A NON LINEAR ESTIMATE ON THE LIFE SPAN OF SOLUTIONS
OF THE THREE DIMENSIONAL NAVIER-STOKES EQUATIONS

JEAN-YVES CHEMIN AND ISABELLE GALLAGHER

ABSTRACT. The purpose of this article is to establish bounds from below for the life span of
regular solutions to the incompressible Navier-Stokes system, which involve norms not only
of the initial data, but also of nonlinear functions of the initial data. We provide examples
showing that those bounds are significant improvements to the one provided by the classical
fixed point argument. One of the important ingredients is the use of a scale-invariant energy
estimate.

1. INTRODUTION

In this article our aim is to give bounds from below for the life span of solutions to the
incompressible Navier-Stokes system in the whole space R3. We are not interested here in
the regularity of the initial data: we focus on obtaining bounds from below for the life span
associated with regular initial data. Here regular means that the initial data belongs to the
intersection of all Sobolev spaces of non negative index. Thus all the solutions we consider are
regular ones, as long as they exist.

Let us recall the incompressible Navier-Stokes system, together with some of its basic
features. The incompressible Navier-Stokes system is the following:

(NS) { ou — Au+u-Vu=-Vp

divu =0 and wuy—g=uo,
where u is a three dimensional, time dependent vector field and p is the pressure, determined
by the incompressibility condition div u = 0:

—Ap = div(u - Vu) Z 0;0; (u'u?)
1<4,5<3
This system has two fundamental properties related to its physical origin:

e scaling invariance
e dissipation of kinetic energy.

The scaling property is the fact that if a function u satisfies (N'S) on a time interval [0, 7]
with the initial data ug, then the function u) defined by

un(t ) 2 (N2t )
satisfies (IV'S) on the time interval [0, \=2T] with the initial data Aug(\ -). This property is far
from being a characteristic property of the system (INV.S). It is indeed satisfied by all systems
of the form
(GNS) { ou— Au+ Q(u,u) =0

u‘f;o = Up

with Quu: ZAﬁ ub)

1<5,k<3
where the A; (D) are smooth homogenenous Fourier multipliers of order 1. Indeed denoting
by P the projection onto divergence free vector fields

P d_ef Id — (aiainl)ij



the Navier-Stokes system takes the form

Ou — Au+Pdiviu®@u) =0
u|t=0 = Uo,

which is of the type (GNS). For this class of systems, the following result holds. The definition
of homogeneous Sobolev spaces H? is recalled in the Appendix.

Proposition 1.1. Let ug be a regular three dimensional vector field. A positive time T exists
such that a unique regular solution to (GNS) exists on [0,T]. Let T*(ug) be the maximal time
of existence of this regular solution. Then, for any v in the interval |0,1/2[, a constant c,
exists such that

ol =2 =

1) T*(u0) > &, Juoll ., -

In the case when v = 1/4 for the particular case of (N.S), this type of result goes back to
the seminal work of J. Leray (see [8]). Let us point out that the same type of result can be

3+
proved for the L”" 1-2v norm.

Proof. This result is obtained by a scaling argument. Let us define the following function

def
IH%+2'\/ (r) =
We assume that at least one smooth initial data ug develops singularites, which means exactly
that 7™ (ug) is finite. Let us mention that this lower bound is in fact a minimum (see [10]).
Actually the function 7' . 1., may be computed using a scaling argument. Observe that
H2T

inf{T*(uo) , [luoll ;342 =7}

1 1
[uoll 342y =7 = lIr 2 uo(r20)] 4140, =
1 1 1 1
As we have T*(ug) = r~ 7 T*(r" 27ug(r” 27-)), we infer that Ig%ww (r) = T_WIH%“W(U and
thus that

B with ¢, dof IH%-«-M(D .

T*(uo) = cylluoll

=2 =

H +2v

The proposition is proved. o

Now let us investigate the optimality of such a result, in particular concerning the norm
appearing in the lower bound (1). Useful results and definitions concerning Besov spaces are
recalled in the Appendix; the Besov norms of particular interest in this text are the BgOl’2

norm which is given by
def o tA 112 3
lalls, © (| e ali at)

and the Besov norms Bgofoo for o > 0 which are

. def z 0 A
lall oz, & sup e all o

It has been known since [6] that a smooth initial data in H 2 (corresponding of course to the
limit case v = 0 in Proposition 1.1) generates a smooth solution for some time 7' > 0. Let us
point out that in dimension 3, the following inequality holds

<
lall g1, < lall 7y

The norms Bo_o‘foo are the smallest norms invariant by translation and having a given scaling.
More precisely, we have the following result, due to Y. Meyer (see Lemma 9 in [9]).
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Proposition 1.2. Let d > 1 and let (E,|| - ||[g) be a normed space continuously included
in S’ (Rd), the space of tempered distributions on R?. Assume that E is stable by translation
and by dilation, and that a constant Cy exists such that

V(A €) €]0,00[xR?, Va € B, [la(A- =€)z < Cor™|lale -
Then a constant C exists such that

Va e E, |lallgoa < Cilale-

Proof. Let us simply observe that, as E is continuously included in &’ (Rd), a constant C exists
such that for all @ in F,

_1.12
[{a,e )| < Cllalls
Then by invariance by translation and dilation of F, we infer immediately that
leta]l g < €175 alls
which proves the proposition. O

Now let us state a first improvement to Proposition 1.1 where the life span is bounded from
H—1+42y

below in terms of the B oo ' norm of the initial data.
Theorem 1.1. With the notations of Proposition 1.1, for any ~y in the interval ]0,1/2], a
constant 0'7 exists such that

def -
(2) T*(up) > Trp(up) = CL/HUOHBC;OI(;&-OTY :

This theorem is proved in Section 2; the proof relies on a fixed point theorem in a space
included in the space of L? in time functions, with values in L.

Let us also recall that if a scaling 0 norm of a regular initial data is small, then the solution
of (NS) associated with wug is global. This a consequence of the Koch and Tataru theorem
(see [7]) which can be translated as follows in the context of smooth solutions.

Theorem 1.2. A constant ¢y exists such that for any regular initial data ug satisfying

1" 1
ol paro—1 % sup t2[|eug | 1 + ( sup 3/ / ]emuo(y)lzdydt) ‘<o,
t>0 zER3 R 0 B(z,R)
R>0

the associate solution of (GNS) is globally regular.

Let us remark that
luoll g1, < lluollBaro-1 < lluoll g1,

We shall explain in Section 2 how to deduce Theorem 1.2 from the Koch and Tataru
theorem [7].

The previous results are valid for the whole class of systems (GNS). Now let us present
the second main feature of the incompressible Navier-Stokes system, which is not shared by
all systems under the form (GNYS) as it relies on a special structure of the nonlinear term
(which must be skew-symmetric in L?): the dissipation estimate for the kinetic energy. For
regular solutions of (NS) there holds

1d
5 g IOl + V)72 = 0
which gives by integration in time
def 1 2 ! / / 1 2
(3) ve>0, E(u(t) = Slu®li: + ; IVu(®)lL2dt” = 5 lluollze -
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T. Tao pointed out in his paper [11] that the energy estimate is not enough to prevent possible
singularities from appearing. Our purpose here is to investigate if this energy estimate can
improve the lower bound (2) of the life span for regular initial data. We recall indeed that
for smooth initial data, all Leray solutions — meaning solutions in the sense of distributions
satisfying the energy inequality

(@) £(u(t) < 5lluoll:

coincide with the smooth solution as long as the latter exists.

What we shall use here is a rescaled version of the energy dissipation inequality in the spirit
of [5], on the fluctuation w def ), ug, with ur,(¢) def ePug.
Proposition 1.3. Let u be a regular solution of (NS) associated with some initial data ug.
Then the fluctuation w satisfies, for any positive t

w(t’ *
/ Iz o < o exp |luoll - with  QF def/ 2| P(ur, V) (8)|[32 dt
0

3
t'2

t4

Our main result is then the following.

Theorem 1.3. There is a constant C > 0 such that the following holds. For any regular
initial data of (NS),

(5)  T"(uo) > Tw(uo) EC(Q))” (HaguoII;% Q%-|-\/M)ﬂexp(—élﬂuoﬂémlg),
with
1 def 2 2
QL /O #3103 (B, - Vur) (1) dt

The main two features of this result are that

e the statement involves non linear quantities associated with the initial data, namely
norms of P(uy, - Vuy,);
e one particular (arbitrary) direction plays a specific role.

This theorem is proved in Section 4.

The following statement shows that the lower bound on T%(ug) given in Theorem 1.3 is,
for some classes of initial data, a significant improvement.

Theorem 1.4. Let (v,7) be in ]0,1/2[x]0,1[. There is a constant C' and a family (uo¢)-¢jo,1
of regular initial data such that with the notation of Theorems 1.1 and 1.3,

Tep(uoe) = Ce2|loge| 7 and Ti(ug.) > Ce~2H0

This theorem is proved in Section 5. The family (ue)e¢jo,1 is closely related to the family
used in [3] to exhibit families of initial data which do not obey the hypothesis of the Koch
and Tataru theorem and which nevertheless generate global smooth solutions. However it it
too large to satisfy the assumptions of Theorem 2 in [3] so it is not known if the associate
solution is global.

In the following we shall denote by C' a constant which may change from line to line, and
we shall sometimes write A < B for A < CB.
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2. PROOF OF THEOREM 1.1

Let ug be a smooth vector field and let us solve (GNS) by means of a fixed point method.
We define the bilinear operator B by

1
(6) O B(u,v) — AB(u,v) = —§(Q(u,v) + Q(v,u)) , and B(u,v)|=0 =0.
One can decompose the solution u to (GN.S) into

u=ur, + B(u,u).

Resorting to the Littlewood-Paley decomposition defined in the Appendix, let us define for
any real number v and any time 7" > 0, the quantity

def

1fllz = SIGIIZ)2_j(1_27)(||AijL°°([0,T]><R3) + 25185 £ | 21 0.1 Loo (B3))) -
J

Using Lemma 2.1 of [2] it is easy to see that
lullzy, S lluoll gt

so Theorem 1.1 will follow from the fact that B maps EJ. x EJ. into EJ. with the following
estimate:

(7) 1B )l < CyT7 |l 1ol -

So let us prove (7). Using again Lemma 2.1 of [2] along with the fact that the A} ,(D) are
smooth homogeneous Fourier multipliers of order 1, we have

t o
18,B o) Ol S [ =2 (ule) @ o) +0(8) © ult)) it

We then decompose (component-wise) the product u ® v following Bony’s paraproduct algo-
rithm: for all functions a and b the support of the Fourier transform of S/ 1aA ;b and S;bAja
is included in a ball 27 B where B is a fixed ball of R?, so one can write for some fixed con-
stant ¢ > 0

ab = Z (Sj/.,.ﬂlAj/b + Aj/@Sj/b)
23" >c27
so thanks to Young’s inequality in time one can write
27900 (|| 8B (11, 0) | oo o,y + 27185 Bt 0)]| 1 0,171 )
S le» (u,v) + B?-(u, v) with

def o
Bj(u,v) = 2% > 1Sjr+1ull oo (0,71 xR3) 125701 L1 (0. 77; 100 (R3)
Zj/Zmax{CZj,Tf%}
(8) +227 3 1St ooy |1 250l L 0.0 )y B0
29<2i' <T~ 3
def o
B} (u,v) = 2277 > 18570l Loo (0,71 xm3) 1 Ag7tll L1 f0,77: L0 (B2

. . 1
2" >max{c2i, T~ 2}

27 Y Syl oy 1Al o rrinoe ey
2i<2 <75

. . 1
In each of the sums over ¢27 < 27" < T2 we write

11 22 o,y poe 3y) < TNl oo (0,77 <R3
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and we can estimate the two terms le-(u, v) and sz(u, v) in the same way: for £ € {1,2} there
holds indeed

Bf(u, v) < HuHE% HU”E; <22j’y Z o—43"v 4 792i(1=7) Z 22(j’fj)(1—27)>
2j/2max{c2j,T7%} CSQj/fj<(22jT)*%
[l 1011 iy (TV + 7220 3 22@'—]‘)(1—27)) ‘

. . . 1
e<23' i< (220T) "2

A

Once noticed that
T92i(1=7) Z 220" =) (1=27) < 1{22J'Tgo}(T22j)7272ﬂ <77
0<2i' i< (229T)" 2

the estimate (7) is proved and Theorem 1.1 follows. O

3. PROOF OF THEOREM 1.2

As the solutions given by the Fujita-Kato theorem [6] and the Koch-Tataru theorem [7]
are unique in their own class, they are unique in the intersection and thus coincide as long as
the Fujita-Kato solution exists. Thus Theorem 1.2 is a question of propagation of regularity,
which is provided by the following lemma (which proves the theorem).

Lemma 3.1. A constant ¢y exists which satisfies the following. Let u be a regular solution
of (GNS) on [0, T] associated with a regular initial data ug such that

def 1
lullk = sup #2|Ju(t)||z= < co.
tel0,T]
Then T*(ug) > T.

Proof. The proof is based on a paralinearization argument (see [2]). Observe that for any T'
less than T*(ug), u is a solution on [0, 7' of the linear equation

(PGNS) { O —Av+Qu,v) =0
Vlt=0 = U0
def
Qu,v) = D Q(Sj11u, Ajv) + > Q(Ajv, Sju).
= JEL
In the same spirit as (6), let us define PB(u,v) by
9) 0¢PB(u,v) — APB(u,v) = —Q(u,v) and PB(u,v)=0 =0.

A solution of (PGNS) is a solution of
v =ur, + PB(u,v).

Let us introduce the space Fr of continuous functions with values in H %, which are elements
of L*([0,T); H'), equipped with the norm

1
def ; 2
o]l 7, = <22j||AjUH%°°([O,T[;L2)) + ol paorpan) -
jez

Notice that the first part of the norm was introduced in [4] and is a larger norm than the
supremum in time of the H norm. Moreover there holds

luvller < lluoll ;g -
Let us admit for a while the following inequality:

(10) 1PB(u, v)llrr < lullkllvll ey -
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Then it is obvious that if ||u||k is small enough for some time [0, T, the linear equation (PGNS)
has a unique solution in Fr (in the distribution sense) which satisfies in particular, if ¢ is
small enough,
1
lllFr < Clluoll 3 + S lvllpy -
As u is a regular solution of (PGNS), it therefore satisfies
VE<T, |lull pao g,y < QCHUOHH%

which implies that T*(ug) > T , so the lemma is proved provided we prove Inequality (10).
Let us observe that for any j in Z,

(11) 0:AjPB(u,v) — AAjPB(u,v) = —A;Q(u,v).

By definition of Q, we have

18,00, )(D)llzz <> D ([|AjA44 /(D) (Sjrauddjw) || 12 + [| A A5 o (D) (AjvSjm) | 12) -
§E€Z1<i,k,0<3

As AZ’K(D) are smooth homogeneous Fourier multipliers of order 1, we infer that for some
fixed nonnegative integer Ny

[A;Quw, )OIz £ 27 Y ([[Sru®) Ao + [|A7v(0)Syut)]] )

J'>j—No

S YY) (ISiu®lee | Apo)2 + | Ao 2 [1S5ub)]] )
Jj'>j—No

S Plu@)llze Y A0 Le

J'>j—No

Using Relation (11) and the definition of the norm on Fr, we infer that

t X ,
14 PB 0@ < [ e-&?”t-t>»|Ajg<u,v><t'>|mdt'
0

t
< o / D () e S [ Ag0(t)] p2dt
0

Jj'>j—No

. t
] ! j / 1
< Vullklv]|py Z Cj,g—é/ eI (t=t) _—_ gyt
§'>j—No 0 v

where (cj);jcz denotes a generic element of the sphere of ?%(Z). Thus we have, for all ¢ less
than T,

2|8 B, ) O)lgz < el S ep2 T / e i
J'>] No

Thanks to Young’s inequality, we have Z cj2” J < c¢; and we deduce that
J'>23—No

, t o
(12) 22 || A;PB(u, v)(t)|| 2 gcj”uHKHvHFT/ 9) g2 (=) _—_gy!.
0

As we have

t t
/ 2] 70223(t t) 1 dt/ < 1 Ldt/’
0 Vi 0o Vt—tVt



we infer finally that
(13) S 298, PB (s 0) 2 oty S Nl 0]2,
JEZ
Moreover returning to Inequality (12), we have
1
dt’

35 _ .92
2|8 PB(w,0) | a0 71:22) <cj||u||K||v|FTH/ o

LARE)
The Hardy-Littlewood-Sobolev inequality implies that

|[ oo Lo
0 Vit

Since thanks to the Minkowski inequality there holds

1P B, ) o iy < D 29 18P B, ) o gy
JEZ

<1.
LAR+) ™

together with Inequality (13) this concludes the proof of Inequality (10) and thus the proof
of Lemma 3.1. O

4. PROOF OF THEOREM 1.3

The plan of the proof of Theorem 1.3 is the following: as previously we look for the solution
of (NS) under the form
U= up, +w
where we recall that ur,(t) = e'®ug. Moreover we recall that the solution u satisfies the energy

inequality (4). By construction, the fluctuation w satisfies
(NSF) ow — Aw + (ug, + w) - Vw +w - Vuy, = —uy, - Vur, — Vp, divw =0.

Let us prove that the life span of w satisfies the lower bound (5). The first step of the proof
consists in proving Proposition 1.3, stated in the introduction. This is achieved in Section 4.1.
The next step is the proof of a similar energy estimate on dsw — note that contrary to the
scaled energy estimate of Proposition 1.3, the next result is useful in general only locally in
time. It is proved in Section 4.2.

Proposition 4.1. With the notation of Proposition 1.3 and Theorem 1.3, the fluctuation w
satisfies the following estimate:

& (0yw) (1) 5 (@3 Sup 195w (®)s + [0suall} y )+ VQLQL) exp (2ol ) -

oo{)o

Combining both propositions, one can conclude the proof of Theorem 1.3. This is performed
in Section 4.3.

4.1. The rescaled energy estimate on the fluctuation: proof of Proposition 1.3.
An L? energy estimate on (NSF) gives

——Jw(®) |32 + [|[Vw(t) |32 = Z / w dpuf wh(t, x)dx — (P(ur, - Vur)|w)(t

1<4,k<3

JFrom this, after an integration by parts and using the fact that the divergence of w is zero,
we infer that

<HW( )Hp) Hw(t)\liz !!VW( )|
th ts 23 t3
< lo@®llpellu(t )1\|L°<>|!Vw(7f)IIL2 L P - VUL)(lvf)HLQ|!w(7f)||L2 _
t2 t2
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Let us observe that
| Pur, - V) (@) 22w ()
t

Using a convexity inequality, we infer that

1 w
HL2 —t1 ” P(uL . VUL)(t)HLz H §)HL2
4

N

d )12 )12 YVw(t)|? )2 2 o
dt(llw(tl)lle>4r lw(t)|]72 N [Vw(t)]]72 < Hw()HLzlllu()HL +t%||uL(t)-VuL(t)II%2-
2

3 1 -~
2t2 t2 t2
Thus we deduce that

Z(Hw(t;”m (‘/OTIUL(t’)H%oodt’)) —l—exp<_/(j|UL(t/)||%oodt/) (‘w;)g”%Q + HVU;(?H%z)

t
< exp( [ [un ()]t ) | Plar - Tur) 0.
0

from which we infer by the definition of the BO_OT2 norm and of QY that

w tolw ()] Vuw(t
(14) VE>0), I (1)||L2 / <|| ( )3”1:2 i | (1>”L2>dt/ < QL eXPHUOHB—l ‘
t2 0 2t'2 t'2
Proposition 1.3 follows. O

4.2. Proof of Proposition 4.1. Now let us investigate the evolution of d3w in L?. Applying
the partial differentiation 03 to (NSF), we get

003w — Adsw + (ug, + w) - VOsw + dsw - Vuy,

15
( ) = —83UL -Vw — 83w -Vw —w - V@guL — 83(uL . VUL) - Vagp .

The difficult terms to estimate are those which do not contain explicitly dsw. So let us define

(a) def (83uL . Vw‘@;;w) 125
(b) def —(w - VO3ur,|03w) 2  and
(c) def —(0s(uy, - VUL)|83w)L2 .

The third term is the easiest. By integration by parts and using the Cauchy-Schwarz inequality
along with (14) we have

‘/ )dt‘ = )/Ooo RS@%(P(UL~VUL)(1§,$)).w(t,x)dxdt‘

< (/OOOtSHaB?P(uL.vuL)(t)Hithf(/ooo e (t;HLth);
< Jarat e (Gl ).

Now let us estimate the contribution of (a) and (b). By integration by parts, we get, thanks
to the divergence free condition on wug,,

(a) = (5‘3uL ® w‘Vagw)Lg and (b) = (w ® 83uL‘V83w)L2 .
The two terms can be estimated exactly in the same way since they are both of the form

/ w(t, z)0zur,(t, x)Vosw(t, z)dz .
RS
9



We have
)/R3w(t,:ﬂ)@guL(t,:E)Vagw(t,x)dac < w(®) || p2]|0sur,(t) || Lo || VOsw|| 2
< ooVl + 100]w(e) 32950 (1) 3=

The first term will be absorbed by the Laplacian. The second term can be understood as a
source term. By time integration, we get indeed

T
[P oy 1)

> Jlw(t)|13
< ||9suoll® _s / 3 — Lt
B2 JO t2

so it follows, thanks to Proposition 1.3, that

IN

T
/0 eo(t)]12 1B, (6) | 2wt

A

1 (T
/ /3 (t,)03uy(t, ) VIsw(t, z)dxdt < 100 J, |V Osw(t)|)3 . dt
R

+C||33U0||2 g QY eXPHUOHB =

oooo

The contribution of the quadratic term in (15) is estimated as follows: writing, for any func-
tion a,

1
def P
”aHLqu —e /||a(901,902,')”§q(R) d$1d$2)p,

we have by Holder’s inequality

‘ 383w(t,x)-Vw(t,w)agw(t,x)da:’ < 95w (®)]12 1 | Ve e
R v
1 1
< NOsw @)l L2l Vudsw ()] 2 [Vw ()| 72 [V Osw(E)] 72
where we have used the inequalities
1 1 1 1
(16) lallzerz S l10sallfzllallfz  and  lallzzra < llallf2l|Vhal 72

with Vy def (01, 02). The first inequality comes from

latanly = 5 [ (@uat2)al2)

3 [ 1ozt 2l

< [|0sallz2lall 2

IN

while the second simply comes from the embedding Hh5 C Lﬁ and an interpolation. By Young’s
inequality it follows that

[ ol 2) - Vot 2)dsu(t,2)da] < <= [Vaswl3a + Ol T ()3 105 (0) |22
R

100
< - 2
Vw
+( sup (ot )t IV
t'€[0,t] t2
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from which we infer by Proposition 1.3 that

1
‘ Aw(t,x) - Vw(t,z)dsw(t, x)dx‘ < —HV@gw(t)H%g
s 100
NIRRT 2
+ (ti‘f&] 9() 32 )2 @ explluo|3-1 -

Finally there holds after an integration by parts
Bgu(t, @) - Vur(t,2)Osuw(t x)dr < [sw ()] e ur(6)1o | VOs() |
R

1
< 1gllVOsw ()72 + Cllosw(®)|[7: u(®)F

so plugging all these estimates together we infer thanks to Gronwall’s inequality that

T
sup [[sw(®)|2s + / IV sw(t)|2 dt
te[0,7 0

1
< (v sup 1000l + ool _y @+ QL) exp (2ol )
t'el0,t 00,00 Rl

Proposition 4.1 is proved. U
4.3. End of the proof of Theorem 1.3.

4.3.1. Control of the fluctuation. To make notation lighter let us set

def
My, (0wl _y QD +\/QUQL) exp (2ol ).

00,00

Proposition 4.1 provides the existence of a constant K such that the following a priori estimate
holds

T
sup 0su() s + [ Va0 d
+€[0,T] 0

1
< KT2Qf up 195w (®) |2 exp (2luolf 1 ) + K M.
tel0,T 00,

Let T* be the maximal time of existence of u, hence of w, and recalling that w(t = 0) = 0,
set T} to be the maximal time T for which

sup ||0sw(t)||72 < 2K M, .
te[0,7)

Then on [0, T1] there holds
T 1
sup sw(t)|F: + [ [VOn(Oliedt < AKSTIQYME + KM,
¢€[0,T] 0

KMp(1+ 4K2T§Q3ML) .

IN

This implies that

2
def 1
T, > T, ith T, = | ———— )
ST, wi (W Q%ML>

and on [0, T%] there holds
T 3

a7 sup Ovu()|: + [ VOO dt < SKM:.
0

t€[0,T]
11



4.3.2. End of the proof of the theorem. Under the assumptions of Theorem 1.3 we know that
there exists a unique solution u to (NS) on some time interval [0,7%), which satisfies the
energy estimate. Let us prove that this time interval contains [0, 7%]. Since the initial data ug
belongs to L?, we may assume that v is a global Leray solution, meaning that

1
(18) V>0, E(u(t)) < 5||Uo||%2-

Moreover one clearly has
o0
sup [oun (O + [ VO (0] dt < 0ol
t> 0
so together with (17) this implies that on [0, 7],

T
(19) sup [|3se(t)|12 + / IV05u(t) [2adt < [19suollZe + My
t[0,T] 0

Let us prove that these estimates provide a control on u in H* on [0, Ty]. After differentiation
of (NS) with respect to the horizontal variables and an energy estimate, we get for any ¢
in {1,2} and after an integration by parts

1d
——||0eu®)|32 + |[VOu(t)|7 = —/ O(u-Vu) - Opu (t,x) dz
2 dt ]R3
< HUHLgoLﬁHvu(t)HLgLﬁHazQU(t)HB :
Similarly to (16) we have

2 < 2
[ullfeers S HUHL

AN

3
/ (Dsu(-, 2) |uf-, z))Hh% dz
S 19sull 2 [Vl 2

so using (16) we infer that
1 1 1 1
’/RB O(u - Vu) - Opu (t, ) dw‘ < Cldsu®) 21 Vuu®) | 22 Va2 IV Vi) 72 107 u(t) | 2

1
IVVhu(®)72 + Cllosull 2| Vel 72 Vu(t) [ 7. -

<
- 100

We obtain
d 2 2 < 2 2 2
S IVnu®lize +1IVVu)lzz S 10sullz: [ Viullz2[IVu®)lz2

and Gronwall’s inequality implies that

t t
V)l + [ 1990t Fade < [Vuaollfeexp( [ 100t IVu(®)]Faat').
0 0

The fact that we control [[Vu| 212y and ||Osul|pse(r2) thanks to (18) and (19) implies that
on [0, T] there holds

T
1
sup V(O + [ V202 dt < [Vuols exp(Juol 2K 1))
te[0,T) 0

This means that there is a unique, smooth solution at least on [0,7}], and Theorem 1.3 is
proved. O
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5. COMPARISON OF BOTH LIFE SPANS: PROOF OF THEOREM 1.4
Let us introduce the notation
def xTq T2
fe(x1, 2, 23) = cos ~ flz, o T3)

where ¢ is a given number, assumed to be small, and « is a fixed parameter in the open
interval |0, 1[. We assume the initial data is given by the following expression

(20) oo () = 22 (0,6 (~350)c, (220):)

where ¢ is a smooth compactly supported function and the parameter A. > 1 will be tuned
later.

Let us recall that Lemma 3.1 of [3] claims in particular that
(21) Yo >0, |Ifell g < C.e % and 1l o, 2 e
This implies that

_ 1
(22) lluoell porrer S Aee™, Nuoell gz ~ luoell g1, ~ As and  [|Osuoell g3 < Aee?.

00,00

With the notation of Theorem 1.1 there holds therefore.
1
Trp(uoe) > C2A: 7.

Let us now compute T1,(up,). Recalling that ur,(t) = etPug £, We can write

(i) e'® f.e'®g. and

uy O1uy + ul douy
A.
19 .2 29,2 tAF
urouy, +upbouy = <€) f-e'2g..

where f, g, J?, g are smooth compactly supported functions. Now let us estimate

o
| e et

for f and g given smooth compactly supported functions. We write

tA OO tA 2 dt
/ t2H€ fee 96HL2dt = / t2He fae gsH
0 0
9 dt

oo .
| e gy (tsue%u) 2

thanks to the Holder inequality. The Cauchy-Schwarz inequality and the definition of Besov

norms imply that
> 3 adt\s /[, 3 adt\ 3
/ t2HetAfa€ ggHLth (/ (t8||etAf5HL4) )2</ (t8\|emg5HL4) —)2

0 0 t 0 t
Hfallz,allgaHQ,;
B 4

44 4,4

IN

IN

IN

It is easy to check that

3+a

IFel,3 S5

4
so it follows (since P is a homogeneous Fourier multiplier of order 0) that

(23) Qp < Al
13



For the initial data (20), differentations with respect to the vertical variable 03 have no real
influence on the term ur,(t) - Vuy,(t). Indeed, we have

93 (ur,(t) - Vur,(t)) = 93ur(t) - Vur(t) + 205ur(t) - 95Vur,(t) + ur(t) - 93 Vur(t)
and it is then obvious that 85 (ur,(t) - Vur,(t)) is a sum of term of the type
Ac\2
(7) B f ety

€
Then following the lines used to estimate the term QOL, we write

> s adt\s [ [, 5 adty s
[ tleealfa < ([T @RS r) ) ([ @01t )
0 0 t 0 t
< Hfsll2 sllgell? s -
44 44
It is easy to check that
+
Ifell o3 Se,
By i
so it follows that
QL < Ateott,

Together with (22) and (23), we infer that
Q%(H@zwll;_g QF +/QRQL) exp (alluallfr ) S At (AL + AL") exp(CoA2)

A2 oxp(CpA2)

because A is larger than 1. Let us choose some  in ]0, n[ and then

1
Ae dZQf( /ﬁ;log5>2

Then with the notation of Theorem 1.3 we have
T, = CA—2062(1—204+H)
- .
Let us choose ' in |, n[. By definition of A we get that
T > 062(1—2Oé+fi/)

!/

D% concludes the proof of Theorem 1.4. O

Choosing o =1 —

APPENDIX A. A LITTLEWOOD-PALEY TOOLBOX

Let us recall some well-known results on Littlewood-Paley theory (see for instance [1] for
more details).

Definition A.1. Let ¢ € S(R3) be such that ¢(¢) = 1 for |¢| < 1 and ¢(€) = 0 for |¢] > 2.
We define, for j € Z, the function ¢;(x) def 93 #(2/z), and the Littlewood—Paley operators

S; %l g x and A; L5, -

Homogeneous Sobolev spaces are defined by the norm
1
def 24 2 \2
lall e = (322718 sal72)
JEZL
This norm is equivalent to

lalle ~ ( [ | 6P 1Falo)P dc)

14



where F is the Fourier transform. Finally let us recall the definition of Besov norms of negative
index.

Definition A.2. Let o be a positive real number and (p,q) in [1,00]?. Let us define the
homogeneous Besov norm || - || e by

lallgyg = #2le™allie | o g, oy -

Let us mention that thanks to the properties of the heat flow, for p; < py and ¢; < ¢2, we
have the following inequality, valid for any regular function a

< . e < o
lall ooy ) S lallgge, and lalag, S lallsg,
P2,9
An equivalent definition using the Littlewood-Paley decomposition is
1
lall g ~ (32797 A5alf, )"

JEL
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