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Abstract. The present paper is dedicated to the proof of dispersive estimates on stratified Lie
groups of step 2, for the linear Schrödinger equation involving a sublaplacian. It turns out that the

propagator behaves like a wave operator on a space of the same dimension p as the center of the

group, and like a Schrödinger operator on a space of the same dimension k as the radical of the

canonical skew-symmetric form, which suggests a decay rate |t|−
k+p−1

2 . In this article, we identify a
property of the canonical skew-symmetric form under which we establish optimal dispersive estimates

with this rate. The relevance of this property is discussed through several examples.

1. Introduction

1.1. Dispersive inequalities. Dispersive inequalities for evolution equations (such as Schrödinger
and wave equations) play a decisive role in the study of semilinear and quasilinear problems which
appear in numerous physical applications. Dispersion phenomena amount to establishing a decay
estimate for the L∞ norm of the solutions of these equations at time t in terms of some negative power
of t and the L1 norm of the data. In many cases, the main step in the proof of this decay in time relies
on the application of a stationary phase theorem on an (approximate) representation of the solution.
Combined with an abstract functional analysis argument known as the TT ∗-argument, dispersion
phenomena yield a range of estimates involving space-time Lebesgue norms. Those inequalities, called
Strichartz estimates, have proved to be powerful in the study of nonlinear equations (for instance one
can consult [5] and the references therein).

In the Rd framework, dispersive inequalities have a long history beginning with the articles of Bren-
ner [12], Pecher [30], Segal [32] and Strichartz [39]. They were subsequently developed by various au-
thors, starting with the paper of Ginibre and Velo [21] (for a detailed bibliography, we refer to [23, 40]
and the references therein). In [7], the authors generalize the dispersive estimates for the wave equa-

tion to the Heisenberg group Hd with an optimal rate of decay of order |t|−1/2 (regardless of the
dimension d) and prove that no dispersion phenomenon occurs for the Schrödinger equation. In [17],
optimal results are proved for the time behavior of the Schrödinger and wave equations on H-type
groups: if p is the dimension of the center of the H-type group, the author establishes sharp dispersive
inequalities for the wave equation solution (with a decay rate of |t|−p/2) as well as for the Schrödinger

equation solution (with a |t|−(p−1)/2 decay). Compared with the Rd framework, there is an exchange
in the rates of decay between the wave and the Schrödinger equations.

Strichartz estimates in other settings have been obtained in a number of works. One can first cite
various results dealing with variable coefficient operators(see for instance [24, 33]) or studies concerning
domains such as [14, 22, 34]. One can also refer to the result concerning the full Laplacian on the
Heisenberg group in [20], works in the framework of the real hyperbolic spaces in [1, 10, 41], or in the
framework of compact and noncompact manifolds in [2, 11, 13]; finally one can mention the quasilinear
framework studied in [3, 4, 25, 35], and the references therein.

In this paper our goal is to establish optimal dispersive estimates for the solutions of the Schrödinger
equation on 2-step stratified Lie groups. We shall emphasize in particular the key role played by the
canonical skew-symmetric form in determining the rate of decay of the solutions. It turns out that
the Schrödinger propagator on G behaves like a wave operator on a space of the same dimension as
the center of G, and like a Schrödinger operator on a space of the same dimension as the radical of
the canonical skew-symmetric form associated with the dual of the center. This unusual behavior
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of the Schrödinger propagator in the case of Lie algebras whose canonical skew-symmetric form is
degenerate (known as Lie algebras which are not MW, see [28], [29] for example) makes the analysis
of the explicit representations of the solutions tricky and gives rise to uncommon dispersive estimates.
It will also appear from our analysis that the optimal rate of decay is not always in accordance with
the dimension of the center: we shall exhibit examples of 2-step stratified Lie groups with center of
any dimension and for which no dispersion occurs for the Schrödinger equation. We shall actually
highlight that the optimal rate of decay in the dispersive estimates for solutions to the Schrödinger
equation is rather related to the properties of the canonical skew-symmetric form.

1.2. Stratified Lie groups. Let us recall here some basic facts about stratified Lie groups (see [16,
18, 19, 38] and the references therein for further details). A connected, simply connected nilpotent
Lie group G is said stratified if its left-invariant Lie algebra g (assumed real-valued and of finite
dimension n) is endowed with a vector space decomposition

g = ⊕1≤k≤∞ gk ,

where all but finitely many of the g′ks are {0}, such that [g1, gk] = gk+1. Via the exponential map

exp : g→ G

which is in that case a diffeomorphism from g to G, one identifies G and g. It turns out that under this
identification, the group law on G (which is generally not commutative) provided by the Campbell-
Baker-Hausdorff formula, (x, y) 7→ x · y is a polynomial map. In the following we shall denote by z the
center of G which is simply the last non zero gk and write

(1.1) G = v⊕ z ,

where v is any subspace of G complementary to z.

The group G is endowed with a smooth left invariant measure µ(x), the Haar measure, induced by
the Lebesgue measure on g and which satisfies the fundamental translation invariance property:

∀f ∈ L1(G, dµ) , ∀x ∈ G ,
∫
G

f(y)dµ(y) =

∫
G

f(x · y)dµ(y) .

Note that the convolution of two functions f and g on G is given by

(1.2) f ∗ g(x) :=

∫
G

f(x · y−1)g(y)dµ(y) =

∫
G

f(y)g(y−1 · x)dµ(y)

and as in the euclidean case we define Lebesgue spaces by

‖f‖Lp(G) :=

(∫
G

|f(y)|p dµ(y)

) 1
p

,

for p ∈ [1,∞[, with the standard modification when p =∞.

Since G is stratified, there is a natural family of dilations on g defined for t > 0 as follows: if X

belongs to g, we can decompose X as X =
∑

Xk with Xk ∈ gk, and then

δtX :=
∑

tkXk .

This allows to define the dilation δt on the Lie group G via the identification by the exponential map:

g
δt→ g

exp ↓ ↓ exp
G →

exp ◦ δt ◦ exp−1
G

To avoid heaviness, we shall still denote by δt the map exp ◦ δt ◦ exp−1.

Observe that the action of the left invariant vector fields Xk, for Xk belonging to gk, changes the
homogeneity in the following way:

Xk(f ◦ δt) = tkXk(f) ◦ δt ,
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where by definition Xk(f)(y) :=
d

ds
f
(
y · exp(sXk)

)
|s=0

and the Jacobian of the dilation δt is tQ

where Q :=
∑

1≤k≤∞

k dim gk is called the homogeneous dimension of G:

(1.3)

∫
G

f(δt y) dµ(y) = t−Q
∫
G

f(y) dµ(y) .

Let us also point out that there is a natural norm ρ on G which is homogeneous in the sense that it
respects dilations: G 3 x 7→ ρ(x) satisfies

∀x ∈ G, ρ(x−1) = ρ(x) , ρ(δtx) = tρ(x) , and ρ(x) = 0 ⇐⇒ x = 0 .

We can define the Schwartz space S(G) as the set of smooth functions on G such that for all α
in Nd, for all p in N, x 7→ ρ(x)pXαf(x) belongs to L∞(G), where Xα denotes a product of |α| left
invariant vector fields. The Schwartz space S(G) has properties very similar to those of the Schwartz

space S(Rd), particularly density in Lebesgue spaces.

1.3. The Fourier transform. The group G being non commutative, its Fourier transform is defined
by means of irreducible unitary representations. We devote this section to the introduction of the
basic concepts that will be needed in the sequel. From now on, we assume that G is a step 2 stratified
Lie group and we choose v = g1 in (1.1).

1.3.1. Irreducible unitary representations. Let us fix some notation, borrowed from [15] (see also [16]
or [29]). For any λ ∈ z? (the dual of the center z) we define a skew-symmetric bilinear form on v by

(1.4) ∀U, V ∈ v , B(λ)(U, V ) := λ([U, V ]) .

One can find a Zariski-open subset Λ of z? such that the number of distinct eigenvalues of B(λ) is
maximum. We denote by k the dimension of the radical rλ of B(λ). Since B(λ) is skew-symmetric,
the dimension of the orthogonal complement of rλ in v is an even number which we shall denote by 2d.
Therefore, there exists an orthonormal basis(

P1(λ), . . . , Pd(λ), Q1(λ), . . . , Qd(λ), R1(λ), . . . , Rk(λ)
)

such that the matrix of B(λ) takes the following form

0 . . . 0 η1(λ) . . . 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . ηd(λ) 0 · · · 0
−η1(λ) . . . 0 0 . . . 0 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . −ηd(λ) 0 . . . 0 0 · · · 0
0 . . . 0 0 . . . 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 · · · 0


,

where each ηj(λ) > 0 is smooth and homogeneous of degree one in λ = (λ1, . . . , λp) and the basis
vectors are chosen to depend smoothly on λ in Λ. Decomposing v as

v = pλ + qλ + rλ

with

pλ := Span
(
P1(λ), . . . , Pd(λ)

)
, qλ := Span

(
Q1(λ), . . . , Qd(λ) , rλ := Span

(
R1(λ), . . . , Rk(λ)

)
any element V ∈ v will be written in the following as P + Q + R with P ∈ pλ, Q ∈ qλ and R ∈ rλ.
We then introduce irreducible unitary representations of G on L2(pλ):

(1.5) uλ,νX φ(ξ) := e−iν(R)−iλ(Z+[ξ+ 1
2P,Q])φ(P + ξ) , λ ∈ z∗, ν ∈ r∗λ ,

for any x = exp(X) ∈ G with X = X(λ, x) :=
(
P (λ, x), Q(λ, x), R(λ, x), Z(x)

)
and φ ∈ L2(pλ).

In order to shorten notation, we shall omit the dependence on (λ, x) whenever there is no risk of
confusion.
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1.3.2. The Fourier transform. In contrast with the euclidean case, the Fourier transform is defined on
the manifold r(Λ) whose fibre above λ ∈ Λ is r∗λ ∼ Rk and is valued in the space of bounded operators
on L2(pλ). More precisely, the Fourier transform of a function f in L1(G) is defined as follows: for
any (λ, ν) ∈ r(Λ)

F(f)(λ, ν) :=

∫
G

f(x)uλ,νX(λ,x) dµ(x) .

Note that for any (λ, ν), the map uλ,νX(λ,x) is a group homomorphism from G into the group U(L2(pλ)) of

unitary operators of L2(pλ), so functions f of L1(G) have a Fourier transform (F(f)(λ, ν))λ,ν which

is a bounded family of bounded operators on L2(pλ). One may check that the Fourier transform
exchanges convolution, whose definition is recalled in (1.2), and composition:

(1.6) F(f ? g)(λ, ν) = F(f)(λ, ν) ◦ F(g)(λ, ν) .

Besides, the Fourier transform can be extended to an isometry from L2(G) onto the Hilbert space of
two-parameter families A = {A(λ, ν)}(λ,ν)∈r(Λ) of operators on L2(pλ) which are Hilbert-Schmidt for
almost every (λ, ν) ∈ r(Λ), with ‖A(λ, ν)‖HS(L2(pλ)) measurable and with norm

‖A‖ :=

(∫
λ∈Λ

∫
ν∈r∗λ

‖A(λ, ν)‖2HS(L2(pλ))|Pf(λ)|dν dλ

) 1
2

<∞ ,

where |Pf(λ)| :=
∏d
j=1 ηj(λ) is the Pfaffian of B(λ). We have the following Fourier-Plancherel formula:

there exists a constant κ > 0 such that

(1.7)

∫
G

|f(x)|2 dx = κ

∫
λ∈Λ

∫
ν∈r∗λ

‖F(f)(λ, ν)‖2HS(L2(pλ))|Pf(λ)| dν dλ .

Finally, we have an inversion formula as stated in the following proposition which is proved in the

Appendix page 21.

Proposition 1.1. There exists κ > 0 such that for f ∈ S(G) and for almost all x ∈ G the following
inversion formula holds:

(1.8) f(x) = κ

∫
λ∈Λ

∫
ν∈r∗λ

tr
(

(uλ,νX(λ,x))
?Ff(λ, ν)

)
|Pf(λ)| dν dλ .

1.3.3. The sublaplacian. Let (V1, . . . , Vm) be an orthonormal basis of g1, then the sublaplacian on G
is defined by

(1.9) ∆G :=

m∑
j=1

V 2
j .

It is a self-adjoint operator which is independent of the orthonormal basis (V1, . . . , Vm), and homoge-
neous of degree 2 with respect to the dilations in the sense that :

δ−1
t ∆G δt = t2∆G .

To write its expression in Fourier space, we consider the basis of Hermite functions (hn)n∈N, normal-
ized in L2(R) and satisfying for all real numbers ξ:

h′′n(ξ)− ξ2hn(ξ) = −(2n+ 1)hn(ξ) .

Then, for any multi-index α ∈ Nd, we define the functions hα,η(λ) by

(1.10)
∀Ξ = (ξ1, . . . , ξd) ∈ Rd , hα,η(λ)(Ξ) :=

d∏
j=1

hαj ,ηj(λ)(ξj) and

∀(n, β) ∈ N× R+ ,∀ξ ∈ R , hn,β(ξ) := β
1
4hn

(
β

1
2 ξ
)
.

The sublaplacian ∆G defined in (1.9) satisfies

(1.11) F(−∆Gf)(λ, ν) = F(f)(λ, ν)
(
H(λ) + |ν|2

)
,
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where |ν| denotes the euclidean norm of the vector ν in Rk and H(λ) is the diagonal operator defined

on L2(Rd) by

H(λ)hα,η(λ) =

d∑
j=1

(2αj + 1)ηj(λ)hα,η(λ) .

In the following we shall denote the “frequencies” associated with P 2
j (λ) +Q2

j (λ) by

(1.12) ζj(α, λ) := (2αj + 1)ηj(λ) , (α, λ) ∈ Nd × Λ ,

and those associated with H(λ) by

(1.13) ζ(α, λ) :=

d∑
j=1

ζj(α, λ) , (α, λ) ∈ Nd × Λ .

Note that ∆G is directly related to the harmonic oscillator via H(λ) since eigenfunctions associ-
ated with the eigenvalues ζ(α, λ) are the products of 1-dimensional Hermite functions. Also observe
that ζ(α, λ) is smooth and homogeneous of degree one in λ = (λ1, . . . , λp). Moreover, ζ(α, λ) = 0 if
and only if B(λ) = 0, or equivalently by (1.4), λ = 0.

Notice also that there is a difference in homogeneity in the variables λ and ν. Namely, in the variable ν,
the sublaplacian acts as in the euclidean case (homogeneity 2) while in λ, it has the homogeneity 1 of
a wave operator.

Finally, for any smooth function Φ, we define the operator Φ (−∆G) by the formula

(1.14) F
(
Φ(−∆G)f

)
(λ, ν) := Φ(H(λ) + |ν|2)F(f)(λ, ν) ,

which also reads

F
(
Φ(−∆G)f

)
(λ, ν)hα,η(λ) := Φ

(
|ν|2 + ζ(α, λ)

)
F(f)(λ, ν)hα,η(λ) ,

for all (λ, ν) ∈ r(Λ) and α ∈ Nd.

1.3.4. Strict spectral localization. Let us introduce the following notion of spectral localization, which
we shall call strict spectral localization and which will be very useful in the following.

Definition 1.2. A function f belonging to L1(G) is said to be strictly spectrally localized in a set C ⊂ R
if there exists a smooth function θ, compactly supported in C, such that for all 1 ≤ j ≤ d,

(1.15) F(f)(λ, ν) = F(f)(λ, ν) θ
(
(P 2
j +Q2

j )(λ)
)
, ∀(λ, ν) ∈ r(Λ) .

Remark 1.3. One could expect the notion of spectral localization to relate to the Laplacian instead
of each individual vector field P 2

j +Q2
j , assuming rather the less restrictive condition

F(f)(λ, ν) = F(f)(λ, ν) θ
(
H(λ)

)
, ∀(λ, ν) ∈ r(Λ) .

The choice we make here is more restrictive due to the anisotropic context (namely the fact that ηj(λ)
depends on j): in the case of the Heisenberg group or more generally H-type groups, the notion
of “strict spectral localization” in a ring C of Rp actually coincides with the more usual definition of
“spectral localization” since as recalled in the next paragraph ηj(λ) = 4|λ| (for a complete presentation
and more details on spectrally localized functions, we refer the reader to [6, 8, 9]). Assumption (1.15)
guarantees a lower bound, which roughly states that for F(f)(λ, ν)hα,λ to be non zero, then

(1.16) ∀j ∈ {1, . . . , d}, (2αj + 1)ηj(λ) ≥ c > 0 ,

hence each ηj must be bounded away from zero, rather than the sum over j. These lower bounds are
important ingredients of the proof (see Section 3.3).

1.4. Examples. Let us give a few examples of well-known stratified Lie groups with a step 2 stratifi-
cation. Note that nilpotent Lie groups which are connected, simply connected and whose Lie algebra
admits a step 2 stratification are called Carnot groups.
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1.4.1. The Heisenberg group. The Heisenberg group Hd is defined as the space R2d+1 whose elements
can be written w = (x, y, s) with (x, y) ∈ Rd×Rd, endowed with the following product law:

(x, y, s) · (x′, y′, s′) = (x+ x′, y + y′, s+ s′ − 2(x | y′) + 2(y | x′)),

where (· | ·) denotes the euclidean scalar product on Rd. In that case the center consists in the points
of the form (0, 0, s) and is of dimension 1. The Lie algebra of left invariant vector fields is generated
by

Xj :=∂xj + 2yj∂s , Yj :=∂yj − 2xj∂s with 1 ≤ j ≤ d , and S := ∂s =
1

4
[Yj , Xj ] .

The canonical skew-symmetric form associated with the frequencies λ ∈ R∗ writes

B(λ)(U, V ) = λ ([U, V ]) , ∀U, V ∈ Vect (Xj , Yj , 1 ≤ j ≤ d)

and its radical reduces to {0} with Λ = R∗ and |ηj(λ)| = 4 |λ| for all j ∈ {1, . . . , d}. Note in particular
that strict spectral localization and spectral localization are equivalent.

1.4.2. H-type groups. These groups are canonically isomorphic to Rm+p, and are a multidimensional
version of the Heisenberg group. The group law is of the form

(x(1), x(2)) · (y(1), y(2)) :=

(
x

(1)
j + y

(1)
j , j = 1, ...,m

x
(2)
j + y

(2)
j + 1

2 〈x
(1), U (j)y(1)〉, j = 1, ..., p

)
where U (j) are m×m linearly independent orthogonal skew-symmetric matrices satisfying the property

U (r)U (s) + U (s)U (r) = 0

for every r, s ∈ {1, ..., p} with r 6= s. In that case the center is of dimension p and may be identified
with Rp and the radical of the canonical skew-symmetric form associated with the frequencies λ is
again {0}. For example the Iwasawa subgroup of semi-simple Lie groups of split rank one (see [26]) is
of this type. On H-type groups, m is an even number which we denote by 2` and the Lie algebra of
left invariant vector fields is spanned by the following vector fields, where we have written z = (x, y)

in R`×R`: for j running from 1 to ` and k from 1 to p,

Xj :=∂xj +
1

2

p∑
k=1

2∑̀
l=1

zl U
(k)
l,j ∂sk , Yj :=∂yj +

1

2

p∑
k=1

2∑̀
l=1

zl U
(k)
l,j+`∂sk and ∂sk .

In that case, we have Λ = Rp \{0} with ηj(λ) =
√
λ2

1 + · · ·+ λ2
p for all j ∈ {1, . . . , `} (here again,

strict spectral localization and spectral localization are equivalent).

1.4.3. Diamond groups. These groups which occur in crystal theory (for more details, consult [27, 31]),

are of the type ΣnHd where Σ is a connected Lie group acting smoothly on Hd. One can find examples
for which the radical of the canonical skew-symmetric is of any dimension k, 0 ≤ k ≤ d. For example,
one can take for Σ the k-dimensional torus, acting on Hd by

θ(w) := (θ · z, s) :=
(
eiθ1z1, . . . , e

iθkzk, zk+1, . . . , zd, s
)
, w = (z, s)

where the element θ = (θ1, . . . , θk) corresponds to the element
(
eiθ1 , . . . , eiθk

)
of Tk. Then, the product

law on G = Tk nHd is given by

(θ, w) · (θ′, w′) =
(
θ + θ′, w.(θ(w′)

)
,

where w.(θ(w′)) denotes the Heisenberg product of w by θ(w′). As a consequence, the center of G is
of dimension 1 since it consists of the points of the form (0, 0, s) for s ∈ R. Besides, the algebra of
left-invariant vector fields is generated by the following vector fields, for 1 ≤ j ≤ k and 1 ≤ ` ≤ d:

Tj = (∂θj , 0) , S̃ = (0, S) , X̃` = (0, X`) and Ỹ` = (0, Y`) ,

and we have

[Tj , X̃`] = [Tj , Ỹ`] = 0 ,
1

4
[Ỹ`, X̃`] = (0, S) .

Therefore, the radical of B(λ) is generated by the family
(
(∂θj , 0)

)
1≤j≤k and is of dimension k.

Moreover, the functions η`(λ) satisfy η`(λ) = 4 |λ|, 1 ≤ ` ≤ d.
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1.4.4. The tensor product of Heisenberg groups. Consider Hd1 ⊗Hd2 the set of elements (w1, w2)

in Hd1 ⊗Hd2 , which can be written (w1, w2) = (x1, y1, s1, x2, y2, s2) in R2d1+1×R2d2+1, equipped
with the law of product:

(w1, w2) · (w′1, w′2) = (w1 · w′1, w2 · w′2),

where w1 ·w′1 and w2 ·w′2 denote respectively the product in Hd1 and Hd2 . Clearly Hd1 ⊗Hd2 is a step 2
stratified Lie group with center of dimension 2 and radical index null. Moreover, for λ = (λ1, λ2) in
the dual of the center, the canonical skew bilinear form B(λ) has radical {0} with Λ = R∗×R∗, and
one has η1(λ) = 4 |λ1| and η2(λ) = 4 |λ2|. In that case, strict spectral localization is a more restrictive
condition than spectral localization. Indeed, if f is spectrally localized, one has λ1 6= 0 or λ2 6= 0 on
the support of F(f)(λ), while one has λ1 6= 0 and λ2 6= 0 on the support of F(f)(λ) if f is strictly
spectrally localized.

1.4.5. Tensor product of H-type groups. The group Rm1+p1 ⊗ Rm2+p2 is easily verified to be a step 2
stratified Lie group with center of dimension p1+p2, a radical index null and a skew bilinear form B(λ)
defined on Rm1+m2 with m1 = 2`1 and m2 = 2`2. The Zariski open set associated with B is given
by Λ = (Rp1 \{0})× (Rp2 \{0}) and for λ = (λ1, · · · , λp1+p2), we have

(1.17)
ηj(λ) =

√
λ2

1 + · · ·+ λ2
p1 , for all j ∈ {1, . . . , `1} and

ηj(λ) =
√
λ2
p1+1 + · · ·+ λ2

p1+p2 for all j ∈ {`1 + 1, . . . , `1 + `2}.

1.5. Main results. The purpose of this paper is to establish optimal dispersive inequalities for the
linear Schrödinger equation on step 2 stratified Lie groups associated with the sublaplacian. In
view of (1.11) and the fact that the “frequencies” ζ(α, λ) associated with H(λ) given by (1.13) are
homogeneous of degree one in λ, the Schrödinger operator on G behaves like a wave operator on a space
of the same dimension p as the center of G, and like a Schrödinger operator on a space of the same
dimension k as the radical of the canonical skew-symmetric form. By comparison with the classical
dispersive estimates, the expected result would be a dispersion phenomenon with an optimal rate of

decay of order |t|−
k+p−1

2 . However, as will be seen through various examples, this anticipated rate is
not always achieved. To reach this maximum rate of dispersion, we require a condition on ζ(α, λ).

Assumption 1.4. For each multi-index α in Nd, the Hessian matrix of the map λ 7→ ζ(α, λ) satisfies

rankD2
λζ(α, λ) = p− 1

where p is the dimension of the center of G.

Remark 1.5. As was observed in Paragraph 1.3.3, ζ(α, λ) is a smooth function, homogeneous of
degree one on Λ. By homogeneity arguments, one therefore has D2

λζ(α, λ)λ = 0. It follows that there
always holds

rankD2
λζ(α, λ) ≤ p− 1 ,

hence Assumption 1.4 may be understood as a maximal rank property.

Let us now present the dispersive inequality for the Schrödinger equation. Recall that the linear
Schrödinger equation writes as follows on G:

(1.18)

{
(i∂t −∆G) f = 0
f|t=0 = f0 ,

where the function f with complex values depends on (t, x) ∈ R×G.

Theorem 1. Let G be a step 2 stratified Lie group with center of dimension p with 1 ≤ p < n
and radical index k. Assume that Assumption 1.4 holds. A constant C exists such that if f0 belongs
to L1(G) and is strictly spectrally localized in a ring of R in the sense of Definition 1.2, then the
associate solution f to the Schrödinger equation (1.18) satisfies

(1.19) ‖f(t, ·)‖L∞(G) ≤
C

|t| k2 (1 + |t| p−1
2 )
‖f0‖L1(G) ,

for all t 6= 0 and the result is sharp in time.
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The fact that a spectral localization is required in order to obtain the dispersive estimates is not
surprising. Indeed, recall that in the Rd case for instance, the dispersive estimate for the Schrödinger
equation derives immediately (without any spectral localization assumption) from the fact that the

solution u(t) to the free Schrödinger equation on Rd with Cauchy data u0 writes for t 6= 0

u(t, ·) = u0 ∗
1

(−2iπt)
d
2

e−i
|·|2
4t ,

where ∗ denotes the convolution product in Rd (for a detailed proof of this fact, see for instance

Proposition 8.3 in [5]). However proving dispersive estimates for the wave equation in Rd requires
more elaborate techniques (including oscillating integrals) which involve an assumption of spectral
localization in a ring. In the case of a step 2 stratified Lie group G, the main difficulty arises from
the complexity of the expression of Schrödinger propagator that mixes a wave operator behavior with
that of a Schrödinger operator. This explains on the one hand the decay rate in Estimate (1.19) and
on the other hand the hypothesis of strict spectral localization.

Let us now discuss Assumption 1.4. As mentioned above, there is no dispersion phenomenon for the
Schrödinger equation on the Heisenberg group Hd (see [7]). Actually the same holds for the tensor

product of Heisenberg groups Hd1 ⊗Hd2 whose center is of dimension p = 2 and radical index null,
and more generally to the case of 2 step stratified Lie groups, decomposable on non trivial 2 step
stratified Lie groups : we derive indeed from Theorem 1 the following corollary.

Corollary 1.6. Let G = ⊗1≤m≤rGm be a decomposable, 2 step stratified Lie group where the
groups Gm are non trivial 2-step stratified Lie groups satisfying Assumption 1.4, of radical index km
and with centers of dimension pm. Then the dispersive estimates holds with rate |t|−q,

q :=
1

2

∑
1≤m≤r

(km + pm − 1) =
1

2
(k + p− r) ,

where p is the dimension of the center of G and k its radical index. Besides, this rate is optimal.

Corollary 1.6 is a direct consequence of Theorem 1 and the simple observation that ∆G = ⊗1≤m≤r∆Gm .
This result applies for example to the tensor product of Heisenberg groups, for which there is no dis-
persion, and to the tensor product of H-type groups Rm1+p1 ⊗ Rm2+p2 for which the dispersion rate
is t−(p1+p2−2)/2 (see [17]). Corollary 1.6 therefore shows that it can happen that the “best” rate of
decay |t|−(k+p−1)/2 is not reached, in particular for decomposable Lie groups. This suggests that
Assumption 1.4 could be related with decomposability.

More generally, a large class of groups which do not satisfy the Assumption 1.4 is given by step 2
stratified Lie group G for which ζ(0, λ) is a linear form on each connected component of the Zariski-
open subset Λ. Of course, the Heisenberg group and any tensor product of Heisenberg group is of
that type. We then have the following result which illustrates that there exists examples of groups
without any dispersion and which do not satisfy Assumption 1.4.

Proposition 1.7. Consider a step 2 stratified Lie group G whose radical index is null and for
which ζ(0, λ) is a linear form on each connected component of the Zariski-open subset Λ. Then,
there exists f0 ∈ S(G), x ∈ G and c0 > 0 such that

∀t ∈ R+, |e−it∆Gf0(x)| ≥ c0.

Finally we point out that the dispersive estimate given in Theorem 1 can be regarded as a first step
towards space-time estimates of the Strichartz type. However due to the strict spectral localization
assumption, the Besov spaces which should appear in the study (after summation over frequency
bands) are naturally anisotropic; thus proving such estimates is likely to be very technical, and is
postponed to future works.
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1.6. Strategy of the proof of Theorem 1. In the statement of Theorem 1, there are two different
results: the dispersive estimate in itself on the one hand, and its optimality on the other. Our strategy
or proof is closely related to the method developed in [7] and [17] with additional non negligible
technicalities.

In the situation of [7] where the Heisenberg group Hd is considered, the authors prove that there is no
dispersion by exhibiting explicitly a Cauchy data f0 for which the solution f(t, ·) to the Schrödinger
equation (1.18) satisfies

(1.20) ∀ q ∈ [1,∞] , ‖f(t, ·)‖Lq(Hd) = ‖f0‖Lq(Hd) .

More precisely, they take advantage of the fact that the Laplacian-Kohn operator ∆Hd can be recast
under the form

(1.21) ∆Hd = 4

d∑
j=1

(ZjZj + i∂s) ,

where
{
Z1, Z1, ..., Zd, Zd, ∂s

}
is the canonical basis of Lie algebra of left invariant vector fields

on Hd (see [8] and the references therein for more details). This implies that for a non zero func-

tion f0 belonging to Ker
(∑d

j=1 ZjZj
)
, the solution of the Schrödinger equation on the Heisenberg

group f(t) = e−it∆Hd f0 actually solves a transport equation:

f(z, s, t) = e4dt∂sf0(z, s) = f0(z, s+ 4dt)

and hence satisfies (1.20). The arguments used in [17] for general H-type groups are similar to the
ones developed in [7]: the dispersive estimate is obtained using an explicit formula for the solution,
coming from Fourier analysis, combined with a stationary phase theorem. The Cauchy data used
to prove the optimality is again in the kernel of an adequate operator, by a decomposition similar
to (1.21).

As in [7] and [17], the first step of the proof of Theorem 1 consists in writing an explicit formula for
the solution of the equation by use of the Fourier transform. Let us point out that in the setting of [7]
and [17], irreducible representations are isotropic with respect to the dual of the center of the group;
this isotropy allows to reduce to a one-dimensional framework and deduce the dispersive effect from
a careful use of a stationary phase argument of [37]. As we have already seen in Paragraph 1.3.1, the
irreducible representations are no longer isotropic in the general case of stratified Lie groups, and thus
we adopt a more technical approach making use of Schrödinger representation and taking advantage of
some properties of Hermite functions appearing in the explicit representation of the solutions derived
by Fourier analysis (see Section 3.3). The optimality of the inequality is obtained as in [7] and [17],
by an adequate choice of the initial data.

1.7. Organization of the paper. The article is organized as follows. In Section 2, we write an
explicit formulation of the solutions of the Schrödinger equation. Then, Section 3 is devoted to the
proof of Theorem 1 and in Section 4, we discuss the optimality of the result and prove Proposition 1.7.

Finally, we mention that the letter C will be used to denote a universal constant which may vary from
line to line. We also use A . B to denote an estimate of the form A ≤ CB for some constant C.

Acknowledgements. The authors wish to thank Corinne Blondel, Jean-Yves Charbonnel, Laurent
Mazet, Fulvio Ricci and Michèle Vergne for enlightening discussions.

2. Explicit representation of the solutions

2.1. The convolution kernel. Let f0 belong to S(G) and let us consider f(t, ·) the solution to the
free Schrödinger equation (1.18). In view of (1.11), we have

F(f(t, ·))(λ, ν) = F(f0)(λ, ν) eit|ν|
2+itH(λ) ,

which implies easily (arguing as in the Appendix) that f(t, ·) belongs to S(G). Assuming that f0 is
strictly spectrally localized in the sense of Definition 1.2, there exists a smooth function θ compactly
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supported in a ring C of R such that, defining

Θ(λ) :=

d∏
j=1

θ
(
(P 2
j +Q2

j )(λ)
)
,

then

F(f(t, ·))(λ, ν) = F(f0)(λ, ν) Θ(λ) eit|ν|
2+itH(λ) .

Therefore by the inverse Fourier transform (1.8), we deduce that the function f(t, ·) may be decom-
posed in the following way:

(2.1) f(t, x) = κ

∫
λ∈Λ

∫
ν∈r∗λ

tr
(

(uλ,xX(λ,ν))
? F(f0)(λ, ν) Θ(λ) eit|ν|

2+itH(λ)
)
|Pf(λ)| dν dλ .

We set for X ∈ Rn,

(2.2) kt(X) := κ

∫
λ∈Λ

∫
ν∈r∗λ

tr
(

(uλ,νX )? Θ(λ) eit|ν|
2+itH(λ)

)
|Pf(λ)| dνdλ .

The function kt plays the role of a convolution kernel in the variables of the Lie algebra and we have
the following result.

Proposition 2.1. If the function kt defined in (2.2) satisfies

(2.3) ∀t ∈ R , ‖kt‖L∞(Rn) ≤
C

|t| k2 (1 + |t| p−1
2 )

,

then Theorem 1 holds.

Proof. We write, according to (2.1),

f(t, x) = κ

∫
λ∈Λ

∫
ν∈r∗λ

∫
y∈G

tr
(

(uλ,νX(λ,x))
∗uλ,νX(λ,y) Θ(λ) eit|ν|

2+itH(λ)
)
f0(y)|Pf(λ)| dν dλ dµ(y)

= κ

∫
λ∈Λ

∫
ν∈r∗λ

∫
y∈G

tr
(
uλ,νX(λ,y) Θ(λ) eit|ν|

2+itH(λ)
)
f0(x · y)|Pf(λ)| dν dλ dµ(y) .

We use the exponential law y 7→ Y = (P (λ, y), Q(λ, y), Z,R(λ, y)) and the fact that dµ(y) = dY the
Lebesgue measure, then we perform a linear orthonormal change of variables

(P (λ, y), Q(λ, y), R(λ, y)) 7→ (P̃ , Q̃, R̃)

so that dµ(y) = dY = dP̃ dQ̃ dZ dR̃ and we write

f(t, x) = κ

∫
λ∈Λ

∫
ν∈r∗λ

∫
(P̃ ,Q̃,Z,R̃)∈Rn

tr
(
uλ,ν

(P̃ ,Q̃,Z,R̃)
Θ(λ) eit|ν|

2+itH(λ)
)

×f0(x · exp(P̃ , Q̃, Z, R̃))|Pf(λ)| dν dλ dP̃ dQ̃ dZ dR̃ .

Thanks to the Fubini Theorem and Young inequalities, we can write (dropping the˜on the variables),

|f(t, x)| =

∣∣∣∣∣
∫

(P,Q,Z,R)∈Rn
kt(P,Q,Z,R)f0(x · exp(P,Q,Z,R))dP dQdRdZ

∣∣∣∣∣
≤ ‖kt‖L∞(G)

∣∣∣∣∣
∫

(P,Q,Z,R)∈Rn
f0(x · exp(P,Q,Z,R))dP dQdRdZ

∣∣∣∣∣
≤ ‖kt‖L∞(G)‖f0‖L1(G).

Proposition 2.1 is proved. �

In the next subsections, we make preliminary work by transforming the expression of kt and reducing
the proof to statements equivalent to (2.3).
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2.2. Transformation of kt: expression in terms of Hermite functions. Decomposing the op-
erator H(λ) in the basis of Hermite functions, and recalling notation (1.12) replaces (2.2) with

kt(X) = κ
∑
α∈Nd

∫
Λ

∫
ν∈r∗λ

eit|ν|
2+itζ(α,λ)

d∏
j=1

θ
(
ζj(α, λ)

)(
uλ,νX hα,η(λ)|hα,η(λ)

)
|Pf(λ)| dν dλ , X ∈ Rn .

Using the explicit form of uλ,νX recalled in (1.5) we find the following result.

Lemma 2.2. There is a constant κ̃ and a smooth function F such that with the above notation, we
have for t 6= 0

kt(P,Q, tZ,R) =
κ̃ e−i

|R|2
4t

t
k
2

∑
α∈Nd

∫
Λ

eitΦα(Z,λ)Gα
(
P,Q, η(λ)

)
|Pf(λ)|F (λ) dλ ,

where the phase Φα is given by

Φα(Z, λ) := ζ(α, λ)− λ(Z) ,

with Notation (1.13), and the function Gα is given by the following formula, for all (P,Q, η) ∈ R3d:

(2.4) Gα(P,Q, η) :=
d∏
j=1

θ
(
ζj(α, λ)

)
gαj

(√
ηj Pj ,

√
ηj Qj

)
while for each (ξ1, ξ2, n) in R2×N, using Notation (1.10),

(2.5) gn(ξ1, ξ2) := e−i
ξ1ξ2

2

∫
R
e−iξ2ξhn(ξ1 + ξ)hn(ξ) dξ .

Notice that (gn)n∈N is uniformly bounded in R2 thanks to the Cauchy-Schwarz inequality and the

fact that ‖hn‖L2(R) = 1, and hence the same holds for (Gα)α∈Nd (in R3d).

Proof. We begin by observing that for X = (P,Q,R,Z),

I :=
(
uλ,νX hα,η(λ) |hα,η(λ)

)
= e−iν(R)−iλ(Z)

∫
Rd

e−iλ([ξ+ 1
2P,Q])hα,η(λ)(P + ξ)hα,η(λ)(ξ)dξ ,

with in view of (1.4)

λ
([
ξ +

1

2
P,Q

])
= B(λ)

(
ξ +

1

2
P,Q

)
=
∑

1≤j≤d

ηj(λ)Qj
(
ξj +

1

2
Pj
)
.

As a consequence,

I = e−iν(R)−iλ(Z)
∏

1≤j≤d

∫
R

e−iηj(λ)(ξj+
1
2Pj)Qjhαj ,ηj(λ)(Pj + ξj)hαj ,ηj(λ)(ξj)dξj .

The change of variables ξ̃j =
√
ηj(λ) ξj gives, dropping the ˜ for simplicity,

I = e−iν(R)−iλ(Z)
∏

1≤j≤d

∫
R

e−i
√
ηj(λ)Qj

(
ξj+

1
2

√
ηj(λ)Pj

)
hαj
(
ξj +

√
ηj(λ)Pj

)
hαj (ξj)dξj ,

which implies that

kt(P,Q, tZ,R) = κ
∑
α∈Nd

∫
r(Λ)

e−itλ(Z)−iν(R)eitζ(α,λ)+it|ν|2Gα
(
P,Q, η(λ)

)
|Pf(λ)| dν dλ .

It is well known (see for instance Proposition 1.28 in [5]) that for t 6= 0

(2.6)

∫
Rk

e−i(ν|R)+it|ν|2 dν =
( iπ
t

) k
2

e−i
|R|2
4t ,
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where (· | ·) denotes the euclidean scalar product on Rk. This implies that, for t 6= 0

|kt(P,Q, tZ,R)| . 1

|t| k2

∣∣∣ ∑
α∈Nd

∫
Λ

eitΦα(Z,λ)Gα
(
P,Q, η(λ)

)
|Pf(λ)|F (λ) dλ

∣∣∣ ,
with F the Jacobian of the change of variables f : r∗λ −→ Rk , which is a smooth function. Lemma 2.2
is proved. �

2.3. Transformation of the kernel kt: change of variable. We are then reduced to establishing

that the kernel k̃t(P,Q, tZ) defined by

k̃t(P,Q, tZ) :=
∑
α∈Nd

∫
Λ

eitΦα(Z,λ)Gα
(
P,Q, η(λ)

)
|Pf(λ)|F (λ) dλ

satisfies

(2.7) ∀t ∈ R , ‖k̃t‖L∞(G) ≤
C

1 + |t| p−1
2

·

To this end, let us define m := |α| =

d∑
j=1

αj , and in the case when m 6= 0, let us set γ := mλ ∈ Rp.

By construction of η(λ) (which is homogeneous of degree one), we have

(2.8) ∀m 6= 0 , η(λ) = η̃m(γ) :=
1

m
η(γ) .

Let us check that if λ lies in the support of θ
(
ζj(α, ·)

)
, then γ lies in a fixed ring C of Rp, independent

of α. On the one hand we note that there is a constant C > 0 such that on the support of θ
(
ζj(α, λ)

)
,

the variable γ must satisfy

(2.9) ∀m 6= 0 , (2αj + 1)ηj(γ) ≤ Cm ,

for all α ∈ Nd such that |α| = m. Since for each j we know that ηj(γ) is positive and homogeneous
of degree one, we infer that the function ηj(γ) goes to infinity with |γ| so (2.9) implies that γ must
remain bounded on the support of θ

(
ζj(α, λ)

)
. Moreover thanks to (2.9) again, it is clear that the

bound may be made uniform in m.

Now let us prove that γ may be bounded from below uniformly. We know that there is a positive
constant c such that for λ on the support of θ

(
ζj(α, λ)

)
, we have

(2.10) ∀m 6= 0 , ζj(α, γ) ≥ cm .

Writing γ = |γ|γ̂ with γ̂ on the unit sphere of Rp, we find

|γ| ≥ cm

ζj(α, γ̂)
·

Defining

Cj := max
|γ̂|=1

ηj(γ̂) <∞ ,

it is easy to deduce that if (2.10) is satisfied, then

|γ| ≥ cm

(2m+ d) max
1≤j≤d

Cj
,

hence γ lies in a fixed ring of Rp, independent of α 6= 0. This fact will turn out to be important to
perform the stationary phase argument.
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Then we can rewrite the expression of k̃t(P,Q, tZ) in terms of the variable γ, which in view of the
homogeneity of the Pfaffian produces the following formula:

k̃t(P,Q, tZ) =

∫
Λ

eitΦ0(Z,λ)G0(P,Q, η(λ))|Pf(λ)|F (λ) dλ

+
∑
m∈N∗

∑
α∈Nd
|α|=m

m−p−d
∫

eitΦα(Z, γm )Gα
(
P,Q, η̃m(γ)

)
|Pf(γ)|F

( γ
m

)
dγ .

Since the functions Gα are uniformly bounded with respect to α ∈ Nd and F is smooth, there is a
positive constant C such that

∀t ∈ R , ‖k̃t‖L∞(G) ≤ C .
In order to establish the dispersive estimate, it suffices then to prove that

(2.11) ∀t 6= 0 , ‖k̃t‖L∞(G) ≤
C

|t| p−1
2

·

3. End of the proof of the dispersive estimate

In order to prove (2.11), we decompose k̃t into two parts, writing

k̃t(P,Q, tZ) = k1
t (P,Q, tZ) + k2

t (P,Q, tZ) ,

with, for a constant c0 to be fixed later on independently of m,

(3.1)

k1
t (P,Q, tZ) :=

∫
|∇λΦ0(Z,λ)|≤c0

eitΦ0(Z,λ)G0

(
P,Q, η(λ)

)
|Pf(λ)|F (λ) dλ

+
∑
m∈N∗

∑
α∈Nd
|α|=m

m−p−d
∫
|∇γ(Φα(Z, γm ))|≤c0

eitΦα(Z, γm )Gα
(
P,Q, η̃m(γ)

)
F
( γ
m

)
|Pf(γ)| dγ .

In the following subsections, we successively show (2.11) for kt1 and kt2.

3.1. Stationary phase argument for kt1. To establish Estimate (2.11), let us first concentrate
on k1

t . To this end we shall, as usual in this type of problem, define for each integral of the series
defining k1

t a vector field that commutes with the phase, prove an estimate for each term and finally
check the convergence of the series. More precisely, in the case when α 6= 0 and t > 0 (the case t < 0
is dealt with exactly in the same manner), we consider the following first order operator:

L1
α :=

Id− i∇γ(Φα(Z, γm )) · ∇γ
1 + t|∇γ(Φα(Z, γm ))|2

·

Clearly we have

L1
α eitΦα(Z, γm ) = eitΦα(Z, γm ) .

Let us admit the next lemma for the time being.

Lemma 3.1. For any integer N , there is a smooth function θN compactly supported on a ring of Rp
and a positive constant CN such that defining

(3.2) ψα(γ) := Gα
(
P,Q, η̃m(γ)

)
F
( γ
m

)
|Pf(γ)| ,

recalling notation (2.8), we have

|(tL1
α)Nψα(γ) | ≤ CN mN θN (γ)

(
1 +

∣∣t 1
2∇γ(Φα(Z,

γ

m
))
∣∣2)−N .

Returning to k1
t , let us define (recalling that γ belongs to a fixed ring C)

Cα(Z) :=
{
γ ∈ C; |∇γ(Φα(Z,

γ

m
))| ≤ c0

}
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and let us write for any integer N and α 6= 0 (which we assume to be the case for the rest of the
computations)

(3.3)

Iα(Z) :=

∫
Cα(Z)

eitΦα(Z, γm )ψα(γ) dγ

=

∫
Cα(Z)

eitΦα(Z, γm )(tL1
α)Nψα(γ) dγ ,

where ψα(γ) has been defined in (3.2). Then by Lemma 3.1 we find that for each integer N there is
a constant CN such that

(3.4) |Iα(Z)| ≤ CN mN

∫
Cα(Z)

θN (γ)
(
1 + t

∣∣∇γ(Φα(Z,
γ

m
))
∣∣2)−N dγ .

Then the end of the proof relies on three steps:

(1) a careful analysis of the properties of the support of the integral,
(2) a change of variables which leads to the estimate in t−(p−1)/2,
(3) a control in m in order to prove the convergence of the sum over m.

Before entering into details for each step, let us observe that by definition, we have

Φα(Z,
γ

m
) =

1

m

(
ζ(α, γ)− γ(Z)

)
,

with γ(Z) = (Aγ|Z) = (γ|tAZ) for some invertible matrix A. Performing a change of variables in γ
if necessary, we can assume without loss of generality that A = Id. Thus we write

(3.5) ∇γ(Φα(Z,
γ

m
)) =

1

m

(
∇γζ(α, γ)− Z

)
.

3.1.1. Analysis of the support of the integral defining Iα(Z). Let us prove the following result.

Proposition 3.2. One can choose the constant c0 in (3.1) small enough so that if γ belongs to Cα(Z),
then γ · Z 6= 0.

Proof. Let us first prove that we can choose c0 small enough so that if Cα(Z) is not empty, then one
has Z 6= 0. Equivalently, let us prove that we can choose c0 small enough such that Cα(0) = ∅. We
first notice that thanks to (3.5),

∇γζ(α, γ) = ∇γΦα(0,
γ

m
) .

Now since the function ζ(α, ·) is homogeneous of degree 1, then ∇γζ(α, ·) is homogeneous of degree 0.
As a consequence, if ∇ζ(α, γ0) = 0 with γ0 ∈ C, then the function R 3 t 7→ ζ(α, tγ0) is constant and
identically equal to 0. This is in contradiction with the localization on a ring by the function

θ̃(γ) :=

d∏
j=1

θ(ζj(α,m
−1γ)) ,

which implies the existence of a positive constant c1 such that on the support of θ̃, |∇γζ(α, γ)| > 2mc1.
This ensures the result if we assume that the constant c0 in the definition of k1

t is smaller than c1.

Let us now prove that if the constant c0 is chosen small enough, then for all γ ∈ Cα(Z) we have γ·Z 6= 0.
Indeed writing

γ · Z = γ · ∇γζ(α, γ) + γ · (Z −∇γζ(α, γ)) ,

and observing that thanks to homogeneity arguments γ · ∇γζ(α, γ) = ζ(α, γ), we deduce that for
any γ ∈ Cα(Z)

|γ · Z| ≥ |ζ(α, γ)| − |γ| |Z −∇γζ(α, γ)| .
Since as argued above, γ belongs to a fixed ring and ζ(α, λ) = 0 if and only if λ = 0 (as noticed in
Section 1.3.3), there is a positive constant c such that for any γ ∈ Cα(Z)

|ζ(α, γ)| ≥ mc ,
which implies in view of the definition of Cα(Z) that there is a positive constant c̃ depending only on
the ring C such that

|γ · Z| ≥ mc−mc0 c̃ .
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This ensures the desired result, by choosing the constant c0 in the definition of k1
t both smaller than c/c̃

and the constant c1 defined above. Proposition 3.2 is proved. �

3.1.2. A change of variables: the diffeomorphism H. We can assume without loss of generality (if
not the integral is zero) that Cα(Z) is not empty, and in view of Proposition 3.2, we can write for
any γ ∈ Cα(Z) the following orthogonal decomposition (since Z 6= 0):

(3.6)
1

m
∇γζ(α, γ) = Γ̃1 Ẑ1 + Γ̃′ , with Γ̃1 :=

( 1

m
∇γζ(α, γ)

∣∣∣Ẑ) and Ẑ1 :=
Z

|Z|
·

Since Γ̃′ is orthogonal to the vector Z, we infer that

(3.7)
∣∣∇γ(Φα(Z,

γ

m
))
∣∣ =

1

m
|Z −∇γζ(α, γ)| ≥ |Γ̃′| .

Let us consider in Rp an orthonormal basis (Ẑ1, . . . , Ẑp). Thanks to Proposition 3.2, we have γ ·Ẑ1 6= 0

on the support of the integral defining Iα(Z). Obviously, the vector Γ̃′ defined by (3.6) belongs to

the vector space generated by (Ẑ2, . . . , Ẑp). To investigate the integral Iα(Z) defined in (3.3), let us
consider the map H : γ 7→ γ̃′ defined by

(3.8) Cα(Z) 3 γ 7−→ H(γ) := (γ · Ẑ1) Ẑ1 +

p∑
k=2

(Γ̃′ · Ẑk) Ẑk =:

p∑
k=1

γ̃′k Ẑk .

Proposition 3.3. The map H realizes a diffeomorphism from Cα(Z) into a fixed compact set of Rp.

Proof. It is clear that the smooth function H maps Cα(Z) into a fixed compact set K of Rp and that

γ̃′1 = γ · Ẑ1 , and for 2 ≤ k ≤ p , γ̃′k =
1

m
∇γζ(α, γ) · Ẑk .

Now let us prove that thanks to Assumption 1.4, the map H constitutes a diffeomorphism. Indeed,
by straightforward computations we find that DH, the differential of H satisfies:

〈DH(γ)Ẑ1, Ẑ1〉 = 1

〈DH(γ)Ẑ1, Ẑk〉 =
〈 1

m
D2
γζ(α, γ)Ẑ1, Ẑk

〉
for 2 ≤ k ≤ p ,

〈DH(γ)Ẑj , Ẑk〉 =
〈 1

m
D2
γζ(α, γ)Ẑj , Ẑk

〉
for 2 ≤ j, k ≤ p and

〈DH(γ)Ẑj , Ẑ1〉 = 0 for 2 ≤ j ≤ p .

Proving that H is a diffeomorphism amounts to showing that for any γ ∈ Cα(Z), the kernel of DH(γ)

reduces to {0}. In view of the above formulas, if V =

p∑
j=1

VjẐj belongs to the kernel of DH(γ)

then V1 = V · Ẑ1 = 0 and D2
γζ(α, γ)V · Ẑk = 0 for 2 ≤ k ≤ p. Thus we can write D2

γζ(α, γ)V = τẐ1

for some τ ∈ R. Let us point out that since the function ζ(α, ·) is homogeneous of degree 1, then
D2
γζ(α, γ)γ = 0. We deduce that

0 = D2
γζ(α, γ)γ · V = γ ·D2

γζ(α, γ)V = τ γ · Ẑ1 .

Since for all γ ∈ Cα(Z), γ · Ẑ1 6= 0, we find that τ = 0 and therefore D2
γζ(α, γ)V = 0. But

Assumption 1.4 states that the Hessian D2
γζ(α, γ) is of rank p− 1, so we conclude that V is colinear

to γ. But we have seen that V · Ẑ1 = 0, which contradicts the fact that γ · Ẑ1 6= 0. This entails that
V is null and ends the proof of the proposition. �

We can therefore perform the change of variables defined by (3.8) in the right-hand side of (3.4), to
obtain

|Iα(Z)| ≤ CN mN

∫
K

1

(1 + t|γ̃′|2)
N
dγ̃′ dγ̃1 .
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3.1.3. End of the proof: convergence of the series. Choosing N = p − 1 implies by the change of
variables γ] = t

1
2 γ̃′ that there is a constant C such that

|Iα(Z)| ≤ C|t|−
p−1
2 mp−1 ,

which gives rise to ∣∣∣ ∫
Cα(Z)

eitΦα(Z, γm )ψα(γ)dγ
∣∣∣ ≤ C|t|− p−1

2 mp−1.

We get exactly in the same way that∣∣∣ ∫
|∇λΦ0(Z,λ)|≤c0

eitΦ0(Z,λ)G0

(
P,Q, η(λ)

)
|Pf(λ)|F (λ) dλ

∣∣∣ ≤ C|t|− p−1
2 .

Finally returning to the kernel k1
t defined in (3.1), we get

|k1
t (P,Q, tZ)| ≤ C|t|−

p−1
2 + C |t|−

p−1
2

∑
m∈N∗

md−1m−d−pmp−1

≤ C|t|−
p−1
2 ,

since the series over m is convergent. The dispersive estimate is thus proved for k1
t .

3.2. Stationary phase argument for kt2. We now prove (2.11) for k2
t , which is easier since the

gradient of the phase is bounded from below. We claim that there is a constant C such that

(3.9) |k2
t (P,Q, tZ)| ≤ C

t
p−1
2

·

This can be achieved as above by means of adequate integrations by parts. Indeed, in the case
when α 6= 0, consider the following first order operator:

L2
α := −i

∇γ(Φα(Z, γm )) · ∇γ
|∇γ(Φα(Z, γm ))|2

·

Note that when α = 0, the arguments are the same without performing the change of variable λ = γ/m.
The operator L2

α obviously satisfies

L2
α eitΦα(Z, γm ) = t eitΦα(Z, γm ) ,

hence by repeated integrations by parts, we get

Jα(P,Q, tZ) :=

∫
|∇γ(Φα(Z, γm ))|≥c0

eitΦα(Z, γm )ψα(γ) dγ

=
1

tN

∫
|∇γ(Φα(Z, γm ))|≥c0

eitΦα(Z, γm ))(tL2
α)Nψα(γ) dλ .

Let us admit the following lemma for a while.

Lemma 3.4. For any integer N , there is a smooth function θN compactly supported on a compact
set of Rp such that ∣∣(tL2

α)Nψα(γ)
∣∣ ≤ θN (γ)mN

|∇γ(Φα(Z, γm ))|N
·

One then observes that if γ is in the support of the integral defining k2
t , the lemma implies∣∣(tL2

α)Nψα(γ)
∣∣ ≤ θN (γ)

cN0
mN .

This estimate ensures the result as in Section 3.1 by taking N = p− 1.
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3.3. Proofs of Lemma 3.1 and Lemma 3.4. Lemma 3.1 is an obvious consequence of the following
Lemma 3.5, taking (a, b) ≡ (0, 0). We omit the proof of Lemma 3.4 which consists in a straightforward
modification of the arguments developed below.

Lemma 3.5. For any integer N , one can write

(tL1
α)Nψα(γ) = fN,m

(
γ, t

1
2∇γ(Φα(Z,

γ

m
))
)
,

with |α| = m, and where fN,m is a smooth function supported on C × Rp with C a fixed ring of Rp,
such that for any couple (a, b) ∈ Np × Np, there is a constant C (independent of m) such that

|∇aγ∇bΘfN,m(γ,Θ)| ≤ CmN+|a|(1 + |Θ|2)−N−
|b|
2 .

Proof of Lemma 3.5. Let us prove the result by induction over N . We start with the case when N
is equal to zero. Notice that in that case the function f0,m(γ,Θ) = ψα(γ) does not depend on the

quantity Θ = t
1
2∇γ(Φα(Z, γm )), so we need to check that for any a ∈ Np, there is a constant C such

that

(3.10) |∇aγψα(γ)| ≤ Cm|a| ,
when |α| = m. The case when a = 0 is obvious thanks to the uniform bound on Gα. To deal with the
case |a| ≥ 1, we state the following technical result which will be proved at the end of this paragraph.

Lemma 3.6. For any integer k, there is a constant C such that the following bound holds for the
function gn defined in (2.5), n ∈ N:

∀(ξ1, ξ2) ∈ R2 ,
∣∣(ξ1∂ξ1 + ξ2∂ξ2)kgn(ξ1, ξ2)

∣∣ ≤ Cnk .
Let us now compute ∇aγψα(γ). Recall that according to (3.2),

ψα(γ) = Gα
(
P,Q, η̃m(γ)

)
F
( γ
m

)
|Pf(γ)|

= F
( γ
m

) d∏
j=1

ψα,j(γ) ,

where

ψα,j(γ) := ηj(γ)θ̃
(
(2αj + 1)η̃j,m(γ)

)
gαj
(√

η̃j,m(γ)Pj ,
√
η̃j,m(γ)Qj

)
, η̃j,m(γ) :=

1

m
ηj(γ) .

We compute

∇aγψα,j(γ) =
∑
b∈Np

0≤|b|≤|a|

(
b

a

)
∇bγ
(
θ
(
(2αj + 1)η̃j,m(γ)

))
∇a−bγ

(
ηj(γ)gαj

(√
η̃j,m(γ)Pj ,

√
η̃j,m(γ)Qj

))
.

Let us assume first that |a− b| = 1. Then we write, for some 1 ≤ ` ≤ p,

∂γ`

(
ηj(γ)gαj

(√
η̃j,m(γ)Pj ,

√
η̃j,m(γ)Qj

))
= ∂γ`ηj(γ)gαj

(√
η̃j,m(γ)Pj ,

√
η̃j,m(γ)Qj

)
+ ηj(γ)

∂γ` η̃j,m(γ)

2η̃j,m(γ)
×
(
(ξ1∂ξ1 + ξ2∂ξ2)gαj

)(√
η̃j,m(γ)Pj ,

√
η̃j,m(γ)Qj

)
.

Next we use the fact that there is a constant C such that on the support of θ
(
(2αj + 1)η̃j,m(γ)

)
,

η̃j,m(γ) ≥ 1

Cm
and |∂γ` η̃j,m(γ)| ≤ C

m
,

so applying Lemma 3.6 gives
|∇γψα,j(γ)| . αj .

Recalling that αj ≤ m and that, for all i ∈ {1, · · · , d}, ψα,j is uniformly bounded, this easily achieves
the proof of Estimate (3.10) in the case |a| = 1 by taking the product over j. Once we have noticed
that

αa11 · · ·α
ad
d . (α1 + · · ·+ αd)

a1+···+ad ,

the general case (when |a| > 1) is dealt with identically, we omit the details.
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Finally let us proceed with the induction: assume that for some integer N one can write

(tL1
α)N−1ψα(γ) = fN−1,m

(
γ, t

1
2∇γ(Φα(Z,

γ

m
))
)

where fN−1,m is a smooth function supported on C × Rp, such that for any couple (a, b) ∈ Np × Np,
there is a constant C (independent of m) such that

(3.11) |∇aγ∇bΘfN−1,m(γ,Θ)| ≤ CmN−1+|a|(1 + |Θ|2)−(N−1)− |b|2 .

We compute for any function Ψ(γ),

tL1
αΨ(γ) = i

∇γ(Φα(Z, γm )) · ∇γΨ(γ)

1 + t|∇γ(Φα(Z, γm ))|2
+

1 + i∆(Φα(Z, γm ))

1 + t|∇γ(Φα(Z, γm ))|2
Ψ(γ)

− 2it
∑

1≤j,k≤p

∂γj∂γk(Φα(Z, γm ))∂γj (Φα(Z, γm ))∂γk(Φα(Z, γm ))

(1 + t|∇γ(Φα(Z, γm ))|2)2
Ψ(γ) .

We apply that formula to Ψ := fN−1

(
γ, t

1
2∇γ(Φα(Z, γm ))

)
and estimating each of the three terms

separately we find (using the fact that m ≥ 1),∣∣∣tL1
α

(
fN−1

(
γ, t

1
2∇γ(Φα(Z,

γ

m
))
))∣∣∣ ≤ C(1 + t|∇γ(Φα(Z,

γ

m
))|2
)−1

×mN−1+1(1 + t|∇γ(Φα(Z,
γ

m
))|2)−(N−1)

+ C
(
1 + t|∇γ(Φα(Z,

γ

m
))|2
)−1

×mN−1(1 + t|∇γ(Φα(Z,
γ

m
))|2)−(N−1)

+ Ct |∇γ(Φα(Z,
γ

m
))|2
(
1 + t|∇γ(Φα(Z,

γ

m
))|2
)−2

×mN−1(1 + t|∇γ(Φα(Z,
γ

m
))|2)−(N−1)

thanks to the induction assumption (3.11) along with (3.10) and the fact that on Cα(Z), all the
derivatives of the function ∇γ

(
Φα
(
Z, γm

))
are uniformly bounded with respect to α and Z. A similar

argument allows to control derivatives in γ and Θ, so Lemma 3.5 is proved. �

Proof of Lemma 3.6. One important ingredient in the proof is the fact that for all integers k, there is
a constant C such that

(3.12)
∥∥ | · |khn∥∥L2 ≤ Cn

k
2 .

This comes from the well-known relations

(3.13)
h′n(ξ) + ξhn(ξ) =

√
2nhn−1

h′n(ξ)− ξhn(ξ) = −
√

2(n+ 1)hn+1 ,

which imply ‖ξhn(ξ)‖L2
ξ
≤
√

2(n+ 1). Using h′′n(ξ) = −(2n + 1)hn(ξ) + ξ2hn(ξ), an integration by

parts gives∫
ξ2(k+1)h2

n(ξ)dξ =

∫
ξ2k
(
h′′n(ξ) + (2n+ 1)hn(ξ)

)
hn(ξ)dξ

= −
∫
h′n(ξ)

(
2kξ2k−1hn(ξ) + ξ2kh′n(ξ)

)
dξ + (2n+ 1)‖ | · |khn‖2L2 .

Hence ∫
ξ2(k+1)h2

n(ξ)dξ ≤ −2k

∫
ξ2k−1hn(ξ)h′n(ξ)dξ + (2n+ 1)‖ | · |khn‖2L2 .

Finally using (3.13) we find

‖ | · |k+1hn‖2L2 ≤ −2k

∫
ξ2k−1hn(ξ)

(
− (2n+ 2)

1
2hn+1(ξ) + ξhn(ξ)

)
dξ + (2n+ 1)‖ | · |khn‖2L2

≤ 2k(2n+ 2)
1
2 ‖ | · |khn‖L2‖| · |k−1hn+1‖L2 + (2n+ 1)‖ | · |khn‖2L2
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and we obtain (3.12) by a recursive argument.
Then, we consider the case when k = 1 and we write, using the formula defining gn in (2.5) and an
integration by parts,

(ξ1∂ξ1 + ξ2∂ξ2)gn(ξ1, ξ2) = e−i
ξ1ξ2

2

∫
e−iξ2ξξ1h

′
n(ξ1 + ξ)hn(ξ)dξ

− iξ2e−i
ξ1ξ2

2

∫
e−iξ2ξ(ξ1 + ξ)hn(ξ1 + ξ)hn(ξ)dξ

= e−i
ξ1ξ2

2

∫
e−iξ2ξξ1h

′
n(ξ1 + ξ)hn(ξ)dξ

− e−i
ξ1ξ2

2

∫
e−iξ2ξ∂ξ [(ξ1 + ξ)hn(ξ1 + ξ)hn(ξ)] dξ

= −gn(ξ1, ξ2)− e−i
ξ1ξ2

2

∫
e−iξ2ξ (ξh′n(ξ1 + ξ)hn(ξ) + (ξ1 + ξ)hn(ξ1 + ξ)h′n(ξ)) dξ .

Therefore

|(ξ1∂ξ1 + ξ2∂ξ2)gn(ξ1, ξ2)| ≤ |gn(ξ1, ξ2)|+ 2‖ξhn(ξ)‖L2
ξ
‖h′n(ξ)‖L2

ξ
≤ C n.

This concludes the proof in the case when k = 1 thanks to the Cauchy-Schwarz inequality.

Let us now consider k ≥ 1 and (ξ1∂ξ1 + ξ2∂ξ2)kgn(ξ1, ξ2). By induction on k, one can prove that
(ξ1∂ξ1 + ξ2∂ξ2)kgn(ξ1, ξ2) is a linear combination of terms of the form

ξk11 ξk22 ∂k3ξ1 ∂
k4
ξ2
gn(ξ1, ξ2) with k1 + k2 + k3 + k4 ≤ k

and the coefficients of the combinations are controled in terms of k or, equivalently, a linear combina-
tion of terms of the form

e−i
ξ1ξ2

2

∫
e−iξ2ξ(ξ1 + ξ)k1ξk2h(k3)

n (ξ1 + ξ)h(k4)
n (ξ)dξ

with coefficients controled in terms of k. Similarly, by induction on j and thanks to (3.13), one gets

h(j)
n (ξ) =

j∑
p=0

aj,p,nξ
j−pn

p
2 hp+n(ξ) ,

where the aj,p,n are bounded by a constant independent of n. We are left with a linear combination
of terms of the form

Ik1,k2,k3,k4,p,p′ := n
p+p′

2

∫
e−i

ξ1ξ2
2 e−iξ2ξ(ξ1 + ξ)k1+k3−pξk2+k4−p′hn+p(ξ1 + ξ)hn+p′(ξ)dξ

with coefficients depending on k and controled uniformly with respect to n. By (3.12), we obtain by
the Cauchy-Schwartz inequality

|Ik1,k2,k3,k4,p,p′ | ≤ Cn
p+p′

2 +
k1+k3−p

2 +
k2+k4−p

′
2 ≤ Cnk .

The proposition is proved. �

4. Optimality of the dispersive estimates

In this section, we first end the proof of Theorem 1 by proving the optimality of the dispersive estimates
for groups satisfying Assumption 1.4. Then, we prove Proposition 1.7.

4.1. Optimality for groups satisfying Assumption 1.4. Let us now end the proof of Theorem 1
by establishing the optimality of the dispersive estimate (1.19). We use the fact that there always
exists λ∗ ∈ Λ such that

(4.1) ∇λζ(0, λ∗) 6= 0,

where the function ζ is defined in (1.12). Indeed, if not, the map λ 7→ ζ(0, λ) would be constant
which is in contradiction with the fact that ζ is homogeneous of degree 1. We prove the following
proposition, which yields the optimality of the dispersive estimate of Theorem 1.
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Proposition 4.1. Let λ∗ ∈ Λ satisfying (4.1). There is a function g ∈ D(Rp) compactly supported in
a connected open neighborhood of λ∗ in Λ, such that for the initial data f0 defined by

(4.2) ∀(λ, ν) ∈ r(Λ), F(f0)(λ, ν)hα,η(λ) = 0 for α 6= 0 and F(f0)(λ, ν)h0,η(λ) = g(λ)h0,η(λ) ,

there exists c0 > 0 and x ∈ G such that

|e−it∆Gf0(x)| > c0 |t|−
k+p−1

2 .

Proof. Let g be any smooth compactly supported function over Rp, and define f0 by (4.2). For any
point x = eX ∈ G under the form X = (P = 0, Q = 0, Z,R), the inversion formula gives

e−it∆Gf0(x) = κ

∫
λ∈Λ

∫
ν∈r∗λ

eit|ν|
2+itζ(0,λ)−iλ(Z)−iν(R)g(λ)|Pf(λ)|dνdλ .

To simplify notations, we set ζ0(λ) := ζ(0, λ). Setting Z = tZ∗ with Z∗ := ∇λζ(0, λ∗) 6= 0, we get as
in (2.6) ∣∣∣e−it∆Gf0(x)

∣∣∣ = c1|t|−
k
2

∣∣∣ ∫
λ∈Rp

eit(λ·Z
∗−ζ0(λ))g(λ)|Pf(λ)|dλ

∣∣∣
for some constant c1 > 0. Without loss of generality, we can assume

λ∗ = (1, 0, . . . , 0)

(if not, we perform a change of variables λ 7→ Ωλ where Ω is a fixed orthogonal matrix), and we
now shall perform a stationary phase in the variable λ′, where we have written λ = (λ1, λ

′). For any
fixed λ1, the phase

Φλ1
(λ′, Z) := Z · λ− ζ0(λ)

has a stationary point λ′ if and only if Z ′ = ∇λ′ζ0(λ) (with the same notation Z = (Z1, Z
′)). We

observe that the homogeneity of the function ζ0 and the definition of Z∗ imply that

Z∗ = ∇λζ0(1, 0, . . . , 0) = ∇λζ0(λ1, 0, . . . , 0), ∀λ1 ∈ R ,

hence if λ′ = 0, then the phase Φλ1
(0, Z∗) has a stationary point.

From now on we choose g supported near those stationary points (λ1, 0), and vanishing in the neigh-
borhood of any other stationary point.

Let us now study the Hessian of Φλ1 in λ′ = 0. Again because of the homogeneity of the function ζ0,
we have

[Hess ζ0(λ)]λ = 0, ∀λ ∈ Rp .
In particular, for all λ1 6= 0, Hess ζ0(λ1, 0, · · · , 0) (λ1, 0, · · · , 0) = 0 and the matrix Hess ζ0(λ1, 0, · · · , 0)
in the canonical basis is of the form

Hess ζ0(λ1, 0, · · · , 0) =

(
0 0
0 Hessλ′,λ′ ζ0(λ1, 0, · · · , 0)

)
.

Using that Hess ζ0(λ1, 0, · · · , 0) is of rank p − 1, we deduce that Hessλ′,λ′ ζ0(λ1, 0, · · · , 0) is also of
rank p− 1 and we conclude by the stationary phase theorem ([36], Chap. VIII.2), choosing g so that
the remaining integral in λ1 does not vanish.

�

4.2. Proof of Proposition 1.7. Assume that G is a step 2 stratified Lie group whose radical index is
null and for which ζ(0, λ) is a linear form on each connected component of the Zariski-open subset Λ.
Let g be a smooth nonnegative function supported in one of the connected components of Λ and
define f0 by

F(f0)(λ)hα,η(λ) = 0 for α 6= 0 and F(f0)(λ)h0,η(λ) = g(λ)h0,η(λ) .

By the inverse Fourier formula, if x = eX ∈ G is such that X = (P = 0, Q = 0, tZ), then we have

e−it∆G(x) = κ

∫
e−it λ(Z)eitζ(0,λ)g(λ) |Pf(λ)| dλ .

Since ζ(0, λ) is a linear form on each connected component of Λ, there exists Z0 in z such that for

∀λ ∈ z∗ ∩ supp g, −λ(Z0) + ζ(0, λ) = 0 .
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As a consequence, choosing Z = Z0, we obtain

e−it∆G(x) = κ

∫
g(λ) |Pf(λ)| dλ 6= 0,

which ends the proof of the result.

Appendix A. On the inversion formula in Schwartz space

This section is dedicated to the proof of the inversion formula in the Schwartz space S(G) (Proposi-
tion 1.1 page 4).

Proof. We first observe that to establish (1.8), it suffices to prove that

(A.1) f(0) = κ

∫
λ∈Λ

∫
ν∈r∗λ

tr
(
F(f)(λ, ν)

)
|Pf(λ)| dν dλ .

Indeed, introducing the auxiliary function g defined by g(x′) := f(x · x′) which obviously belongs

to S(G) and satisfies F(g)(λ, ν) = uλ,νX(λ,x−1) ◦ F(f)(λ, ν), and assuming (A.1) holds, we get

f(x) = g(0) = κ

∫
λ∈Λ

∫
ν∈r∗λ

tr
(
F(g)(λ, ν)

)
|Pf(λ)| dν dλ

= κ

∫
λ∈Λ

∫
ν∈r∗λ

tr
(
uλ,νX(λ,x−1)F(f)(λ, ν)

)
|Pf(λ)| dν dλ ,

which is the desired result.

Let us now focus on (A.1). In order to compute the right-hand side of Identity (A.1), we introduce

A :=

∫
λ∈Λ

∫
ν∈r∗λ

tr
(
F(f)(λ, ν)

)
|Pf(λ)| dν dλ

=

∫
λ∈Λ

∫
ν∈r∗λ

∫
x∈G

∑
α∈Nd

(
uλ,νX(λ,x)hα,η(λ)|hα,η(λ)

)
|Pf(λ)| f(x) dµ(x) dν dλ ,

with the notation of Section 1.3. In order to carry on the calculations, we need to resort to a Fubini
argument which comes from the following identity:

(A.2)
∑
α∈Nd

∫
λ∈Λ

∫
ν∈r∗λ

‖F(f)(λ, ν)hα,η(λ)‖L2(pλ)|Pf(λ)| dν dλ <∞ .

We postpone the proof of (A.2) to the end of this section. Thanks to (A.2), the order of integration
does not matter and we can transform the expression of A: we use the fact that for any α ∈ Nd(

uλ,νX(λ,x)hα,η(λ)|hα,η(λ)

)
= e−iν(R)−iλ(Z)

∫
Rd

e−i
∑
j ηj(λ) (ξj+

1
2Pj)Qjhα,η(λ)(P + ξ)hα,η(λ)(ξ)dξ ,

where we have identified pλ with Rd, and this gives rise to

A =

∫
λ∈Λ

∫
ν∈r∗λ

∫
x∈G

∫
ξ∈Rd

∑
α∈Nd

e−iν(R)−iλ(Z)e−i
∑
j ηj(λ) (ξj+

1
2Pj)Qj hα,η(λ)(P + ξ)

× hα,η(λ)(ξ) |Pf(λ)| f(x) dµ(x) dξ dν dλ ,

where we recall that

hα,η(λ)(ξ) =

d∏
j=1

hαj ,ηj(λ)(ξj) with hαj ,ηj(λ)(ξj) = ηj(λ)
1
4 hαj

(√
ηj(λ) ξj

)
.

Performing the change of variables 
ξ̃j =

√
ηj(λ) ξj

P̃j =
√
ηj(λ)Pj

Q̃j =
√
ηj(λ)Qj
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for j ∈ {1, . . . , d}, we obtain, dropping the ˜on the variables,

A =

∫
λ∈Λ

∫
ν∈r∗λ

∫
(P,Q,R,Z)∈Rn

∫
ξ∈Rd

∑
α∈Nd

e−iν(R)−iλ(Z)e−i
∑
`(ξ`+

1
2P`)·Q`

d∏
j=1

hαj (Pj + ξj)hαj (ξj)

× f
(
η−

1
2 (λ)P, η−

1
2 (λ)Q,R,Z

)
dP dQdRdZ dξ dν dλ ,

with η−
1
2 (λ)P := (η

− 1
2

1 (λ)P1, . . . , η
− 1

2

d (λ)Pd) and similarly for Q.

Then using the change of variables ξ′j = ξj + Pj , for j ∈ {1, . . . , d}, gives

A =

∫
λ∈Λ

∫
ν∈r∗λ

∫
(ξ′,Q,R,Z)∈Rn

∫
ξ∈Rd

∑
α∈Nd

e−iν(R)−iλ(Z)e−
i
2

∑
`(ξ`+ξ

′
`)·Q`

d∏
j=1

hαj (ξ
′
j)hαj (ξj)

× f
(
η−

1
2 (λ) (ξ′ − ξ), η− 1

2 (λ)Q,R,Z
)
dξ′ dQdRdZ dξ dν dλ .

Because (hα)α∈Nd is a Hilbert basis of L2(Rd), we have for all ϕ ∈ L2(Rd)

ϕ(ξ) =
∑
α∈Nd

∫
ξ′∈Rd

ϕ(ξ′)hα(ξ′) dξ′ hα(ξ) ,

which leads to

A =

∫
λ∈Λ

∫
ν∈r∗λ

∫
(Q,R,Z)∈Rd+k+p

∫
ξ∈Rd

e−iν(R)−iλ(Z)e−iξ·Q f
(
0, η−

1
2 (λ)Q,R,Z

)
dQdRdZ dξ dν dλ .

Applying the Fourier inversion formula successively on Rd, Rk and on Rp (and identifying r(Λ)

with Rp×Rk), we conclude that there exists a constant κ > 0 such that

A = κ f(0) ,

which ends the proof of (A.1).

Let us conclude the proof by showing (A.2). We choose M a nonnegative integer. According to the
obvious fact that the function (Id−∆G)Mf also belongs to S(G) (hence to L1(G)), we get in view of
Identity (1.11)

F(f)(λ, ν)hα,η(λ) =
(

1 + |ν|2 + ζ(α, λ)
)−M

F
(
(Id−∆G)Mf

)
(λ, ν)hα,η(λ) .

In view of the definition of the Fourier transform on the group G, we thus have

‖F(f)(λ, ν)hα,η(λ)‖2L2(pλ) =
(

1 + |ν|2 + ζ(α, λ)
)−2M

×
∫
pλ

(∫
G

(
(Id−∆G

)M
f(x))uλ,νX(λ,x)hα,η(λ)(ξ) dµ(x)

∫
G

(
(Id−∆G

)M
f(x′))uλ,νX(λ,x′)hα,η(λ)(ξ) dµ(x′)

)
dξ .

Now, by Fubini’s theorem, we get

‖F(f)(λ, ν)hα,η(λ)‖2L2(pλ) =
(

1 + |ν|2 + ζ(α, λ)
)−2M

×
∫
G

∫
G

(Id−∆G)Mf(x)(Id−∆G)Mf(x′)(uλ,νX(λ,x)hα,η(λ) |uλ,νX(λ,x′)hα,η(λ))L2(pλ) dµ(x) dµ(x′) .

Since the operators uλ,νX(λ,x) and uλ,νX(λ,x′) are unitary on pλ and the family (hα,η(λ))α∈Nd is a Hilbert

basis of pλ, we deduce that

‖F(f)(λ, ν)hα,η(λ)‖L2(pλ) ≤
(

1 + |ν|2 + ζ(α, λ)
)−M

‖(Id−∆G)Mf‖L1(G) .

Because

Card
({
α ∈ Nd / |α| = m

})
=

(
m+ d− 1

m

)
≤ C(m+ 1)d−1 ,
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this ensures that∑
α∈Nd

∫
λ∈Λ

∫
ν∈r∗λ

‖F(f)(λ, ν)hα,η(λ)‖L2(pλ)|Pf(λ)| dν dλ . ‖(Id−∆G)Mf‖L1(G)

×
∑
m

(m+ 1)d−1

∫
λ∈Λ

∫
ν∈r∗λ

(
1 + |ν|2 + ζ(α, λ)

)−M
|Pf(λ)| dν dλ .

Hence taking M = M1 +M2, with M2 >
k

2
implies that∑

α∈Nd

∫
λ∈Λ

∫
ν∈r∗λ

‖F(f)(λ, ν)hα,η(λ)‖L2(pλ)|Pf(λ)| dν dλ . ‖(Id−∆G)Mf‖L1(G)

×
∑
m

(m+ 1)d−1

∫
λ∈Λ

(
1 + ζ(α, λ)

)−M1

|Pf(λ)| dλ .

Noticing that ζ(α, λ) = 0 if and only if λ = 0 and using the homogeneity of degree 1 of ζ, yields that
there exists c > 0 such that ζ(α, λ) ≥ cm |λ|. Therefore, we can end the proof of (A.2) by choosing M1

large enough and performing the change of variable µ = mλ in each term of the above series.

Proposition 1.1 is proved. �
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