
2

.

We will need to write an energy estimate in such spaces. The following inequality is the main
ingredient to prove the next proposition. We refer to [12] and [48] for a proof. For any vector
fields u and v, with u divergence free,

|(u · ∇v|v)H0,s | ≤ C

(
‖u‖

1
2

H0,s‖∇hu‖
1
2

H0,s‖v‖
1
2

H0,s‖∇hv‖
3
2

H0,s + ‖∇hu‖H0,s‖v‖H0,s‖∇hv‖H0,s

)
.

Using that inequality and noticing that the Coriolis operator is skew- symmetric in H0,s, it is
not too difficult to prove the following proposition, stating the global wellposedness of (3.1.1)
in H0,s(Ω) for small enough data.

Proposition 3.11 Let s > 1/2 be given. There is a constant c such that the following result
holds. Suppose that u0 is a divergence free vector field in H0,s(Ω), such that ‖u0‖H0,s ≤ c.
Then for all ε > 0, the system (3.1.1) has a unique, global solution uε, which is bounded in
the space Cb(R+;H0,s) ∩ L2(R+;H1,s) and satisfies

∀t ≥ 0, ‖uε(t)‖2
H0,s +

∫ t

0
‖∇huε(t′)‖2

H0,s dt
′ ≤ ‖u0‖2

H0,s .

Once that result is obtained, on can infer the first part of Theorem 3.2, by writing an energy
estimate in Hs. Of course this time the Coriolis operator does not disappear, but since B is
smooth and bounded one has

1
ε

∣∣∣(u ∧B|u)Hs

∣∣∣ ≤ C

ε
‖u‖2

Hs .

The main point is then that one can prove, using an anisotropic Littlewood-Paley decompo-
sition and an anisotropic-type paraproduct algorithm (this is quite technical and omitted),
that

|(u · ∇u|u)Hs | ≤
1
2
‖∇hu‖2

Hs + C‖∇hu‖2
H0,s‖u‖2

Hs(1 + ‖u‖2
H0,s).

That estimate is better than a standard Hs estimate, as it involves the H0,s norm of u and ∇u.
An Hs energy estimate therefore yields, using the energy estimate of Proposition 3.11 and a
Gronwall lemma,

‖u(t)‖2
Hs ≤ ‖u0‖2

Hs exp
(
Ct

ε
+ C‖u0‖2

Hs + C‖u0‖4
Hs

)
,

which allows to prove the first part of the theorem.
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Remark 3.12 It should be noted that the Hs norm of the solution is unbounded with ε.
The global existence result is therefore not as satisfactory as in the constant case, since one
does not have a bounded family of solutions in Hs, as ε goes to zero.

3.4.2 Local solutions for large data

In this section we suppose that the rotation vector B only depends on x2. This appears like
a technical assumption but it is not clear how to deal with the more general case. As in the
previous section, we start by proving a result in an anisotropic space.

Proposition 3.13 Suppose that B only depends on x2, and let s > 1/2 be given. Suppose
that u0 is a divergence free vector field in H0,s(Ω). Then there is a time T > 0 such that for
all ε > 0, the system (3.1.1) has a unique solution, bounded in C([0, T ];H0,s)∩L2([0, T ];H1,s).

Proof of Proposition 3.13. The first step consists in solving the linearized equation

∂tvε −∆vε +
1
ε
P(vε ∧B) = 0

for smooth initial data, say vε|t=0 = χ(|D|/N)u0, where χ is a smooth cut-off function in a
ball centered at zero and N is a large enough integer. Then clearly vε is globally defined and
bounded in Cb(R+;H0,s) ∩ L2(R+;H1,s), and since B depends neither on x1 nor on x3, its
frequencies in the ξ1 and ξ3 direction are in a ball of size N . Then one needs to solve the
perturbed equation satisfied by wε = uε − vε, and prove it has a solution on a uniform time
interval. The equation is the following:

∂twε + wε ·∇wε + wε ·∇vε + vε ·∇wε −∆wε +
1
ε
wε ∧B +∇p = −vε ·∇vε

∇· wε = 0

wε|t=0 =
(
1− χ(|D|/N)

)
u0.

This is a 3D Navier-Stokes type equation, with a non constant rotating term which is harmless
since we will write an energy estimate in H0,s. The initial data can be made arbitrarily small
as soon as N is large enough. It moreover has a forcing term due to the presence of vε,
and transport-reaction terms. Those latter terms classically do not cause much trouble as
they contribute in an exponential in the final estimate (through a Gronwall lemma), which is
independent of ε and N . More troublesome is the forcing term −vε · ∇vε, but using the fact
that two frequency directions of vε are bounded, it is possible to write an estimate of the type∣∣∣∣∫ t

0
(vε · ∇vε|wε)H0,s (t′) dt′

∣∣∣∣ ≤ C(N, ‖u0‖L2)t
1
2 +

1
2
‖∇hwε‖2

H0,s .

Proving such an estimate is of course the main difficulty of the analysis and is left out. It
is here that the fact that B does not depend on x2 is crucial: without that assumption, the
constant C(N, ‖u0‖L2) above would depend on ε, which would prevent the life span from
being independent of ε. Once that estimate is proved, one finds that for a small enough time,
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depending on N but not on ε, one can solve the system on wε, hence going back to the original
equation, there is a solution uε on a time interval independent of ε.

To infer the second part of Theorem 3.2 one uses again a propagation of regularity type result.
We omit the details.

3.5 References and remarks

The analysis of the weak convergence of weak solutions presented in this chapter is probably
the first attempt in understanding mathematically the behaviour of a variable coefficient
Coriolis operator, and the original analysis can be found in [24]. Note that the study is not
unrelated to works on the incompressible limit. As recalled in Section 2.6, the idea of using
compensated compactness methods originates in the article [41] for the incompressible limit.
The uniform existence of strong solutions presented in Section 3.4 is due to M. Majdoub
and M. Paicu [43], and concerning the difficulty of studying strong solutions one can also
refer, among other studies to the paper by G. M étivier and S. Schochet [47], concerning
nonisentropic, compressible Navier-Stokes equations (see also T. Alazard [1]), or to the recent
works [8] and [9].



Chapter 4

The tropics

4.1 Introduction

In this chapter we will be concerned with a shallow water system governing the movement
of the ocean at the tropics, presented in the introduction (see (1.2.13). Using the cartesian
approximation (1.2.10) of the latitude and the longitude, and the shallow water approximation
of the Navier-Stokes system with free surface, we obtain the following system for the depth
fluctuation η and the horizontal velocity u:

∂tη +
1
ε
∇·
(
(1 + εη)u

)
= 0,

∂t

(
(1 + εη)u

)
+∇ ·

(
(1 + εη)u⊗ u

)
+
βx2

ε
(1 + εη)u⊥ +

1
ε
(1 + εη)∇η

−A(1 + εη, u) = 0,
η|t=0 = η0, u|t=0 = u0. (4.1.1)

We will suppose that the space variable x = (x1, x2) belongs to T×R. As in the previous
chapters, we have denoted u⊥ = (u2,−u1). The operator A represents the viscous effects,
and from a physical point of view, it would be relevant to model such effects by the following
operator

A(1 + εη, u) = ν∇ · ((1 + εη)∇u),

meaning in particular that the viscosity cancels when 1 + εη vanishes. Then, in order for
the Cauchy problem to be globally well-posed, it is necessary to get some control on the
cavitation. Results by D. Bresch and B. Desjardins [6] show that capillary or friction effects
can prevent the formation of singularities in the Saint-Venant system (without Coriolis force).
On the other hand, in the absence of such dissipative effects, A. Mellet and A. Vasseur [46]
have proved the weak stability of this same system under a suitable integrability assumption
on the initial velocity field. All these results are based on a new entropy inequality [6] which
controls in particular the first derivative of

√
1 + εη. In particular, they cannot be easily

extended to (4.1.1) since the betaplane approximation of the Coriolis force prevents from
deriving such an entropy inequality.
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For the sake of simplicity, since we are interested in an asymptotic regime where the depth h =
1+εη is just a fluctuation around a mean value, we will consider the following viscosity operator

A(h, u) = ν∆u,

so that the usual theory of the isentropic Navier-Stokes equations can be applied.

Note also that we do not consider realistic boundary conditions in the x1 variable, but that
enables us to give a complete description of the asymptotics. In the presence of boundaries
one would have to take into account boundary layers (namely Munk-type boundary layers;
see [17] for instance).

As in the previous chapters, the questions we shall address are first to solve this system
uniformly in ε, and then to understand the asymptotic behaviour of the solutions as ε goes to
zero. The mathematical setting is not quite the one studied in the previous chapter, since the
rotation vector vanishes for x2 = 0. However the advantage of our situation is that it is an
explicit function, so it will be possible to carry out computations further than in the abstract
case studied in the previous chapter.

4.2 Statement of the main results

We obtain the following result as a consequence of the global existence of weak solutions
to the isentropic Navier-Stokes equations, remarking that the penalization (which is a skew-
symmetric operator) does not modify the energy inequality.

Theorem 4.1 Let (η0, u0) ∈ L2(T×R) and consider a sequence ((η0
ε , u

0
ε))ε>0 such that

sup
ε>0

(
1
2

∫ (
|η0

ε |2 + (1 + εη0
ε)|u0

ε|2
)
dx

)
≤ E0 and

(η0
ε , u

0
ε) → (η0, u0) in L2(T×R).

(4.2.1)

Then, for all ε > 0, System (4.1.1) has at least one weak solution (ηε, uε) with initial
data (η0

ε , u
0
ε), satisfying the uniform bound

sup
ε>0

(
1
2

∫ (
η2

ε + (1 + εηε)|uε|2
)
(t, x)dx+ ν

∫ t

0

∫
|∇uε|2(t′, x)dxdt′

)
≤ E0. (4.2.2)

In particular, there exist η and u belonging respectively to the spaces L∞(R+;L2(T×R))
and L∞(R+;L2(T×R))∩L2(R+; Ḣ1(T×R)) such that, up to extraction of a subsequence,

(ηε, uε) ⇀ (η, u) in w-L2
loc(R

+×T×R). (4.2.3)

It therefore makes sense to inquire on the limit behaviour of the solution as ε goes to zero. We
will start by studying the weak asymptotics, and establishing that as the rotation increases,
the geostrophic flow is governed by a linear equation. The proof of the following result can
be found in Section 4.3 below.
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Theorem 4.2 Let (η0, u0) ∈ L2(T×R) and (η0
ε , u

0
ε) satisfy (4.2.1). For all ε > 0, de-

note by (ηε, uε) a solution of (4.1.1) with initial data (η0
ε , u

0
ε). Then up to the extrac-

tion of a subsequence, (ηε, uε) converges weakly in L2
loc(R

+×T×R) to the solution (η, u)
in L∞(R+;L2(R)), with u also belonging to L2(R+; Ḣ1(R)), of the following linear equation
(given in weak formulation)

u2 = 0, −βx2u1 + ∂2η = 0, (4.2.4)

and for all (η∗, u∗) ∈ L2 ×H1(R) satisfying (4.2.4)∫
(ηη∗ + u1u

∗
1)(t, x) dx+ ν

∫ t

0

∫
∇u1 · ∇u∗1(t′, x) dx dt′ =

∫
(η0η∗ + u0

1u
∗
1)(x) dx. (4.2.5)

Once the mean flow has been described, it is natural to address the question of the strong
convergence of solutions. As in the case of midlatitudes (when the Coriolis penalization is
assumed to be constant), for periodic boundary conditions we need to filter out the oscillatory
modes before taking the strong limit. Indeed equatorial waves are known to be trapped (see
Chapter 1), thus we cannot expect to establish any dispersion.

In the next theorem we have defined the operator L(t) = e−tL where L is the Coriolis operator

L : (η, u) ∈ L2(T×R) 7→ (∇ · u, βx2u
⊥ +∇η). (4.2.6)

We moreover denote by Π0 the L2 projection onto the kernel of L, and by Π⊥ the projection
onto (KerL)⊥. Finally for any three-component vector field Φ, we denote by Φ′ its two last
components. In the following statement, a limit system is referred to, which is obtained as in
Chapter 2, by a filtering method. It will be studied in Section 4.4. Special function spaces
are also used, they are defined by the following norm:

∀s ≥ 0, ‖Φ‖Hs
L

def= ‖(Id−∆ + β2x2
2)

s/2Φ‖L2(T×R). (4.2.7)

The limit system is presented in Paragraph 4.4.2, and the main steps of the result are described
in Paragraph 4.4.5.

Theorem 4.3 Let Φ0 = (η0, u0) ∈ L2(T×R), and consider a family ((η0
ε , u

0
ε))ε>0 such that

1
2

∫ (
|η0

ε |2 + (1 + εη0
ε)|u0

ε|2
)
dx ≤ E0 and

1
2

∫ (
|η0

ε − η0|2 + (1 + εη0
ε)|u0

ε − u0|2
)
dx→ 0 as ε→ 0.

(4.2.8)

For all ε > 0 denote by (ηε, uε) a solution of (4.1.1) with initial data (η0
ε , u

0
ε). Then

• there exists a weak solution in L∞(R+;L2(T×R)) to the limit filtered system (given to
simplify notation in compact formulation rather than in weak formulation as in (4.2.5) above)

∂tΦ +QL(Φ,Φ)− ν∆′
LΦ = 0

Φ|t=0 = Φ0,
(4.2.9)
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where ∆′
L and QL are defined in (4.4.11). Moreover Π⊥Φ belongs to the space L2(R+;H1

L).
If Π⊥Φ0 belongs to Hα

L for some α > 1/2, then for all but a countable number of β, the weak
solution satisfies for all t ∈ R+∫ t

0
‖∇ · Φ′(t′)‖L∞(T×R)dt

′ < +∞. (4.2.10)

• If we further assume that Π⊥Φ0 belongs to H
1/2
L , then there exists a maximal time inter-

val [0, T ∗[, with T ∗ = +∞ under the smallness assumption

‖Π0Φ0‖L2(T×R) + ‖Π⊥Φ0‖
H

1/2
L

≤ Cν,

such that Φ is the unique (strong) solution to (4.2.9), and Π⊥Φ belongs to L∞loc([0, T
∗[,H1/2

L )∩
L2

loc([0, T
∗[,H3/2

L ).

• Finally if Π⊥Φ0 belongs to Hα
L for some α > 1/2, then for all but a countable number of β,

the sequence of filtered solutions (Φε) to (4.1.1) defined by

Φε = L
(
− t
ε

)
(ηε, uε),

converges strongly towards Φ in L2
loc([0, T

∗[;L2(T×R)).

Remark 4.1 The limit equation (4.2.9) is obtained as usual (see Chapter 2) by studying
resonances in the nonlinear term. It so happens that the limit quadratic form is shown to
satisfy three-dimensional type estimates in Hs

L spaces, although the setting here is purely
two-dimensional. That is due to the particular structure of the eigenvalues and eigenvectors
of the penalization operator L and will be discussed in Paragraph 4.4 below. That is the
reason why we are only able to prove the local in time wellposedness of (4.2.9).

The following, final result, is an intermediate statement between the two convergence theorems
stated above. The proof is presented in the final section of this survey, Section 4.5 below.
We have denoted by S the set of all the eigenvalues of L (which turns out to be exactly the
spectrum of L).

Theorem 4.4 Let (η0, u0) ∈ L2(T×R) and (η0
ε , u

0
ε) satisfy (4.2.1). For all ε > 0, denote

by (ηε, uε) a solution of (4.1.1) with initial data (η0
ε , u

0
ε), and by

Φε = L
(
− t
ε

)
(ηε, uε).

Then up to the extraction of a subsequence, Φε converges strongly in L2
loc(R

+;Hs
loc(T×R))

(for all s < 0) to some weak solution Φ of the following limiting filtered system: for all iλ ∈ S,
there is a bounded measure υλ ∈M(R+×T×R) (which vanishes if λ = 0), such that for all
smooth Φ∗

λ ∈ Ker(L− iλId),∫
Φ · Φ̄∗

λ(x) dx− ν

∫ t

0

∫
∆′

LΦ · Φ̄∗
λ(t′, x) dxdt′

+
∫ t

0

∫
QL(Φ,Φ) · Φ̄∗

λ(t′, x) dxdt′ +
∫ t

0

∫
∇ · (Φ̄∗

λ)′υλ(dt′dx) =
∫

Φ0 · Φ̄∗
λ(x) dx,
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where QL and ∆′
L are defined by (4.4.11), and where Φ0 = (η0, u0).

Remark 4.2 • Note that, by interpolation with the uniform L2
loc(R

+,H1(T×R)) bound
on uε, we get the strong convergence of uε in L2

loc(R
+, L2(T×R)) : up to extraction of a

subsequence, ∥∥∥∥uε −
(
L
(
t

ε

)
Φ
)′∥∥∥∥

L2(T×R)

→ 0 in L2
loc([0, T ]).

• The presence of the defect measure υλ at the limit is due to a possible defect of compactness
in space of the sequence (ηε)ε>0. As the proof of the theorem shows, that measure is zero
if one is able to prove some equicontinuity in space on ηε, or even on εηε. Since we have
been unable to prove such a result, we study in the final paragraph of this chapter a slightly
different model, where capillarity effects are added in order to gain that compactness. Note
that the model introduced in Paragraph 4.5.4 is unfortunately not very physical due to the
particular form of the capillarity operator (see its definition in (4.5.8) below).

4.3 Weak asymptotics

In this paragraph we intend to prove Theorem 4.2 stated above. The structure of the proof is
similar to the previous chapters: we study the kernel of the penalization operator and show
that the limit is necessarily in that kernel, and a compensated compactness argument allows
to take limits in the nonlinear terms.

4.3.1 The geostrophic constraint

The first step consists in proving that the weak limit defined by (4.2.3) satisfies the geostrophic
constraint (4.2.4), or in other words belongs to the kernel of L. We skip the proof of the
following proposition: as in the previous chapters one proves that the limit is in KerL by
multiplying the system (4.1.1) by ε and taking limits in the sense of distributions thanks to
the uniform bounds coming from the energy estimate. The constraint (4.3.1) is easily shown
to characterize elements of KerL.

Proposition 4.3 Let (η0, u0) ∈ L2(T×R) and (η0
ε , u

0
ε) be initial data satisfying (4.2.1).

Denote by ((ηε, uε))ε>0 a family of solutions of (4.1.1) with respective initial data (η0
ε , u

0
ε), and

by (η, u) any of its limit points. Then, (η, u) ∈ L∞(R+;L2(T×R)) satisfies the constraints

u2 = 0, −βx2u1 + ∂2η = 0. (4.3.1)

To go further in the description of the weak limit (η, u), we have to isolate the fast oscillations
generated by the singular perturbation L, which produce “big” terms in (4.1.1), but converge
weakly to 0. The idea to get the mean motion is to consider the weak form of the evolution
equations, testing (4.1.1) against smooth functions of KerL.



86 Chapter 4: The tropics

Note that contrary to the previous chapters, we are missing regularity in the unknown ηε

(which does not satisfy a uniform L2
loc(R

+,H1(T×R)) bound), so we will need to use
smoother functions in the kernel of L than merely H1 functions as in the previous chap-
ter. In fact a careful study of the constraint (4.3.1) indicates that the Hermite functions are
naturally associated with KerL. Let us therefore introduce the Hermitian basis of L2(R)
constituted of Hermite functions (ψn)n∈N where

−ψ′′n + β2x2
2ψn = β(2n+ 1)ψn.

We recall that

ψn(x2) = exp
(
−βx

2
2

2

)
Pn(x2

√
β)

where Pn is the n-th Hermite polynomial, as well as the identities

ψ′n(x2) + βx2ψn(x2) =
√

2βnψn−1(x2),

ψ′n(x2)− βx2ψn(x2) = −
√

2β(n+ 1)ψn+1(x2).
(4.3.2)

Then decomposing any element of KerL on the Hermite basis one can show that it is a linear
combination of the following

(η0, u0) =

 −ψ0(x2)
ψ0(x2)

0

 and

(ηn, un) =


√
β(n+ 1)

2
ψn−1(x2) +

√
βn

2
ψn+1(x2)√

β(n+ 1)
2

ψn−1(x2)−
√
βn

2
ψn+1(x2)

0

 for n ≥ 1.

We will therefore restrict our attention to those particular vector fields, which are smooth and
integrable against any polynomial in x2, and then conclude by a density argument.

Using the conservations of mass and momentum (4.1.1) it is easy to see that, defining mε =
(1 + εηε)uε, ∫

(ηεηn +mε,1un,1) (t, x) dx+ ν

∫ t

0

∫
∇uε,1 · ∇un,1(t′, x) dx dt′

=
∫

(η0
εηn +m0

ε,1un,1)(x) dx+
∫ t

0

∫
(mε · (uε · ∇un)) (t′, x) dxdt′.

The difficulty is then to take limits the nonlinear terms, which can be simply written∫ t

0

∫
mε,1uε,2∂2un,1(t′, x) dxdt′.

This is achieved by a compensated compactness technique presented in the next section.
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4.3.2 The compensated compactness argument

The analysis of the nonlinear terms lies essentially on the structure of the oscillations. A
rough description of those fast oscillations will be enough to prove that they do not produce
any constructive interference, and therefore do not occur in the equation governing the mean
(geostrophic) motion. As in the previous chapters, κ denotes a regularizing kernel.

Lemma 4.4 Let us define

ηδ
ε = κδ ? ηε and mδ

ε = κδ ? ((1 + εηε)uε) = uδ
ε + ε(ηεuε)δ

which converge uniformly in ε as δ → 0 to ηε and mε in L∞(R+,Hs
loc(T×R)) for any s < 0.

We also introduce the approximate vorticity

ωδ
ε = ∇⊥ ·mδ

ε.

Then the following approximate wave equations hold

ε∂tη
δ
ε +∇·mδ

ε = 0,

ε∂tm
δ
ε + βx2(mδ

ε)
⊥ +∇ηδ

ε = εsδ
ε + δσδ

ε ,

ε∂t(ωδ
ε − βx2η

δ
ε) + βmδ

ε,2 = εqδ
ε + δpδ

ε,

(4.3.3)

denoting by sδ
ε, q

δ
ε and σδ

ε , p
δ
ε some quantities satisfying, for all T > 0,

sup
δ>0

sup
ε>0

(
‖σδ

ε‖L2([0,T ];H1(T×R)) + ‖pδ
ε‖L2([0,T ];L2(T×R))

)
< +∞,

∀δ > 0, sup
ε>0

(
‖sδ

ε‖L1([0,T ];H1(T×R)) + ‖qδ
ε‖L1([0,T ];L2(T×R))

)
<∞.

(4.3.4)

In order to prove this lemma, we proceed in two steps as in the previous chapters, first stating
the wave equations for (ηε,mε), then introducing the regularization (ηδ

ε ,m
δ
ε). We omit the

details.

Equipped with this preliminary result, we are now able to establish the compensated com-
pactness result, which implies that the nonlinear term actually converges to zero.

Proposition 4.5 With the previous notations, we have locally uniformly in t

lim
ε→0

∫ t

0

∫
mε,1uε,2∂2un,1(t′, x) dxdt′ = 0.

Proof. Let us define, as in Lemma 4.4,

ηδ
ε = ηε ? κδ, uδ

ε = uε ? κδ and mδ
ε = mε ? κδ.
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Then ∫ t

0

∫
mε,1uε,2∂2un,1(t′, x) dxdt′ =

∫ t

0

∫
mδ

ε,1m
δ
ε,2∂2un,1(t′, x) dxdt′

+
∫ t

0

∫
mδ

ε,1(u
δ
ε,2 −mδ

ε,2)∂2un,1(t′, x) dxdt′

+
∫ t

0

∫
mδ

ε,1(uε,2 − uδ
ε,2)∂2un,1(t′, x) dxdt′

+
∫ t

0

∫
(mε,1 −mδ

ε,1)uε,2∂2un,1(t′, x) dxdt′.

(4.3.5)

• From the energy estimates we can prove that the two last integrals converge towards zero
as δ goes to zero uniformly in ε. Indeed for all α > 0 there exists some bounded subset T×Ωα

of T×R such that
‖∂2un,1‖W 1,∞(R \Ωα) ≤ α.

Then, for 0 < s < 1,∣∣∣∣∫ t

0

∫
(mε,1 −mδ

ε,1)uε,2∂2un,1(t′, x) dxdt′
∣∣∣∣

≤ ‖mε,1 −mδ
ε,1‖L2([0,T ];H−s(T×Ωα))‖uε,2‖L2([0,T ];H1(T×R))‖∂2un,1‖W 1,∞(R)

+ 2α‖mε,1‖L2([0,T ];H−s(T×R))‖uε,2‖L2([0,T ];H1(T×R)),

which goes to zero as α then δ go to zero, uniformly in ε by (4.2.2) and Lemma 4.4.

Similarly, we get, for 0 < s < 1,∣∣∣∣∫ t

0

∫
mδ

ε,1(uε,2 − uδ
ε,2)∂2un,1(t′, x) dxdt′

∣∣∣∣
≤ ‖mδ

ε,1‖L2([0,T ];H−s(T×R))‖uε,2 − uδ
ε,2‖L2([0,T ];Hs(T×Ωα))‖∂2un,1‖W 1,∞(T×R)

+ 2α‖mε,2‖L2([0,T ];H−s(T×R))‖uε,1‖L2([0,T ];H1(T×R))

which goes to zero as α then δ go to zero, uniformly in ε by (4.2.2) and Lemma 4.4.

Next we prove that for all δ > 0, the second integral in the right-hand side of (4.3.5) goes to
zero as ε→ 0. But ηεuε and consequently mε are uniformly bounded in L2([0, T ];Hs(T×R))
for s < 0. Therefore, for fixed δ > 0, (ηεuε)δ and mδ

ε are uniformly bounded in L2([0, T ] ×
T×R). Then∣∣∣∣∫ t

0

∫
mδ

ε,1(u
δ
ε,2 −mδ

ε,2)∂2un,1(t′, x) dxdt′
∣∣∣∣

≤ ε‖mδ
ε,1‖L2([0,T ]×T×R)‖(ηεuε,2)δ‖L2([0,T ]×T×R)‖∂2un,1‖L∞(R)

which goes to zero as ε→ 0 for all fixed δ > 0.
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• So finally we need to consider the first term in the right-hand side of (4.3.5). We are going
to prove that the limit of that term is zero using Lemma 4.4. Integrating by parts, we have∫ t

0

∫
mδ

ε,1m
δ
ε,2∂2un,1(t′, x) dxdt′

= −
∫ t

0

∫ (
(∂2m

δ
ε,1)m

δ
ε,2 +mδ

ε,1(∂2m
δ
ε,2)
)
un,1(t′, x) dxdt′

= −
∫ t

0

∫ (
(ωδ

ε + ∂1m
δ
ε,2)m

δ
ε,2 +mδ

ε,1(∇ ·mδ
ε − ∂1m

δ
ε,1)
)
un,1(t′, x) dxdt′

= −
∫ t

0

∫ (
(ωδ

ε − βx2η
δ
ε)m

δ
ε,2 + ηδ

ε(βx2m
δ
ε,2 + ∂1η

δ
ε) +mδ

ε,1∇ ·mδ
ε

)
un,1(t′, x) dxdt′

− 1
2

∫ t

0

∫
∂1

(
(mδ

ε,2)
2 − (mδ

ε,1)
2 − (ηδ

ε)
2
)
un,1(t′, x)dxdt′

and the last term is zero because ∂1un,1 = 0.

Lemma 4.4 now implies that∫ t

0

∫
mδ

ε,1m
δ
ε,2∂2un,1(t′, x) dxdt′

=
∫ t

0

∫ (
ε

2β
∂t(βx2η

δ
ε − ωδ

ε)
2 +

ε

β
(βx2η

δ
ε − ωδ

ε)q
δ
ε +

δ

β
(βx2η

δ
ε − ωδ

ε)p
δ
ε

)
un,1(t′, x) dxdt′

+
∫ t

0

∫ (
ε∂t(ηδ

εm
δ
ε,1)− εηδ

εs
δ
ε,1 − δηδ

εσ
δ
ε,1

)
un,1(t′, x)dxdt′.

Now we notice that∣∣∣∣∫ t

0

∫
(βx2η

δ
ε − ωδ

ε)p
δ
εun,1(t′, x) dxdt′

∣∣∣∣ ≤ C‖(1 + x2
2)

1/2un,1‖L∞(R)‖pδ
ε‖L2([0,T ];L2(T×R))

×
(
T 1/2‖ηδ

ε‖L∞(R+;L2(T×R)) + ‖ωδ
ε‖L2([0,T ];L2(T×R))

)
,

and similarly∣∣∣∣∫ t

0

∫
ηδ

εσ
δ
ε,1un,1(t′, x) dxdt′

∣∣∣∣ ≤ CT 1/2‖ηδ
ε‖L∞(R+;L2(T×R))‖un,1‖L∞(R)‖σδ

ε‖L2([0,T ];L2(T×R)).

So writing

‖ωδ
ε‖L2([0,T ];L2(T×R))) ≤ ‖∇⊥ · uδ

ε‖L2([0,T ];L2(T×R)) + ε‖∇⊥ · (ηδ
εu

δ
ε)‖L2([0,T ];L2(T×R)),

we infer that

lim
δ→0

lim
ε→0

(
δ

β

∣∣∣∣∫ t

0

∫
(βx2η

δ
ε − ωδ

ε)p
δ
εun,2(t′, x) dxdt′

∣∣∣∣) = 0, and

lim
δ→0

(
δ

∣∣∣∣∫ t

0

∫
ηδ

εσ
δ
ε,1un,1(t′, x) dxdt′

∣∣∣∣) = 0, uniformly in ε.
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On the other hand,∣∣∣∣∫ t

0

∫
(βx2η

δ
ε − ωδ

ε)q
δ
εun,2(t′, x) dxdt′

∣∣∣∣ ≤ C
(
‖ηδ

ε‖L∞(R+;L2(T×R)) + ‖ωδ
ε‖L∞(R+;L2(T×R))

)
× ‖(1 + x2

2)
1/2un,2‖L∞(T×R))‖qδ

ε‖L1([0,T ];L2(T×R))

≤C
(
‖ηδ

ε‖L∞(R+;L2(T×R)) +
1
δ
‖uε‖L∞(R+;L2(T×R)) + ε‖∇⊥ · (ηδ

εu
δ
ε)‖L∞(R+;L2(T×R))

)
× ‖(1 + x2

2)un,2‖L∞(T×R)‖qδ
ε‖L1([0,T ];L2(T×R)),

and∣∣∣∣∫ t

0

∫
ηδ

εs
δ
ε,1un,1(t′, x) dxdt′

∣∣∣∣ ≤ C‖ηδ
ε‖L∞(R+;L2(T×R))‖un,1‖L∞(T×R)‖sδ

ε‖L1([0,T ];L2(T×R))

so

lim
ε→0

(
ε

β

∣∣∣∣∫ t

0

∫
(βx2η

δ
ε − ωδ

ε)q
δ
εun,1(t′, x) dxdt′

∣∣∣∣) = 0, for all δ > 0,

lim
ε→0

(
ε

∣∣∣∣∫ t

0

∫
ηδ

εs
δ
ε,1un,1(t′, x) dxdt′

∣∣∣∣) = 0, for all δ > 0.

So we simply need to let ε go to zero, then δ, and the result follows.

4.4 Strong asymptotics

In this section we aim at getting a complete description of the asymptotic behaviour of the
ocean in the fast rotation limit, including the various equatorial waves – thus proving the
strong convergence result stated in Theorem 4.3. In the first Paragraph of this section (Para-
graph 4.4.1) we present the various waves involved, which are eigenvectors of the singular
perturbation and constitute a Hilbertian basis of L2(T×R). That basis enables us to intro-
duce the filtering operator and to formally derive the limit filtered system. Then, proving
that the limit filtered system has strong solutions (see Paragraphs 4.4.2, 4.4.3 and 4.4.4) and
using the strong-weak stability of (4.1.1) (see Paragraph 4.4.5) leads to the strong convergence
result.

4.4.1 The equatorial waves

In view of the structure of the rotating shallow-water equations (4.1.1), we expect the oscil-
lations of (ηε, uε) to be mainly governed by the singular perturbation L. The crucial point is
that the description of the eigenmodes of L can be achieved using the Fourier transform with
respect to x1 and the decomposition on the Hermite functions (ψn)n∈N with respect to x2.

In order to investigate the spectrum of L (which is an unbounded skew-symmetric operator),
we are interested in the non trivial solutions to

L(η, u) = iτ(η, u).
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Rewriting that equation as on equation on u2 only, one checks easily that necessarily

τ3 − (k2 + β(2n+ 1))τ + βk = 0, (4.4.1)

for some n ∈ N.

• If k 6= 0 and n 6= 0, (4.4.1) admits three solutions

τ(n, k,−1) < τ(n, k, 0) < τ(n, k, 1),

and one can check that these solutions are eigenvalues of L associated to the following unitary
eigenvectors (the coefficient Cn,k,j ensures they are unitary)

Ψn,k,j = Cn,k,je
ikx1


i

k − τ(n, k, j)

√
βn

2
ψn−1(x2) +

i

τ(n, k, j) + k

√
β(n+ 1)

2
ψn+1(x2)

i

k − τ(n, k, j)

√
βn

2
ψn−1(x2)−

i

τ(n, k, j) + k

√
β(n+ 1)

2
ψn+1(x2)

ψn(x2)

 .

(4.4.2)
The modes corresponding to τ(n, k,−1) and τ(n, k, 1) are called Poincaré modes because

τ(n, k,±1) ∼ ±
√
k2 + β(2n+ 1) as |k|, n→∞,

which are the frequencies of the gravity waves.

The modes corresponding to τ(n, k, 0) are called Rossby modes because

τ(n, k, 0) ∼ βk

k2 + β(2n+ 1)
as |k|, n→∞,

meaning that the oscillation frequency is very small : the planetary waves Ψn,k,0 satisfy indeed
the quasigeostrophic approximation.

• If k = 0 and n 6= 0, the three solutions to (4.4.1) are the two Poincaré modes τ(n, 0,±1) =
±
√
β(2n+ 1) and the non-oscillating mode τ(n, 0, 0) = 0. The corresponding eigenvectors

of L are given by (4.4.2) if j 6= 0 and by

Ψn,0,0 = Cn,0,0


√
β(n+ 1)

2
ψn−1(x2) +

√
βn

2
ψn+1(x2)√

β(n+ 1)
2

ψn−1(x2)−
√
βn

2
ψn+1(x2)

0

 . (4.4.3)

• If n = 0, the three solutions to (4.4.1) are the two Poincaré and mixed Poincaré-Rossby
modes

τ(0, k,±1) = −k
2
± 1

2

√
k2 + 4β
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with asymptotic behaviours given by

τ(0, k,− sgn(k)) ∼ −k as |k| → ∞,

τ(0, k, sgn(k)) ∼ β

k
as |k| → ∞,

and the Kelvin mode τ(0, k, 0) = k. The corresponding eigenvectors of L are given by (4.4.2)
if j 6= 0 and by

Ψ0,k,0 =
1√
4π
eikx1

 −ψ0(x2)
ψ0(x2)

0

 . (4.4.4)

One can then prove the following diagonalization result (whose technical proof is omitted
here).

Proposition 4.6 For all (n, k, j) ∈ N×Z×{−1, 0, 1}, denote by τ(n, k, j) the three roots of
(4.4.1) and by Ψn,k,j the unitary vector defined above. Then (Ψn,k,j)(n,k,j)∈N×Z×{−1,0,1} is a
Hilbertian basis of L2(T×R) constituted of eigenvectors of L :

LΨn,k,j = iτ(n, k, j)Ψn,k,j . (4.4.5)

Furthermore we have the following estimate : for all s > 0, there exists a nonnegative con-
stant Cs such that, for all (n, k, j) ∈ N×Z×{−1, 0, 1},

‖Ψn,k,j‖L∞(T×R) ≤ C0 and ‖Ψn,k,j‖Hs∩W s,∞(T×R) ≤ Cs(1 + |k|2 + n)s/2. (4.4.6)

Moreover the following property holds : if τ(n, k, j) = τ(n∗, k, j∗), then n = n∗ and j = j∗.
Finally the eigenspace associated with any iλ 6= 0 is of finite dimension.

As mentioned in the introduction, the adjustment processes are therefore somewhat special
in the vicinity of the equator (when the Coriolis acceleration vanishes). A very important
property of the equatorial zone is that it acts as a waveguide, i.e., disturbances are trapped
in the vicinity of the equator. The waveguide effect is due entirely to the variation of Coriolis
parameter with latitude. Note that another important effect of the waveguide is the separation
into a discrete set of modes n = 0, 1, 2, ... as occurs in a channel.

The next definition will be useful in the following.

Definition 4.7 With the previous notation, let us define

P = V ect{Ψn,k,j / (n, k, j) ∈ N∗×Z×{−1, 1} \ {0} × {(k,−sgn(k) / k ∈ Z∗}},
R = V ect{Ψn,k,0 / (n, k) ∈ N∗×Z∗},
M = V ect{Ψ0,k,j / k ∈ Z∗, j = −sgn(k)},
K = V ect{Ψ0,k,0 / k ∈ Z∗},

so that
L2(T×R) = P ⊕R⊕M ⊕K ⊕KerL.

Then we denote by ΠP (resp. ΠR,ΠM ,ΠK and Π0) the L2 orthogonal projection on P (resp.
on R, M , K and KerL).
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We are now able to define the “filtering operator” associated with the system. Let L be the
semi-group generated by L : we write L(t) = exp (−tL). Then, for any three-component
vector field Φ ∈ L2(T×R), we have

L(t)Φ =
∑
iλ∈S

e−itλΠλΦ, (4.4.7)

where Πλ denotes the L2 orthogonal projection on the eigenspace of L corresponding to the
eigenvalue iλ, and S is the set of all eigenvalues of L.

Now let us consider (ηε, uε) a weak solution to (4.1.1), and let us define

Φε = L
(
− t
ε

)
(ηε, uε). (4.4.8)

Conjugating formally equation (4.1.1) by the semi-group leads to

∂tΦε + L
(
− t
ε

)
Q

(
L
(
t

ε

)
Φε,L

(
t

ε

)
Φε

)
− νL

(
− t
ε

)
∆′L

(
t

ε

)
Φε = Rε, (4.4.9)

where ∆′ and Q are the linear and symmetric bilinear operator defined by

∆′Φ = (0,∆Φ′) and Q(Φ,Φ) = (∇ · (Φ0Φ′), (Φ′ · ∇)Φ′) (4.4.10)

denoting by Φ0 the first coordinate and by Φ′ the two other coordinates of Φ, and where

Rε = L
(
− t
ε

)
(0,−ν εηε

1 + εηε
∆uε).

We therefore expect to get a bound on the time derivative of Φε in some space of distributions.
A formal passage to the limit in (4.4.9) as ε goes to zero (based on formula (4.4.7) and on a
nonstationary phase argument) leads then to

∂tΦ +QL(Φ,Φ)− ν∆′
LΦ = 0,

where ∆′
L and QL denote the linear and symmetric bilinear operator defined by

∆′
LΦ =

∑
iλ∈S

Πλ∆′ΠλΦ and QL(Φ,Φ) =
∑

iλ,iµ,iµ̃∈S
λ=µ+µ̃

ΠλQ(ΠµΦ,Πµ̃Φ). (4.4.11)

Note that this formulation makes a priori no sense, but should be understood in weak form.

The definition of the quadratic form naturally addresses the question of the resonances induced
by L, which will be studied in Section 4.4.3.
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4.4.2 The quasigeostrophic motion

In this section we shall investigate the wellposedness of the limit system derived formally in
the previous section. The aim of this section is therefore to prove all the results of Theorem 4.3
except for the final, convergence result. Those existence results are based on a precise study of
the structure of (4.2.9), and in particular of the ageostrophic part of that equation, meaning
its projection onto (KerL)⊥. One can prove in particular that the ageostrophic part of (4.2.9)
is in fact fully parabolic. That should be compared to the case of the incompressible limit of
the compressible Navier-Stokes equations, where again the limit system is parabolic, contrary
to the original compressible system (see [15], [22], [44]). Note however that (4.2.9) actually
satisfies the same type of trilinear estimates as the three-dimensional incompressible Navier-
Stokes system, which accounts for the fact that unique solutions are only obtained for a short
life span (despite the fact that the space variable x runs in the two dimensional domain T×R).

We will not give all the details of the proof here but indicate the main steps, which enable us
to rely on the theory of the three dimensional Navier-Stokes equations.

Let us start by considering the existence of weak solutions. The main argument, as pointed
out above, is that the ageostrophic part of the limit system is actually fully parabolic, in the
following sense: recalling the definition of the spaces Hs

L given in (4.2.7) above, one can prove
that for any Φ ∈ (KerL)⊥ ∩Hs

L,

‖Φ‖2
Hs

L
∼

∑
iλ∈S\{0}

‖ΠλΦ‖2
Hs(T×R) < +∞. (4.4.12)

Then it can be proved that for all s ≥ 0,

∀Φ ∈ (KerL)⊥, ‖Φ‖2
Hs+1(T×R) ≤ C‖Φ‖2

Hs+1
L

≤ C(Φ| −∆′
LΦ)Hs(T×R),

which implies in particular that once projected onto (KerL)⊥, the system (4.2.9) is fully
parabolic. The proof of those inequalities relies on three main arguments. First, the struc-
ture of the eigenmodes shows that the diffusion, acting a priori only on the velocity field,
also has a smoothing effect on the depth flucutation. Then one proves the orthogonality in
Hs(T×R) of the eigenmodes corresponding to the same eigenvalue iλ 6= 0, and finally a
“quasi-orthogonality” property on the eigenmodes: one can prove that

∀Φ ∈ (KerL)⊥, ‖∇Φ‖2
Hs ≤ C

∑
iλ∈S\{0}

‖∇(ΠλΦ)‖2
Hs .

In the following we will also use the fact that

∀Φ ∈ (KerL)⊥, ‖Φ0‖2
Hs ≤ C

∑
iλ∈S\{0}

‖(ΠλΦ)0‖2
Hs (4.4.13)

and ‖Φ′‖2
Hs ≤ C

∑
iλ∈S\{0}

‖(ΠλΦ)′‖2
Hs .

We recall that we have denoted Φ = (Φ0,Φ′). Once those results are obtained, the existence of
weak solutions satisfying the usual energy estimate is obtained with a classical approximation
method (the approximate sequence being a truncation to a finite number of Ψn,k,j ’s).
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The proof of the uniqueness of strong solutions is more delicate. Indeed bilinear estimates have
to be established on the quadratic form QL in function spaces compatible with the diffusion
operator ∆′

L, typically the spaces Hs
L. One proves the continuity of the quadratic form, and

in particular an estimate of the following type: for any Φ∗, Φ and Φ∗ in H1
L, the following

estimate is satisfied∣∣∣(Φ∗|QL(Φ,Φ∗))L2(T×R)

∣∣∣ ≤ C‖Π⊥Φ∗‖3/4

H1
L
‖Π⊥Φ∗‖1/4

L2(T×R)
‖Π⊥Φ‖3/4

H1
L
‖Π⊥Φ∗‖3/4

H1
L

×
(
‖Π⊥Φ∗‖1/4

H1
L
‖Π⊥Φ‖1/4

L2(T×R)
+ ‖Π⊥Φ‖1/4

H1
L
‖Π⊥Φ∗‖1/4

L2(T×R)

)
+ C‖Π⊥Φ∗‖L2(T×R)

(
‖Π0Φ‖L2(T×R)‖Π⊥Φ∗‖H1

L
+ ‖Π0Φ∗‖L2(T×R)‖Π⊥Φ‖H1

L

)
.

This is exactly the analogue of the usual trilinear estimate for the three-dimensional Navier-
Stokes equations:∣∣∣(Φ∗|div (Φ⊗ Φ∗))L2(R3)

∣∣∣ ≤ C‖Φ∗‖
Ḣ

3
4 (R3)

(
‖Φ‖

Ḣ
3
4 (R3)

‖∇Φ∗‖L2(R3)

+‖Φ∗‖
Ḣ

3
4 (R3)

‖∇Φ‖L2(R3)

)
whereas in two space dimensions one would expect∣∣∣(Φ∗|div (Φ⊗ Φ∗))L2(R2)

∣∣∣ ≤ C‖Φ∗‖
Ḣ

1
2 (R2)

(
‖Φ‖

Ḣ
1
2 (R2)

‖∇Φ∗‖L2(R2)

+‖Φ∗‖
Ḣ

1
2 (R2)

‖∇Φ‖L2(R2)

)
.

Similarly, three dimensional-type estimates can be derived for (Φ∗|QL(Φ,Φ∗))
H

1/2
L

, and the
usual theory of the three dimensional Navier-Stokes equations enables us to prove the expected
existence and uniqueness result. We refer to [25] for all the technicalities; let us simply mention
that the reason for the loss of one half derivative compared to the usual dwo dimensional case
is linked to the fact that differentiation with respect to x2 correponds to a multiplication
by

√
n instead of n.

4.4.3 Interactions between equatorial waves

Unfortunately in order to prove the strong convergence result of Theorem 4.3, more regularity
is required on the limit system. We postpone to Section 4.4.5 the end of the proof of the
theorem, and will pursue in this section and the next the study of the limit system, in order
to gather more useful information. In particular we need to study more precisely the resonance
condition λ = µ+ µ∗, which can be written

τ(n, k, j) + τ(n∗, k∗, j∗) = τ(m, k + k∗, `).

Recalling that the eigenvalues of the penalization operator L are defined as the roots of
a countable number of polynomials whose coefficients depend (linearly) on the ratio β, we
deduce that for fixed n, n∗,m ∈ N and k, k∗ ∈ Z, the occurence of such a resonant triad is
controlled by the cancellation of some polynomial in β. Therefore, either this polynomial has
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a finite number of zeros, or it is identically zero. The difficulty here is that we are not able to
eliminate the second possibility using only the asymptotics β → ∞. Because of the possible
resonance with j = j∗ = ` = 0 which can occur even for large β, we have to refine the previous
argument introducing an auxiliary polynomial. We refer to [25] for the details, enabling one
to conclude that the limit filtered system can be rewritten in the following manner for all but
a countable number of β:

∂tΠ0Φ− νΠ0∆′
LΠ0Φ = 0,

∂tΠRΦ + 2Q′L(Π0Φ,ΠRΦ) +Q′L(ΠRΦ,ΠRΦ)− νΠR∆′
LΦ = 0,

∂tΠMΦ + 2Q′L(Π0Φ,ΠMΦ)− νΠM∆′
LΦ = 0,

∂tΠP Φ + 2Q′L(Π0Φ,ΠP Φ)− νΠP ∆′
LΦ = 0,

∂tΠKΦ + 2Q′L(Π0Φ,ΠKΦ) +Q′L(ΠKΦ,ΠKΦ)− νΠK∆′
LΦ = 0,

(4.4.14)

It can be noticed that the only nonlinear interactions are due to Kelvin or to Rossby-type
waves, which will be crucial in the proof of the propagation of regularity.

Let us prove estimate (4.2.10). We can decompose Φ in the basis of eigenvectors of L, and
will estimate each projection separately. Clearly we have div (Π0Φ)′ = 0, so let us consider
now the projection onto Rossby modes ΠRΦ. By definition of the Rossby modes we deduce
the following relation

∀Φ ∈ R, ∇ · Φ′ =
∑

iλ∈SR

∇ · Φ′
λ =

∑
iλ∈SR

iλ(Φλ)0

with the notation Φλ = ΠλΦ, and where SR denotes the set of Roosby modes. It follows that,
using (4.4.13),

‖∇ · Φ′‖2
H2(T×R) =

∥∥∥ ∑
iλ∈SR

iλ(Φλ)0
∥∥∥2

H2(T×R)

≤ C
∑

iλ∈SR

‖λ(Φλ)0‖2
H2(T×R) .

But, as Rossby waves correspond to j = 0, we have (denoting by Πn,k,j the orthogonal
projection onto Ψn,k,j)

‖λ(Φλ)0‖2
H2(T×R) ≤ C|λ|2

∑
τ(n,k,0)=λ

‖(Πn,k,0Φ)0‖2
H2(T×R).

Recalling the explicit form of (Ψn,k,j)0, we see that

‖(Πn,k,0Φ)0‖2
H2(T×R) ≤ C(1 + n+ k2)‖(Πn,k,0Φ)0‖2

H1(T×R).

But for Rossby modes, the following asymptotics hold as |k| or n goes to infinity:

λ = τ(n, k, 0) ∼ βk

k2 + β(2n+ 1)
·
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So we infer that as |k| or n goes to infinity,

|λ|2‖(Πn,k,0Φ)0‖2
H2(T×R) ≤ C‖(Πn,k,0Φ)0‖2

H1(T×R).

Finally we infer that

‖∇ · Φ′‖2
H2 ≤ C

∑
iλ∈SR

‖λ(Φλ)0‖2
H2(T×R)

≤ C
∑

(n,k,0)∈SR

‖(Πn,k,0Φ)0‖2
H1(R×T)

≤ C‖Φ‖2
H1

L
.

By the embedding of H2(T×R) into L∞(T×R) we conclude that ∇· (ΠRΦ)′ belongs to the
space L2([0, T ];L∞(T×R)). The same result can easily be extended to the mixed Poincaré-
Rossby modes (it is in fact easier since n = 0 in that case) and we obtain

‖ΠMΦ‖L2([0,T ],H1
L) ≤ CT , ‖∇ · (ΠMΦ)′‖L2([0,T ],L∞(T×R)) ≤ CT .

Finally we deduce that

‖∇ · ((Π0 + ΠR + ΠM )Φ)′‖L2([0,T ],L∞(T×R)) ≤ CT .

Let us now consider the equation governing the Poincaré modes which can be seen as a linear
parabolic equation whose coefficients depend on Π0Φ. We can write

ΠP Φ =
∑

(n,k,j)∈SP

ϕn,k,jΨn,k,j ,

where
SP = N∗×Z×{−1, 1} ∪ {0} × Z+

∗ ×{1} ∪ {0} × Z−∗ ×{−1}.

We can use Proposition 4.6 to deduce that for each (n, k, j) in SP the equation governing ϕn,k,j

can be decoupled (recall that Π0Φ only depends on x2):

∂tϕn,k,j − νϕn,k,j(Ψn,k,j |∆′Ψn,k,j)L2(T×R) = −2ϕn,k,j(Ψn,k,j |Q(Ψn,k,j ,Π0Φ))L2(T×R)

which can be rewritten

∂t

(
ϕn,k,j exp

(
−νt(Ψn,k,j |∆′Ψn,k,j)L2(T×R)

))
= −2ϕn,k,j(Ψn,k,j |Q(Ψn,k,j ,Π0Φ))L2(T×R) exp

(
−νt(Ψn,k,j |∆′Ψn,k,j)L2(T×R)

)
.

From Gronwall’s lemma and the following estimates (due to (4.4.6) and to the bound of Π0Φ
in L∞(R+;L2(T×R))),∣∣(Ψn,k,j |Q(Ψn,k,j ,Π0Φ))L2(T×R)

∣∣ ≤ C1(n+ k2)1/2,

−(Ψn,k,j |∆′Ψn,k,j)L2(T×R) ≥ C2(n+ k2),
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we then deduce that there exists a nonnegative constant Cν (depending only on ν) such that,

∀(n, k, j) ∈ SP , |ϕn,k,j(t)| ≤ |ϕn,k,j(0)| exp(−Cν(n+ k2)t). (4.4.15)

Now we write∥∥∇ · (ΠP Φ)′(t)
∥∥

L∞(T×R)
≤

∑
(n,k,j)∈SP

|ϕn,k,j(t)|
∥∥∇ · (Ψn,k,j)′(t)

∥∥
L∞(T×R)

≤ C
∑

(n,k,j)∈SP

|ϕn,k,j(t)|(n+ k2)1/2

since (Ψn,k,j) is uniformly bounded in L∞(T×R). Thus, by (4.4.15), we infer that∥∥∇ · (ΠP Φ)′(t)
∥∥

L∞(T×R)
≤ C

∑
(n,k,j)∈SP

|ϕn,k,j(0)|(n+ k2)1/2 exp(−Cν(n+ k2)t).

Integrating with respect to time leads then to∥∥∇ · (ΠP Φ)′
∥∥

L1([0,T ];L∞(T×R))
≤ C ′ν

∑
(n,k,j)∈SP

|ϕn,k,j(0)|(n+ k2)−1/2

≤ C ′ν

 ∑
(n,k,j)∈SP

|ϕn,k,j(0)|2(n+ k2)α

1/2 ∑
(n,k,j)∈SP

(n+ k2)−1−α

1/2

,

from which we deduce that for α > 1/2,∥∥∇ · (ΠP Φ)′
∥∥

L1([0,T ];L∞(T×R))
≤ C‖ΠP Φ0‖H̃α

L(T×R)

where C depends only on ν and α.

Finally we are left with the Kelvin modes. The difficulty here is that the equation is nonlinear,
and the argument of the Rossby part does not work (there is no natural smoothing of the
divergence). However ΠKΦ satisfies an equation which is actually one-dimensional (modulo a
smooth function with respect to x2), and thus the energy estimate is supercritical in the sense
that the H1 norm allows to control the stability. We first note that for the Kelvin modes,
since the decomposition of the eigenmodes of L corresponds to the Fourier decomposition, we
have

(ΠKΦ|QL(ΠKΦ,ΠKΦ))Hα(T×R) = (ΠKΦ|Q(ΠKΦ,ΠKΦ))Hα(T×R) .

Therefore, using the fact that Hα(T) is an algebra for all α > 1/2, we get∣∣∣(ΠKΦ|Q(ΠKΦ,ΠKΦ))Hα(T×R)

∣∣∣ ≤ C‖ΠKΦ‖Hα+1(T×R)‖ΠKΦ‖Hα(R×T)‖ΠKΦ‖H1(T×R)

≤ ν‖ΠKΦ‖2
Hα+1(T×R)+

C

ν
‖ΠKΦ‖2

Hα(T×R)‖ΠKΦ‖2
H1(T×R)

by the Cauchy-Schwarz inequality.
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Estimating the linear term as before, we get by Gronwall’s lemma

‖ΠKΦ(t)‖2
Hα(T×R) + ν

∫ t

0
‖ΠKΦ(t′)‖2

Hα+1(T×R)dt
′ ≤ ‖ΠKΦ0‖2

Hα(T×R)

× exp
(
C

ν

∫
‖Φ(τ)‖2

H1
L(T×R)dτ

)
.

Then,

‖ΠKΦ‖L∞([0,T ],H̃α
L(T×R)) ≤ CT and ‖ΠKΦ‖L2([0,T ],H̃α+1

L (T×R)) ≤ CT , (4.4.16)

under the suitable initial assumption. From the orthogonality properties mentioned earlier,
along with the Sobolev embeddings Hα(T) ⊂ L∞(T) we infer that

‖∇ · (ΠKΦ)′‖L2([0,T ],L∞(T×R)) ≤ CT , (4.4.17)

provided that α > 1/2.

The estimate (4.2.10) is proved.

4.4.4 Propagation of regularity

In this paragraph we shall state without proof some useful results concerning the propagation
of regularity for the limit system.

Propagation of regularity for Π0Φ

Let us notice that the weak formulation of the limit equation given in the statement of
Theorem 4.2 could be written in the more compact way

∂tΦ− νΠ0∆′Π0Φ = 0, (4.4.18)

were it not for the fact that the operator Π0∆′Π0 is a priori not defined on L2(R). The
projection Π0 is a pseudo-differential operator, whose symbol is

(βx2)2

(βx2)2 + ξ22

−iβx2ξ2
(βx2)2 + ξ22

0

iβx2ξ2
(βx2)2 + ξ22

ξ22
(βx2)2 + ξ22

0

0 0 0

 .

In particular extending Π0 to Sobolev spaces requires some techniques of microlocal analysis
like the Weyl-Hörmander calculus. The singularity at x2 = 0 unfortunately prevents one of
using this theory blindfolded, but inspired by the results given by that theory, in particular
its commutator estimates, one can work “by hand” (see [25] for details) to prove the following
proposition.
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Proposition 4.8 Denote by Φ the (unique) weak solution to the geostrophic equation

∂tΦ− νΠ0∆′Π0Φ = 0, Φ(t = 0) = Π0Φ0.

Then, if the initial data satisfies the regularity assumption

‖Π0Φ0‖Hs
L
≤ C0

for some s ≥ 1, the solution satisfies for all T > 0 the regularity estimate

‖Φ‖L∞([0,T ],Hs
L) ≤ CT .

Propagation of regularity for Π⊥Φ

One can prove bilinear estimates in Hs
L for QL for s ∈ [1/2, 1[, which allow to deduce easily

the following result.

Proposition 4.9 Denote by Φ the (unique) strong solution on [0, T ∗[ to the envelope equa-
tions

∂tΦ +QL(Φ,Φ)− ν∆′
LΦ = 0

Π⊥Φ(t = 0) = Π⊥Φ0 ∈ H1/2
L

Π0Φ(t = 0) = Π0Φ0 ∈ L2(T×R).

If the initial data satisfies the regularity assumption

‖Π⊥Φ0‖Hs
L
≤ C0

for some s ∈ [1/2, 1[, then the solution satisfies for all T < T ∗ the regularity estimate

‖Π⊥Φ‖L∞([0,T ],Hs
L)∩L2([0,T ],Hs+1

L ) ≤ CT .

4.4.5 Stability and strong convergence

In this final section we shall gather the previous results in order to prove the strong convergence
of the filtered solutions. The idea is, as usual in filtering methods, to start by approximating
the solution of the limit system, and then to use a weak-strong stability method to conclude.

So let us consider the solution Φ constructed in the previous paragraph, which we truncate
in the following way:

ΦN = JNΠ⊥Φ + Π0ΦN , (4.4.19)

where JN is the spectral truncation defined by

JN =
∑

iλ∈SN

Πλ (4.4.20)

with
SN =

{
iτ(n, k, j) ∈ S

/
n ≤ N, |k| ≤ N

}
,
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and Π⊥ denotes as previously the projection onto (KerL)⊥. Finally Π0ΦN solves

∂tΠ0ΦN − νΠ0∆′Π0ΦN = 0

Π0ΦN |t=0 =
∑

0≤n≤N

Πn,0,0Φ0,

where Πn,0,0 denotes the projection onto the eigenvector Ψn,0,0 of KerL. According to Propo-
sition 4.8, for all fixed N ∈ N we have

Π0ΦN belongs to L∞(R+;Hσ
L), ∀σ ≥ 0. (4.4.21)

Recall that such a result means that Π0ΦN is as smooth as needed, and decays as fast as
needed when x2 goes to infinity. Moreover by the stability of the limit system (which is
linear) we have of course

lim
N→∞

‖Π0ΦN −Π0Φ‖L∞([0,T ];L2(T×R)) = 0, ∀T > 0.

Note also that for all fixed N ∈ N, using the smoothness and the decay of the eigenvectors
of L, we get for any polynomial Q ∈ R[X]

Q(x2)ΦN ∈ L∞([0, T ];C∞(T×R))

We have moreover of course

∀T < T ∗, ‖Π⊥(Φ− ΦN )‖L∞([0,T ];L2(T×R)) → 0 as N →∞,

and
∀T < T ∗, ‖Π⊥(Φ− ΦN )‖L2([0,T ];Hα+1

L ) → 0 as N →∞.

Finally since JN commutes with ∆′
L, the vector field ΦN satisfies the approximate limit filtered

system
∂tΦN + JNQL(Φ,Φ)− ν∆′

LΦN = 0,

ΦN |t=0 = JNΦ0.
(4.4.22)

Conjugating this equation by the semi-group L leads then to

∂t

(
L
(
t

ε

)
ΦN

)
+

1
ε
L

(
L
(
t

ε

)
ΦN

)
+ JNQL

(
L
(
t

ε

)
Φ,L

(
t

ε

)
Φ
)
− ν∆′

LL
(
t

ε

)
ΦN = 0,

using the definitions (4.4.11) of QL and ∆′
L. We are going now to follow the same method

as that used in Chapter 2, in the periodic case: we start by rewriting this last equation in a
convenient way

∂t

(
L
(
t

ε

)
ΦN

)
+

1
ε
L

(
L
(
t

ε

)
ΦN

)
+Q

(
L
(
t

ε

)
ΦN ,L

(
t

ε

)
ΦN

)
− ν∆′L

(
t

ε

)
ΦN

= (Q−QL)
(
L
(
t

ε

)
ΦN ,L

(
t

ε

)
ΦN

)
− ν(∆′ −∆′

L)L
(
t

ε

)
ΦN

+ (Id− JN )QL

(
L
(
t

ε

)
Φ,L

(
t

ε

)
Φ
)

+QL

(
L
(
t

ε

)
(ΦN − Φ),L

(
t

ε

)
(ΦN + Φ)

)
.
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The two last terms in the right-hand side are expected to be small when N is large, uniformly
in ε, using the stability of the limit system. So we are left with the first two terms, which as
usual cannot be dealt with so easily since they do not converge strongly towards zero. However
they are fast oscillating terms, and will be treated by introducing a small quantity εφN (which
will be small when ε goes to zero, for each fixed N), so that

(∂t +
1
ε
L)
(
L
(
t

ε

)
εφN

)
∼ −(Q−QL)

(
L
(
t

ε

)
ΦN ,L

(
t

ε

)
ΦN

)
+ ν(∆′ −∆′

L)L
(
t

ε

)
ΦN .

Let us now define

φN = −
∑

λ 6=µ+µ̃
iλ∈S,iµ,iµ̃∈SN

ei
t
ε
(λ−µ−µ̃)

i(λ− µ− µ̃)
ΠλQ(ΠµΦN ,Πµ̃ΦN ) + ν

∑
λ 6=µ,

iλ∈S,iµ∈SN

ei
t
ε
(λ−µ)

i(λ− µ)
Πλ∆′ΠµΦN ,

(4.4.23)
and consider

Φε,N = ΦN + εφN .

The proof of the following result follows essentially the same lines as in the constant, periodic
case of Chapter 2 (up to the fact that λ is not truncated here) and we refer to [25] for details.

Proposition 4.10 For all but a countable number of β, the following result holds. Consider
a vector field Φ0 = (η0, u0) ∈ L2(T×R), with Π⊥Φ0 in Hα

L for some α > 1/2. Denote by Φ
the associate solution of the limit system on [0, T ∗[. Then there exists a family (ηε,N , uε,N ) =
L
(

t
ε

)
Φε,N such that Π⊥(ηε,N , uε,N ) is uniformly bounded in the space L∞loc([0, T

∗[,Hα
L) ∩

L2
loc([0, T

∗[,Hα+1
L ), satisfying the following properties:

• Φε,N behaves asymptotically as Φ as ε→ 0 and N →∞ :

∀T < T ∗, lim
N→∞

lim
ε→0

‖Φε,N − Φ‖L∞([0,T ];L2(T×R)) = 0; (4.4.24)

• for all N ∈ N, (ηε,N , uε,N ) is smooth: for all T ∈ [0, T ∗[ and all Q ∈ R[X],

Q(x2)(ηε,N , uε,N ) is bounded in L∞([0, T ];C∞(T×R)), uniformly in ε; (4.4.25)

• (ηε,N , uε,N ) satisfies the uniform regularity estimate

∀T ∈ [0, T ∗[, sup
N∈N

lim
ε→0

‖∇ · uε,N‖L1([0,T ];L∞(T×R)) ≤ CT ; (4.4.26)

• (ηε,N , uε,N ) satisfies approximatively the viscous Saint-Venant system (SWε) :

∂t(ηε,N , uε,N ) +
1
ε
L(ηε,N , uε,N ) +Q ((ηε,N , uε,N ), (ηε,N , uε,N ))− ν∆′(ηε,N , uε,N ) = Rε,N

(4.4.27)
where Rε,N goes to 0 as ε→ 0 then N →∞:

lim
N→∞

lim
ε→0

(
‖Rε,N‖L1([0,T ];L2(T×R)) + ε‖Rε,N‖L∞([0,T ]×T×R)

)
= 0. (4.4.28)
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Equipped with that result, we are now ready to prove the strong convergence theorem. The
method relies on a weak-strong stability method which we shall now detail. We are going to
prove that

lim
N→∞

lim
ε→0

‖(ηε, uε)− (ηε,N , uε,N )‖L2([0,T ]×T×R) = 0, (4.4.29)

where (ηε,N , uε,N ) is the approximate solution to (4.1.1) defined in Proposition 4.10. Note
that combining this estimate with the fact that (ηε,N , uε,N ) is close to L

(
t
ε

)
Φ provides the

expected convergence, namely the fact that

∀T ∈ [0, T ∗[, lim
ε→0

∥∥∥∥(ηε, uε)− L
(
t

ε

)
Φ
∥∥∥∥

L2([0,T ]×T×R)

= 0.

The key to the proof of (4.4.29) lies in the following proposition.

Proposition 4.11 There is a constant C such that the following property holds. Let (η0, u0)
and (η0

ε , u
0
ε) satisfy assumption (4.2.8), and let T > 0 be given. For all ε > 0, denote

by (ηε, uε) a solution of (4.1.1) with initial data (η0, u0). For any vector field (η̄, ū) belonging
to L∞([0, T ];C∞(T×R)) and rapidly decaying with respect to x2, define

Eε(t) =
1
2

∫ (
(ηε − η̄)2 + (1 + εηε)|uε − ū|2

)
(t, x)dx+ ν

∫ t

0

∫
|∇(uε − ū)|2(t′, x)dxdt′.

Then the following stability inequality holds for all t ∈ [0, T ]:

Eε(t) ≤ CEε(0) exp (χ(t)) + ωε(t)

+C
∫ t

0
eχ(t)−χ(t′)

∫ (
∂tη̄ +

1
ε
∇ · ū+∇ · (η̄ū)

)
(η̄ − ηε)(t′, x)dxdt′

+C
∫ t

0
eχ(t)−χ(t′)

∫
(1 + εηε)

(
∂tū+

1
ε
(βx2ū

⊥ +∇η̄) + (ū · ∇)ū− ν∆ū
)
· (ū− uε)(t′, x)dxdt′,

where ωε(t) depends on ū and goes to zero with ε, uniformly in time, and where

χ(t) = C

∫ t

0

(
‖∇ · ū‖L∞(T×R) + ‖∇ū‖2

L2(T×R)

)
(t′)dt′.

Let us postpone the proof of that result, and end the proof of the strong convergence. We
apply that proposition to (η̄, ū) = (ηε,N , uε,N ), where (ηε,N , uε,N ) is the approximate solution
on [0, T ∗[ given by Proposition 4.10. We will denote by χε,N and Eε,N the quantities defined
in Proposition 4.11, where (η̄, ū) has been replaced by (ηε,N , uε,N ).

Because of the uniform regularity estimates on (ηε,N , uε,N ), we have

∀T ∈ [0, T ∗[, sup
N

lim
ε→0

(
‖∇uε,N‖2

L2([0,T ],L2(T×R)) + ‖∇ · uε,N‖L1([0,T ];L∞(T×R))

)
≤ CT ,

so we get a uniform bound on χε,N :

sup
N

lim
ε→0

‖χε,N‖L∞([0,T ]) ≤ CT .



104 Chapter 4: The tropics

Then, from the initial convergence (4.2.8) we obtain that

∀N ∈ N, Eε,N (0) exp (χε,N (t)) → 0 as ε→ 0 in L∞([0, T ]).

Moreover by Proposition 4.11 we have

∂t(ηε,N , uε,N ) +
1
ε
L(ηε,N , uε,N ) +Q((ηε,N , uε,N ), (ηε,N , uε,N ))− ν∆′(ηε,N , uε,N ) = Rε,N .

(4.4.30)
Let us estimate the contribution of the remainder term. We can write∫ t

0
eχε,N (t)−χε,N (t′)

∫
Rε,N · ((ηε,N − ηε), (1 + εηε)(uε,N − uε)) (t′, x)dxdt′

= I
(1)
ε,N (t) + I

(2)
ε,N (t),

with

I
(1)
ε,N (t) def=

∫ t

0
eχε,N (t)−χε,N (t′)

∫
Rε,N,0(ηε,N − ηε)(t′, x)dxdt′, and

I
(2)
ε,N (t) def=

∫ t

0
eχε,N (t)−χε,N (t′)

∫
R′ε,N (1 + εηε)(uε,N − uε)(t′, x)dxdt′.

The first term can be estimated in the following way:

|I(1)
ε,N (t)| ≤ CT ‖Rε,N‖L1([0,T ];L2(T×R))‖ηε,N − ηε‖L∞([0,T ];L2(T×R)).

For the second term we can write

|I(2)
ε,N (t)| ≤ CT ‖

√
1 + εηε(uε,N − uε)‖L∞([0,T ];L2(T×R))‖

√
1 + εηεRε,N‖L1([0,T ];L2(T×R)).

Now we can write

‖
√

1 + εηεRε,N‖2
L2(T×R) ≤ C(‖Rε,N‖2

L2(T×R) + ε‖ηε‖L2(T×R)‖Rε,N‖2
L4(T×R)).

Since
ε‖Rε,N‖2

L4(T×R) ≤ ε‖Rε,N‖L∞(T×R)‖Rε,N‖L2(T×R),

we infer that the quantity ε
1
2Rε,N goes to zero as ε goes to zero and N goes to infinity, in the

space L2([0, T ];L4(T×R)), so in particular

lim
N→∞

lim
ε→0

ε
1
2 ‖Rε,N‖L1([0,T ];L4(T×R)) = 0.

Finally by the uniform bound on ηε in L∞([0, T ];L2(T×R)) and by the smallness assumptions
on Rε,N , we deduce that∫ t

0
eχε,N (t)−χε,N (t′)

∫
Rε,N · ((ηε,N − ηε), (1 + εηε)(uε,N − uε)) (t′, x)dxdt′

≤ 1
2
(‖ηε,N − ηε‖2

L∞([0,T ];L2) + ‖
√

1 + εηε(uε,N − uε)‖2
L∞([0,T ];L2)) + ωε,N (t),
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where

lim
N→∞

lim
ε→0

‖ωε,N (t)‖L∞([0,T ]) = 0.

We now recall that by Proposition 4.11, using (4.4.30), we have

Eε,N (t) ≤ CEε,N (0) exp (χε,N (t)) + ωε,N (t)

+C
∫ t

0
eχε,N (t)−χε,N (t′)

∫
Rε,N · ((ηε,N − ηε), (1 + εηε)(uε,N − uε)) (t′, x)dxdt′

where

Eε,N (t) =
1
2

(
‖(ηε − ηε,N )(t)‖2

L2 + ‖
√

1 + εηε(uε − uε,N )(t)‖2
L2

)
+ν
∫ t

0
‖∇(uε − uε,N )(t′)‖2

L2(t′)dt′.

Putting together the previous results we get that lim
N→∞

lim
ε→0

Eε,N (t) = 0 uniformly on [0, T ],

hence that
lim

N→∞
lim
ε→0

‖ηε,N − ηε‖L∞([0,T ];L2(T×R)) = 0,

lim
N→∞

lim
ε→0

‖
√

1 + εηε(uε,N − uε)‖L∞([0,T ];L2(T×R)) = 0,

lim
N→∞

lim
ε→0

‖uε,N − uε‖L2([0,T ],Ḣ1(T×R)) = 0.

By interpolation we therefore find that

lim
N→∞

lim
ε→0

(
‖ηε,N − ηε‖L∞([0,T ];L2(T×R)) + ‖uε,N − uε‖L2([0,T ],H1(T×R))

)
= 0,

hence (4.4.29) is proved.

To conclude the proof of Theorem 4.3 it remains to give an idea of the proof of Proposition 4.11.
As the energy is a Lyapunov functional for (4.1.1), we have

Eε(t)− Eε(0) ≤
∫ t

0

d

dt

∫ (
(
1
2
η̄2 − η̄ηε) + (1 + εηε)(

1
2
|ū|2 − ū · uε)

)
(t′, x)dxdt′

+
∫ t

0

∫
ν(∇ū− 2∇uε) · ∇ū(t′, x)dxdt′

≤
∫ t

0

∫
(∂tη̄(η̄ − ηε) + (1 + εηε)∂tū · (ū− uε)) (t′, x)dxdt′

−
∫ t

0

∫ (
∂tηεη̄ + ∂t((1 + εηε)uε) · ū−

ε

2
∂tηε|ū|2)

)
(t′, x)dxdt′

−
∫ t

0

∫
ν (∆ū · (ū− uε)−∆uε · ū) (t′, x)dxdt′.
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Using the conservation of mass and of momentum we get

Eε(t)− Eε(0) ≤
∫ t

0

∫
(∂tη̄(η̄ − ηε) + (1 + εηε)(∂tū− ν∆ū) · (ū− uε)) (t′, x)dxdt′

+
∫ t

0

∫
1
ε
∇ · ((1 + εηε)uε)

(
η̄ − ε

2
|ū|2
)

(t′, x)dxdt′

+
∫ t

0

∫ (
(1 + εηε)

ε
(βx2u

⊥
ε +∇ηε) +∇ · ((1 + εηε)uε ⊗ uε)

)
· ū(t′, x)dxdt′

+
∫ t

0

∫
ενηε∆ū · (ū− uε)(t′, x)dxdt′.

Integrating by parts leads then to

Eε(t)− Eε(0) ≤
∫ t

0

∫ (
∂tη̄ +

1
ε
∇ · ū+∇ · (η̄ū)

)
(η̄ − ηε)(t′, x)dxdt′

+
∫ t

0

∫
(1 + εηε)

(
∂tū+

1
ε
(βx2ū

⊥ +∇η̄) + (ū · ∇)ū− ν∆ū
)
· (ū− uε)(t′, x)dxdt′

−
∫ t

0

∫
(1 + εηε)Dū : (ū− uε)⊗2(t′, x)dxdt′

−
∫ t

0

∫ (
1
2
η2

ε∇ · ū+ (η̄ − ηε)∇ · (η̄ū) + ηεū · ∇η̄
)

(t′, x)dxdt′ +Rε,

(4.4.31)
where

Rε(t) =
∫ t

0

∫
ενηε∆ū · (ū− uε)(t′, x)dxdt′.

The last term is rewritten in a convenient form by integrating by parts

−
∫ t

0

∫ (
1
2
η2

ε∇ · ū+ (η̄ − ηε)∇ · (η̄ū) + ηεū · ∇η̄
)

(t′, x)dxdt′

= −
∫ t

0

∫ (
1
2
η2

ε∇ · ū+ (η̄ − ηε)(ū · ∇η̄ + η̄∇ · ū) + ηεū · ∇η̄
)

(t′, x)dxdt′

= −
∫ t

0

∫ (
1
2
η2

ε∇ · ū+ (η̄ − ηε)η̄∇ · ū+
1
2
ū · ∇η̄2

)
(t′, x)dxdt′

= −
∫ t

0

∫
1
2
(ηε − η̄)2∇ · ū(t′, x)dxdt′.

(4.4.32)

Plugging (4.4.32) into (4.4.31) leads to

Eε(t)− Eε(0) ≤
∫ t

0

∫ (
∂tη̄ +

1
ε
∇ · ū+∇ · (η̄ū)

)
(η̄ − ηε)(t′, x)dxdt′

+
∫ t

0

∫
(1 + εηε)

(
∂tū+

1
ε
(βx2ū

⊥ +∇η̄) + (ū · ∇)ū− ν∆ū
)
· (ū− uε)(t′, x)dxdt′

−
∫ t

0

∫
(1 + εηε)Dū : (ū− uε)⊗2(t′, x)dxdt′ −

∫ t

0

∫
1
2
(ηε − η̄)2∇ · ū(t′, x)dxdt′ +Rε(t).

(4.4.33)
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In order to get an inequality of Gronwall type, one has to control the right hand side in terms
of Eε. We start by estimating the flux term. We have

−
∫ t

0

∫
(1 + εηε)∇ū : (ū− uε)⊗2(t′, x)dxdt′

≤
∫ t

0

(
‖∇ū‖L2(T×R) + ε‖ηε‖L2(T×R)‖∇ū‖L∞(T×R)

)
‖ū− uε‖2

L4(T×R)(t
′)dt′

≤ C

∫ t

0

(
‖∇ū‖L2(T×R) + ε‖ηε‖L2(T×R)‖∇ū‖L∞(T×R)

)
‖ū− uε‖L2(T×R)

× ‖ū− uε‖Ḣ1(T×R)(t
′)dt′

and

‖ū− uε‖2
L2(T×R) ≤ ‖

√
1 + εηε(uε − ū)‖2

L2(T×R)

+ε‖ηε‖L2(T×R)‖ū− uε‖L2(T×R)‖ū− uε‖Ḣ1(T×R)

which implies

‖ū− uε‖2
L2(T×R) ≤ 2‖

√
1 + εηε(uε − ū)‖2

L2(T×R) + 16ε2‖ηε‖2
L2(T×R)‖ū− uε‖2

Ḣ1(T×R)
.

Therefore, using the uniform bounds on ηε,
√

1 + εηεuε and on uε given by the energy estimate,
we gather that

−
∫ t

0

∫
(1 + εηε)∇ū : (ū− uε)⊗2(t′, x)dxdt′

≤ C

∫ t

0
(‖∇ū‖L2 + ε‖ηε‖L2‖∇ū‖L∞)‖

√
1 + εηε(uε − ū)‖L2‖ū− uε‖Ḣ1(t′)dt′

+ Cε

∫ t

0
(‖∇ū‖L2 + ε‖ηε‖L2‖∇ū‖L∞)‖ū− uε‖2

Ḣ1(t
′)dt′

≤ ν

4

∫
‖ū− uε‖2

Ḣ1(t
′)dt′ +

C

ν

∫
‖∇ū‖2

L2‖
√

1 + εηε(uε − ū)‖2
L2(t′)dt′ + ωε(t).

(4.4.34)

We also have

−
∫ t

0

∫
1
2
(ηε − η̄)2∇ · ū(t′, x)dxdt′ ≤ 1

2

∫ t

0
‖∇ · ū‖L∞(T×R)‖η̄ − ηε‖2

L2(T×R)(t
′)dt′, (4.4.35)

so we are left with the study of the remainder Rε. We have

Rε(t) ≤ εν‖ηε‖L∞(R+;L2(T×R))

∫ t

0
‖∆ū‖L4(T×R)‖ū− uε‖L4(T×R)(t

′)dt′.

The above estimate on ‖ū−uε‖L2(T×R) implies in particular that ‖ū−uε‖L2(T×R) is bounded
in L2([0, T ]), hence we get that ‖ū − uε‖L4(T×R) is also bounded in L2([0, T ]). So we infer
directly that Rε(t) goes to zero in L∞([0, T ]) as ε goes to zero. That result, joined to (4.4.34)
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and (4.4.35) allows to deduce from (4.4.33) the following estimate:

1
2
Eε(t)− Eε(0) ≤

∫ t

0

∫ (
∂tη̄ +

1
ε
∇ · ū+∇ · (η̄ū)

)
(η̄ − ηε)(t′, x)dxdt′

+
∫ t

0

∫
(1 + εηε)

(
∂tū+

1
ε
(βx2ū

⊥ +∇η̄) + (ū · ∇)ū− ν∆ū
)
· (ū− uε)(t′, x)dxdt′

+
C

ν

∫
‖∇ū‖2

L2‖
√

1 + εηε(uε − ū)‖2
L2(T×R)(t

′)dt′ +
1
2

∫ t

0
‖∇ · ū‖L∞‖η̄ − ηε‖2

L2(t′)dt′ + ωε(t)

thus applying Gronwall’s lemma provides the expected stability inequality.

4.5 A hybrid result

In this final paragraph we are going to put together some results obtained in the previous
sections, to prove the strong convergence theorem presented in the introduction of this chapter,
namely Theorem 4.4. Due to the unfortunate presence of a defect measure in the limit system,
we propose in Pararaph 4.5.4 an alternate model with capillarity, whose virtue is that it gives
the lacking compactness on εηε. Its disadvantage is its unphysical character, along with the
fact that weak solutions are only known to exist for small data.

4.5.1 Strong compactness of ΠλΦε

In order to characterize completely the asymptotic behaviour of (ηε, uε) we know from the
previous section that it is necessary to introduce the filtering operator

L
(
t

ε

)
def=

∑
iλ∈S

exp
(
− itλ
ε

)
Πλ,

where Πλ is the projection on the eigenspace of L associated with the eigenvalue iλ.

Lemma 4.12 With the notation of Theorem 4.4, the following results hold.

• For all iλ ∈ S \ {0}, ΠλΦε is strongly compact in L2([0, T ],Hs(T×R)) for all T > 0 and
all s ∈ R;

• Π0Φε is strongly compact in L2([0, T ],Hs
loc(T×R)) for all T > 0 and all s < 0.

Proof.

• For all λ 6= 0, we recall that by Proposition 4.6, the eigenspace of L associated with the
eigenvalue iλ is a finite dimensional subspace of H∞(T×R). Therefore the only point to be
checked is the compactness with respect to time, which is obtained as follows.

Let (n, k, j) ∈ N×Z×{−1, 0, 1} be given, such that λ = τ(n, k, j) 6= 0. Multiplying (4.1.1)
by Ψn,k,j = (ηn,k,j , un,k,j) (which is smooth and rapidly decaying as |x2| goes to infinity) and
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integrating with respect to x leads to

∂t

∫
(ηεη̄n,k,j +mε · ūn,k,j)(t, x)dx+

iτ(n, k, j)
ε

∫
(ηεη̄n,k,j +mε · ūn,k,j)(t, x)dx

+ν
∫
∇uε : ∇ūn,k,j(t, x)dx−

∫
mε · (uε · ∇)ūn,k,j(t, x)dx

−1
2

∫
η2

ε∇ · ūn,k,j(t, x)dx = 0

where ū denotes the complex conjugute of u, or equivalently

∂t

(
exp

(
itτ(n, k, j)

ε

)∫
(ηεη̄n,k,j +mε · ūn,k,j)(t, x)dx

)
+ν
∫
∇
(

exp
(
itτ(n, k, j)

ε

)
uε

)
: ∇ūn,k,j(t, x)dx

−
∫

exp
(
itτ(n, k, j)

ε

)(
mε · (uε · ∇)ūn,k,j +

1
2
η2

ε∇ · ūn,k,j

)
(t, x)dx = 0.

(4.5.1)

From the uniform estimates coming from the energy inequality we then deduce that

∂t

(
exp

(
itτ(n, k, j)

ε

)∫
(ηεη̄n,k,j +mε · ūn,k,j)(t, x)dx

)
is uniformly bounded in ε.

Therefore the family(
exp

(
itλ

ε

)
Πλ(ηε,mε)

)
ε>0

is compact in L2([0, T ];Hs(T×R)) for any s ∈ R,

and since εηεuε converges to 0 in L2(R+;Hs(T×R)) for all s < 0, we deduce that

exp
(
itλ

ε

)
Πλ(ηε, uε) = ΠλΦε is compact in L2([0, T ];Hs(T×R)) for any s ∈ R .

• For Π0Φε = Π0(ηε, uε) the study is a little more difficult since the compactness with respect
to spatial variables has to be taken into account. From the energy estimate we have the
uniform bound

Φε is uniformly bounded in L2
loc(R

+, L2(T×R)).

Recall that we have defined

Hs
L =

{
ψ ∈ S ′(T×R) / (Id−∆ + β2x2

2)
s
2ψ ∈ L2(T×R)

}
.

Equivalently we have

Hs
L =

ψ ∈ S ′(T×R) /
∑

n,k,j∈S

(1 + n+ k2)s (Ψn,k,j |ψ)2L2(T×R) < +∞

 ,
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where S = N×Z×{−1, 0, 1}.

As (Ψn,0,0)n∈N is a Hilbertian basis of KerL, we have for all T > 0 and all s < 0∥∥∥∥∥∥
∑
n≤N

(Ψn,0,0|Φε)L2(T×R) Ψn,0,0 −Π0Φε

∥∥∥∥∥∥
L2([0,T ],Hs

L)

→ 0 as N →∞ uniformly in ε.

Let Ω be any relatively compact open subset of T×R. It is easy to see that, for all s > 0

Hs
0(Ω) ⊂ Hs

L ⊂ Hs(T×R),

and conversely for s < 0,
Hs(T×R) ⊂ Hs

L ⊂ Hs(Ω).

Here Hs
0(Ω) denotes, for s ≥ 0, the closure of D(Ω) for the Hs norm, and H−s(Ω) is its dual

space.

Thus for all s < 0 and all T > 0, we have∥∥∥∥∥∥
∑
n≤N

(Ψn,0,0|Φε)L2(T×R) Ψn,0,0 −Π0Φε

∥∥∥∥∥∥
L2([0,T ];Hs(Ω))

→ 0 as N →∞ uniformly in ε.

Moreover the same computation as previously shows that for any n ∈ N,

∂t

(∫
(ηεη̄n,0,0 +mε · ūn,0,0)(t, x)dx

)
+ ν

∫
∇uε : ∇ūn,0,0(t, x)dx

−
∫
mε · (uε · ∇)ūn,0,0(t, x)dx = 0,

(4.5.2)

and, since εηεuε converges to 0 in L2(R+;Hs(T×R)) for any s < 0 we get∑
n≤N

Πn,0,0(ηε, uε) is compact in L2([0, T ]×T×R).

Combining both results shows finally that

Π0Φε is compact in L2([0, T ];Hs
loc(T×R))

for all T > 0 and all s < 0.

As S is countable, we are therefore able to construct (by diagonal extraction) a subsquence
of Φε, and some Φλ ∈ Ker(L− iλId) such that for all s < 0 and all T > 0

∀iλ ∈ S, ΠλΦε → Φλ in L2([0, T ];Hs
loc(T×R)).

Note that the Φλ defined as the strong limit of ΠλΦε can also be obtained as the weak limit
of exp

(
itλ
ε

)
(ηε, uε).The following lemma is easily proved.
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Lemma 4.13 With the notation of Theorem 4.4, consider a subsequence of (Φε)ε>0, and
some Φλ ∈ Ker(L− iλId) such that for all s < 0 and all T > 0

∀iλ ∈ S, ΠλΦε → Φλ in L2([0, T ];Hs
loc(T×R)).

Then, for all iλ ∈ S, e
itλ
ε (ηε, uε) converges to Φλ weakly in L2([0, T ]×T×R). In particular,

for all iλ ∈ S, Φ′
λ is bounded in L2([0, T ];H1(T×R)) uniformly in λ.

4.5.2 Strong convergence of Φε

As a corollary of the previous mode by mode convergence results, we get the following con-
vergence for Φε.

Lemma 4.14 With the notation of Theorem 4.4, the following results hold. Consider a
subsequence of (Φε), and some Φλ ∈ Ker(L− iλId) such that for all s < 0 and all T > 0

∀iλ ∈ S, ΠλΦε → Φλ in L2([0, T ];Hs
loc(T×R)).

Then,

Φε ⇀ Φ =
∑
iλ∈S

Φλ weakly in L2
loc(R

+;L2(T×R)),

and Φε → Φ strongly in L2
loc(R

+;Hs
loc(T×R)) for all s < 0.

Moreover, defining KN =
∑

(n,k,j)∈S

(n+|k|2)1/2≤N

Πn,k,j , we have for any relatively compact subset Ω

of T×R, for all T > 0 and for all s < 0,

‖(Id−KN )Φε‖L2([0,T ];Hs(Ω)) + ‖(Id−KN )L(
t

ε
)Φε‖L2([0,T ];Hs(Ω)) → 0 as N →∞, (4.5.3)

uniformly in ε.

Proof. The first convergence statement comes directly from the uniform bound on Φε

in L2
loc(R

+;L2(T×R)) and the L2 continuity of Πλ. In order to establish the strong con-
vergence result, the crucial argument is to approximate (uniformly) Φε by a finite number of
modes, i.e. to prove (4.5.3). The main idea is the same as for the approximation of Π0Φε in
Lemma 4.12. We have for all T > 0 and all s < 0∥∥∥∥∥∥

∑
n≤N,|k|≤N

(Ψn,k,j |Φε)L2(T×R) Ψn,k,j − Φε

∥∥∥∥∥∥
L2([0,T ];Hs

L(T×R))

→ 0 as N →∞ uniformly in ε,

and similarly∥∥∥∥∥∥
∑

n≤N,|k|≤N

e−iτ(n,k,j) t
ε (Ψn,k,j |Φε)L2(T×R) Ψn,k,j − L(

t

ε
)Φε

∥∥∥∥∥∥
L2([0,T ];Hs

L(T×R))

→ 0 as N →∞,
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uniformly in ε. Therefore for all relatively compact subsets Ω of T×R, the embedding of Hs
L

into Hs(Ω) implies that both quantities∑
n≤N,|k|≤N

(Ψn,k,j |Φε)L2(T×R) Ψn,k,j − Φε

and ∑
n≤N,|k|≤N

e−iτ(n,k,j) t
ε (Ψn,k,j |Φε)L2(T×R) Ψn,k,j − L(

t

ε
)Φε

converge strongly towards zero in L2([0, T ];Hs(Ω)) as N goes to infinity, uniformly in ε.
So (4.5.3) is proved.

The strong convergence is then directly obtained from the following decomposition:

Φε − Φ = (Id−KN )Φε +KN (Φε − Φ)− (Id−KN )Φ.

The result is proved.

4.5.3 Taking limits in the equation on ΠλΦε

The final step is now to obtain the evolution equation for each mode Φλ, taking limits in (4.5.1)
and (4.5.2). In the following proposition, we recall that the first result (concerning the
geostrophic motion) relies on a compensated compactness argument, i.e. on both the al-
gebraic structure of the coupling term and the particular form of the oscillating modes, which
implies that there is no contribution of the equatorial waves to the geostrophic flow. That re-
sult was proved in Section 4.3. Here we will prove the second part of the statement, concerning
the limit ageostrophic motion.

Proposition 4.15 With the notation of Theorem 4.4, consider a subsequence of (Φε), and
some family (Φλ)iλ∈S such that Φλ ∈ Ker(L− iλId) and such that for all s < 0 and all T > 0

∀iλ ∈ S, ΠλΦε → Φλ in L2([0, T ];Hs
loc(T×R)).

Then, Φ0 = (η0, u0) satisfies the geostrophic equation : for all (η∗, u∗) belonging to KerL and
satisfying u∗ ∈ H1(T×R),∫

(η0η
∗ + u0,1u

∗
1)(t, x) dx+ ν

∫ t

0

∫
∇u0,1 · ∇u∗1(t′, x) dx dt′ =

∫
(η0η∗ + u0

1u
∗
1)(x) dx. (4.5.4)

Moreover for λ 6= 0, Φλ = (Φ0
λ,Φ

′
λ) satisfies the following envelope equation : there is a

measure υλ in M(R+×T×R), such that for all smooth Φ∗
λ = (Φ∗

λ,0, (Φ
∗
λ)′) ∈ Ker(L− iλId),∫

Φλ · Φ̄∗
λ(t, x) dx+ ν

∫ t

0

∫
∇Φ′

λ : ∇(Φ̄∗
λ)′(t′, x) dx dt′ +

∫ t

0

∫
∇ · (Φ̄∗

λ)′υλ(dt′, dx)

+
∑

iµ,iµ̃∈S
λ=µ+µ̃

∫ t

0
Q(Φµ,Φµ̃) · Φ̄∗

λ(t′, x) dx dt′ =
∫

Φ0 · Φ̄∗
λ(x) dx,

where Q is defined by (4.4.10).
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Proof. Let us first recall that for λ 6= 0, Ker(L − iλId) is constituted of smooth, rapidly
decaying vector fields, so that it makes sense to apply Πλ to any distribution.

Starting from (4.5.1) we get that for all smooth Φ∗
λ = (Φ∗

λ,0, (Φ
∗
λ)′) ∈ Ker(L− iλId)∫

exp
(
itλ

ε

)
(ηεΦ̄∗

λ,0 +mε · (Φ̄∗
λ)′)(t, x)dx−

∫
(η0

ε Φ̄
∗
λ,0 +m0

ε · (Φ̄∗
λ)′)(x)dx

+ν
∫ t

0

∫
∇
(

exp
(
it′λ

ε

)
uε

)
: ∇(Φ̄∗

λ)′(t′, x)dxdt′

−
∫ t

0

∫
exp

(
it′λ

ε

)(
mε · (uε · ∇)(Φ̄∗

λ)′ +
1
2
η2

ε∇ · (Φ̄∗
λ)′
)
(t′, x)dxdt′ = 0.

(4.5.5)

Taking limits as ε → 0 in the three first terms is immediate using Lemma 4.13 and the
assumption on the initial data. The limit as ε→ 0 in the two nonlinear terms is given in the
following proposition.

Proposition 4.16 With the previous notation, we have∫ t

0

∫
exp

(
it′λ

ε

)
mε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′ →
∫ t

0

∫ ∑
µ+µ̃=λ
iµ,iµ̃∈S

Φ′
µ · (Φ′

µ̃ · ∇)(Φ̄∗
λ)′(t′, x)dxdt′,

and

1
2

∫ t

0

∫
exp

(
it′λ

ε

)
η2

ε∇ · (Φ̄∗
λ)′(t′, x)dxdt′ → 1

2

∫ t

0

∫ ∑
µ+µ̃=λ
iµ,iµ̃∈S

Φµ,0Φµ̃,0∇ · (Φ̄∗
λ)′(t′, x)dxdt′

−
∫ t

0
∇ · (Φ̄∗

λ)′υλ(dt′dx).

The fact that this result gives Proposition 4.15 is an algebraic computation left to the reader.
Let us prove Proposition 4.16. The idea is to decompose Φε on the eigenmodes of L, by
writing

(ηε, uε)(t, x) = L
(
t

ε

)
Φε(t, x) =

∑
iλ∈S

e−
itλ
ε ΠλΦε(t, x).

Note in particular that by (4.5.3), for any s < 0,

(ηε, uε)(t)− L
(
t

ε

)
KNΦε(t) → 0 in L2

loc(R
+;Hs

loc(T×R))

as N goes to infinity, uniformly in ε. Let us also introduce the notation

Φε,N = L
(
− t
ε

)
(ηε,N , uε,N ) = KNΦε, and

Φε,λ,N = ΠλΦε,N .
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We will start by considering the first nonlinear term in Proposition 4.16, namely∫ t

0

∫
exp

(
it′λ

ε

)
mε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′.

We can notice that ∫ t

0

∫
exp

(
it′λ

ε

)
mε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

=
∫ t

0

∫
exp

(
it′λ

ε

)
εηεuε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

+
∫ t

0

∫
exp

(
it′λ

ε

)
uε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′.

The uniform bounds coming from the energy estimate imply clearly that the first term con-
verges to 0 as ε → 0. Then we can decompose the second contribution in the following
way: ∫ t

0

∫
exp

(
it′λ

ε

)
uε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

=
∫ t

0

∫
T×(R \[−R,R])

exp
(
it′λ

ε

)
uε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(uε − uε,N ) · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
uε,N · ((uε − uε,M ) · ∇) (Φ̄∗

λ)′(t′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
uε,N · (uε,M · ∇)(Φ̄∗

λ)′(t′, x)dxdt′.

(4.5.6)

Let us consider now all the terms in the right-hand side of (4.5.6). The uniform bound on uε

and the decay of Φ∗
λ imply that the first term on the right-hand side converges to 0 as R→∞

uniformly in ε.

By the inequality∣∣∣∣∣
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(uε − uε,N ) · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′
∣∣∣∣∣

≤ C‖uε − uε,N‖L2([0,T ];Hs(T×[−R,R]))‖uε‖L2([0,T ];H1(T×R))‖Φ∗
λ‖W 2,∞(T×R),

with −1 < s < 0, we deduce that the third term converges to 0 as N →∞ uniformly in ε.

Now let us consider the third term on the right-hand side. Since uε,N corresponds to the
projection of Φε onto a finite number of eigenvectors of L, we deduce that

∀N ∈ N,∃CN ,∀ε > 0, ‖uε,N‖L∞(R+;H1(T×R)) ≤ CN .
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Thus ∣∣∣∣∣
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
uε,N · ((uε − uε,M ) · ∇)(Φ̄∗

λ)′(t′, x)dxdt′
∣∣∣∣∣

≤ CN‖uε − uε,M‖L2([0,T ];Hs(T×[−R,R]))‖Φ∗
λ‖W 2,∞(T×R)

and, for all fixed N and R, the fourth term converges to 0 as M →∞ uniformly in ε.

It remains then to take limits in the last term of (4.5.6). It can be rewritten∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
uε,N · (uε,M · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

=
∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

exp
(
it′(λ− µ− µ̃)

ε

)
(Φε,µ,N )′ · (Φ′

ε,µ̃,M · ∇)(Φ̄∗
λ)′(t′, x)dxdt′.

This in turn can be written in the following way:∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

exp
(
it′(λ− µ− µ̃)

ε

)
Φ′

ε,µ,N · (Φ′
ε,µ̃,M · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

=
∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

exp
(
it′(λ− µ− µ̃)

ε

)
(Φ′

ε,µ,N − Φ′
µ,N ) · (Φ′

ε,µ̃,M · ∇)(Φ̄∗
λ)′(t′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

exp
(
it′(λ− µ− µ̃)

ε

)
Φ′

µ,N · ((Φ′
ε,µ̃,M − Φ′

µ̃,M ) · ∇)(Φ̄∗
λ)′(t′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

exp
(
it′(λ− µ− µ̃)

ε

)
Φ′

µ,N · (Φ′
µ̃,M · ∇)(Φ̄∗

λ)′(t′, x)dxdt′.

We have denoted

Φµ,N = ΠµΦN , where ΦN = KNΦ.

The first two terms on the right-hand side go to zero as ε goes to zero, for all given N,M
and R, due to the following estimates: for −1 < s < 0,∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

∣∣(Φ′
ε,µ,N − Φ′

µ,N ) · (Φ′
ε,µ̃,M · ∇)(Φ̄∗

λ)′(t′, x)
∣∣ dxdt′

≤ CN,M‖Φ′
ε,N − Φ′

N‖L2([0,T ];Hs(T×[−R,R]))‖Φε,M‖L∞([0,T ];H1(T×R))‖Φ∗
λ‖W 2,∞(T×R),

and similarly∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

∣∣Φ′
µ,N · ((Φ′

ε,µ̃,M − Φ′
µ̃,M ) · ∇)(Φ̄∗

λ)′(t′, x)
∣∣ dxdt′

≤ CN,M‖Φ′
ε,M − Φ′

M‖L2([0,T ];Hs(T×[−R,R]))‖Φε,N‖L∞([0,T ];H1(T×R))‖Φ∗
λ‖W 2,∞(T×R).



116 Chapter 4: The tropics

Finally let us consider the last term, which can be decomposed in the following way:∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S

exp
(
it′(λ− µ− µ̃)

ε

)
Φ′

µ,N · (Φ′
µ̃,N · ∇)(Φ̄∗

λ)′(t′, x)dxdt′

=
∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S
λ=µ+µ̃

Φ′
µ,N · (Φ′

µ̃,M · ∇)(Φ̄∗
λ)′(t′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

∑
iµ,iµ̃∈S
λ 6=µ+µ̃

exp
(
it′(λ− µ− µ̃)

ε

)
Φ′

µ,N · (Φ′
µ̃,M · ∇)(Φ̄∗

λ)′(t′, x)dxdt′.

For fixed N and M , the nonstationary phase theorem (which corresponds here to a simple
integration by parts in the t′ variable) shows that the second term is a finite sum of terms
converging to 0 as ε→ 0. And the first term (which does not depend on ε) converges to∫ t

0

∫ ∑
µ+µ̃=λ

iλ,iµ,iµ̃∈S

Φ′
µ · (Φ′

µ̃ · ∇)(Φ̄∗
λ)′(t′, x)dxdt′

as N,M,R→∞, because Φ′
N converges towards Φ′ strongly in L2([0, T ];L2(T×R)) when N

goes to infinity, and then by Lebesgue’s theorem when R goes to infinity.

Therefore, taking limits as ε→ 0, then M →∞, then N →∞, then R→∞ in (4.5.6) leads
to∫ t

0

∫
exp

(
it′λ

ε

)
mε · (uε · ∇)(Φ̄∗

λ)′(t′, x)dxdt′ →
∫ t

0

∫ ∑
µ+µ̃=λ

iλ,iµ,iµ̃∈S

Φ′
µ · (Φ′

µ̃ · ∇)(Φ̄∗
λ)′(t′, x)dxdt′.

Finally let us consider the second term of the proposition, namely

1
2

∫ t

0

∫
exp

(
it′λ

ε

)
η2

ε∇ · (Φ̄∗
λ)′(t′, x) dxdt′.

The first step of the above study remains valid, in the sense that one can write

1
2

∫ t

0

∫
exp

(
it′λ

ε

)
η2

ε∇ · (Φ̄∗
λ)′(t′, x) dxdt′

=
1
2

∫ t

0

∫
R \T×[−R,R]

exp
(
it′λ

ε

)
η2

ε∇ · (Φ̄∗
λ)′(t′, x) dxdt′

+
1
2

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
η2

ε∇ · (Φ̄∗
λ)′(t′, x) dxdt′,

and the first term converges to zero uniformly in ε as R goes to infinity, due to the spatial
decay of the eigenvectors of L. For such a result, a uniform bound of ηε in L∞(R+;L2(T×R))
is sufficient. However the next steps of the above study do not work here, as we have no
smoothness on ηε other than that energy bound. In order to conclude, let us nevertheless
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decompose the remaining term as above, for any integers N and M to be chosen large enough
below:

1
2

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
η2

ε∇ · (Φ̄∗
λ)′(t′, x) dxdt′

=
1
2

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(ηε − ηε,N )ηε∇ · (Φ̄∗

λ)′(t′, x) dxdt′

+
1
2

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηε,N (ηε − ηε,M )∇ · (Φ̄∗

λ)′(t′, x) dxdt′

+
1
2

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηε,Nηε,M∇ · (Φ̄∗

λ)′(t′, x) dxdt′.

(4.5.7)

The sequence −1
2

exp
(
it′λ

ε

)
(ηε − ηε,N )ηε is uniformly bounded in N ∈ N and ε > 0 in the

space L1
loc(R

+×T×R), so up to the extraction of a subsequence it converges weakly, as ε
goes to zero, towards a measure υλ,N , which in turn is uniformly bounded in M(R+×T×R).
Denoting by υλ its limit in M(R+×T×R) as N goes to infinity, we find that

1
2

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(ηε − ηε,N )ηε∇ · (Φ̄∗

λ)′(t′, x) dxdt′

→ −
∫ t

0

∫
T×[−R,R]

∇ · (Φ̄∗
λ)′υλ(dt′dx)

as ε goes to zero and N goes to infinity, which in turn converges to

−
∫ t

0

∫
∇ · (Φ̄∗

λ)′υλ(dt′dx)

as R goes to infinity, due to the smoothness of ∇ · (Φ̄∗
λ)′. Note that as S is countable, one

can choose a subsequence such that for all iλ ∈ S, the sequence −1
2

exp
(
it′λ

ε

)
(ηε − ηε,N )ηε

converges towards υλ as ε goes to zero and N goes to infinity.

Finally the two last terms in (4.5.7) are dealt with as in the previous case, and we leave the
details to the reader.

Proposition 4.16 is proved.

4.5.4 The case when capillarity is added

In this final paragraph we propose an adaptation to the Saint-Venant model which provides
some additional smoothness on εηε, and which enables one to get rid of the defect measure
present in the above study. The model is presented in the next part, and the convergence
result stated and proved below.
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The model

Let us define the capillarity operator

K(h) = κ(−∆)2αh, (4.5.8)

where κ > 0 and α > 1/2 are given constants. The system we shall study is the following:

∂tη +
1
ε
∇·
(
(1 + εη)u

)
= 0,

∂tu+ u · ∇u+
βx2

ε
u⊥ +

1
ε
∇η − ν

1 + εη
∆u+ εκ∇(−∆)2αη = 0,

η|t=0 = η0, u|t=0 = u0.

(4.5.9)

In the next part we discuss the existence of bounded energy solutions to that system of
equations (under a smallness assumption), and the following part consists in the proof of
the analogue of Theorem 4.4 in that setting. One should emphasize here that the additional
capillarity term that is added in the system will not appear in the limit, since it comes as
a O(ε) term. Moreover it is a linear term, so it should not change the other asymptotics proved
in this chapter. However its unphysical character (as well as the smallness condition on the
initial data) made us prefer to study the original Saint-Venant system for all the convergence
results of this chapter.

Existence of solutions

The following theorem is an easy adaptation of the result by D. Bresch and B. Desjardins
in [6] (see also [39] for the compressible Navier-Stokes system).

Theorem 4.5 There is a constant C > 0 such that the following result holds. Let (η0
ε , u

0
ε)

be a family of H2α × L2(T×R) such that for all ε > 0,

1
2

∫ (
(η0

ε)
2 + κε2|(−∆)αη0

ε |2 + (1 + εη0
ε)|u0

ε|2
)
(x) dx ≤ E0.

If E0 ≤ C, then there is a family (ηε, uε) of weak solutions to (4.5.9), satisfying the energy
estimate

1
2

∫ (
η2

ε + κε2|(−∆)αηε|2 + (1 + εηε)|uε|2
)
(t, x) dx+ ν

∫ t

0

∫
|∇uε|2(t′, x) dxdt′ ≤ E0.

Convergence

In this section our aim is to show that the capillarity term enables us to get rid of the defect
measure present in the conclusion of Theorem 4.4. As the proof is very similar to that theorem,
up to the compactness of ηε, we will not give the full details. The result is the following.
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Theorem 4.6 Under the assumptions of Theorem 4.5, denote by (ηε, uε) a solution of (4.5.9)
with initial data (η0

ε , u
0
ε), and define

Φε = L
(
− t
ε

)
(ηε, uε).

Up to the extraction of a subsequence, Φε converges weakly in L2
loc(R

+;Hs
loc(T×R)) (for

all s < 0) toward some solution Φ of the following limiting filtered system: for all iλ in S and
for all smooth Φ∗

λ in Ker(L− iλId),∫
Φ·Φ̄∗

λ(x)dx−ν
∫ t

0

∫
∆′

LΦ·Φ̄∗
λ(t′, x)dxdt′+

∫ t

0

∫
QL(Φ,Φ)·Φ̄∗

λ(t′, x)dxdt′ =
∫

Φ0 ·Φ̄∗
λ(x)dx,

where Φ0 = (η0, u0).

Let us prove that result. We will follow the lines of the proof of Theorem 4.4; the only
difference consists in taking the limit as ε goes to zero, of the equation on ΠλΦε.

Equation (4.5.5) page 113 can be written here as follows: for all smooth Φ∗
λ = (Φ∗

λ,0, (Φ
∗
λ)′)

belonging to Ker(L− iλId),∫
exp

(
itλ

ε

)
(ηεΦ̄∗

λ,0 + uε · (Φ̄∗
λ)′)(t, x)dx−

∫
(η0

ε Φ̄
∗
λ,0 + u0

ε · (Φ̄∗
λ)′)(x)dx

−εκ
∫ t

0

∫
(−∆)α exp

(
it′λ

ε

)
ηε∇ · (−∆)α(Φ̄∗

λ)′(t′, x)dxdt′

−
∫ t

0

∫
ν

1 + εηε
∆
(

exp
(
it′λ

ε

)
uε

)
· (Φ̄∗

λ)′(t′, x)dxdt′

+
∫ t

0

∫
exp

(
it′λ

ε

)
(uε · ∇)uε · (Φ̄∗

λ)′(t′, x)dxdt′

−
∫ t

0

∫
exp

(
it′λ

ε

)
ηεuε · ∇Φ̄∗

λ,0(t
′, x)dxdt′ = 0.

(4.5.10)

Remark 4.17 We have chosen to keep the unknowns (ηε, uε) and not write the analysis in
terms of (ηε,mε) as previously (recall that mε = (1 + εηε)uε): the study of mε rather than uε

is indeed unnecessary here as the factor
1

1 + εηε
which appears in the diffusion term in the

equation on uε can be controled in this situation, contrary to the previous case. The advantage
of writing the equations on (ηε, uε) is that there is no nonlinear term in ηε, contrary to the
previous study, but of course the difficulty is transfered to the study of the diffusion operator;
the gain of regularity in ηε will appear here.

Taking limits as ε → 0 in the two first terms is immediate. For the third term, we simply
recall that ηε is bounded in L∞(R+;L2(T×R)) and εηε is bounded in L∞(R+;H2α(T×R)),
so εηε goes strongly to zero in L∞(R+;Hs(T×R)) for every s < 2α. Since Φ∗

λ is smooth, we
infer that

εκ

∫ t

0

∫
(−∆)α exp

(
it′λ

ε

)
ηε∇ · (−∆)α(Φ̄∗

λ)′(t′, x)dxdt′ → 0, as ε→ 0.
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Let us now consider the fourth term,

−
∫ t

0

∫
ν

1 + εηε
∆
(

exp
(
it′λ

ε

)
uε

)
· (Φ̄∗

λ)′(t′, x)dxdt′.

It is here that the presence of capillarity enables us to get a better control. Let us write

−
∫ t

0

∫
ν

1 + εηε
∆
(

exp
(
it′λ

ε

)
uε

)
· (Φ̄∗

λ)′(t′, x)dxdt′

= ν

∫ t

0

∫
∇
(

exp
(
it′λ

ε

)
uε

)
: ∇(Φ̄∗

λ)′(t′, x)dxdt′

− ν

∫ t

0

∫
∇
(

exp
(
it′λ

ε

)
uε

)
: ∇
(

εηε

1 + εηε
(Φ̄∗

λ)′
)

(t′, x)dxdt′.

Clearly the first term on the right-hand side converges towards the expected limit: we have

ν

∫ t

0

∫
∇
(

exp
(
it′λ

ε

)
uε

)
: ∇(Φ̄∗

λ)′(t′, x)dxdt′ → ν

∫ t

0

∫
∇Φ′

λ : ∇(Φ̄∗
λ)′(t′, x)dxdt′,

as ε goes to 0. To study the second one, we can notice that

∇
(

εηε

1 + εηε
(Φ̄∗

λ)′
)

= ∇
(

εηε

1 + εηε

)
(Φ̄∗

λ)′ +
εηε

1 + εηε
∇(Φ̄∗

λ)′,

and since the second term on the right-hand side is obviously easier to study than the first
one, let us concentrate on the first term. We have

∇ εηε

1 + εηε
=

ε∇ηε

1 + εηε
− ε2ηε∇ηε

(1 + εηε)2
·

Since εηε is bounded in L∞(R+;H2α(T×R)), we infer easily, by product laws in Sobolev
spaces, that

ε2ηε∇ηε is bounded in L∞(R+;Hσ(T×R)), for some σ > 0.

But on the other hand ηε is bounded in L∞(R+;L2(T×R)), so we have also

ε2ηε∇ηε → 0 in L∞(R+;H2α−2(T×R)).

By interpolation we gather that

ε2ηε∇ηε → 0 in L∞(R+;L2(T×R)),

and the lower bound on 1 + εηε ensures that

ε2ηε∇ηε

(1 + εηε)2
→ 0 in L∞(R+;L2(T×R)).

The argument is similar (and easier) for the term
ε∇ηε

1 + εηε
, so we can conclude that

−
∫ t

0

∫
ν

1 + εηε
∆
(

exp
(
it′λ

ε

)
uε

)
· (Φ̄∗

λ)′(t′, x)dxdt′ → ν

∫ t

0

∫
∇Φλ : ∇(Φ̄∗

λ)′(t′, x)dxdt′.
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Finally we are left with the nonlinear terms: let us study the limit of∫ t

0

∫
exp

(
it′λ

ε

)
(uε · ∇)uε · (Φ̄∗

λ)′(t′, x)dxdt′ −
∫ t

0

∫
exp

(
it′λ

ε

)
ηεuε∇ · Φ̄∗

λ,0(t
′, x)dxdt′.

The study is very similar to the case studied above (see Proposition 4.16), so we will not
give all the details but merely point out the differences. First, one can truncate the integral
in x2 ∈ R to x2 ∈ [−R,R], where R is a parameter to be chosen large enough in the end.
As previously that is simply due to the decay of the eigenvectors of L at infinity. So we are
reduced to the study of∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(uε · ∇)uε · (Φ̄∗

λ)′(t′, x)dxdt′ and

−
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηεuε · ∇Φ̄∗

λ,0(t
′, x)dxdt′.

The limit of the first term is obtained in an identical way to above, since uε satisfies the same
bounds, so we have∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(uε · ∇)uε · (Φ̄∗

λ)′(t′, x)dxdt′

→
∫ t

0

∫ ∑
µ+µ̃=λ
iµ,iµ̃∈S

(Φ′
µ · ∇)Φ′

µ̃ · (Φ̄∗
λ)′(t′, x)dxdt′,

as ε goes to 0 and R goes to infinity.

Now let us concentrate on the last nonlinear term. With the notation defined in the previous
section, we can write ∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηεuε · ∇Φ̄∗

λ,0(t
′, x)dxdt′

=
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(ηε − ηε,N )uε · ∇Φ̄∗

λ,0(t
′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηε,N (uε − uε,M ) · ∇Φ̄∗

λ,0(t
′, x)dxdt′

+
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηε,Nuε,M · ∇Φ̄∗

λ,0(t
′, x)dxdt′.

The first two terms on the right-hand side converge to zero, due to the following estimates:
for some −1 < s < 0 and for all t ∈ [0, T ],∣∣∣∣∣

∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
(ηε − ηε,N )uε · ∇Φ̄∗

λ,0(t
′, x)dxdt′

∣∣∣∣∣
≤ CT ‖ηε − ηε,N‖L∞([0,T ];Hs(T×[−R,R]))‖uε‖L2([0,T ];H1(T×[−R,R]))‖Φ̄∗

λ‖W 2,∞(T×R),
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and similarly∣∣∣∣∣
∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηε,N (uε − uε,M ) · ∇Φ̄∗

λ,0(t
′, x)dxdt′

∣∣∣∣∣
≤ CT,N‖uε − uε,M‖L2([0,T ];Hs(T×[−R,R]))‖Φ̄∗

λ‖W 2,∞(T×R).

Finally the limit of the third term is obtained by the (by now) classical nonstationary phase
theorem, namely we find, exactly as in the proof of Proposition 4.16, that∫ t

0

∫
T×[−R,R]

exp
(
it′λ

ε

)
ηε,Nuε,M · ∇Φ̄∗

λ,0(t
′, x)dxdt′

→
∫ t

0

∫ ∑
µ+µ̃=λ
iµ,iµ̃∈S

Φµ,0Φ′
µ̃ · ∇Φ̄∗

λ,0(t
′, x)dxdt′,

as ε goes to 0 and M , N and R go to infinity.

That concludes the proof of the theorem.
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mixed Poincaré-Rossby waves, 16, 87

no-slip condition, 27

parametric subharmonic instability, 21
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