Analyse des EDP: Partiel du 7 novembre 2022

Le sujet comporte un exercice et un problème

1 Exercice : un principe du maximum

Soit Ω un ouvert borné régulier de \mathbb{R}^d avec $d \ge 3$, soit p > d/2 et soit $f \in L^p(\Omega)$. On considère $u \in H_0^1(\Omega)$ tel que $-\Delta u \le f$ au sens où

$$\forall\,v\in H^1_0(\Omega)\,,\quad v\geq 0\quad p.p.\,,\qquad \int_\Omega \nabla u\cdot\nabla v\,dx\leq \int_\Omega fv\,dx\,.$$

On veut montrer qu'il existe une constante K > 0 telle que $u \le K$ p.p.

1. Montrer que si $v \in H^1(\Omega)$, alors $v^+ := \max(0, v) \in H^1(\Omega)$ et

$$\nabla v^+ = \mathbb{1}_{v>0} \nabla v = \mathbb{1}_{v>0} \nabla v.$$

On pourra utiliser le fait que v^+ est limite de $F_{\varepsilon}(v)$ quand $\varepsilon \to 0$, où

$$F_{\varepsilon}(x) := \sqrt{x^2 + \varepsilon^2} - \varepsilon$$
 si $x \ge 0$, $F_{\varepsilon}(x) := 0$ si $x < 0$.

2. Soit $(a_k)_{k\in\mathbb{N}}$ une suite strictement croissante de réels convergeant vers une constante $K\geq 1$ à déterminer plus tard (voir la question 7) et soit $u_k:=(u-a_k)^+$. Montrer que si u_k est identiquement nul pour un certain k, alors le résultat est démontré.

Dorénavant on suppose que les u_k sont non identiquement nuls, pour tout k.

3. Montrer que

$$\int_{\Omega} \left| \nabla u_k \right|^2 dx \leq \| f \|_{L^p(\Omega)} \| u_k \|_{L^{p'}(\Omega)}, \quad \frac{1}{p} + \frac{1}{p'} = 1,$$

et en déduire qu'il existe une constante C_{Ω} telle que

$$||u_k||_{L^{\frac{2d}{d-2}}(\Omega)} \le C_{\Omega} ||f||_{L^p(\Omega)}^{\frac{1}{2}} ||u_k||_{L^{p'}(\Omega)}^{\frac{1}{2}}.$$

On pourra utiliser une injection de Sobolev.

4. Soit $\mathcal{A}_k := \{x \in \Omega, u_k(x) > 0\}$. Montrer que pour tout $\beta > 0$

$$\mathbb{I}_{\mathcal{A}_k} \le \frac{u_{k-1}^{\beta}}{(a_k - a_{k-1})^{\beta}}.$$

5. Montrer que

$$\|u_k\|_{L^{\frac{2d}{d-2}}(\Omega)} \le C_{\Omega} \|f\|_{L^p(\Omega)}^{\frac{1}{2}} \frac{\|u_{k-1}\|_{L^{\frac{2d}{d-2}}(\Omega)}^{\mu}}{(a_k - a_{k-1})^{\beta}}, \quad \mu := \frac{d}{(d-2)p'} > 1.$$

6. On choisit $a_k := (1 - 2^{-k-1})K$ avec $K \ge 1$ à déterminer plus bas. Montrer qu'il existe $\varepsilon > 0$ tel que

$$\|u_0\|_{L^{\frac{2d}{d-2}}(\Omega)} < \varepsilon \Longrightarrow \lim_{k \to \infty} \|u_k\|_{L^{\frac{2d}{d-2}}(\Omega)} = 0.$$

On pourra montrer par récurrence que

$$\log \|u_k\|_{L^{\frac{2d}{d-2}}(\Omega)} \leq \mu^k \Big(\log \|u_0\|_{L^{\frac{2d}{d-2}}(\Omega)} + S_0 \log (C_\Omega 2^\beta \|f\|_{L^p(\Omega)}^{\frac{1}{2}}) + S_1 \log (2^\beta) \Big), \quad S_\alpha := \sum_{i \geq 1} j^\alpha \mu^{-j}.$$

- 7. Montrer qu'il existe K tel que $||u_0||_{L^{\frac{2d}{d-2}}(\Omega)} < \varepsilon$.
- 8. Conclure.

2 Problème : un théorème de di Perna-Lions

Le but de ce problème est d'étudier l'équation de transport

$$\partial_t f(t, x) + b(x) \cdot \nabla f(t, x) = 0, \quad t > 0, \ x \in \mathbb{R}^d,$$

$$f_{|t=0} = f_0,$$
(Tf)

où $b: \mathbb{R}^d \to \mathbb{R}^d$ est un champ de vecteurs, et la fonction inconnue f est à valeurs réelles. On rappelle (voit TD) que si $f_0 \in L^{\infty}(\mathbb{R}^d)$ et $b \in \mathcal{C}^1(\mathbb{R}^d; \mathbb{R}^d)$ est tel que

$$\exists K > 0, \ \forall x \in \mathbb{R}^d, \quad |b(x)| \le K\langle x \rangle$$

alors l'équation (Tf) admet une unique solution faible $f \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d) \cap \mathscr{C}(\mathbb{R}_+; L^1_{loc}(\mathbb{R}^d))$, au sens où pour tout $\varphi \in \mathscr{C}^1_c(\mathbb{R}_+ \times \mathbb{R}^d)$,

$$\int_0^\infty \int_{\mathbb{R}^d} f(t,x) \left(\partial_t \varphi + \operatorname{div} \left(b \varphi \right) \right) (t,x) \, dt \, dx = - \int_{\mathbb{R}^d} f_0(x) \varphi(0,x) \, dx \, .$$

Cette solution vérifie presque partout $f(t, X(t, x)) = f_0(x)$, où $\forall x \in \mathbb{R}^d$,

$$\frac{dX}{dt}(t,x) = b(X(t,x))$$
$$X(0,x) = x.$$

Enfin

$$\|f\|_{L^{\infty}(\mathbb{R}_+\times\mathbb{R}^d)}\leq \|f_0\|_{L^{\infty}(R^d)}.$$

Définition 1. Soit $p \in [1, +\infty]$, et soit I un intervalle de \mathbb{R}_+ . On dit que f est "faiblement continue à valeurs dans $L^p(\mathbb{R}^d)$ ", et on note $f \in \mathscr{C}_w(I; L^p(\mathbb{R}^d))$, si $f \in L^\infty(I; L^p(\mathbb{R}^d))$ et si pour toute fonction $\phi \in \mathscr{C}_c^1(I \times \mathbb{R}^d)$, l'application

$$t \in I \mapsto \int_{\mathbb{R}^d} f(t, x) \phi(t, x) dx$$

est continue.

On se propose de démontrer le résultat suivant :

Théorème 2. Soit $f_0 \in L^{\infty}(\mathbb{R}^d)$. Soit $b \in W^{1,1}(\mathbb{R}^d)$ tel que div $b \in L^{\infty}(\mathbb{R}^d)$. Alors il existe une unique $f \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d) \cap \mathscr{C}_w(\mathbb{R}_+; L^{\infty}(\mathbb{R}^d))$ solution faible de (Tf). De surcroît, cette solution vérifie l'égalité

$$\int_0^T \int_{\mathbb{R}^d} f(t, x) \left(\partial_t \varphi + \operatorname{div}(b\varphi) \right) (t, x) \, dx \, dt = \int_{\mathbb{R}^d} f(T, x) \varphi(T, x) \, dx - \int_{\mathbb{R}^d} f_0(x) \varphi(0, x) \, dx. \tag{1}$$

pour tout T > 0 *et pour tout* $\varphi \in \mathscr{C}^1_c(\mathbb{R}_+ \times \mathbb{R}^d)$.

Existence

1. Soit $b \in W^{1,1}(\mathbb{R}^d)$ tel que div $b \in L^{\infty}(\mathbb{R}^d)$. Soit une suite régularisante

$$\rho^{\varepsilon} = \varepsilon^{-d} \rho(\cdot/\varepsilon), \quad \text{avec} \quad \rho \in \mathcal{D}(\mathbb{R}^d; \mathbb{R}_+), \quad \int \rho(x) \, dx = 1, \quad \text{Supp } \rho \subset B_1$$
 (2)

où B_1 est la boule unité de \mathbb{R}^d centrée en 0.

On pose $b^{\varepsilon} := b * \rho^{\varepsilon}$. Montrer que pour tout $\varepsilon > 0$, il existe une unique solution faible $f^{\varepsilon} \in L^{\infty}(\mathbb{R}_{+} \times \mathbb{R}^{d}) \cap \mathscr{C}(\mathbb{R}_{+}; L^{1}_{loc}(\mathbb{R}^{d}))$ de l'équation

$$\partial_t f^{\varepsilon} + b^{\varepsilon} \cdot \nabla f^{\varepsilon} = 0, \quad t > 0, \ x \in \mathbb{R}^d,$$

$$f^{\varepsilon}_{|t=0} = f_0.$$

2. Montrer qu'il existe une suite $(\varepsilon_k)_{k\in\mathbb{N}}$ tendant vers zéro et une fonction $f\in L^\infty(\mathbb{R}_+\times\mathbb{R}^d)$ solution faible de (Tf), telles que $f^{\varepsilon_k} \to^* f$ dans $L^\infty(\mathbb{R}_+\times\mathbb{R}^d)$ et

$$||f||_{L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)} \le ||f_0||_{L^{\infty}(\mathbb{R}^d)}.$$

3. On veut à présent montrer que f est faiblement continue en temps à valeurs dans $L^{\infty}(\mathbb{R}^d)$. Pour cela, on considère $\phi \in \mathscr{C}^1_{\varepsilon}([0,+\infty[\times\mathbb{R}^d)$ fixée, et on définit, pour tout $\varepsilon > 0$,

$$I^{\varepsilon}: t \in \mathbb{R}_+ \mapsto \int_{\mathbb{R}^d} f^{\varepsilon}(t, x) \phi(t, x) dx.$$

- (a) Montrer que la suite $(I^{\varepsilon_k})_{k\in\mathbb{N}}$ est compacte dans $\mathscr{C}(\mathbb{R}_+)$. On note I sa limite (après extraction éventuelle d'une sous-suite).
- (b) Soit $\theta \in L^{\infty}(\mathbb{R}_+)$ quelconque. Montrer que

$$\lim_{k \to \infty} \int_0^\infty I^{\varepsilon_k}(t)\theta(t) dt = \int_0^{+\infty} \int_{\mathbb{R}^d} f(t, x)\phi(t, x)\theta(t) dt.$$

- (c) En déduire que $I(t) = \int_{\mathbb{R}^d} f(t, x) \phi(t, x) dx$ pour presque tout t > 0.
- (d) Conclure.
- 4. Cette question est facultative. Sous les mêmes hypothèses, vérifier rapidement (en reprenant les étapes ci-dessus) que pour tout $g_0 \in L^1 \cap L^\infty(\mathbb{R}^d)$, il existe $g \in L^\infty_{loc}(\mathbb{R}_+; L^\infty(\mathbb{R}^d))$ solution faible de l'équation de transport sous forme conservative

$$\partial_t g + \operatorname{div}(bg) = 0, \quad t > 0, \ x \in \mathbb{R}^d,$$

$$g_{|t=0} = g_0, \quad x \in \mathbb{R}^d.$$
 (Tc)

Unicité

Soit une solution faible $f \in L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d) \cap \mathscr{C}_w(\mathbb{R}_+; L^{\infty}(\mathbb{R}^d))$ de (Tf) avec $f_0 = 0$, vérifiant la propriété (1) pour tout T > 0 et pour tout $\phi \in \mathscr{C}_c^1(\mathbb{R}_+ \times \mathbb{R}^d)$.

5. On commence par démontrer le lemme suivant.

Lemme 3. On suppose que b vérifie les hypothèses du Théorème 2. Soit $\phi \in L^{\infty}([0,T] \times \mathbb{R}^d)$ une solution au sens des distributions dans $\mathcal{D}'([0,T] \times \mathbb{R}^d)$ de l'équation

$$\partial_t \phi + \operatorname{div}(b\phi) = 0$$
.

Pour tout $\varepsilon > 0$, on considère une suite régularisante $\rho^{\varepsilon} = \varepsilon^{-d} \rho(\cdot/\varepsilon)$ comme en (2). On pose $\phi^{\varepsilon} := \phi * \rho^{\varepsilon}$. Alors

$$\partial_t \phi^{\varepsilon} + \operatorname{div}(b\phi^{\varepsilon}) = r^{\varepsilon}$$
,

 $avec \|r^{\varepsilon}\|_{L^{1}([0,T]\times\mathbb{R}^{d})} \to 0 \ quand \ \varepsilon \to 0.$

(a) Montrer que pour presque tout $(t, x) \in [0, T] \times \mathbb{R}^d$,

$$r^{\varepsilon}(t,x) = (\operatorname{div} b(x))\phi^{\varepsilon}(t,x) + \int_{\mathbb{R}^d} \phi(t,y) \left(b(x) - b(y)\right) \cdot \nabla_x \rho^{\varepsilon}(x-y) \, dy \, .$$

(b) Pour tout $i, j \in \{1, ..., d\}$, on définit $R_{ij} : x \in \mathbb{R}^d \mapsto x_i \partial_{x_j} \rho(x)$. Justifier que $R_{ij} \in \mathcal{D}(\mathbb{R}^d)$ et que $\int_{\mathbb{R}^d} R_{ij}(x) \, dx = -\delta_{ij}$. Dans la suite, on définit $R_{ij}^{\varepsilon} := \varepsilon^{-d} R_{ij}(\cdot/\varepsilon)$. (c) Montrer que pour presque tout $(t, x) \in [0, T] \times \mathbb{R}^d$,

$$r^{\varepsilon}(t,x) = (\operatorname{div} b(x))\phi^{\varepsilon}(t,x) + \sum_{1 \leq i,j \leq d} \int_{\mathbb{R}^d} \int_0^1 \phi(t,y) \partial_{x_i} b_j \big(\tau x + (1-\tau)y\big) R_{ij}^{\varepsilon}(x-y) \, dy \, d\tau.$$

(d) On pose

$$\omega(\delta) = \sup_{1 \leq i,j \leq d} \sup_{h \in \mathbb{R}^d, \|h\| \leq \delta} \|\partial_{x_i} b_j(\cdot + h) - \partial_{x_i} b_j\|_{L^1(\mathbb{R}^d)}.$$

Montrer que pour tout $1 \le i, j \le d$, pour $t \in [0, T]$

$$\begin{split} \left\| \int_{\mathbb{R}^d} \int_0^1 \left(\partial_{x_i} b_j \left(\tau x + (1 - \tau) y \right) - \partial_{x_i} b_j(y) \right) \phi(t, y) R_{ij}^{\varepsilon}(x - y) \, dy \, d\tau \right\|_{L^1(\mathbb{R}^d)} \\ & \leq \| \phi \|_{L^{\infty}([0, T] \times \mathbb{R}^d)} \| R_{ij} \|_{L^1(\mathbb{R}^d)} \omega(\varepsilon) \, . \end{split}$$

- (e) Justifier que $(\operatorname{div} b)\phi^{\varepsilon} \to (\operatorname{div} b)\phi$ dans $L^{1}([0,T] \times \mathbb{R}^{d})$ et que $(\partial_{x_{i}}b_{j}\phi) * R_{ij}^{\varepsilon} \to -\delta_{ij}\partial_{x_{i}}b_{j}\phi$ dans $L^{1}([0,T] \times \mathbb{R}^{d})$.
- (f) En déduire que $r^{\varepsilon} \to 0$ dans $L^1([0,T] \times \mathbb{R}^d)$.
- 6. Soit $\psi \in \mathscr{C}^1_c(\mathbb{R}^d)$ quelconque, et soit $\phi \in L^\infty([0,T] \times \mathbb{R}^d)$ une solution faible de l'équation (Tc) telle que $\phi_{|t=T} = \psi$. On pose $\phi^\varepsilon(t) := \phi(t) * \rho^\varepsilon$. Soit une fonction de troncature χ_R définie par $\chi_R = \chi(\cdot/R)$ pour R > 0, où $\chi \in \mathscr{C}^1_c(\mathbb{R}^d)$ est telle que $\chi(x) = 1$ si $|x| \le 1$.
 - (a) Montrer que

$$\int_{\mathbb{R}^d} f(t, x) \psi(x) \, dx = \int_{\mathbb{R}^d} f(t, x) \left(\psi - (\psi * \rho^{\varepsilon}) \chi_R \right) (x) \, dx$$

$$+ \int_0^T \int_{\mathbb{R}^d} f(t, x) r^{\varepsilon}(t, x) \chi_R(x) \, dx$$

$$+ \int_0^T \int_{\mathbb{R}^d} f(t, x) b(x) \phi^{\varepsilon}(t, x) \cdot \nabla \chi_R(x) \, dx \, dt.$$

(b) En déduire qu'il existe une constante C > 0, indépendante de T, R et de ε , telle que

$$\left| \int_{\mathbb{R}^d} f(t,x) \psi(x) \, dx \right| \leq C \|f\|_{L^\infty} \left(\varepsilon + \|r^\varepsilon\|_{L^1([0,T] \times \mathbb{R}^d)} + \|\phi\|_{L^\infty} \|b\|_{L^1} \frac{T}{R} \right).$$

Conclure.