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Abstract. The purpose of this article is to establish bounds from below for the life span of
regular solutions to the incompressible Navier-Stokes system, which involve norms not only
of the initial data, but also of nonlinear functions of the initial data. We provide examples
showing that those bounds are significant improvements to the one provided by the classical
fixed point argument. One of the important ingredients is the use of a scale-invariant energy
estimate.

1. Introdution

In this article our aim is to give bounds from below for the life span of solutions to the
incompressible Navier-Stokes system in the whole space R3. We are not interested here in
the regularity of the initial data: we focus on obtaining bounds from below for the life span
associated with regular initial data. Here regular means that the initial data belongs to the
intersection of all Sobolev spaces of non negative index. Thus all the solutions we consider are
regular ones, as long as they exist.

Let us recall the incompressible Navier-Stokes system, together with some of its basic
features. The incompressible Navier-Stokes system is the following:

(NS)

{
∂tu−∆u+ u · ∇u = −∇p

div u = 0 and u|t=0 = u0 ,

where u is a three dimensional, time dependent vector field and p is the pressure, determined
by the incompressibility condition div u = 0:

−∆p = div(u · ∇u) =
∑

1≤i,j≤3

∂i∂j(u
iuj) .

This system has two fundamental properties related to its physical origin:

• scaling invariance
• dissipation of kinetic energy.

The scaling property is the fact that if a function u satisfies (NS) on a time interval [0, T ]
with the initial data u0, then the function uλ defined by

uλ(t, x)
def
= λu(λ2t, λx)

satisfies (NS) on the time interval [0, λ−2T ] with the initial data λu0(λ ·). This property is far
from being a characteristic property of the system (NS). It is indeed satisfied by all systems
of the form

(GNS)

{
∂tu−∆u+Q(u, u) = 0

u|t=0 = u0
with Qi(u, u)

def
=

∑
1≤j,k≤3

Aij,k(D)(ujuk)

where the Aij,k(D) are smooth homogenenous Fourier multipliers of order 1. Indeed denoting
by P the projection onto divergence free vector fields

P def
= Id− (∂i∂j∆

−1)ij
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the Navier-Stokes system takes the form{
∂tu−∆u+ P div(u⊗ u) = 0

u|t=0 = u0 ,

which is of the type (GNS). For this class of systems, the following result holds. The definition

of homogeneous Sobolev spaces Ḣs is recalled in the Appendix.

Proposition 1.1. Let u0 be a regular three dimensional vector field. A positive time T exists
such that a unique regular solution to (GNS) exists on [0, T ]. Let T ?(u0) be the maximal time
of existence of this regular solution. Then, for any γ in the interval ]0, 1/2[, a constant cγ
exists such that

(1) T ?(u0) ≥ cγ‖u0‖
− 1
γ

Ḣ
1
2+2γ

.

In the case when γ = 1/4 for the particular case of (NS), this type of result goes back to
the seminal work of J. Leray (see [8]). Let us point out that the same type of result can be

proved for the L
3+ 6γ

1−2γ norm.

Proof. This result is obtained by a scaling argument. Let us define the following function

T
Ḣ

1
2+2γ (r)

def
= inf

{
T ?(u0) , ‖u0‖

Ḣ
1
2+2γ = r

}
.

We assume that at least one smooth initial data u0 develops singularites, which means exactly
that T ?(u0) is finite. Let us mention that this lower bound is in fact a minimum (see [10]).
Actually the function T

Ḣ
1
2+2γ may be computed using a scaling argument. Observe that

‖u0‖
Ḣ

1
2+2γ = r ⇐⇒ ‖r−

1
2γ u0(r

− 1
2γ ·)‖

Ḣ
1
2+2γ = 1 .

As we have T ?(u0) = r
− 1
γ T ?

(
r
− 1

2γ u0(r
− 1

2γ ·)
)
, we infer that T

Ḣ
1
2+2γ (r) = r

− 1
γ T

Ḣ
1
2+2γ (1) and

thus that

T ?(u0) ≥ cγ‖u0‖
− 1
γ

Ḣ
1
2+2γ

with cγ
def
= T

Ḣ
1
2+2γ (1) .

The proposition is proved. 2

Now let us investigate the optimality of such a result, in particular concerning the norm
appearing in the lower bound (1). Useful results and definitions concerning Besov spaces are

recalled in the Appendix; the Besov norms of particular interest in this text are the Ḃ−1
∞,2

norm which is given by

‖a‖Ḃ−1
∞,2

def
=
(∫ ∞

0
‖et∆a‖2L∞ dt

) 1
2

and the Besov norms Ḃ−σ∞,∞ for σ > 0 which are

‖a‖Ḃ−σ∞,∞
def
= sup

t>0
t
σ
2 ‖et∆a‖L∞ .

It has been known since [6] that a smooth initial data in Ḣ
1
2 (corresponding of course to the

limit case γ = 0 in Proposition 1.1) generates a smooth solution for some time T > 0. Let us
point out that in dimension 3, the following inequality holds

‖a‖Ḃ−1
∞,2
. ‖a‖

Ḣ
1
2
.

The norms Ḃ−σ∞,∞ are the smallest norms invariant by translation and having a given scaling.
More precisely, we have the following result, due to Y. Meyer (see Lemma 9 in [9]).
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Proposition 1.2. Let d ≥ 1 and let (E, ‖ · ‖E) be a normed space continuously included
in S ′(Rd), the space of tempered distributions on Rd. Assume that E is stable by translation
and by dilation, and that a constant C0 exists such that

∀(λ, e) ∈]0,∞[×Rd , ∀a ∈ E , ‖a(λ · −e)‖E ≤ C0λ
−σ‖a‖E .

Then a constant C1 exists such that

∀a ∈ E , ‖a‖Ḃ−α∞,∞ ≤ C1‖a‖E .

Proof. Let us simply observe that, as E is continuously included in S ′(Rd), a constant C exists
such that for all a in E, ∣∣〈a, e−|·|2〉∣∣ ≤ C‖a‖E .
Then by invariance by translation and dilation of E, we infer immediately that

‖et∆a‖L∞ ≤ C1t
−σ

2 ‖a‖E
which proves the proposition. 2

Now let us state a first improvement to Proposition 1.1 where the life span is bounded from
below in terms of the Ḃ−1+2γ

∞,∞ norm of the initial data.

Theorem 1.1. With the notations of Proposition 1.1, for any γ in the interval ]0, 1/2[, a
constant c′γ exists such that

(2) T ?(u0) ≥ TFP,γ(u0)
def
= c′γ‖u0‖

− 1
γ

Ḃ−1+2γ
∞,∞

.

This theorem is proved in Section 2; the proof relies on a fixed point theorem in a space
included in the space of L2 in time functions, with values in L∞.

Let us also recall that if a scaling 0 norm of a regular initial data is small, then the solution
of (NS) associated with u0 is global. This a consequence of the Koch and Tataru theorem
(see [7]) which can be translated as follows in the context of smooth solutions.

Theorem 1.2. A constant c0 exists such that for any regular initial data u0 satisfying

‖u0‖BMO−1
def
= sup

t>0
t
1
2 ‖et∆u0‖L∞ +

(
sup
x∈R3

R>0

1

R3

∫ R2

0

∫
B(x,R)

|et∆u0(y)|2dydt
) 1

2 ≤ c0 ,

the associate solution of (GNS) is globally regular.

Let us remark that
‖u0‖Ḃ−1

∞,∞
≤ ‖u0‖BMO−1 ≤ ‖u0‖Ḃ−1

∞,2
.

We shall explain in Section 2 how to deduce Theorem 1.2 from the Koch and Tataru
theorem [7].

The previous results are valid for the whole class of systems (GNS). Now let us present
the second main feature of the incompressible Navier-Stokes system, which is not shared by
all systems under the form (GNS) as it relies on a special structure of the nonlinear term
(which must be skew-symmetric in L2): the dissipation estimate for the kinetic energy. For
regular solutions of (NS) there holds

1

2

d

dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 = 0

which gives by integration in time

(3) ∀t ≥ 0 , E
(
u(t)

) def
=

1

2
‖u(t)‖2L2 +

∫ t

0
‖∇u(t′)‖L2dt′ =

1

2
‖u0‖2L2 .
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T. Tao pointed out in his paper [11] that the energy estimate is not enough to prevent possible
singularities from appearing. Our purpose here is to investigate if this energy estimate can
improve the lower bound (2) of the life span for regular initial data. We recall indeed that
for smooth initial data, all Leray solutions — meaning solutions in the sense of distributions
satisfying the energy inequality

(4) E
(
u(t)

)
≤ 1

2
‖u0‖2L2

coincide with the smooth solution as long as the latter exists.
What we shall use here is a rescaled version of the energy dissipation inequality in the spirit

of [5], on the fluctuation w
def
= u− uL with uL(t)

def
= et∆u0.

Proposition 1.3. Let u be a regular solution of (NS) associated with some initial data u0.
Then the fluctuation w satisfies, for any positive t

E
(w(t)

t
1
4

)
+

∫ t

0

‖w(t′)‖2L2

t′
3
2

dt′ . Q0
L exp ‖u0‖2Ḃ−1

∞,2
with Q0

L
def
=

∫ ∞
0

t
1
2 ‖P(uL ·∇uL)(t)‖2L2 dt .

Our main result is then the following.

Theorem 1.3. There is a constant C > 0 such that the following holds. For any regular
initial data of (NS),

(5) T ∗(u0) > TL(u0)
def
= C

(
Q0

L

)−2
(
‖∂3u0‖2

Ḃ
− 3

2∞,∞

Q0
L +

√
Q0

LQ
1
L

)−2
exp

(
− 4‖u0‖2Ḃ−1

∞,2

)
,

with

Q1
L
def
=

∫ ∞
0

t
3
2

∥∥∂2
3

(
P(uL · ∇uL)

)
(t)
∥∥2

L2 dt .

The main two features of this result are that

• the statement involves non linear quantities associated with the initial data, namely
norms of P(uL · ∇uL);
• one particular (arbitrary) direction plays a specific role.

This theorem is proved in Section 4.

The following statement shows that the lower bound on T ∗(u0) given in Theorem 1.3 is,
for some classes of initial data, a significant improvement.

Theorem 1.4. Let (γ, η) be in ]0, 1/2[×]0, 1[. There is a constant C and a family (u0,ε)ε∈]0,1[

of regular initial data such that with the notation of Theorems 1.1 and 1.3,

TFP(u0,ε) = Cε2| log ε|−
1
γ and TL(u0,ε) ≥ Cε−2+η .

This theorem is proved in Section 5. The family (u0,ε)ε∈]0,1[ is closely related to the family
used in [3] to exhibit families of initial data which do not obey the hypothesis of the Koch
and Tataru theorem and which nevertheless generate global smooth solutions. However it it
too large to satisfy the assumptions of Theorem 2 in [3] so it is not known if the associate
solution is global.

In the following we shall denote by C a constant which may change from line to line, and
we shall sometimes write A . B for A ≤ CB.
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2. Proof of Theorem 1.1

Let u0 be a smooth vector field and let us solve (GNS) by means of a fixed point method.
We define the bilinear operator B by

(6) ∂tB(u, v)−∆B(u, v) = −1

2

(
Q(u, v) +Q(v, u)

)
, and B(u, v)|t=0 = 0 .

One can decompose the solution u to (GNS) into

u = uL +B(u, u) .

Resorting to the Littlewood-Paley decomposition defined in the Appendix, let us define for
any real number γ and any time T > 0, the quantity

‖f‖EγT
def
= sup

j∈Z
2−j(1−2γ)

(
‖∆jf‖L∞([0,T ]×R3) + 22j‖∆jf‖L1([0,T ];L∞(R3))

)
.

Using Lemma 2.1 of [2] it is easy to see that

‖uL‖Eγ∞ . ‖u0‖Ḃ−1+2γ
∞,∞

,

so Theorem 1.1 will follow from the fact that B maps EγT × E
γ
T into EγT with the following

estimate:

(7) ‖B(u, v)‖EγT ≤ CγT
γ‖u‖EγT ‖v‖EγT .

So let us prove (7). Using again Lemma 2.1 of [2] along with the fact that the Aik,`(D) are
smooth homogeneous Fourier multipliers of order 1, we have

‖∆jB(u, v)(t)‖L∞ .
∫ t

0
e−c2

2j(t−t′)
2j
∥∥∥∆j

(
u(t′)⊗ v(t′) + v(t′)⊗ u(t′)

)
‖L∞dt′ .

We then decompose (component-wise) the product u⊗ v following Bony’s paraproduct algo-
rithm: for all functions a and b the support of the Fourier transform of Sj′+1a∆j′b and Sj′b∆j′a

is included in a ball 2j
′
B where B is a fixed ball of R3, so one can write for some fixed con-

stant c > 0

ab =
∑

2j′≥c2j

(
Sj′+1a∆j′b+ ∆j′aSj′b

)
so thanks to Young’s inequality in time one can write

2−j(1−2γ)
(
‖∆jB(u, v)‖L∞([0,T ]×R3) + 22j‖∆jB(u, v)‖L1([0,T ];L∞(R3))

)
. B1

j (u, v) + B2
j (u, v) with

B1
j (u, v)

def
= 22jγ

∑
2j′≥max{c2j ,T−

1
2 }

‖Sj′+1u‖L∞([0,T ]×R3)‖∆j′v‖L1([0,T ];L∞(R3))

+ 22jγ
∑

c2j≤2j′<T−
1
2

‖Sj′+1u‖L∞([0,T ]×R3)‖∆j′v‖L1([0,T ];L∞(R3)) and

B2
j (u, v)

def
= 22jγ

∑
2j′≥max{c2j ,T−

1
2 }

‖Sj′v‖L∞([0,T ]×R3)‖∆j′u‖L1([0,T ];L∞(R3))

+ 22jγ
∑

c2j≤2j′<T−
1
2

‖Sj′v‖L∞([0,T ]×R3)‖∆j′u‖L1([0,T ];L∞(R3)) .

(8)

In each of the sums over c2j ≤ 2j
′
< T−

1
2 we write

‖f‖L1([0,T ];L∞(R3)) ≤ T‖f‖L∞([0,T ]×R3)
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and we can estimate the two terms B1
j (u, v) and B2

j (u, v) in the same way: for ` ∈ {1, 2} there
holds indeed

B`j(u, v) ≤ ‖u‖EγT ‖v‖EγT
(

22jγ
∑

2j′≥max{c2j ,T−
1
2 }

2−4j′γ + T22j(1−γ)
∑

c≤2j′−j<(22jT )−
1
2

22(j′−j)(1−2γ)
)

≤ ‖u‖EγT ‖v‖EγT
(
T γ + T22j(1−γ)

∑
c≤2j′−j<(22jT )−

1
2

22(j′−j)(1−2γ)
)
.

Once noticed that

T22j(1−γ)
∑

c≤2j′−j<(22jT )−
1
2

22(j′−j)(1−2γ) ≤ 1{22jT≤C}(T22j)γ2−2jγ . T γ

the estimate (7) is proved and Theorem 1.1 follows. �

3. Proof of Theorem 1.2

As the solutions given by the Fujita-Kato theorem [6] and the Koch-Tataru theorem [7]
are unique in their own class, they are unique in the intersection and thus coincide as long as
the Fujita-Kato solution exists. Thus Theorem 1.2 is a question of propagation of regularity,
which is provided by the following lemma (which proves the theorem).

Lemma 3.1. A constant c0 exists which satisfies the following. Let u be a regular solution
of (GNS) on [0, T [ associated with a regular initial data u0 such that

‖u‖K
def
= sup

t∈[0,T [
t
1
2 ‖u(t)‖L∞ ≤ c0 .

Then T ?(u0) > T .

Proof. The proof is based on a paralinearization argument (see [2]). Observe that for any T
less than T ?(u0), u is a solution on [0, T [ of the linear equation

(PGNS)

{
∂tv −∆v +Q(u, v) = 0

v|t=0 = u0
with

Q(u, v)
def
=
∑
j∈Z

Q(Sj+1u,∆jv) +
∑
j∈Z

Q(∆jv, Sju) .

In the same spirit as (6), let us define PB(u, v) by

(9) ∂tPB(u, v)−∆PB(u, v) = −Q(u, v) and PB(u, v)|t=0 = 0 .

A solution of (PGNS) is a solution of

v = uL + PB(u, v) .

Let us introduce the space FT of continuous functions with values in Ḣ
1
2 , which are elements

of L4([0, T ]; Ḣ1), equipped with the norm

‖v‖FT
def
=

(∑
j∈Z

2j‖∆jv‖2L∞([0,T [;L2)

) 1
2

+ ‖v‖L4([0,T [;Ḣ1) .

Notice that the first part of the norm was introduced in [4] and is a larger norm than the

supremum in time of the Ḣ
1
2 norm. Moreover there holds

‖uL‖FT . ‖u0‖
Ḣ

1
2
.

Let us admit for a while the following inequality:

(10) ‖PB(u, v)‖FT . ‖u‖K‖v‖FT .
6



Then it is obvious that if ‖u‖K is small enough for some time [0, T [, the linear equation (PGNS)
has a unique solution in FT (in the distribution sense) which satisfies in particular, if c0 is
small enough,

‖v‖FT ≤ C‖u0‖
Ḣ

1
2

+
1

2
‖v‖FT .

As u is a regular solution of (PGNS), it therefore satisfies

∀t < T , ‖u‖L4([0,t];Ḣ1) ≤ 2C‖u0‖
Ḣ

1
2

which implies that T ?(u0) > T , so the lemma is proved provided we prove Inequality (10).
Let us observe that for any j in Z,

(11) ∂t∆jPB(u, v)−∆∆jPB(u, v) = −∆jQ(u, v) .

By definition of Q, we have∥∥∆jQ(u, v)(t)‖L2 ≤
∑
j′∈Z

∑
1≤i,k,`≤3

(∥∥∆jA
i
k,`(D)

(
Sj′+1u∆j′v

)∥∥
L2 +

∥∥∆jA
i
k,`(D)

(
∆j′vSj′u

)∥∥
L2

)
.

As Aik,`(D) are smooth homogeneous Fourier multipliers of order 1, we infer that for some
fixed nonnegative integer N0∥∥∆jQ(u, v)(t)‖L2 . 2j

∑
j′≥j−N0

(∥∥Sj′+1u(t)∆j′v(t)
∥∥
L2 +

∥∥∆j′v(t)Sj′u(t)
∥∥
L2

)
. 2j

∑
j′≥j−N0

(
‖Sj′+1u(t)‖L∞‖∆j′v(t)‖L2 +

∥∥∆j′v(t)‖L2‖Sj′u(t)
∥∥
L∞

)
. 2j‖u(t)‖L∞

∑
j′≥j−N0

‖∆j′v(t)‖L2 .

Using Relation (11) and the definition of the norm on FT , we infer that

‖∆jPB(u, v)(t)‖L2 ≤
∫ t

0
e−c2

2j(t−t′)∥∥∆jQ(u, v)(t′)‖L2dt′

. 2j
∫ t

0
e−c2

2j(t−t′)‖u(t′)‖L∞
∑

j′≥j−N0

‖∆j′v(t′)‖L2dt′

. 2j‖u‖K‖v‖FT
∑

j′≥j−N0

cj′2
− j
′
2

∫ t

0
e−c2

2j(t−t′) 1√
t′
dt′ ,

where (cj)j∈Z denotes a generic element of the sphere of `2(Z). Thus we have, for all t less
than T ,

2
j
2 ‖∆jPB(u, v)(t)‖L2 . ‖u‖K‖v‖FT

∑
j′≥j−N0

cj′2
− j
′−j
2

∫ t

0
2je−c2

2j(t−t′) 1√
t′
dt′ .

Thanks to Young’s inequality, we have
∑

j′≥j−N0

cj′2
− j
′−j
2 . cj and we deduce that

(12) 2
j
2 ‖∆jPB(u, v)(t)‖L2 . cj‖u‖K‖v‖FT

∫ t

0
2je−c2

2j(t−t′) 1√
t′
dt′.

As we have ∫ t

0
2je−c2

2j(t−t′) 1√
t′
dt′ .

∫ t

0

1√
t− t′

1√
t′
dt′ ,
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we infer finally that

(13)
∑
j∈Z

2j‖∆jPB(u, v)‖2L∞([0,T ];L2) . ‖u‖
2
K‖v‖2FT .

Moreover returning to Inequality (12), we have

2j‖∆jPB(u, v)‖L4([0,T ];L2) . cj‖u‖K‖v‖FT
∥∥∥∫ t

0
2

3j
2 e−c2

2j(t−t′) 1√
t′
dt′
∥∥∥
L4(R+)

.

The Hardy-Littlewood-Sobolev inequality implies that∥∥∥∫ t

0
2

3j
2 e−c2

2j(t−t′) 1√
t′
dt′
∥∥∥
L4(R+)

. 1 .

Since thanks to the Minkowski inequality there holds

‖PB(u, v)‖2
L4([0,T ];Ḣ1)

≤
∑
j∈Z

22j‖∆jPB(u, v)‖2L4([0,T ];L2) ,

together with Inequality (13) this concludes the proof of Inequality (10) and thus the proof
of Lemma 3.1. 2

4. Proof of Theorem 1.3

The plan of the proof of Theorem 1.3 is the following: as previously we look for the solution
of (NS) under the form

u = uL + w

where we recall that uL(t) = et∆u0. Moreover we recall that the solution u satisfies the energy
inequality (4). By construction, the fluctuation w satisfies

(NSF) ∂tw −∆w + (uL + w) · ∇w + w · ∇uL = −uL · ∇uL −∇p , divw = 0 .

Let us prove that the life span of w satisfies the lower bound (5). The first step of the proof
consists in proving Proposition 1.3, stated in the introduction. This is achieved in Section 4.1.
The next step is the proof of a similar energy estimate on ∂3w — note that contrary to the
scaled energy estimate of Proposition 1.3, the next result is useful in general only locally in
time. It is proved in Section 4.2.

Proposition 4.1. With the notation of Proposition 1.3 and Theorem 1.3, the fluctuation w
satisfies the following estimate:

E
(
∂3w

)
(t) .

(
Q0

L

(
t
1
2 sup
t′∈(0,t)

‖∂3w(t)‖4L2 + ‖∂3u0‖2
Ḃ
− 3

2∞,∞

)
+
√
Q0

LQ
1
L

)
exp

(
2‖u0‖2Ḃ−1

∞,2

)
.

Combining both propositions, one can conclude the proof of Theorem 1.3. This is performed
in Section 4.3.

4.1. The rescaled energy estimate on the fluctuation: proof of Proposition 1.3.
An L2 energy estimate on (NSF) gives

1

2

d

dt
‖w(t)‖2L2 + ‖∇w(t)‖2L2 = −

∑
1≤j,k≤3

∫
R3
wj∂ju

k
Lw

k(t, x)dx−
(
P(uL · ∇uL)

∣∣w)(t) .
¿From this, after an integration by parts and using the fact that the divergence of w is zero,
we infer that

1

2

d

dt

(‖w(t)‖2L2

t
1
2

)
+
‖w(t)‖2L2

2t
3
2

+
‖∇w(t)‖2L2

t
1
2

≤ ‖w(t)‖L2‖uL(t)‖L∞‖∇w(t)‖L2

t
1
2

+
‖P(uL · ∇uL)(t)‖L2‖w(t)‖L2

t
1
2

·
8



Let us observe that

‖P(uL · ∇uL)(t)‖L2‖w(t)‖L2

t
1
2

= t
1
4 ‖P(uL · ∇uL)(t)‖L2

‖w(t)‖L2

t
3
4

·

Using a convexity inequality, we infer that

d

dt

(‖w(t)‖2L2

t
1
2

)
+
‖w(t)‖2L2

2t
3
2

+
‖∇w(t)‖2L2

t
1
2

≤
‖w(t)‖2L2‖uL(t)‖2L∞

t
1
2

+ t
1
2 ‖uL(t) · ∇uL(t)‖2L2 .

Thus we deduce that

d

dt

(‖w(t)‖2L2

t
1
2

exp
(
−
∫ t

0
‖uL(t′)‖2L∞dt′

))
+ exp

(
−
∫ t

0
‖uL(t′)‖2L∞dt′

)(‖w(t)‖2L2

2t
3
2

+
‖∇w(t)‖2L2

t
1
2

)
≤ exp

(
−
∫ t

0
‖uL(t′)‖2L∞dt′

)
t
1
2 ‖P(uL · ∇uL)(t)‖2L2 ,

from which we infer by the definition of the Ḃ−1
∞,2 norm and of Q0

L that

(14) ∀t ≥ 0 ,
‖w(t)‖2L2

t
1
2

+

∫ t

0

(‖w(t′)‖2L2

2t′
3
2

+
‖∇w(t)‖2L2

t′
1
2

)
dt′ ≤ Q0

L exp ‖u0‖2Ḃ−1
∞,2

.

Proposition 1.3 follows. �

4.2. Proof of Proposition 4.1. Now let us investigate the evolution of ∂3w in L2. Applying
the partial differentiation ∂3 to (NSF), we get

(15)
∂t∂3w −∆∂3w + (uL + w) · ∇∂3w + ∂3w · ∇uL

= −∂3uL · ∇w − ∂3w · ∇w − w · ∇∂3uL − ∂3(uL · ∇uL)−∇∂3p .

The difficult terms to estimate are those which do not contain explicitly ∂3w. So let us define

(a)
def
= −

(
∂3uL · ∇w

∣∣∂3w
)
L2 ,

(b)
def
= −

(
w · ∇∂3uL

∣∣∂3w)L2 and

(c)
def
= −

(
∂3(uL · ∇uL)

∣∣∂3w
)
L2 .

The third term is the easiest. By integration by parts and using the Cauchy-Schwarz inequality
along with (14) we have∣∣∣ ∫ ∞

0
(c)(t)dt

∣∣∣ =
∣∣∣ ∫ ∞

0

∫
R3
∂2

3

(
P(uL · ∇uL)(t, x)

)
· w(t, x)dxdt

∣∣∣
≤

(∫ ∞
0

t
3
2

∥∥∂2
3 P(uL · ∇uL)(t)

∥∥2

L2dt
) 1

2
(∫ ∞

0

‖w(t)‖2L2

t
3
2

dt
) 1

2

≤
√
Q0

LQ
1
L exp

(1

2
‖u0‖2Ḃ−1

∞,2

)
.

Now let us estimate the contribution of (a) and (b). By integration by parts, we get, thanks
to the divergence free condition on uL,

(a) =
(
∂3uL ⊗ w

∣∣∇∂3w
)
L2 and (b) =

(
w ⊗ ∂3uL

∣∣∇∂3w)L2 .

The two terms can be estimated exactly in the same way since they are both of the form∫
R3
w(t, x)∂3uL(t, x)∇∂3w(t, x)dx .

9



We have∣∣∣ ∫
R3
w(t, x)∂3uL(t, x)∇∂3w(t, x)dx

∣∣∣ ≤ ‖w(t)‖L2‖∂3uL(t)‖L∞‖∇∂3w‖L2

≤ 1

100
‖∇∂3w‖2L2 + 100‖w(t)‖2L2‖∂3uL(t)‖2L∞ .

The first term will be absorbed by the Laplacian. The second term can be understood as a
source term. By time integration, we get indeed∫ T

0
‖w(t)‖2L2‖∂3uL(t)‖2L∞dt ≤

∫ T

0

‖w(t)‖2L2

t
3
2

(
t
3
4 ‖∂3uL(t)‖L∞

)2
dt

≤ ‖∂3u0‖2
Ḃ
− 3

2∞,∞

∫ ∞
0

‖w(t)‖2L2

t
3
2

dt ,

so it follows, thanks to Proposition 1.3, that∫ T

0

∫
R3
w(t, x)∂3uL(t, x)∇∂3w(t, x)dxdt ≤ 1

100

∫ T

0
‖∇∂3w(t)‖2L2 dt

+ C‖∂3u0‖2
Ḃ
− 3

2∞,∞

Q0
L exp ‖u0‖2Ḃ−1

∞,2
.

The contribution of the quadratic term in (15) is estimated as follows: writing, for any func-
tion a,

‖a‖LphLqv
def
=
(∫
‖a(x1, x2, ·)‖pLq(R) dx1dx2

) 1
p
,

we have by Hölder’s inequality∣∣∣ ∫
R3
∂3w(t, x) · ∇w(t, x)∂3w(t, x)dx

∣∣∣ ≤ ‖∂3w(t)‖2L2
vL

4
h
‖∇w‖L∞v L2

h

≤ ‖∂3w(t)‖L2‖∇h∂3w(t)‖L2‖∇w(t)‖
1
2

L2‖∇∂3w(t)‖
1
2

L2 ,

where we have used the inequalities

(16) ‖a‖L∞v L2
h
. ‖∂3a‖

1
2

L2‖a‖
1
2

L2 and ‖a‖L2
vL

4
h
. ‖a‖

1
2

L2‖∇ha‖
1
2

L2

with ∇h
def
= (∂1, ∂2). The first inequality comes from

‖a(·, x3)‖2L2
h

=
1

2

∫ x3

−∞

(
∂3a(·, z)

∣∣a(·, z)
)
L2
h
dz

≤ 1

2

∫
R
‖∂3a(·, z)‖L2

h
‖a(·, z)‖L2

h
dz

≤ ‖∂3a‖L2‖a‖L2

while the second simply comes from the embedding Ḣ
1
2
h ⊂ L

4
h and an interpolation. By Young’s

inequality it follows that∣∣∣ ∫
R3
∂3w(t, x) · ∇w(t, x)∂3w(t, x)dx

∣∣∣ ≤ 1

100
‖∇∂3w‖2L2 + C‖∇w(t)‖2L2‖∂3w(t)‖4L2

≤ 1

100
‖∇∂3w(t)‖2L2

+
(

sup
t′∈[0,t]

‖∂3w(t′)‖4L2

)
t
1
2
‖∇w(t)‖2L2

t
1
2

,

10



from which we infer by Proposition 1.3 that∣∣∣ ∫
R3
∂3w(t, x) · ∇w(t, x)∂3w(t, x)dx

∣∣∣ ≤ 1

100
‖∇∂3w(t)‖2L2

+
(

sup
t′∈[0,t]

‖∂3w(t′)‖4L2

)
t
1
2Q0

L exp ‖u0‖2Ḃ−1
∞,2

.

Finally there holds after an integration by parts∫
R3
∂3w(t, x) · ∇uL(t, x)∂3w(t, x)dx ≤ ‖∂3w(t)‖L2‖uL(t)‖L∞‖∇∂3w(t)‖L2

≤ 1

100
‖∇∂3w(t)‖2L2 + C‖∂3w(t)‖2L2‖uL(t)‖2L∞ ,

so plugging all these estimates together we infer thanks to Gronwall’s inequality that

sup
t∈[0,T ]

‖∂3w(t)‖2L2 +

∫ T

0
‖∇∂3w(t)‖2L2 dt

.
(
T

1
2Q0

L sup
t′∈[0,t]

‖∂3w(t′)‖4L2 + ‖∂3u0‖2
Ḃ
− 3

2∞,∞

Q0
L +

√
Q0

LQ
1
L

)
exp

(
2‖u0‖2Ḃ−1

∞,2

)
.

Proposition 4.1 is proved. �

4.3. End of the proof of Theorem 1.3.

4.3.1. Control of the fluctuation. To make notation lighter let us set

ML
def
=
(
‖∂3u0‖2

Ḃ
− 3

2∞,∞

Q0
L +

√
Q0

LQ
1
L

)
exp

(
2‖u0‖2Ḃ−1

∞,2

)
.

Proposition 4.1 provides the existence of a constant K such that the following a priori estimate
holds

sup
t∈[0,T ]

‖∂3w(t)‖2L2 +

∫ T

0
‖∇∂3w(t)‖2L2 dt

≤ KT
1
2Q0

L sup
t∈[0,T ]

‖∂3w(t)‖4L2 exp
(
2‖u0‖2Ḃ−1

∞,2

)
+KML .

Let T ∗ be the maximal time of existence of u, hence of w, and recalling that w(t = 0) = 0,
set T1 to be the maximal time T for which

sup
t∈[0,T ]

‖∂3w(t)‖2L2 ≤ 2KML .

Then on [0, T1] there holds

sup
t∈[0,T ]

‖∂3w(t)‖2L2 +

∫ T

0
‖∇∂3w(t)‖2L2 dt ≤ 4K3T

1
2

1 Q
0
LM

2
L +KML

≤ KML

(
1 + 4K2T

1
2

1 Q
0
LML

)
.

This implies that

T1 ≥ T∗ with T∗
def
=

(
1

8K2Q0
LML

)2

,

and on [0, T∗] there holds

(17) sup
t∈[0,T ]

‖∂3w(t)‖2L2 +

∫ T

0
‖∇∂3w(t)‖2L2 dt ≤

3

2
KML .
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4.3.2. End of the proof of the theorem. Under the assumptions of Theorem 1.3 we know that
there exists a unique solution u to (NS) on some time interval [0, T ∗), which satisfies the
energy estimate. Let us prove that this time interval contains [0, T∗]. Since the initial data u0

belongs to L2, we may assume that u is a global Leray solution, meaning that

(18) ∀t ≥ 0 , E
(
u(t)

)
≤ 1

2
‖u0‖2L2 .

Moreover one clearly has

sup
t≥0
‖∂3uL(t)‖2L2 +

∫ ∞
0
‖∇∂3uL(t)‖2L2 dt ≤ ‖∂3u0‖2L2

so together with (17) this implies that on [0, T∗],

(19) sup
t∈[0,T ]

‖∂3w(t)‖2L2 +

∫ T

0
‖∇∂3u(t)‖2L2dt . ‖∂3u0‖2L2 +ML .

Let us prove that these estimates provide a control on u in Ḣ1 on [0, T∗]. After differentiation
of (NS) with respect to the horizontal variables and an energy estimate, we get for any `
in {1, 2} and after an integration by parts

1

2

d

dt
‖∂`u(t)‖2L2 + ‖∇∂`u(t)‖2L2 = −

∫
R3
∂`(u · ∇u) · ∂`u (t, x) dx

≤ ‖u‖L∞v L4
h
‖∇u(t)‖L2

vL
4
h
‖∂2

` u(t)‖L2 .

Similarly to (16) we have

‖u‖2L∞v L4
h
. ‖u‖2

L∞v Ḣ
1
2
h

.
∫ x3

−∞

(
∂3u(·, z)

∣∣u(·, z)
)
Ḣ

1
2
h

dz

. ‖∂3u‖L2‖∇hu‖L2

so using (16) we infer that∣∣∣ ∫
R3
∂`(u · ∇u) · ∂`u (t, x) dx

∣∣∣ ≤ C‖∂3u(t)‖
1
2

L2‖∇hu(t)‖
1
2

L2‖∇u(t)‖
1
2

L2‖∇∇hu(t)‖
1
2

L2‖∂2
` u(t)‖L2

≤ 1

100
‖∇∇hu(t)‖2L2 + C‖∂3u‖2L2‖∇hu‖2L2‖∇u(t)‖2L2 .

We obtain
d

dt
‖∇hu(t)‖2L2 + ‖∇∇hu(t)‖2L2 . ‖∂3u‖2L2‖∇hu‖2L2‖∇u(t)‖2L2 ,

and Gronwall’s inequality implies that

‖∇hu(t)‖2L2 +

∫ t

0
‖∇∇hu(t′)‖2L2dt

′ ≤ ‖∇hu0‖2L2 exp
(∫ t

0
‖∂3u(t′)‖2L2‖∇u(t′)‖2L2dt

′
)
.

The fact that we control ‖∇u‖L2
t (L

2
x) and ‖∂3u‖L∞t (L2

x) thanks to (18) and (19) implies that

on [0, T∗] there holds

sup
t∈[0,T ]

‖∇u(t)‖2L2 +

∫ T

0
‖∇2u(t)‖2L2 dt ≤ ‖∇u0‖2L2 exp

(
‖u0‖L2(KML)

1
2

)
.

This means that there is a unique, smooth solution at least on [0, T∗], and Theorem 1.3 is
proved. �
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5. Comparison of both life spans: proof of Theorem 1.4

Let us introduce the notation

fε(x1, x2, x3)
def
= cos

(x1

ε

)
f
(
x1,

x2

εα
, x3

)
,

where ε is a given number, assumed to be small, and α is a fixed parameter in the open
interval ]0, 1[. We assume the initial data is given by the following expression

(20) u0,ε(x) =
Aε
ε

(
0, εα(−∂3φ)ε, (∂2φ)ε

)
where φ is a smooth compactly supported function and the parameter Aε � 1 will be tuned
later.

Let us recall that Lemma 3.1 of [3] claims in particular that

(21) ∀σ > 0 , ‖fε‖Ḃ−σp,1 ≤ Cσε
σ+α

p and ‖fε‖Ḃ−σ∞,∞ ≥ cσε
σ.

This implies that

(22) ‖u0,ε‖Ḃ−1+2γ
∞,∞

. Aεε
−2γ , ‖u0,ε‖Ḃ−1

∞,∞
∼ ‖u0,ε‖Ḃ−1

∞,2
∼ Aε and ‖∂3u0,ε‖

Ḃ
− 3

2∞,∞
. Aεε

1
2 .

With the notation of Theorem 1.1 there holds therefore.

TFP(u0,ε) ≥ Cε2A
− 1
γ

ε .

Let us now compute TL(u0,ε). Recalling that uL(t) = et∆u0,ε, we can write

u1
L∂1u

1
L + u2

L∂2u
1
L =

(Aε
ε

)2
et∆fεe

t∆gε and

u1
L∂1u

2
L + u2

L∂2u
2
L =

(Aε
ε

)2
et∆f̃εe

t∆g̃ε.

where f , g, f̃ , g̃ are smooth compactly supported functions. Now let us estimate∫ ∞
0

t
1
2

∥∥et∆fε et∆gε∥∥2

L2dt .

for f and g given smooth compactly supported functions. We write∫ ∞
0

t
1
2

∥∥et∆fε et∆gε∥∥2

L2dt =

∫ ∞
0

t
3
2

∥∥et∆fε et∆gε∥∥2

L2

dt

t

≤
∫ ∞

0

(
t
3
8 ‖et∆fε‖L4

)2(
t
3
8 ‖et∆gε‖

)2
L4

dt

t

thanks to the Hölder inequality. The Cauchy-Schwarz inequality and the definition of Besov
norms imply that∫ ∞

0
t
1
2

∥∥et∆fεet∆gε∥∥2

L2dt ≤
(∫ ∞

0

(
t
3
8 ‖et∆fε‖L4

)4dt
t

) 1
2
(∫ ∞

0

(
t
3
8 ‖et∆gε‖L4

)4dt
t

) 1
2

≤ ‖fε‖2
Ḃ
− 3

4
4,4

‖gε‖2
Ḃ
− 3

4
4,4

.

It is easy to check that

‖fε‖
Ḃ
− 3

4
4,4

. ε
3+α
4 ,

so it follows (since P is a homogeneous Fourier multiplier of order 0) that

(23) Q0
L . A

4
εε
α−1 .
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For the initial data (20), differentations with respect to the vertical variable ∂3 have no real
influence on the term uL(t) · ∇uL(t). Indeed, we have

∂2
3

(
uL(t) · ∇uL(t)

)
= ∂2

3uL(t) · ∇uL(t) + 2∂3uL(t) · ∂3∇uL(t) + uL(t) · ∂2
3∇uL(t)

and it is then obvious that ∂2
3

(
uL(t) · ∇uL(t)

)
is a sum of term of the type(Aε

ε

)2
et∆fε e

t∆gε .

Then following the lines used to estimate the term Q0
L, we write∫ ∞

0
t
3
2

∥∥et∆fεet∆gε∥∥2

L2dt ≤
(∫ ∞

0

(
t
5
8 ‖et∆fε‖L4

)4dt
t

) 1
2
(∫ ∞

0

(
t
5
8 ‖et∆gε‖L4

)4dt
t

) 1
2

≤ ‖fε‖2
Ḃ
− 5

4
4,4

‖gε‖2
Ḃ
− 5

4
4,4

.

It is easy to check that

‖fε‖
Ḃ
− 5

4
4,4

. ε
5+α
4 ,

so it follows that
Q1

L . A
4
εε
α+1 .

Together with (22) and (23), we infer that

Q0
L

(
‖∂3u0‖2

Ḃ
− 3

2∞,∞

Q0
L +

√
Q0

LQ
1
L

)
exp

(
4‖u0‖2Ḃ−1

∞,2

)
. A4

εε
α−1
(
A6
εε
α +A4

εε
α
)

exp(C0A
2
ε)

. A10
ε ε

2α−1 exp(C0A
2
ε)

because Aε is larger than 1. Let us choose some κ in ]0, η[ and then

Aε
def
=
( C0

−κ log ε

) 1
2 ·

Then with the notation of Theorem 1.3 we have

TL = CA−20
ε ε2(1−2α+κ) .

Let us choose κ′ in ]κ, η[. By definition of Aε we get that

TL ≥ Cε2(1−2α+κ′)

Choosing α = 1− η − κ′

4
concludes the proof of Theorem 1.4. �

Appendix A. A Littlewood-Paley toolbox

Let us recall some well-known results on Littlewood-Paley theory (see for instance [1] for
more details).

Definition A.1. Let φ ∈ S(R3) be such that φ̂(ξ) = 1 for |ξ| ≤ 1 and φ̂(ξ) = 0 for |ξ| > 2.

We define, for j ∈ Z, the function φj(x)
def
= 23jφ(2jx), and the Littlewood–Paley operators

Sj
def
= φj ∗ · and ∆j

def
= Sj+1 − Sj .

Homogeneous Sobolev spaces are defined by the norm

‖a‖Ḣs

def
=
(∑
j∈Z

22js‖∆ja‖2L2

) 1
2
.

This norm is equivalent to

‖a‖Ḣs ∼
(∫

R3
|ξ|2s|Fa(ξ)|2 dξ

) 1
2
,
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where F is the Fourier transform. Finally let us recall the definition of Besov norms of negative
index.

Definition A.2. Let σ be a positive real number and (p, q) in [1,∞]2. Let us define the
homogeneous Besov norm ‖ · ‖Ḃ−σp,q by

‖a‖Ḃ−σp,q =
∥∥tσ2 ‖et∆a‖Lp∥∥Lq(R+; dt

t ) .

Let us mention that thanks to the properties of the heat flow, for p1 ≤ p2 and q1 ≤ q2, we
have the following inequality, valid for any regular function a

‖a‖
Ḃ
−σ−3( 1

p1
− 1
p2

)
p2,q

. ‖a‖Ḃ−σp1,q and ‖a‖Ḃ−σp,q2 . ‖a‖Ḃ−σp,q1 .

An equivalent definition using the Littlewood-Paley decomposition is

‖a‖Ḃ−σp,q ∼
(∑
j∈Z

2−jσq‖∆ja‖qLp
) 1
q
.
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