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FROM NEWTON TO BOLTZMANN: HARD SPHERES AND
SHORT-RANGE POTENTIALS

Isabelle Gallagher, Laure Saint-Raymond, Benjamin Texier

Abstract. — We provide a rigorous derivation of the Boltzmann equation as the mesoscopic limit of
systems of hard spheres, or Newtonian particles interacting via a short-range potential, as the number
of particles IV goes to infinity and the characteristic length of interaction ¢ simultaneously goes to 0,
in the Boltzmann-Grad scaling Ne?~! = 1.

The time of validity of the convergence is a fraction of the average time of first collision, due to
a limitation of the time on which one can prove uniform estimates for the BBGKY and Boltzmann
hierarchies.

Our proof relies on the fundamental ideas of Lanford, and the important contributions of King,
Cercignani, Illner and Pulvirenti, and Cercignani, Gerasimenko and Petrina. The main novelty here
is the detailed study of pathological trajectories involving recollisions, which proves the term-by-term
convergence for the correlation series expansion.
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PART 1

INTRODUCTION






CHAPTER 1

THE LOW DENSITY LIMIT

We are interested in this monograph in the qualitative behavior of systems of particles with short-
range interactions. We study the qualitative behaviour of particle systems with short-range binary
interactions, in two cases: hard spheres, that move in uniform rectilinear motion until they undergo
elastic collisions, and smooth, monotonic, compactly supported potentials.

e For hard spheres, the equations of motion are

dx; dv;
1.0.1 L— t—
(10.) T, T,

for 1 <i < N, where (z;,v;) € R x R? denote the position and velocity of particle i, provided that

the exclusion condition |z;(¢) — z;(t)| > o is satisfied, where o denotes the diameter of the particles.
We further have to prescribe a reflection condition at the boundary

,U:_'n _ ’UfUt o Vi,j . (U;W’t o U;_)ut) I/i’j
(1.0.2) , ) |
vé" = v}mt + v (vt — v}’“t) v oaf 35 £ e — gl =0,

where v := (z; —x;)/|x; — x;|. Note that it is not obvious to check that (1.0.1)-(1.0.2) defines global
dynamics. This question is addressed in Chapter 4.

e In the case of smooth interactions, the Hamiltonian equations of motion are

dmi d’Ui
(1.0.3) a v mi—s = Z Vo(x; — xj),
J#i
where m; is the mass of particle ¢ (which we shall assume equal to 1 to simplify) and the force exerted
by particle j on particle ¢ is —V®(z; — x;).

When the system is constituted of two elementary particles, in the reference frame attached to the
center of mass, the dynamics is two-dimensional. The deflection of the particle trajectories from
straight lines can then be described through explicit formulas (which are given in Chapter 8).

When the system is constituted of three particles or more, the integrability is lost, and in general the
problem becomes very complicated, as already noted by Poincaré [37].

Remark 1.0.1. — Note that the dynamics of hard spheres is in some sense a limit of the smooth-
forces case with
O(z) = +o0 if 2] < o, O(x)=0if|z| >0.
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Nevertheless, to our knowledge, there does not exist any mathematical statement concerning these
asymptotics.

We will however see in the sequel that the two types of systems exhibit very similar qualitative behaviours
in the low density limit. Once the dynamics is defined (i.e. provided that we can discard multiple
collisions), the case of hard spheres is actually simpler and we will discuss it in Part II to explain the
main ideas and conceptual difficulties. We will then explain, in Part I1I, how to extend the arguments
to the smoother case of Hamiltonian systems.

1.1. The Liouville equation

In the large N limit, individual trajectories become irrelevant, and our goal is to describe an average
behaviour.

This average will be of course over particles which are indistiguishable, meaning that we will be only
interested in some distribution related to the empirical measure

N
1
v (1 X5 (0), Vi (0) = 5 D dain0)
i=1
with Xn(0) := (21(0),...,2x5(0)) € R¥ and Vy(0) := (v1(0),...,vx(0)) € R and (x;(t),v:(t)) is
the state at time ¢ of particle ¢ in the system with initial configuration (Xx(0), Vi (0)).

But, because we have only a vague knowledge of the state of the system at initial time, we will further
average over initial configurations. At time 0, we thus start with a distribution f$(Zy), where we
use the following notation: for any set of s particles with positions X, := (z1,...,7,) € R% and
velocities V := (vq,...,vs) € R¥, we write Z, := (z1,...,2s) € R?¥ with z; := (2;,v;) € R?.

We then aim at describing the evolution of the distribution
N
i=1

We thus define the probability fy = fn(t, Zn), referred to as the N-particle distribution function, and
we assume that it satisfies for all permutations o of {1,..., N},

(1.1.1) Nt Zony) = fn(t, ZN),

with Z,n) = (xg(l), Vg(1)s -+ » Ta(N), Vs(n)). This corresponds to the property that the particles are
indistinguishable.

The distribution we are interested in is therefore nothing else than the first marginal f](\,l) of the
distribution function fy, defined by

fj(\fl)(tvzl)ZZ/fN(t,ZN>d2’2...dZN.
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Since fn is an invariant of the particle system, the Liouwville equation relative to the particle sys-
tem (1.0.3) is

N N N
(1.1.2) OfN + D Vi Ve fn = 3> Val (2 — ;) - Vo fv = 0.

i=1 i=1 j=1
Jj#i

For hard spheres, provided that we can prove that the dynamics is well defined for almost all initial
configurations, we find the Liouville equation

N
(1.1.3) Oufn+ D Vi Ve fn =0
=1

on the domain

Dy = {ZN e RN /i £ § |us — x| > a}
with the boundary condition fy (¢, Zi¥) = fn(t, Z3).

1.2. Mean field versus collisional dynamics

In this framework, in order for the average energy per particle to remain bounded, one has to assume
that the energy of each pairwise interaction is small. In other words, one has to consider a rescaled
potential ®. obtained

— either by scaling the strength of the force,

— or by scaling the range of potential.

According to the scaling chosen, we expect to obtain different asymptotics.

e In the case of a weak coupling, i.e. when the strength of the individual interaction becomes small
(of order 1/N) but the range remains macroscopic, the convenient scaling in order for the macroscopic
dynamics to be sensitive to the coupling is:

N L NN
Oufn + D> ViV fn — szvm@(mi — ;) Vy, fn =0.

=1 i=1 j=1
e

Then each particle feels the effect of the force field created by all the (other) particles

N
1
Fy(z) = N ZVICD (x — ;) ~— // V. ®(z —y) J(Vl)(t,y,fv)dydv.
j=1
In particular, the dynamics seems to be stable under small perturbations of the positions or velocities

of the particles.

In the limit N — oo, we thus get a mean field approzimation, that is an equation of the form
Orf +v-Vuf+F-V,f=0

for the first marginal, where the coupling arises only through some average

F:=-V,®x /fdv.
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An important amount of literature is devoted to such asymptotics, but this is not our purpose here.
We refer to [11, 41] for pioneering results, to [25] for a recent study and to [21] for a review on that
topic.

e The scaling we shall deal with in the present work corresponds to a strong coupling, i.e. to the case
when the amplitude of the potential remains of size O(1), but its range becomes small.

Introduce a small parameter € > 0 corresponding to the typical interaction length of the particles.
For hard spheres, ¢ is simply the diameter of particles. In the case of Hamiltonian systems, ¢ will
be the range of the interaction potential. We shall indeed assume throughout this text the following
properties for ® (a short-range potential).

Assumption 1.2.1. — The potential ® : R® — R is a radial, nonnegative, nonincreasing function
supported in the unit ball of R?, of class C? in {x € RY,0 < |z| < 1}. Moreover it is assumed that ®
is unbounded near zero, goes to zero at |x| = 1 with bounded derivatives, and that V® vanishes only
on |z| = 1.

Then in the macroscopic spatial and temporal scales, the Hamiltonian system becomes

(1.2.1) dd? =i, CZZ = —é > Ve <IE$J> :
j#i
and the Liouville equation takes the form
N N N
(1.2.2) Ofn + Y v Vafn =YY V@ (@) Vo fn=0.
i=1 i=1 j=1

i

With such a scaling, the dynamics is very sensitive to the positions of the particles.

Situation 1 Situation 2

FIGURE 1. Instability
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Situations 1 and 2 on Figure 1 are differ by a spatial translation of O(g) only. However in Situation 1,
particles will interact and be deviated from their free motion, while in Situation 2, they will evolve
under free flow.

1.3. The Boltzmann-Grad limit

Particles move with uniform rectilinear motion as long as they remain at a distance greater than ¢ to
other particles. In the limit € — 0, we thus expect trajectories to be almost polylines.

Deflections are due to elementary interactions

— which occur when two particles are at a distance smaller than ¢ (exactly € in the case of hard
spheres),

— during a time interval of order ¢ (if the relative velocity is not too small) or even instantaneously in
the case of hard spheres,

— which involve generally only two particles : the probability that a third particle enters a security
ball of radius € should indeed tend to 0 as € — 0 in the convenient scaling. We are therefore brought
back to the case of the two-body system, which is completely integrable (see Chapter 8).

In order for the interactions to have a macroscopic effect on the dynamics, each particle should undergo
a finite number of collisions per unit of time. A scaling argument, giving the mean free path in terms
of N and ¢, then shows that Ne?~! = O(1): indeed a particle travelling at speed bounded by R covers
in unit time an area of size Re?~!, and there are N such particles. This is the Boltzmann-Grad scaling
(see [24]).

The Boltzmann equation, which is the master equation in collisional kinetic theory [15, 46], is expected
to describe such a dynamics.






CHAPTER 2

THE BOLTZMANN EQUATION

2.1. Transport and collisions

As mentioned in the previous chapter, the state of the system in the low density limit should be
described (at the statistical level) by the kinetic density, i.e. by the probability f = f(¢,x, v) of finding
a particle with position x and velocity v at time t.

This density is expected to evolve under both the effects of transport and binary elastic collisions,
which is expressed in the Boltzmann equation (introduced by Boltzmann in [8]-[9]) :

(2.1.1) Wf+v-Vof = Qf. f)
—_——— ——
free transport localized binary collisions

The Boltzmann collision operator, present in the right-hand side of (2.1.1), is the quadratic form,
acting on the velocity variable, associated with the bilinear operator

(2.1.2) QU f) ://[f’f{ P R]b( — v1,w) dvrde
where we have used the standard abbreviations

f:f(v)7 f/:f(vl)7 f{:f(vi)7 flzf(vl)v
with (v',v]) given by
V=vtw (v —v)w, vi=v1—w- (v —v)w.

One can easily show that the quadruple (v, vy, v’,v]) parametrized by w € S‘li_1 (where Sﬁfl denotes
the sphere of radius p in R?) provides the family of all solutions to the system of d 4 1 equations

( ) v+v =0+,

2.1.3
[0 + Jv1|* = o' + v 7

which, at the kinetic level, express the fact that collisions are elastic and thus conserve momentum

V—U1
lv—v1]

and energy. Notice that the transformation (v,v,w) — (v’ LY, ) is an involution.

The Boltzmann collision operator can therefore be split, at least formally, into a gain term and a loss
term (see [13, 46])

QU ) =Q (f,.)) = Q (£, /)

The loss term counts all collisions in which a given particle of velocity v will encounter another particle,
of velocity v1, and thus will change its velocity leading to a loss of particles of velocity v, whereas the
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gain term measures the number of particles of velocity v which are created due to a collision between
particles of velocities v’ and v].

Denote by (w,w) € R x 8¢7! the integrand of (2.1.2). The collision cross-section b = b(w,w), or
collision kernel, is a measurable function positive almost everywhere, which measures the statistical
repartition of post-collisional velocities (v,v1) given the pre-collisional velocities (v’,v]). Its precise
form depends crucially on the nature of the microscopic interactions, and will be discussed in more
details in the sequel. Note that, due to the Galilean invariance of collisions, it only depends on the
magnitude of the relative velocity |w| and on the deviation angle 6, or deflection (scattering) angle,
defined by cos# = k - w where k = w/|w|.

2.2. Boltzmann’s H theorem and irreversibility

From (2.1.3) and using the well-known facts (see [13]) that transforming (v,vi) — (v1,v)
and (v,v1,w) — (v/,v],w) merely induces mappings with unit Jacobian determinants, known as
the pre-post-collisional changes of variables or simply collisional symmetries, one can show that

(2.2.1) [t pedo=0

for all f regular enough, if and only if ¢(v) is a collision invariant, i.e. ¢(v) is a linear combination
of {1,v1,...,v4,|v|*}. Thus, successively multiplying the Boltzmann equation (2.1.1) by the collision
invariants and then integrating in velocity yields formally the local conservation laws

1 v
(2.2.2) 8t/ f v dv+ Vg - fl v®v [dv=0,
R¢ |v[2 R 1o,

which provides the link to a macroscopic description of the gas.

The other very important feature of the Boltzmann equation comes also from the symmetries of the
collision operator. Disregarding integrability issues, we choose ¢ = log f and use the properties of the
logarithm, to find

D(f) =- / QUf. f)log fdv
(2.2.3) )

T /RR b(v = v1,w)(f'f] = f11)log

f'fi
fh

The so-defined entropy dissipation is therefore a nonnegative functional.

dvdvidw > 0.

This leads to Boltzmann’s H theorem, also known as second principle of thermodynamics, stating that
the entropy is (at least formally) a Lyapunov functional for the Boltzmann equation.

(2.2.4) 5}/ flog fdv+ V- / flog fudv < 0.
R4 R4

As to the equation Q(f, f) = 0, it is possible to show that it is only satisfied by the so-called Maxwellian
distributions M, ., ¢, which are defined by

v—ul?
(2.2.5) M, o(v) = —Le= "m0

(276) %
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where p € Ry, u € R? and # € R, are respectively the macroscopic density, bulk velocity and
temperature, under some appropriate choice of units. The relation Q(f, f) = 0 expresses the fact
that collisions are no longer responsible for any variation in the density and so, that the gas has
reached statistical equilibrium. In fact, it is possible to show that if the density f is a Maxwellian
distribution for some p(t, z), u(t,x) and 6(¢,z), then the macroscopic conservation laws (2.2.2) turn
out to constitute the compressible Euler system.

More generally, the H-theorem (2.2.4) together with the conservation laws (2.2.2) constitute the key
elements of the study of hydrodynamic limits.

Remark 2.2.1. — Note that the irreversibility inherent to the Boltzmann dynamics seems at first
sight to contradict the possible existence of a connection with the microscopic dynamics which is re-
versible and satisfies the Poincaré recurrence theorem (while the Boltzmann dynamics predict some
relazation towards equilibrium,).

That irreversibility will actually appear in the limiting process as an arbitrary choice of the time direc-
tion (encoded in the distinction between pre-collisional and post-collisional particles), and more precisely
as an arbitrary choice of the initial time, which is the only time for which one has a complete infor-
mation on the correlations. The point is that the joint probability of having particles of velocity (v',v})
(respectively of velocities (v,v1)) before the collision is assumed to be equal to f(t,z,v") f(t,z,v]) (resp.
to f(t,xz,v)f(t, x,v1)), meaning that particles should be independent before collision.

2.3. The Cauchy problem

Let us first describe briefly the most apparent problems in trying to construct a general, good Cauchy
theory for the Boltzmann equation. In the full, general situation, known a priori estimates for the
Boltzmann equation are only those which are associated with the basic physical laws, namely the
formal conservation of mass and energy, and the bounds on entropy and entropy dissipation. Note
that, when the physical space is unbounded, the dispersive properties of the free transport operator
allow to further expect some control on the moments with respect to z-variables. Yet the Boltzmann
collision integral is a quadratic operator that is purely local in the position and time variables, meaning
that it acts as a convolution in the v variable, but as a pointwise multiplication in the ¢ and x variables :
thus, with the only a priori estimates which seem to hold in full generality, the collision integral is
even not a well-defined distribution with respect to x-variables. This major obstruction is one of the
reasons why the Cauchy problem for the Boltzmann equation is so tricky, another reason being the
intricate nature of the Boltzmann operator.

For the sake of simplicity, we shall consider here only bounded collision cross-sections b. A huge
literature is devoted to the study of more singular cross-sections insofar as the presence of long range
interactions always creates singularities associated to grazing collisions. However, at the present time,
there is no extension of Lanford’s convergence result in this framework.

2.3.1. Short time existence of continuous solutions. — The easiest way to construct local
solutions to the Boltzmann equation is to use a fixed point argument in the space of continuous
functions.
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Remarking that the free transport operator preserves weighted L°° norms
[Finte = vty exp (S1o ) o = [l fin(esv) expl5 )]
in(z —vt,v)exp | v L = I fin(@,v) exp(5 W) e
and that the following continuity property holds for the collision operator

Q. N espB o). < sl 7wy exp( S ).

we get the existence of continuous solutions, the lifespan of which is inversely proportional to the norm
of the initial data.

Theorem 1. — Let fi,, € C°(R? x RY) such that

p
(2.3.1) Hfm exp(§|v|2)HLoo < 400
for some B > 0.

Then, there exists Cg > 0 (depending only B) such that the Boltzmann equation (2.1.1) with initial
data fin has a unique continuous solution on [0,T] with

= CIB *
| fin exp(5102)]]

Note that the weigthed L* norm controls in particular the macroscopic density

p(t,x) = /f(t,:z:,v)dv < CBHf(t,IE,’U) exp(§|v|2)”00 y

therefore the possible concentrations for which the collision process can become very pathological. This
restriction, even coming from a very rough analysis, has therefore a physical meaning.

2.3.2. Fluctuations around some global equilibrium. — Historically the first global existence
result for the spatially inhomogeneous Boltzmann equation is due to S. Ukai [43, 44], who considered
initial data that are fluctuations around a global equilibrium, for instance around the reduced centered
Gaussian M := M o1 with notation (2.2.5):

He proved the global existence of a solution to the Cauchy poblem for (2.1.1) under the assumption
that the initial perturbation g;, is smooth and small enough in a norm that involves derivatives and
weights so as to ensure decay for large v.

The convenient functional space to be considered is indeed

Hew = {9 =g(x,0) / lglle = sup(L + [o]*)|M*2g(-,0) | e < +o00}.

Theorem 2 (|43, 44]). — Let gin, € Hyy for £>d/2 and k > d/2 + 1 such that
(2.3.2) lginller < ao

for some aq sufficiently small.

Then, there ezists a unique global solution f = M(1+ g) with g € L°(R", Hy ) NC(RT, Hy ) to the
Boltzmann equation (2.1.1) with initial data

9jt=0 = YGin -
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Such a global existence result is based on Duhamel’s formula and on Picard fixed point theorem. It
requires a very precise study of the linearized collision operator L), defined by

2
E]Mg = 7MQ(M7 Mg) ;
and more precisely of the semi-group U generated by
v-Ve+ L.

The main disadvantage inherent to that strategy is that one cannot expect to extend such a result to
classes of initial data with less regularity.

2.3.3. Renormalized solutions. — The theory of renormalized solutions goes back to the late 80s
and is due to R. DiPerna and P.-L. Lions [18]. It holds for physically admissible initial data of arbitrary
sizes, but does not yield solutions that are known to solve the Boltzmann equation in the usual weak
sense.

Rather, it gives the existence of a global weak solution to a class of formally equivalent initial-value
problems.

Definition 2.3.1. — A renormalized solution of the Boltzmann equation (2.1.1) relatively to the global
equilibrium M is a function
f e CRY, L, (R x RY))
which satisfies in the sense of distributions
M(8;+v- V)T (Af4> =1 (AJ;) Q(f.f) onRT xR*xR?,
fit=0=fin =0 on R?x R’

for any T € CY(R™T) such that |T"(2)| < C/V/1+ z.

(2.3.3)

With the above definition of renormalized solution relatively to M, the following existence result holds :
Theorem 3 ([18]). — Given any initial data fi, satisfying
(2.3.4) H(fun| M) = // (fm log fﬁ" — fn+ M) (,v) dvdz < 400,

there ezists a renormalized solution f € C(RT,L} (R? x R%) relatively to M to the Boltzmann
equation (2.1.1) with initial data fi,.

Moreover, f satisfies

- the continuity equation

(2.3.5) O / fdv+V, - /fvdv =0;

- the momentum equation with defect measure
(2.3.6) &g/fvdv+Vx~/fv®vdv+Vx~m:()

where m is a Radon measure on RT x RY with values in the nonnegative symmetric matrices;
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- the entropy inequality

t
H(fIM)(t) +/trace(m)(t) +/ /D(f)(s,x)dsdm

(2.3.7) o

where trace(m) is the trace of the nonnegative symmetric matriz m, and the entropy dissipation D(f)

is defined by (2.2.3).

The weak stability of approximate solutions is inherited from the entropy inequality. In order to take
limits in the renormalized Boltzmann equation, we have further to obtain some strong compactness.
The crucial idea here is to use the velocity averaging lemma due to F. Golse, P.-L. Lions, B. Perthame
and R. Sentis [22], stating that the moments in v of the solution to some transport equation are more
regular than the function itself.

Remark 2.3.2. — As we will see, the major weakness of the convergence theorem describing the
Boltzmann equation as the low density limit of large systems of particles is the very short time on
which it holds. Howewver, the present state of the art regarding the Cauchy theory for the Boltzmann
equation makes it very difficult to improve.

Because of the scaling of the microscopic interactions, the conditioning on energy surfaces (see Chap-
ter 6) introduces strong spatial oscillations in the initial data. We therefore do not expect to get
reqularity so that we could take advantage of the perturbative theory of S. Ukai [43, 44]. A coarse
graining argument would be necessary to retrieve spatial regularity on the kinetic distribution, but we
are not aware of any breakthrough in this direction.

As for using the DiPerna-Lions theory [18], the first step would be to understand the counterpart of
renormalization at the level of the microscopic dynamics, which seems to be also a very challenging
problem.



CHAPTER 3

MAIN RESULTS

3.1. Lanford and King’s theorems

The main goal of this monograph is to prove the two following statements. We give here compact, and
somewhat informal, statements of our two main results. Precise statements are given in Chapters 6
and 11 (see Theorem 8 page 47 for the hard-spheres case, and 11 page 85 for the potential case).

The following statement concerns the case of hard spheres dynamics, and the main ideas behind its
proof go back to the fundamental work of Lanford [34].

Theorem 4. — Let fo: R** — Rt be a continuous density of probability such that

B
Hfo(a?,’l)) eXp(E‘Ulz)HLm(de) < 400
for some B > 0.

Consider the system of N hard spheres of diameter €, initially distributed according to fo and “indepen-
dent”, governed by the system (1.0.1)-(1.0.2). Then, in the Boltzmann-Grad limit N — oo, Ne4=1 ~ 1,
its distribution function converges to the solution to the Boltzmann equation (2.1.1) with the cross-
section b(w,w) := (w - w)y and with initial data fo, in the sense of observables.

The next theorem concerns the Hamiltonian case (with a repulsive potential), and important steps of
the proof can be found in the thesis of King [30].

Theorem 5. — Assume that the repulsive potential ® satisfies Assumption 1.2.1 as well as the tech-
nical assumption (8.3.1). Let fo: R?? s R¥ be a continuous density of probability such that

I oexp(5 o)l < oo
for some B > 0.

Consider the system of N particles, initially distributed according to fo and “independent”, governed by
the system (1.2.1). Then, in the Boltzmann-Grad limit N — oo, Ne@~! ~ 1, its distribution function
converges to the solution to the Boltzmann equation (2.1.1) with a bounded cross-section, depending
on ® implicitly, and with initial data fo, in the sense of observables.
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Remark 3.1.1. — Convergence in the sense of observables means that, for any test function ¢
in CO(RY), the corresponding observable

e (t, ) = /fs(t,x,v)cp(v)dv — o(t,x) == /f(t,x,v)ap(v)dv

uniformly in t and x. We indeed recall that the kinetic distribution cannot be measured, only averages
can be reached by physical experiments : this accounts for the terminology “observables”.

In mathematical terms, this means that we establish only weak convergence with respect to the v-
variable. Such a convergence result does not exclude the existence of pathological behaviors, in particular
dynamics obtained by reversing the arrow of time and which are predicted by the (reversible) microscopic
system. We shall only prove that these behaviors have negligible probability in the limit € — 0.

Remark 3.1.2. — The initial independence assumption has to be understood also asymptotically. It
will be discussed with much details in Chapter 6 (see Chapter 11 in the case of a potential): it is
actually related to some coarse-graining arquments which are rather not intuitive at first sight.

For hard spheres, the exclusion obviously prevents independence for fixed e, but we expect to retrieve
this independence as € — 0 if we consider a fized number s of spheres. The question is to deal with an
infinite number of such spheres.

The case of the smooth Hamiltonian system could seem to be simpler insofar as particles can occupy
the whole space. Nevertheless, in order to control the decay at large energies, we need to introduce
some conditioning on energy surfaces, which is very similar to exclusion.

Remark 3.1.3. — The technical assumption (8.3.1) will be made explicit in Chapter 8 : it ensures
that the deviation angle is a suitable parametrization of the collision, and more precisely that we can
retrieve the impact parameter from both the ingoing velocity and the deviation angle. What we will use
is the fact that the jacobian of this change of variables is bounded at least locally.

Such an assumption is not completely compulsory for the proof. We can imagine of splitting the
integration domain in many subdomains where the deviation angle is a good parametrization of the
collision, but then we have to extend the usual definition of the cross-section. The important point is
that the deviation angle cannot be a piecewise constant function of the tmpact parameter.

3.2. Background and references

The problem of asking for a rigorous derivation of the Boltzmann equation from the Hamiltonian
dynamics goes back to Hilbert [27], who suggested to use the Boltzmann equation as an intermediate
step between the Hamiltonian dynamics and fluid mechanics, and who described this axiomatization
of physics as a major challenge for mathematicians of the twentieth century.

We shall not give an exhaustive presentation of the studies that have been carried out on this question
but indicate some of the fundamental landmarks, concerning for most of them the case of hard spheres.
First one should mention N. Bogoliubov [6], M. Born, and H. S. Green [10], J. G. Kirkwood [31] and
J. Yvan [47], who gave their names to the BBGKY hierarchy on the successive marginals, which we
shall be using extensively in this study. H. Grad was able to obtain in [23] a differential equation on
the first marginal which after some manipulations converges towards the Boltzmann equation.
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The first mathematical result on this problem goes back to C. Cercignani [12] and O. Lanford [34] who
proved that the propagation of chaos should be established by a careful study of trajectories of a hard
spheres system, and who exhibited — for the first time — the origin of irreversibility. The proof, even
though incomplete, is therefore an important breakthrough. The limits of their methods, on which
we will comment later on — especially regarding the short time of convergence — are still challenging
questions.

The argument of O. Lanford was then revisited and completed in several works. Let us mention
especially the contributions of K. Uchiyama [42], C. Cercignani, R. Illner and M. Pulvirenti [15] and
H. Spohn [40] who introduced a mathematical formalism, in particular for the existence of solutions
to the BBGKY hierarchy which turns out to be a theory in the spirit of the Cauchy-Kowalewskaya
theorem.

The term-by-term convergence of the hierarchy in the Boltzmann-Grad scaling was studied in more
details by C. Cercignani, V. I. Gerasimenko and D. I. Petrina [14] : they provide for the first time
quantative estimates on the set of “pathological trajectories”, i.e. trajectories for which the Boltzmann
equation does not provide a good approximation of the dynamics. What is not completely clear in this
approach is the stability of the estimates under microscopic spatial translations.

The method of proof was then extended

— to the case when the initial distribution is close to vacuum, in which case global in time results may
be proved [15, 28, 29|;

— to the case when interactions are localized but not pointwise [30]. Because multiple collisions are
no longer negligible, this requires a careful study of clusters of particles.

Many review papers deal with those different results, see [19, 38, 46] for instance.

Let us summarize the strategy of the proofs. Their are two main steps:

(i) a short time bound for the series expansion expressing the correlations of the system of N particles
and the corresponding quantities of the Boltzmann equation;
(ii) the term by term convergence.

In the case of hard spheres, point (i) is just a matter of explicit estimates, while point (ii) is usually
considered as almost obvious (but deep). Among experts in the field the hard sphere case is therefore
considered to be completely solved. However, we could not find a proof for the measure zero estimates
(i.e. the control of recollisions) in the litterature. It might be that to experts in the field such an
estimate is easy, but from our point of view it turned out to be quite delicate.

— For the Boltzmann dynamics, it seems to be correct that a zero measure argument allows to control
recollisions inasmuch as particles are pointwise.

— For fixed €, we will see that the set of velocities leading to recollisions (even in the case of three
particles) is small but not zero : this cannot be obtained by a straightforward thickening argument
without any geometrical information on the limiting zero measure set.

— For the microscopic system of N particles, collisional particles are at a distance ¢ from each other,
we thus expect that even “good trajectories” deviate from trajectories associated to the Boltzmann
dynamics. We shall therefore need some stability of “pathological sets” of velocities with respect
to microscopic spatial translations, to be able to iterate the process.
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3.3. New contributions

Our goal here is to provide a self-contained presentation, which includes all the details of the proofs,
especially concerning term-by-term convergence which to our knowledge is not completely written
anywhere, even in the hard-spheres case.

Part II is a review of known results in the case of hard spheres. Following Lanford’s strategy, we shall
establish the starting hierarchy of equations, providing a short time, uniform estimate.

We focus especially on the definition of functional spaces: we shall see that the short time estimate
is obtained as an analytical type result, meaning that we control all correlation functions together. The
functional spaces we consider are in some sense natural from the point of view of statistical physics,
since they involve two parameters $ and u related to the inverse temperature and chemical potential to
control the growth of energy and of the number of particles. Nevertheless, instead of usual L! norms,
we use L* norms, which are needed to control collision integrals (see Remark 2.3.2).

The second point we discuss in details is the notion of independence. As noted in Remark 3.1.2,
for any fixed € > 0, because of the exclusion, particles cannot be independent. In the 2/Nd-dimensional
phase-space, we shall see actually that the Gibbs measure has support on only a very small set. Careful
estimates on the partition function show however that the marginal of order s (for any fixed s) converges
to some tensorized distribution, meaning that independence is recovered at the limit ¢ — 0.

Part III deals with the case of the Hamiltonian system, with a repulsive potential. It basically follows
King’s thesis [30], filling in some gaps.

In the limit ¢ — 0 with Ne?~! = 1, we would like to obtain a kind of homogeneization result : we

want to average the motion over the small scales in ¢ and x, and replace the localized interactions by

pointwise collisions as in the case of hard spheres. We therefore introduce an artificial boundary

(following [30]) so that

— on the exterior domain, the dynamics reduces to free transport,

— on the interior domain, the dynamics can be integrated in order to compute outwards boundary
conditions in terms of the incoming flux. Note that such a scattering operator is relevant only if we
can guarantee that there is no other particle involved in the interaction.

An important point is therefore to control multiple collisions, which - contrary to the case of hard

spheres - could happen for a non zero set of initial data. We however expect that they become negligible

in the Boltzmann-Grad limit (as the probability of finding three particles having approximately the
same position tends to zero). Cluster estimates, based on suitable partitions of the 2N d-dimensional
phase-space and symmetry arguments, give the required asymptotic bound on multiple collisions.

Part IV is the heart of our contribution, where we establish the term-by-term convergence. Note that
the arguments work in the same way in both situations (hard spheres and potential case), up to some
minor technical points due to the fact that, for the V-particle Hamiltonian system, pre-collisional and
post-collisional configurations differ by their velocities but also by their microscopic positions and by
some microscopic shift in time.

However the two main difficulties are exactly the same:
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— describing geometrically the set of “pathological” velocities and deflection angles leading to possible
recollisions, in order to get a quantitative estimate of its measure;
— proving that this set is stable under small translations of positions.

Note that the estimates we establish depend only on the scattering operator, so that we have a rate of
convergence which can be made explicit for instance in the case of hard spheres.

To control the set of recolliding trajectories by means of explicit estimates, we make use of properties of
the cross-section which are not guaranteed a priori for a generic repulsive potential. Assumption (8.3.1)
guarantees that these conditions are satisfied.






PART 11

THE CASE OF HARD SPHERES






CHAPTER 4

MICROSCOPIC DYNAMICS AND BBGKY HIERARCHY

In this chapter we define the N-particle flow for hard spheres (introduced in Chapter 1), and write
down the associated BBGKY hierarchy. Finally we present a formal derivation of the Boltzmann
hierarchy, and the Boltzmann equation of hard spheres. This chapter follows the classical approaches
of [1], [14], [15], [34], among others.

4.1. The N-particle flow

We consider N particles in the space R?, the motion of which is described by N positions (1, ..., 2y)
and N velocities (v1,...,vy), each in R%. Denoting by Zy := (z1,...,2n) the set of particles, each
particle z; 1= (x;,v;) € R?2¢ is submitted to free flow on the domain

Dy = {ZN € R*™ Vi # j, |a; — >5}

and bounces off the boundary 0Dy according to the laws of elastic reflection: if

dx; dv;
Vi<i< N, %:vi, di;:()onDN
(4.1.1) U::n — Ulgmt _ Vi,j . (’Ufut _ ,U;mt) yi,j

vj-” = v;-’”t + b7 (vPut — v;“t) v if 35 #i, e, —xj| =€,

where v/ := (x; — x;)/|z; — x;], and in the case when v - (v/™ —v%") < 0 (meaning that the ingoing
velocities are precollisional).

Contrary to the potential case studied in Part III, it is not obvious to check that (4.1.1) defines a
global dynamics, at least for almost all initial data. Note indeed that this is not a simple consequence
of the Cauchy-Lipschitz theorem since the boundary condition is not smooth, and even not defined for
all configurations. We call pathological a trajectory such that

- either there exists a collision involving more than two particles, or the collision is grazing (meaning

that v - (vin — v%") = 0) hence the boundary condition is not well defined;

- or there are an infinite number of collisions in finite time so the dynamics cannot be globally defined.
In [2, Proposition 4.3], it is stated that outside a negligible set of initial data there are no pathological

trajectories; the complete proof is provided in [1]. Actually the setting of [1] is more complicated than
ours since an infinite number of particles is considered. The arguments of [1] can however be easily
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adapted to our case to yield the following result, whose proof we detail for the convenience of the
reader.

Proposition 4.1.1. — Let N,e be fized. The set of initial configurations leading to a pathological
trajectory is of measure zero in RN

We first prove the following elementary lemma, in which we have used the following notation: for
any s € N* and R > 0, we denote Bf, := {Vi € R, |V;| < R} where |- | is the euclidean norm; we
often write Bg := B}%.

Lemma 4.1.1. — Let p, R > 0 be given, and 6 < /2. Define
I:= {ZN € Bév x BYN / one particle will collide with two others on the time interval [0, 6]} .

Then |I| < C(N, e, R) pHN=2)§2

Proof. — We notice that I is a subset of
{ZN € B,])V x BY /3{i, j, k}distinct, |z; — x;] € [e,e +2RI] and |z; — 21| € [e,6 + 2R5]} )

and the lemma follows directly. O

Proof of Proposition 4.1.1. — Let R > 0 be given and fix some time ¢ > 0. Let 0 < £/2 be a parameter
such that t/4 is an integer.

Lemma 4.1.1 implies that there is a subset Io(d, R) of BN x BY of measure at most C(N, ¢, R) RN =2)§2
such that any initial configuration belonging to (BY x BX)\ In(8, R) generates a solution on [0, §] such
that each particle encounters at most one other particle on [0, §]. Moreover up to removing a measure
zero set of initial data each collision is non-grazing.

Now let us start again at time §. We recall that in the velocity variables, the ball of radius R in R
is stable by the flow, whereas the positions at time ¢ lie in the ball Bg+R6. Let us apply Lemma 4.1.1
again to that new initial configuration space. Since the measure is invariant by the flow, we can
construct a subset I, (8, R) of the initial positions BN x BY, of size C(N, e, R)R*N=2)(1 4 §)4N=2)§2
such that outside Io U I1 (4, R), the flow starting from any initial point in BY x BY is such that each
particle encounters at most one other particle on [0, §], and then at most one other particle on [4, 20],
again in a non-grazing collision. We repeat the procedure ¢/4 times: we construct a subset

t/6—1
Is(t,R) == | J Li(6,R)
j=0

of Bg X Bg7 of measure

t/6-1
[5(t. R)| < C(N, e, R)RIN=252 3 7 (14 j6)"N 2
§=0
< C(Na R7t75)57
such that for any initial configuration in BY x BY outside that set, the flow is well-defined up to time ¢.
The intersection I(t, R) := m I5(t, R) is of measure zero, and any initial configuration in BY x BY
6>0

outside I(t, R) generates a well-defined flow until time ¢. Finally we consider the countable union of
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those zero measure sets [ := U I(t,, R,) where t,, and R,, go to infinity, and any initial configuration
n

in R2?N outside I generates a globally defined flow. The proposition is proved. O

4.2. The Liouville equation and the BBGKY hierarchy

According to Part I, Paragraph 1.1, the Liouville equation relative to the particle system (4.1.1) is

N
(4.2.1) Ofn+Y vi-Ve fy=0 in Ry xDy

i=1
with the boundary condition fy (¢, Z%) = fn(t, Z§*"). We recall the assumption that fx is invariant

by permutation in the sense of (1.1.1), meaning that the particles are indistinguishable.

The classical strategy to obtain asymptotically a kinetic equation such as (2.1.1) is to write the evolution
equation for the first marginal of the distribution function fx, namely

](Vl)(t, 21) = / f]\](t,z’l7 2y ey ZN)HZNEDN dZQ e dZN .
R24(N-1)

The point to be noted is that the evolution of fj(vl) depends actually on fz(v2 ) because of the quadratic
interaction imposed by the boundary condition. And in the same way, the equation on f](\? ) depends

on f](\? ). Tnstead of a kinetic equation, we therefore obtain a hierarchy of equations involving all the
marginals of fy

(4.2.2) ](\f)@, Zs> = / fN(t,ZsaZs+17~--aZN>IlZNEDN dZS+1'~'dZN.
R2d(N—s)
Notice that fl(vs) (t,Zs) is defined on D only, and that
(4.2.3) )1, 7,) = / S 2 ze) dei
R2ad

Finally by integration of the boundary condition on fy we find that f](\f)(t, Zn) = J(\‘;)(t, Zo%). An
equation for the marginals is derived in weak form in Section 4.3, and from that equation we derive
formally the Boltzmann hierarchy in the Boltzmann-Grad limit (see Section 4.4).

4.3. Weak formulation of Liouville’s equation

Our goal in this section is to find the weak formulation of the system of equations satisfied by the

family of marginals ( ](\}9) defined above in (4.2.2). From now on we assume that fy decays at

) 1<s<N
infinity in the velocity variable (the functional setting will be made precise in Chapter 5).

Given a smooth, compactly supported function ¢ defined on Ry x Dy and satisfying the symmetry
assumption (1.1.1) as well as the boundary condition ¢(t, Z") = ¢(t, Z2*), we have

N
(4.3.1) / (Ofx + 3 01 Vo f) 6t Z) Uy ey dZndt = 0.
R, xR24N =
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We now use integrations by parts to derive from (4.3.1) the weak form of the equation in the
marginals f ](\f ). On the one hand an integration by parts in the time variable gives

/ O fn(t, ZN)o(t, Zs) U zyepy dZndt = —/ In(0,ZNn)p(0, Z ) zyepy dZN
Ry xR24N R2dN
—/ N, ZN)0ep(t, Zs) L 7y ey dZNdE,
R, xR2dN

hence, by definition of f](\f) in (4.2.2),

/ Ouf (t, Zn)(t, Z) L gy epy dZndt = — $0,2)9(0, Z,) dz,
R xR24N R2ds

—/ (1, 2)0rd(t, Zs) dZqdt .
R+><R2d5

Now let us compute

N
Z/ Vi - Va, [N (t, ZN)D(t, Zs) L zyepy dZn = / divxy (Vv fn(t, Zn))6(t, Zs) L zyeny dZn
‘ R2dN R2dN
using Green’s formula. The boundary terms involve configurations with at least one pair (4,j) sat-
isfying |z; — x;| = €. According to Paragraph 4.1 we may neglect configurations where more than
two particles collide at the same time, so the boundary condition is well defined. For any 7 and j
in {1,..., N} we denote

EN(i,j) = {XN € ].:{QdN7 Il‘i —l‘jl = 6},

and n®J is the outward normal to Xy (i, j) in R4, We obtain by Green’s formula:

N

/ 24N Vi vxifN(tv ZN)¢(t7 ZS)I]‘ZNEDN dZy dt
i=1 R+ xR

= - Z/ fN(t7 ZN)UZ' : vxqjd)(t? Zs)]lZNEDN dZydt
R, xR2dN

i=1

- n'd Vv fn(t Zn)d(t, Zs) doy dVivdt,

1§Z¢j§N /1:{.+ XRdNXEN(i,j)

with daj\’,j the surface measure on Xy (i, 5), induced by the Lebesgue measure. Now we split the last
term into four parts:

/ n" -V fn(t, ZN)o(t, Zs) da%jdVth
1<i£j<N Y Bt xRN XT (4,5)
i=1 j= 5+1 R+><RdNXZN(m)
5> / n' Vi fo(t, Zn)(t, Z,) do dVivd
i=s+1j=1 R xRAIN XX N (4,7)
DI n' Vi fo(t Zn)(t, Z,) do dVivd
1<iZj<s? R XRIN XD N (i,5)

+ ) / n - Vi fn(t, Zn)6(t, Zs) dotl dVivdt .
s+1<izj<N 7 Rt XRIN XX N (i,5)
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The boundary condition on fy and ¢ imply that the two last terms of on the right-hand side are zero.
By symmetry (1.1.1) and by definition of f](\}q), we can write

;jil

i=s+1 j=1

/ - Vy fx(t Zx)(t, Zo) do'd dVidt
R+ x RAN XEN(i,j)

/ n -V fn(t, Zn)o(t, Zs) do’? dVidt
R.+ x R4N XEN(i,j)

S

= —(N —s)ed! Z/ w - (Vg1 — v;) f\fﬂ)(t, Zs,xi + ew,v541)0(t, Zs) dZsdwdvsy1dt .

i1 YR xS¢TIxRdxR2ds

Finally we obtain

N
>/ 0 VoI (8, Z8)6(t Z) Uz emy dZ dt
R.+ xR2dN

i=1

- _Z/R R2d ](VS)(ta Zs)v; -V, d(t, Zs) dZsdt
i=1 +XR=ee

- (N *sk“Z/ it e (Ut T V) N Zos i + 2w, 0001) (L, Z2) dZodwdvgydt
i—1 YR+ XS] xRIxR2%s

It remains to define the collision operator

Cs,s f(s+1) t,Zs =—(N —s Ed_l / w - (v —v;
(4.3.2) (Cornt i) 2 1= (N =0 | (er =)

](\};H)(L Zs, T + ew, Vs41)dwdvg 11 ,

where recall that S‘ffl is the unit sphere of R?, and in the end we obtain the weak formulation of the
BBGKY hierarchy

(4.3.3) 0SS+ N 0 Vo /Y = Corn STV i Ry x Dy,

1<i<s
with the boundary conditions f{ (¢, Zi") = £ (t, Zout).

In the integrand of the collision operators Cs 541 defined in (4.3.2), we now distinguish between pre-
and post-collisional configurations, as we decompose

_ ot -
CS,SJrl - Cs,erl - Cs,erl

where

S

(4.3.4) C§s+1f(s+1) — ZC:j—&-lJC(SJﬂ)

i=1
the index i referring to the index of the interaction particle among the s “fixed” particles, with the
notation

(C:éz_lf(s+1))(Zs) = (N - S)Ed_l /d 1 d(w (Vsg1 — Ui)):tf(s+1)(ZS7$i +ew, vsy1) dwdvg 1,
ST xR

the index + corresponding to post-collisional configurations and the index — to pre-collisional config-
urations.
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Denote by ¥ (t) the s-particle flow associated with the hard-spheres system, and by T the associated
solution operator:

(4.3.5) Ts(t) : fe CO(DS§R) = f(Ps(—t,)) € CO(DS§ R).
The time-integrated form of equation (4.3.3) is

(4.3.6) 19 2,) = T 150, 2,) / Tyt = 7)Corner /3 (7, Z)

The total flow and total collision operators T and Cy are defined on finite sequences Gy = (gs)1<s<n
as follows:

(4.3.7) {Vs <N, (T(H)GN), = Ts(t)gs

VSSNfl, (CNGN)S ::Cs,s+1gs+17 (CNGN)N:: 0
We finally define mild solutions to the BBGKY hierarchy (4.3.6) to be solutions of

(4.3.8) Fy (1) :T(t)FN(O)—i-/O T(t—7)CnFn(r)dr,  Fn=(f$)1<s<n -

4.4. The Boltzmann hierarchy and the Boltzmann equation

Starting from (4.3.8) we now consider the limit N — oo under the Boltzmann-Grad scaling Ne4=1 =1,
in order to derive formally the expected form of the Boltzmann hierarchy.

Because of the scaling assumption Ne9~! = 1, the collision term Cy cy1f+1(Z,) is approximately
equal to
1
Z/d 1, (Vs+1 — v3) ](\}q+ )(Z&xi + Ew, Vs41) dwdvs g
S

which we may split into two terms, depending on the sign of w - (vs11 — v;), as in (4.3.4):

Z/ (Us41 — vz)) ](VSH)(ZS7 Z; + ew, Vsy1) dwdvgiq
sd-1x 4

- Z (Vs41 — V4 )) ](\fﬂ)(Zs, x; + ew, Vsy1) dwdvgq
sd 1><Rd —_

Recall that pre-collisional particles are particles (x;,v;) and (zs11,vs1+1) whose distance is decreasing
up to collision time, meaning that for which

($3+1 — Jii) . (US+1 — 'Ui) <0.
With the above notation this means that
w- (V41 — ;) <0.
On the contrary the case when w - (vs41 — v;) > 0 is called the post-collisional case; we recall that
grazing collisions, satisyfing w - (vs4+1 — v;) = 0 can be neglected (see Paragraph 4.1 above).
Consider a set of particles Zs11 = (Zs,x; + ew, vsy1) such that (z;,v;) and (x; + ew,vs41) are post-
collisional. We recall the boundary condition

f](\?Jrl)(taZSuxi +ew,v5q1) = (Hl)(t Z5, i +ew, vl )
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where Z7 = (21,...,2],... %) and (v}, v} ) is the pre-image of (v;,vs41) by (4.1.1):

3
v =0 —we (v — Ve w
(4.4.1) X v C
Vipp = Vst + W (Vi — Usp1) W
while zj := x;. In the following writing also x%,, := z,41 we shall use the notation
(4.4.2) o(z7,2541) = (Zis Zs41) -

Then neglecting the small spatial translations in the arguments of fp D and using the fact thatf f (s+1)
is right-continuous for all s we obtain the following asymptotic expression for the collision operator at
the limit:

eI, Z,) Z/ (vss1 — i)

1 1
X (f(s+ )(t,LUl,Ul,...,iL’i,U;-k,...7‘TS7’US,£C7;,U:+1) - f(s+ )(t, Zs’xi’v5+1))devs+1 .

The asymptotic dynamics are therefore governed by the following integral form of the Boltzmann
hierarchy:

t
(4.4.4) £ =8.0F7 + [ 8.t =)/ () e

where S;(t) denotes the s-particle free-flow.

(4.4.3)

Similarly to (4.3.7), we can define the total Boltzmann flow and collision operators S and C as follows:
Vs >1, (S(t)G), :=Ss(t)ys,
Vs > 1, (C}OCTV)g = Cg’5+1gs+1 )

so that mild solutions to the Boltzmann hierarchy (4.4.4) are solutions of

(4.4.6) F(t) = S(t)F(0) + / t S(t—7)COF(r)dr,  F=(f)ys
0

(4.4.5)

Note that if f(*)(t, Z,) H f(t,z) (meaning f(*)(t) is tensorized) then f satisfies the Boltzmann

equation (2.1.1)-(2.1.2), Where the cross-section is b(w,w) := (w - w)+.






CHAPTER 5

UNIFORM A PRIORI ESTIMATES FOR THE BBGKY AND
BOLTZMANN HIERARCHIES

This chapter is devoted to the statement and proof of uniform a priori estimates for mild solutions to
the BBGKY hierarchy, defined in (4.3.8), which we reproduce here:

t
(5.0.1) Fy(t) = T(t)Fy(0) +/ T(t — 7)CnFn(r)dr,  Fy=(f)1<ocn,
0
as well as for the limit Boltzmann hierarchy defined in (4.4.6)
t
(5.0.2) F(t) = S(t)F(0) +/ S(t—7)COF(r)dr,  F=(f®)s1.
0

Those results are obtained in Paragraphs 5.2 and 5.3 by use of a Cauchy-Kowalevskaya type argument
in some adequate function spaces defined in Paragraph 5.1.

5.1. Functional spaces and statement of the results

In order to obtain uniform a priori bounds for mild solutions to the BBGKY hierarchy, we need to
introduce some norms on the space of sequences (g(s))szl. Given € > 0, 5 > 0, an integer s > 1, and
a continuous function g, : Dy — R, we let

(5.1.1) 19508 = sup (|gs(Zs) exp (BEo(Zy)))

s s

where Ej is the free Hamiltonian:

(5.1.2) Eo(Zy) =

Note that the dependence on e of the norm is through the constraint Z;, € Ds. We also define, for a
continuous function g, : R?*¥ — R,
(5.1.3) \Qs\o,s,ﬁ ‘= sup (‘QS(ZSHGXP (ﬁEO(Zs))) y
ZSGRZ(IS
Definition 5.1.1. — For e > 0 and 8 > 0, we denote X. s g the Banach space of continuous func-

tions Ds — R with finite | - |c.s,5 norm, and similarly Xo s p is the Banach space of continuous
functions R?¥* — R with finite | - |o.s 5 norm.
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For sequences of continuous functions G = (gs)s>1, with gs : Ds — R, we let for ¢ > 0, 8 > 0,
and p € R,

1G e n 1= 50D (194 ]e.0.8 exp(us) ) -
s>1
We define similarly for G = (g;)s>1, with g; : R*¥* — R,
1G5, = 5D (Igso.5,5 exp(u))
s>1

Definition 5.1.2. — Fore >0, >0, and pn € R, we denote X. g, the Banach space of sequences
of functions G = (gs)s>1, with gs € X. 5 5 and |G|z, < 0.

The following inclusions hold:
(5.1.4) if / < and p’ <p,then X.,p CXcsp, Xepuw CXegyp-

Remark 5.1.3. — These norms are rather classical in statistical physics (up to replacing the L
norm by an L' norm) , where probability measures are called “ensembles”.

At the canonical level, the ensemble Ilzsepse_'BEO(Zs)dZs is a normalization of the Lebesque measure,
where 3 ~ 071 (and 0 is the absolute temperature) specifies fluctuations of energy. The Boltzmann-
Gibbs principle states that the average value of any quantity in the canonical ensemble is its equilibrium
value at temperature 6.

The micro-canonical level consists in restrictions of the ensemble to energy surfaces.

At the grand-canonical level the number of particles may vary, with variations indexed by chemical
potential p € R.

Existence and uniqueness for (5.0.1) comes from the theory of linear transport equations which provides
a unique, global solution to the Liouville equation (4.2.1). Nevertheless, in order to obtain a similar
result for the limiting hierarchy (5.0.2), we need to obtain uniform a priori estimates with respect
to N, on the marginals fj(\f) for any fixed s. We shall thus deal with both systems (5.0.1) and (5.0.2)
simultaneously, using analytical-type techniques which will provide short-time existence in the spaces
of X, g ,-valued functions of time (resp. X ). Actually the parameters 8 and p will themselves
depend on time: in the sequel we choose for simplicity a linear dependence in time, though other,
decreasing functions of time could be chosen just as well. Such a time dependence on the parameters
of the function spaces is a situation which occurs whenever continuity estimates involve a loss, which
is the case here since the continuity estimates on the collision operators lead to a deterioration in the
parameters [ and u. We refer to Section 5.4 for some comments.

Definition 5.1.4. — Given T > 0, a positive function 3 and a real valued function p defined on [0, T
we denote X. g, the space of functions G : t € [0,T] = G(t) = (gs(t))1<s € X g(t),u(t)» such that for
all Z, € R** the map t € [0,T] — gs(t, Zs) is measurable, and

(5.1.5) IGle.8,u == sup [IG(t)
0<t<T

le,8(t) () < 00

We define similarly
[1Gllo.8.u := sup [[G(E)llo,6t).p(t) -
0<t<T

We shall prove the following uniform bounds for the BBGKY hierarchy.
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Theorem 6 (Uniform estimates for the BBGKY hierarchy). — Let 8y > 0 and po € R be
given. There is a time T > 0 as well as two nonincreasing functions B > 0 and p defined on [0,T],

satisfying B(0) = Bo and pu(0) = po, such that in the Boltzmann-Grad scaling Ne?~t = 1, any family

of initial marginals Fn(0) = ( ](\}q)(O))1<S<N in Xe gy,uo gives rise to a unique solution Fy(t) =

(fl(\f) (t))1<s<n in Xc g, to the BBGKY hierarchy (5.0.1) satisfying the following bound:

N8, < 201 EN (0)l<, 80,110 -

This is a uniform existence result, in the sense that the existence time T does not depend on the
number of particles N, which of course is crucial in the perspective of the limit N — oco. Note that
actually the only assumption made is on bounds on the initial family of marginals.

Remark 5.1.5. — The proof of Theorem 6 provides a lower bound of the time T on which one has a
uniform bound, in terms of the initial parameters By, po and the dimension d: one finds
d+1

(5.1.6) T > Cye(1+ 62)"" max Be P (Bo — B)F,
B€[0,80]

where Cy is a constant depending only on d.

d+1 a+1

In particular if d < By, there holds ﬁn%a%( | Be_ﬁ(ﬂo —-B8)=F =05,° (1 + 0(1))7 hence an existence time
€10,50

of the order of 6“053/2.

The proof of Theorem 6 uses neither the fact that the BBGKY hierarchy is closed by the transport
equation satisfied by fy, nor possible cancellations of the collision operators. It only relies on crude
estimates and in particular the limiting hierarchy satisfies the same result, proved similarly.

Theorem 7 (Existence for the Boltzmann hierarchy). — Let 8y > 0 and po € R be given.
There is a time T > 0 as well as two nonincreasing functions 3 > 0 and p defined on [0,T], satisfy-
ing B(0) = By and pu(0) = po, such that any family of initial marginals F(0) = (f©) (O))s>1 in Xo, 8,0

gives rise to a unique solution F(t) = (f*)(t))s>1 in Xo,g, to the Boltzmann hierarchy (5.0.2), satis-
fying the following bound:

110,38, < 2[[F(0)]

0,80,p0

5.2. Main steps of the proofs

The proofs of Theorems 6 and 7 are typical of analytical-type results, such as the classical Cauchy-
Kowalevskaya theorem. We follow here Ukai’s approach [45], which turns out to be remarkably short
and self-contained.

Let us give the main steps of the proof: we start by noting that the conservation of energy for the s-
particle flow is reflected in identities

ITs(t)gsle,s,8 = 19sle,s,5 and | T#)GN |z = IGN e s
Ss(t)g0.sl0,s,8 = [9slos,p and [|S()Gollo,s. = [|Gollo,su »

(5.2.1)

for all parameters 8 > 0, p € R, and for all gs € X. 53, go,s € Xo,s.8, GN = (9s)1<s<n € Xe .,
Go = (g0,s)s>1 € Xo,8,u, and all t > 0. Next assume that in the Boltzmann-Grad scaling Ned=1 =1,
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there holds the bound

t
1
(5.2.2) vo<e<e, || / Tt - )CxGx()dr]| | < S lONIlepn

&,B;p

for some functions B and p as in the statement of Theorem 6. Under (5.2.2), the linear operator

t
£: Gy EXsﬂ,p, — (t'—>/ T(t—T)CNGN(T)dT) EXE,ﬁ”
0

is linear continuous from X, g, to itself with norm strictly smaller than one. In particular, the
operator Id — £ is invertible in the Banach algebra L£(X. g ,). Next given Fn(0) € X gy.u0, DY
conservation of energy (5.2.1), inclusions (5.1.4) and decay of B and w, there holds

(t— Tt)Fn(0)) € Xegp-

Hence, there exists a unique solution Fy € X, g, to (Id — £)Fy = T(-)Fn(0), an equation which is
equivalent to (5.0.1).

The reasoning is identical for Theorem 7, replacing (5.2.2) by

(5:23) I/ tS(t—r)COG(ﬂdr\Hm 5 IGllo8.-

The next section is devoted to the proofs of (5.2.2) and (5.2.3).

5.3. Continuity estimates

In order to prove (5.2.2) and (5.2.3), we first establish bounds, in the above defined functional spaces,
for the collision operators defined in (4.3.2) and (4.4.3), and for the total collision operators. In Cs 541,
the sum in ¢ over [1, s] will imply a loss in u, while the linear velocity factor will imply a loss in 5. The
losses are materialized in (5.3.2) below by inequalities 5’ < 8, ¢/ < .

The next statement concerns the BBGKY collision operator.

Proposition 5.3.1. — Given > 0 and pn € R, for 1 < s < N — 1, the collision operator Cs si1

satisfies the bound, for all Gn = (gs)1<s<n € Xe g, in the Boltzmann-Grad scaling Ned—l=1,
(53.1) Coss1g01(Z,)| < CaB (5873 + 3 Juil e P20l
1<:i<s

for some Cyq > 0 depending only on d.

Moreover for all 0 < 8’ < 8 and i’ < u, the total collision operator C satisfies the bound

1
+ H)HGNHE,B,M

1 1
(5.3.2) ICN G e < Call +575) (5=
in the Boltzmann-Grad scaling Ne=' = 1.

Estimate (5.3.2), a continuity estimate with loss for the total collision operator Cy, is not directly
used in the following. In the existence proof, we use instead the pointwise bound (5.3.1). Note that
the more abstract (and therefore more complicated in our particular setting) approach of L. Nirenberg
[35] and T. Nishida [36] would require the loss estimate (5.3.2).
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Proof. — Recall that as in (4.3.2),
( B Hlf(sﬂ )(t, Zs) :=—(N —s) Z/ w- (Vsy1 — v;) f](\erl)(t7 Zs, i + ew, vsq1)dwdvgyy .
- Si"1xR4

Estimating each term in the sum separately, regardless of possible cancellations between “gain” and
“loss” terms, it is obvious that
€,5+1,3 Z Li(Vs)

1<i<s

|Co 5419541 (Zs)| < rge® 1 (N — 5)

where 4 is the volume of the unit ball of R¢, and where
s+1

B 2
I;(Vs) ::/ [vs1| 4+ |vil)exp [ — = ) |v|? )dvsyq -
Rd( + ) ( 2 ]:Zl J ) +
Since a direct calculation gives
L) < Capt () ep (=5 37 yl?).,
1<j<s

the result (5.3.1) is deduced directly in the Boltzmann-Grad scaling Ne?—! = 1.

We turn to the proof of (5.3.2). From the pointwise inequality (due to Cauchy-Schwarz)

(5.3.3) Z |vi|exp( (v/2) Z ;] ) <32 (ey)~ 1/27 v>0,

1<i<s 1<5<s

we deduce for the above velocity integral I;(Vy) the bound, for 0 < 5/ < 8,

> exp ((6//2) > Ivj|2) V) < Caf3(sp % +s3(B—p)%).

1<i<s 1<5<s
Since
sup (5573 + 125 = )78 00) < e ) (ETE R D) e B - )
1<s<N
we find (5.3.2). Proposition 5.3.1 is proved. 0

A similar result holds for the limiting collision operator.

Proposition 5.3.2. — Given 8 > 0, u € R, the collision operator Cg’sﬂ satisfies the following bound,
for all gs4+1 € Xo,s+1,8
1 —
(534) |CS 3+1gs+1( )| < Cdﬁ ( T2 4 Z |Uz' ) BEo ZS)|gs+1|O s+1,8
1<i<s

for some Cq > 0 depending only on d.

Proof. — There holds

1€ sr19541(Z Z / |Us+1| + [vil) (1951 (0 w5 D]+ 19541 (Vi vo11)] ) dwdvg g1,
1<i<s SIIxR
omitting most of the arguments of g, in the integrand. By definition of || 5,3 norms and conservation
of energy (5.2.1), there holds

|9s1 (V] V3 )]+ 1gst1 (Vi veg1)| < (e7 PP 4 e PEOZ g g 5
= 2¢~FF0(Z:) ‘gs+1|0 s+1,85
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where Z; is identical to Z; except for v; and v,41 changed to v and U:+1~ This gives
|Cs s+lgs+1( )| < Cd|gs+1|() s+1,8€ —BEo(Zs) Z I
1<i<s

borrowing notation from the proof of Proposition 5.3.1, and we conclude as above. O
Propositions 5.3.1 and 5.3.2 are the key to the proof of (5.2.2) and (5.2.3). Let us first prove a continuity
estimate based on Proposition 5.3.1, which implies directly (5.2.2).

Lemma 5.3.1. — Let By > 0 and pg € R be given. For all A > 0 and t > 0 such that At < By, there
holds the bound

t
(5.3.5) 0020 [T (¢ = e (r) dr
0

for all Gn = (gs+1)1<s<n € Xeg,u, with €(Bo, po, A, T) computed explicitly in (5.3.11) below. In
particular there is T > 0 depending only on By and pg such that for an appropriate choice of A
n (0,80/T), there holds for all t € [0,T]

< &(Bo, o, A\, T)|| G|

€,5,80—A

|s,ﬁ,ua

t
_ 1
(5.3.6) 00| (R (1= g () dr < 5 NGNlep-
0

€,8,00—At

Proof. — Let us define, for all A > 0 and ¢ > 0 such that A\t < 3y, the functions
(5.3.7) By(t) :=Bo— At and pd(t) := o — M.
By conservation of energy (5.2.1), there holds the bound

t t
‘/ Tt —7)Cs 5419541 () dT sup / B0 (W Eo(Z)
0

€,8.65(t)  z,er2as Jo
Estimate (5.3.1) from Proposition 5.3.1 gives

A
6[30

s.s+19s+1(T, Zs)| dr .

s,5+19s+1 (T, Zs)‘
_d
< Cq (B3(7)) 2|gs+1(7)|g,s+1,ﬁg(r)< (B3 (r) "% + Z v |>€’\(T O Eo(Zs) |

1<i<s

By definition of norms || - ||z ,, and || - ||¢,8,. We have

—(s o
‘gs+1(7—)|5,5+1,53‘(7) <e (s Lo € )||GN(T)||6,,33‘(T),/,L8‘(T)

(5.3.8) A
< e DG |lepe -

The above bounds yield, since 5()\ and M())‘ are nonincreasing,

suo t)‘ / t — T)Cs S+1gs+1( )dT

€,s,8 (t)

_d
< CullGnlleppe @ (BNT)) ¢ sup / C(r.t.2,)
Z ERZdS

where, for 7 < t,

(5.3.9) O(r,t,Z,) == ( (BYM(7)"% + Z |vi|)eA(T—t)(s+Eo(Zs)).
1<i<s
Since
t C, N o
(5.3.10) sup [ C(r,t,Z,)dr < 7(1 +(B(T)) )
ZseR?ds JO
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there holds finally

t
esué(t)‘/ T(t — 7)Cs,s4195+1(7) dT
0

where, with a possible change of the constant Cy,

< C ) )A7T G )
oy < B0 1o A TICN |

(5.3.11) &(Bos Hos M T) = Cae " A=Y (B(T)) 2 (1+ (ﬁgm)—%) .
The result (5.3.5) follows. To deduce (5.3.6) we need to find T' > 0 and A > 0 such that \T' < By and
(5.3.12) Cull+ (By — XT)~4)e=ho+XT (8 _ xT)~% — g
With 8 := AT € (0, fp), condition (5.3.12) becomes
T = Cyeto Be=b (Bo — ﬁ)%l
1+ (Bo—B)2

d+1

1

> Cae (14 5¢) " Be ™ (Bo = B) =,
up to changing the constant Cy and (5.3.6) follows. Notice that (5.1.6) is a consequence of this
computation. O

The proof of the corresponding result (5.2.3) for the Boltzmann hierarchy is identical, since the esti-

mates for C? ., and C; o1 are essentially identical (compare estimate (5.3.1) from Proposition 5.3.1
with estimate (5.3.4) from Proposition 5.3.2).

5.4. Some remarks on the strategy of proof

The key in the proof of (5.2.2) is not to apply Minkowski’s integral inequality, which would indeed
lead here to

t t
T(t—7)CnGn(T)dT §/ CyG TH dr,
H/o E=m)CNOND ]| sy = Sy TOVEYO s 0

by (5.2.1), and then to a divergent integral of the type
t
1 1
< C(BNT), (T /( n )dT
B el A e s T R T
The difference is that by Minkowski the upper bound appears as the time integral of a supremum in s,
while in the proof of (5.2.2), the upper bound is a supremum in s of a time integral.

H /OtT(t—T)cNGN(T) dr

As pointed out in Section 5.1, other proofs of Theorems 6 and 7 can be devised, using tools inspired by
the proof of the Cauchy-Kowalevskaya theorem: we recall for instance the approaches of [35] and [36],
as well as [34] and [30].






CHAPTER 6

STATEMENT OF THE CONVERGENCE RESULT

We state here our first main result, describing convergence of mild solutions to the BBGKY hier-
archy (4.3.6) to mild solutions of the Boltzmann hierarchy (4.4.4). This result implies in particular
Theorem 5 stated in the Introduction page 17.

The first part of this chapter is devoted to a precise description of Boltzmann initial data which are ad-
miassible, i.e., which can be obtained as the limit of BBGKY initial data satisfying the required uniform
bounds. This involves discussing the notion of “quasi-independence” mentioned in the Introduction,
via a conditioning of the initial data. Then we state the main convergence result (Theorem 8 page 47)
and sketch the main steps of its proof.

6.1. Quasi-independence

In this paragraph we discuss the notion of “quasi-independent” initial data. We first define admis-
sible Boltzmann initial data, meaning data which can be reached from BBGKY initial data (which
are bounded families of marginals) by a limiting procedure, and then show how to “condition” the
initial BBGKY initial data so as to converge towards admissible Boltzmann initial data. Finally we
characterize admissible Boltzmann initial data.

6.1.1. Admissible Boltzmann data. — In the following we denote
Qs :={Z, €R*® Vi#j, u; #x;}.

Definition 6.1.1 (Admissible Boltzmann data). — Admissible Boltzmann data are defined as
families Fy = (fés))szl, with each fés) nonnegative, integrable and continuous over s, such that

(6.1.1) Ft(Z, 21) dzen = £$9(20),

R2d

and which are limits of BBGKY initial data Fy y = (fé,sj)v)lgsgN € X: 8o, 0 the following sense:
for some Fy N satisfying

(6.1.2) ]svu>p1 | Fo,nle,80,m0 < 00, for some fo >0, up € R, as Ned—1=1,
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for each given s € [1, N|, the marginal of order s defined by

(6.1.3) (20 = / Uzyepn foN (Zn)dzsin .. .dzy, 1<s<N,
R2d(N—s)
converges in the Boltzmann-Grad limit:

(6.1.4) ésj)\, — fés) as N — oo with Ne@=1 =1, locally uniformly in Q.

In this section we shall prove the following result.

Proposition 6.1.1. — The set of admissible Boltzmann data, in the sense of Definition 6.1.1, is the
set of families of marginals Fyy as in (6.1.1) satisfying a uniform bound ||Fyl|o,8,,u, < 00 for some o > 0
and 1o € R.

6.1.2. Conditioning. — We first consider “chaotic” configurations, corresponding to tensorized
initial measures, or initial densities which are products of one-particle distributions:
(6.1.5) *(Z) =[] folz), 1<s<N,

1<i<s

where fj is nonnegative, normalized, and belongs to some X ,, g, space (see Definition 5.1.1 page 33):

(6.1.6) fo>0, fo(x)dz=1, fo€ Xopu,8, forsomepfy>0,u €R.
RQd

Such initial data are particularly meaningful insofar as they will produce the Boltzmann equa-
tion (2.1.1), and we shall show in Proposition 6.1.2 that they are admissible.

We then consider the initial data 1z, ep, fggN (Zn), and the property of normalization is preserved
by introduction of the partition function

(6.1.7) Zy :z/ Lzyenyfo ™ (Zn)dZy -
R2dl\7

Conditioned datum built on fo is then defined as Z5 1z epy f& (Zn). This operation is called con-
ditioning on energy surfaces, and is a classical tool in statistical mechanics (see [20, 32, 33] for
instance).

The partition function defined in (6.1.7) satisfies the next result, which will be useful in the following.
Lemma 6.1.2. — Given fq satisfying (6.1.6), there holds for 1 < s < N the bound

1< 23" Zn_s < (1 —ekalfolperr)
in the scaling Ne9™' = 1, where | fo|pr1 denotes the L=®(RZ, LY(RY)) norm of fo, and rq denotes
the volume of the unit ball in R,

Proof. — We have by definition

S
s+1
Zoy1 = / llzseDs(H ]1|x,-—a:5+1|>s) f?( T (Zoy1) dZoys -
R2d(s+1)

=1

By Fubini, we deduce

Zst1 :/ / ( H ]]-\xi—acs+1\>s>fO(Zs+1)dZs+1 ILZSGDSf(?S(Zs)dZs~
R2ds R24d

1<i<s
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Since

Lo CTT S ooz 2 folles = masel ol
R

1<i<s
we deduce from the above, by nonnegativity of f$* and the fact that ||fo||z: = 1 the lower bound
Zoi1 > Z4(1— Kase| folpoer)

implying by induction

N-1

ZN > ZN—s H (1 — jekalfolperr) = Zn—s (1 — ekl folporr)”,
j=N-—s
where we used s < N and the scaling Ne?~! = 1. That proves the lemma. O
6.1.3. Characterization of admissible Boltzmann initial data. — The aim of this paragaph

is to prove Proposition 6.1.1.

Let us start by proving the following statement, which provides examples of admissible Boltzmann
initial data, in terms of tensor products.

Proposition 6.1.2. — Given fy satisfying (6.1.6), the data Fy = (f§*)s>1 is admissible in the sense
of Definition 6.1.1.

Proof. — Let us define, with notation (6.1.7),

N —
O(,N) = ZNlﬂZNEDN]%@N(ZN)

and let Fy v := ( éf])\,)SSN be the set of its marginals. In a first step we prove they satisfy uniform

bounds as in (6.1.2). In a second step, we prove the local uniform convergence to zero of fésj)\, — 685
in £, as in (6.1.3).

First step. We have clearly

12 SZJQlllzsepsf(?s(Zs)/ I Bease II o) dZiin,
R2d(N—s) s+1<i<j<N s+1<i<N

where we have used the notation
dZ(s-‘,—l,N) = dZS+1 N dZN .

This gives

Jon(Z:) < 231 2n -z, e, 15 (Z0)

< (1= eralfolperr) “Lz,en, [&°(Zs)

the second inequality by Lemma 6.1.2.
By 2z +In(1 — ) > 0 for = € [0,1/2], there holds
(6.1.8) (1 — ekl folpoort)™* < e2sehalfoleeert — if 9oy fol oo < 1,

so that for N larger than some Ny (equivalently, for £ small enough),

S
2 oo 5 2 oo
WL fok ] gy S WO |1 g e f70(Z0))., 5, < (e Fralfolizers |f0|o,Bo,uo>
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Given o such that |folog,,ue < 1, for N larger than some Np, which we may assume to be larger
than No, there holds e?%alfoleocr1|fyly 5 < 1. The above then implies

S
sSup ”FO,N”Eﬁo,#o < sup  sup (e2amd|fo‘LooL1 |f0|0,507#0) <00,
N>N; N>N; 1<s<N

which of course implies the uniform bound sup ||Fo n||c,80,u0 < 0©-
N>1

Second step. We compute for s < N :

fo,SJ)v = Z&lllzsepsfgbs/ H Dy —zj|>e H Dy —zj|>e H Jo(zi) dZ(s11,ny -
R2d(N—s) sH1<i<j<N i<s<j s+1<i<N
We deduce, by symmetry,
S — s b
(6.1.9) é])v =Zy g e, 1§ (ZN—S - Z(s+1,N))

with the notation

Z(bs+17N) :/de(N—~) (1_ H ]1|a:ifa:j\>5) H ]l\a:ifa:j\>5 H fO(Z'i) dZ(erl,N)v

i<s<j s+1<i<j<N s+1<i<N

so that Z(bs-u N) is a function of Xj,.

From there, the difference 1z cp, f* — ésj)\, decomposes as a sum:

(6.1.10) z,en, f5 = 5% = (1= 25 2n-o ) Unen 5 + 25" Zlua ) Lzen, 6

By Lemma 6.1.2, there holds 1 fZK,lZN_S — 0 as N — oo, for fixed s. Since fg@s is uniformly bounded
in Qg, this implies that the first term in the right-hand side of (6.1.10) tends to 0 as N — oo, uniformly

in ;. Besides, by
0<1- H ]l‘illi*(l:j‘>5 < Z ]1|wi7wj|<57

i<s<j 1<i<s
s+1<j<N
we bound
b
Z(er],N) < E /ZdN ( E ﬂ\zifz]’\<s) H ﬂ\zifzj\>s H fO(Zi)dZ(erl,N)'
1<i<s VRPN R N sH1<i<j<N s+1<i<N

Given 1 < < s, there holds by symmetry and Fubini,

/R o 0 M) TI Mewse I] oz dZsam

s+1<j<N s+1<i<j<N s+1<i<N

< (N - S)/ ﬂ\:cifzs_u\<sf0(zs+1)d'zs+1
R2d

| P 3) dZ
s T W T1

s+2<i<j<N s+2<i<N

= (Nfs)/ ]l\wi—a:3+1\<8f0(zs+1)dzs+1 X ZN—3—17
R2d

so that
(6.1.11) 21wy < 8(N = 8)e%kal fol Lot Zn—so1
where | fo| 1 denotes the L=®(RY, L' (R%)) norm of fo. By Lemma 6.1.2, we obtain

_ —(s+1
Zle(bs+17N) SESKJd‘fO|LooL1 (1—€I€d|f0|LocL1) ( )

)
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and the upper bound tends to 0 as N — oo, for fixed s. This implies convergence to 0, uniformly in Q,
of the second term in the right-hand side of (6.1.10).

We thus proved the uniform convergence fésj)\, — g, ep, f$* — 0in Q4 and hence fgz’fv — f5® holds
locally uniformly in Q5. We conclude that f(()sj)v converges locally uniformly to tensor products f$°

in Q.

The proposition is proved. O

By Proposition 6.1.2, tensor products (f5*)s>1, with fj satisfying (6.1.6), are admissible Boltzmann
data. It is easy to generalize that result (see Proposition 6.1.4 below) to the convex hull of the set of
tensor products. We shall actually also show the converse: all admissible Boltzmann data belong to
the convex hull of tensor products, and that will enable us to deduce Proposition 6.1.1.

We first remark that given a Boltzmann datum Fj, and an associated BBGKY datum Fj y, there
holds

(6.1.12) 1 E0ll0,80,m0 < 00,
with By and po as in (6.1.2). Indeed, let Cy = sup ||Fo n||c, 8,00 < 00. Given s and Z, € €, for € small
N>1

enough, 17 cp, = 1. Besides, by (6.1.4) there holds the pointwise convergence fé)sj)\,(Zs) — fés)(Zs).

Hence taking the limit € — 0 in the left-hand side of the inequality esto+8oFe(Zs) féj)\,(ZS)\ < Cyp, we
find (6.1.12).

The Hewitt-Savage theorem reveals the specific role played by tensor products: the set of families Fjy =
(fés))521 of marginals (6.1.1) satisfying the uniform bound (6.1.12) is the convex hull of tensorized
initial data, as described in the following statement. We define P = P(R?2?) be the set of continuous
densities of probability in R?? :

(6.1.13) P:={he C'R*;R), h>0, / h(z)dz =1} .
R2d

Proposition 6.1.3. — Given Fy = (fés))szl a family of marginals (6.1.1) satisfying the uniform
bound (6.1.12) with constants By > 0 and o € R, there exists a probability measure m over the set P,
with

(6.1.14) suppm C {g € P, |glo,g, < e "0},

such that the following representation holds:

(6.1.15) £ = / g%%dn(g),  s>1.
P

Proof. — Given a family Fj satisfying (6.1.1) and (6.1.12), the existence of 7 satisfying (6.1.15) is
granted by the Hewitt-Savage theorem [26]. The goal is then to prove the inclusion (6.1.14). Assume
by contradiction that, for some o > 0,

(6116) ﬂ'(Aoz) =Ko >0, where A, = {g S P(RZd), |g|071,50 >e Mo 4 a} .
We then have by (6.1.15)
1§ > / g¥dn(g),

o4
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hence by fés) < e 0| Fpllo,80,m0, We infer that ||Fyllo,8y,u0 = Kal(l + aet0)®, which cannot hold for
some « > 0 and all s, since 1 + ae#® > 1. Hence (6.1.16) does not hold, which proves the result. O

We now give the generalization of Proposition 6.1.2 that will be useful in the proof of Proposition 6.1.1.
Let 7 be a probability measure on P satisfying (6.1.14) for some Sy > 0 and some pg € R. Next we
define

(6.1.17) 7 = / h®3dm(h) .
P
In the case that m = dy,, then (6.1.17) reduces to the tensor product (6.1.5)-(6.1.6). We let
(6.1.18) ZN Z:/ HZNEDNh®N(ZN) dZy, hepP,
RZdN
generalizing (6.1.7).
The following result is an obvious generalization of Lemma 6.1.2.

Lemma 6.1.3. — Given 7 satisfying (6.1.14) and h € suppm, the family of partition functions Z
defined in (6.1.18) satisfies for 1 < s < N the bound

1< 25 2y < (1= eChem0 %) "

where Cy depends only on d.

The next statement generalizes Proposition 6.1.2. Its proof is an immediate extension of the
proof of Proposition 6.1.2 thanks to the dominated convergence theorem, using the obvious
bound 1 z_cp h®(Zs) < e™sHo.

Proposition 6.1.4. — Given 7 satisfying (6.1.14), the data (7(*))y>1, with 78 defined in (6.1.17),
s admissible in the sense of Definition 6.1.1.

Proof of Proposition 6.1.1. — We already observed in (6.1.12) that admissible Boltzmann data are
bounded families of marginals. Conversely, given a bounded family of marginals Fj, by Proposi-
tion 6.1.3 representation (6.1.15) holds. Then, by Proposition 6.1.4, Fp is an admissible Boltzmann
datum. This proves Proposition 6.1.1. O

Combining Propositions 6.1.1 and 6.1.3, we see that all admissible Boltzmann data are built on tensor
products, in the sense that given an admissible Boltzmann datum, representation (6.1.15) holds for
some 7 satisfying (6.1.14).

6.2. Main result: Convergence of the BBGKY hierarchy to the Boltzmann hierarchy

6.2.1. Statement of the result. —

Our main result is a weak convergence result, in the sense of convergence of observables, or averages
with respect to the momentum variables. Moreover, since the marginals are defined in Dy, we must
also eliminate, in the convergence, the diagonals in physical space. Let us give a precise definition of
the convergence we shall be considering.
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Definition 6.2.1 (Convergence). — Given a sequence (hi;)i1<s<n of functions hy € C°(Dg;R),
a sequence (h®)s>1 of functions h® € C°(Qg;R), we say that (hy;) converges on average and locally
uniformly outside the diagonals to (h®), and we denote

(hv)is<y — (h*)1<s,
when for any fized s, any test function @, € C°(R%;R), there holds
oo (B = 0°) () 1= [ u(Va)(Wiy = h°)(Z)dV. >0, as N = o0,
Rds
locally uniformly in {Xs eR®, z; # xj fori# j} .

With regard to spatial variables, this notion of convergence is similar to the convergence in the sense
of Chacon.

We remark that local uniform convergence in {2, implies convergence in the sense of Definition 6.2.1:

Lemma 6.2.2. — Given (f](\}q))lgsgN a bounded sequence in X. g, with the notation of Defini-
tion 10.2.3, if f](\}(’) — f©) for fized s, uniformly in t € [0,T] and locally uniformly in Q, then there
holds f](\,s) 5 £ uniformly in t € [0,T).

Proof. — Let K be compact in {XS e R¥, x; £ x; for i # j} . There holds

L, (£ = N XD < sl mey LS (S = F9) (X, V2]

s

The set K X supp ¢, is compact in ;. Hence the above upper bound converges to 0 as N — oo,
uniformly in [0,7] x K. O

We can now state our main result.

Theorem 8 (Convergence). — Let Sy > 0 and ug € R be given. There is a time T > 0 such that
the following holds. Let Fy in Xo g,,u, be an admissible Boltzmann datum, with associated family of
BBGKY datum (Fo N)N>1, 1 Xe gy ue- Let F and Fn be the solutions to the Boltzmann and BBGKY
hierarchy produced by Fy and Fy n respectively. There holds

(6.2.1) Fy =5 F,
uniformly on [0,T7,.

In particular, if Fo = ( 68’8)521, then the first marginal f](vl) converges to the solution f of the Boltzmann

equation (2.1.1) with initial data fy.

Finally in the case when Fy = (f$%)s>1 with fo Lipschitz, then the convergence (6.2.1) holds at a
rate O(e%) for any a < (d —1)/(d+1).

Solutions to the Boltzmann hierarchy issued from tensorized initial data are themselves tensorized. For
such data, the Boltzmann hierarchy then reduces to the nonlinear Boltzmann equation (2.1.1), and
Theorem 8 describes an asymptotic form of propagation of chaos, in the sense that an initial property
of independence is propagated in time, in the limit. This corresponds to Theorem 5 stated in the
Introduction page 17.
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6.2.2. About the proof of Theorem 8: outline of Chapter 7 and Part IV. —

The formal derivation presented in Chapter 4, Section 4.4, fails because of a number of incorrect

arguments:

— Since mild solutions to the BBGKY hierarchy are defined by the Duhamel formula (4.3.6) where the
solution itself occurs in the source term, we need some precise information on the convergence to
take limits directly in (4.3.6).

— The irreversibility inherent to the Boltzmann hierarchy appears in the limiting process as an arbitrary
choice of the time direction (encoded in the distinction between pre-collisional and post-collisional
particles), and more precisely as an arbitrary choice of the initial time, which is the only time for
which one has a complete information on the family of marginals Fyy ;. This specificity of the initial
time does not appear clearly in (4.3.6).

— The heuristic argument which allows to neglect pathological trajectories, meaning trajectories for
which the reduced dynamics with s-particles does not coincide with the free transport (T # Sy),
requires to be quantified. Indeed the question of the stability with respect to micro-translations
in space must be analyzed; moreover we have more or less to repeat the operation infinitely many
times, since mild solutions are defined by a loop process.

— Because of the conditioning, the initial data are not so smooth. The operations such as infinitesimal
translations on the arguments require therefore a careful treatment.

To overcome the two first difficulties, the idea is to start from the iterated Duhamel formula, which
allows to express any marginal f ](VS ) (t,Zs) in terms of the initial data Fy y. By successive integrations
in time, we have indeed the following representation of f ](VS ).

0 .t oty b1
(1) = Z/ / / Tt — t1)Coos1Tap1(tr — £2)Cottata - -
—o/o Jo 0

o T () FET™(0) dty . . dty

(6.2.1)

where by convention f](\,j)(O) =0forj> N.

Using a dominated convergence argument, we shall first reduce (in Chapter 7) to the study of a
functional

— defined as a finite sum of terms (independent of N),

— where the energies of the particles are assumed to be bounded (namely Ey(Zy) < R?),

— and where the collision times are supposed to be well separated (namely |¢t; —t;41]| > 9).

The reason for the two last assumptions is essentially technical, and will appear more clearly in the
next step.

The heart of the proof, in Part IV, is then to prove the term by term convergence, dealing with

pathological trajectories. Let us recall that each collision term is defined as an integral with respect

to positions and velocities. The main idea consists then in proving that we cannot build pathological

trajectories if we exclude at each step a small domain of integration. The explicit construction of this

“bad set” lies on

— a very simple geometrical lemma which ensures that two particles of size € will not collide in the future
provided that their relative velocity does not belong to a small subset of R? (see Lemma 12.2.1),

— scattering estimates which tell us how these properties of the transport are modified when a particle
is deviated by a collision (see Lemma 12.2.3).

This construction, which is the technical part of the proof, will be detailed in Chapter 12. The

conclusion of the convergence proof is presented in Chapter 14.



CHAPTER 7

STRATEGY OF THE CONVERGENCE PROOF

The goal of this chapter is to use dominated convergence arguments to reduce the proof of Theorem 8
stated page 47 to the term-by-term convergence of some functionals involving a finite (uniformly
bounded) number of marginals (Section 7.1). In order to further simplify the convergence analysis, we
shall modify these functionals by eliminating some small domains of integration in the time and velocity
variables corresponding to pathological dynamics, namely by removing large energies in Section 7.2
and clusters of collision times in Section 7.3.

We consider therefore families of initial data: Boltzmann initial data Fy = ( fés))seN such that

1 Folloso.no = sup sup (exp(BoFo(Zs) + pos) 13" (2)) < +oo
se s

and for each N, BBGKY initial data Fio = (f](\}s,)ohgsgN such that

Sup [|F o1z, g0 = sup sup sup (exp(BoEo(Zs) + 1os) fNrp(Zs)) < +00.
N N s<N Z,eD,

We then associate the respective unique mild solutions (constructed in Theorems 6 and 7 in Chapter 5)
of the hierarchies

t
FO) = S,(0) f§7 + 0 Su(t = 7)C oy fETV(r) dr

and
(s) @ o [ (s+1)
RO =T+ [ Tt = ) dr
0

In terms of the initial datum, they can be rewritten

o0 t t1 tn—1
O, Z,) = Z/ / / Ss(t — t1)CY o1 1Ssr1(ts — t2)Co1 1 oo - -
n—0’0 JO 0

S )T at, Lty

and

oo t  pt1 tn—1
](\;9)(15’ Zg) = Z/ / / Ts(t—tl)cs7s+1TS+1(t1 —tg)cs+17s+2...
0’0 Jo 0

e Tapn(ta) f 8™ dtn ... dty .
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The observables we are interested in (recall the definition of convergence provided in Definition 6.2.1)
are the following:

L(t)(X,) == / os (VIS (t, Z)dV, and  I9(£)(X,) == / os (Vo) fO(t, Z,)dV,

and they therefore involve infinite sums, as there may be infinitely many particles involved (the sum
over n is unbounded).

7.1. Reduction to a finite number of collision times

Due to the uniform bounds derived in Chapter 5, the dominated convergence theorem implies that it
is enough to consider finite sums of elementary functions

FaC / / / t1)Cs,s+1Ts1(t1 —t2)Cst1,542 - - -

9+k(tk)f(6+k) dty, ... dt

(s k) / / / s(t —11)Cs 5418541 (t1 — t2)Csy1,542 -

o Serk () [T dty . dty

(7.1.1)

and the associate elementary observables :

(112)  La®C) = [P Zoave, ad 100) = [ @V Z.)av..

and therefore to study the term-by-term convergence (for any fixed k), as expressed by the following
statement.

Proposition 7.1.1. — With the notation of Theorems 6 and 7 page 35, for each given s € N*
and t € [0,T] there is a constant C' > 0 such that for each n € N*,

n

1 n
120 = 3 Lor®) | e gy < Cllellie (2) 1 olle o o
k=0

and

1 n
122(t) Z )] oo (gaey < CllesllLoe@asy (5] I1Follo,go.mo »
(Ré=) 2

uniformly in N and t < T, in the Boltzmann-Grad scaling Ne¢~! = 1.

Proof. — We use the notation of Chapter 5. Using the continuity estimate (5.2.2) we have

t
1
7.1.3 sup H/Tt—t’CF ¢ < NENepse -
(7.13) g || e iowex@al]| s S s
Recalling the definition of the Hamiltonian
2
(%
EO(ZS) = | 2|
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we then deduce that

0 t  pty th—1
eﬂ(t)EO(Zs)+SH(t) H Z / / . / Ts(t — tl)cs’s+1Ts+1(t1 — tg)cs+1ws+2 .
k=n+170 /0 0

1 n
Tkt bt <C (2> 1Nl -

(7.1.4)

Combining this estimate together with the uniform bound on [|Fyl||: g,. given in Theorem 6 leads to
the first statement in Proposition 7.1.1. The second statement is established exactly in an analogous
way, using estimate (5.2.3) together with the uniform bound obtained in Theorem 7. O

7.2. Energy truncation
We introduce a parameter R > 0 and define

t1 th—1
(9 k) Z/ / / s(t—t1)Cs 641 Tsq1(t1 — t2)Csi1,542 -

Tt gz, <refi g ... dty

t te—1
(S K Z/ / / t —t Cs s+ISS+1(t1 - t2)cs+1 542+

Skt Uy (2 y<re [T dty L dt

(7.2.1)

and the corresponding observables

(r22)  IROX) = [e VSR Z0V. ad LX) = / (VLD av,
Using the bounds derived in Chapter 5 we find easily that Z sk — ) and Z -1 0, R )(t)

can be made arbitrarily small when R is large. More precisely the following result holds.

Proposition 7.2.1. — Let s € N* andt € [0,T] be given. There are two nonnegative constants C, C’
such that for each n,

' p2
HZ s,k HLoo Re) <C||905||L°C(Rd5)€ o HFN,OHE,ﬁo,Mo?

and

Ko

3202~ IO oy < Ol aeasye™C 1By

Proof. — Let 0 < 8 < Bo be given, and define the associate functions 3’ and B as in Theorem 6
stated in Chapter 5. Assume that 8y — 3} is small enough so that on [0, 7], one has B’ > 0. Then
according to the results of Chapter 5 and similarly to (7.1.4) we know that

// / Ts(t —t1)Cs,s41Ts11(t1 — t2) .. T€+k(tk)]1Eo(Zs+k)>R2fN0 dty ... dt

<C 9=k =B (T)Eo(Zs)—spo(T) |Gr.0. ||5766’#0 ,
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where we have defined

. k
Gros = (0N D ocken—s, With gy E(Zor) = gz nzme fag” (Zsti) -

The result then follows from the fact that

/. 2
IG N0l 00 < CePo™ PR EN o]l g0 10 -
The argument is identical for I?, () — I2F(t). O
Remark 7.2.1. — It is useful to notice that the collision operators preserve the bound on high ener-

gies, in the sense that

Cost1llpo(z,)<r? = Uy (2)<r? Cost1llpo(2, 1) <R

0 _ 0
Cost1lEz,<r = Upz)<r2 Cs o1 lE(z,0)<R? -

7.3. Time separation

We choose another small parameter § > 0 and further restrict the study to the case when ¢; — ;11 > 9.
That is, we define

Tilt) == {Tk:(tl,...,tk)/ti<ti,1 with tp41 =0 and tozt}7

Tros(t) = {Tk € Thlt) [ ti — tis > 5},

and
PO = [0V [ Tt - t)CeniTanalt — 2)Corore
Tk,s(t)
o Cohm1, sk Toqr(tn — tk+1)ﬂEO(Z,;M)gR?f](\igk)dist ,
1R9(1)(X,) = / oa(V2) /T S0 S = )
k,5(t

s+k
"'Cg+k—1,s+kss+k(tk - tk+1)]1E0(zS+k)ngf(§ + )dist.

(7.3.1)

Again applying the continuity bounds for the transport and collision operators, the error on the
: R RS 0,R _ 70,R.8 .
functions g (I — 1% (t) and E (Lo — 153 °)(t) can be estimated as follows.
k k

Proposition 7.83.1. — Let s € N* and t € [0,T] be given. There is a constant C such that for each n
and R,
n
R,6
IS5 = IO gy < COll ol ol o
k=0

and

H Z(Ig:]f - 1277576)(t>"Lw(Rd5) < C(SHSDHLOQ(RC“)||F0||0,/30,M0 .
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7.4. Reformulation in terms of pseudo-trajectories

Putting together Propositions 7.1.1, 7.2.1 and 7.3.1 we obtain the following result.

Corollary 7.4.1. — With the notation of Theorem 9, given s € N* and t € [0,T], there are two
positive constants C and C’' such that for each n € N*,

- R, —7 —C'R?
1) = 3 I O] gy < C@ + € 4 8)ll e ey | Exvole o -
k=0
In the same way as in (4.3.4) we now decompose the Boltzmann collision operators (4.4.3) into

0 _ 0+ 0,—
Cs,s+1 - Cs,s+1 - Cs,s—i—l )

where the index + corresponding to post-collisional configurations and the index — to pre-collisional
configurations. By definition of the collision cross-section, we have

(Cg,’s:flnf(s-i_l))(zs) = /Sdil R b(vs+1 - Um,UJ)f(S+1)(Z5, Tmy Us+1) deverl
1 X

B /Sau1 Rd((USJrl - Um) - w)ff(s"'l)(ZS?mm, Vst1) dwdvsy 1 and
TThx

(CE”ET]‘(S“))(ZS) = /sdflxRbd(vSH — vm,w)f(s+1)(zl, e T Uy ey 2y Ty Uy ) dwdvg g
1

- /d 1 ((v5+1 - Um) : w)+f(s+1) (Z17 R axm7v;kn7 o 7Zsaxﬂ"mv.:+1) dwdeJrl .
ST xR4

Performing the change of variables w +— —w in the integral defining Cg”; 71", we get similar formulas as

for the BBGKY collision operators.

The elementary BBGKY and Boltzmann observables we are interested in can therefore be decomposed

as
k
150w = > (T 15 4.7, M)(X,) - and
(7.4.1) JM =1
I (0)(Xa) = Y L (8 1. M)(X,)
J,M

where the elementary functionals If,’f(t, J, M) are defined by

173 (t,J, M) (X,) = / A / ()Ts(t—tl)cgj;T{TsH(tl —h)CET,,
Ti,s(t

o Toyn(t — tlc+1)HEO(ZSM)SR?fj(\igk)didV; ;

(7.4.2)
18 I M) = [ (V) /T S O S (1~ )T
k,5(t

o Sspr(te — tk+1)ﬂEo(ZS+k)gR2fés+k)dist ;
with

J = (1, jx) € {+ =} and M := (mq,...,my) with m; € {1,...,s+i—1}.



54 CHAPTER 7. STRATEGY OF THE CONVERGENCE PROOF

Each one of the previous functionals If,f(t, J, M) and Ig:,f’é(t, J, M) defined in (7.4.2) can be viewed as
the observable associated with some dynamics, which of course is not the actual dynamics in physical
space since

— the total number of particles is not conserved;

— the distribution does even not remain nonnegative because of the sign of loss collision operators.
This explains the terminology of “pseudo-trajectories” we choose to describe the process.

In this formulation, the characteristics associated with the operators Ty, (t; —t;11) and Sgy;(¢t; —ti4+1)
are followed backwards in time between two consecutive times t;,1 and ¢;, and collision terms (associated
with Cyyisqit1 and CJy, 4, ) are seen as source terms, in which, in the words of Lanford [34],
“additional particles” are “adjoined” to the marginal.

The main heuristic idea is that for the BBGKY hierarchy, in the time interval [t;y1,%;] between two
collisions Csyi—1,5+i and Csy; s1i+1, the particles should not interact in general so trajectories should
correspond to the free flow Ssy;. On the other hand at a collision time ¢;, the velocities of the two
particles in interaction are liable to change. This is depicted in Figure 2.

~l_'s_(l_n) e ZTs(tnt)
a(t)| e
zo(t)| " Tit)| | 2i(tasn)
: J‘q‘(f'z) _________ o
'Tz(fl)/‘ T
z; / Tst2 ls;r-z(»f:;j M- L‘s+'2(ln+l)
zo(t,)| ] Za(tny1)
Fin
29 (ts) ISR Yz
(t) SR -Ls+n<in+1)
T Ty Top1(t2) Tt (tn) Zesaltnia)
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— . z1(t,)
el T (tns1)
to=1 ty ty ty a1 =0

FIGURE 2. Pseudo-trajectories

At this stage however, we still cannot study directly the convergence of If,’f(t, J, M) — Igf 0 (t,J, M)
since the transport operators Tj do not coincide everywhere with the free transport operators Sy,
which means — in terms of pseudo-trajectories — that there are recollisions. We shall thus prove that
these recollisions arise only for a few pathological pseudo-trajectories, which can be eliminated by
additional truncations of the domains of integration. This is the goal of Part IV.
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THE CASE OF SHORT RANGE POTENTIALS






CHAPTER 8

TWO-PARTICLE INTERACTIONS

In the case when the microscopic interaction between particles is governed by a short-range repulsive
potential, collisions are no more instantaneous and pointwise, and they possibly involve more than two
particles. Our analysis in Chapter 11 shows however that the low density limit Ne?—!
only a description of two-particle interactions, at the exclusion of more complicated interactions.

— 0 requires

In this chapter we therefore study precisely, following the lines of [13], the Hamiltonian system (1.2.1)
for N = 2. The study of the reduced motion is carried out in Section 8.1, while the scattering map is
introduced in Section 8.2, and the cross-section, which will play in important role in the Boltzmann
hiearchy, is described in Section 8.3.

8.1. Reduced motion

We first define a notion of pre- and post-collisional particles, by analogy with the dynamics of hard
spheres.

Definition 8.1.1. — Two particles z1, 22 are said to be pre-collisional if their distance is € and de-
creasing:

|T1 — 22| =€, (v1 —v2) - (k1 —x2) < 0.
Two particles z1, zo are said to be post-collisional if their distance is € and increasing:

‘$1—£2|=8, (1}1—U2)'(l‘1—$2)>0.

We consider here only two-particle systems, and show in Lemma 8.1.2 that, if z; and z, are pre-
collisional at time ¢_, then there exists a post-collisional configuration zi, 2}, attained at t; > ¢_.
Since V®(x /) vanishes on {|z| > ¢}, the particles z; and z2 travel at constant velocities v] and v} for
ulterior (¢t > t4) times.

Momentarily changing back the macroscopic scales of (1.2.1) to the microscopic scales of (1.0.3) by
defining 7 := (¢t —t_)/e and y(7) := x/e(7), w(r) = v(7), we find that the two-particle dynamics is
governed by the equations

dyr dys
@, G2

= wy, = w2,
(8.1.1) dr dr
d’LUl _—V(I)( _ )__dwg
ar Y1 —Y2) = ar
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whence the conservations
d

d
(8.1.2) — (w1 +wq) =0, e

1 1
= (4(1111 +w2)2+1(w1 _w2)2+<1>(y1—y2)> =0.

From (8.1.2) we also deduce that the center of mass has a uniform, rectilinear motion:

(8.1.3) (1 +92)(7) = (Y1 +y2)(0) + (w1 + w2)
and that pre- and post-collisional velocities are linked by the classical relations

(8.1.4) wy 4+ why = wy +wa, |wi? + |wh|? = |wi]? + |wel?.

A consequence of (8.1.1) is that (dy, dw) := (y1 — ya2, w1 — wa) solves

(8.1.5) i51/ = dw, i5w = —2V®(dy).
dr dr

We notice that, ® being radial, there holds
d
—(dy A dw) = dw A dw — 26y AVP(dy) =0,
-
implying that, if the initial angular momentum dyg A dwg is non-zero, then dy remains for all times in
the hyperplane orthogonal to dyo A dwg. In this hyperplane, introducing spherical coordinates (p, )
in Ry x S8{72, such that
0y = pe, and dw = pe, + ppe,
the conservations of energy and angular momentum take the form
1,. ) 1
(0" + (p9)*) + 2®(p) = 5 |owol*,
P*|¢l = 16y A Swol,
implying p > 0 for all times, and

. A/
(816) p2+‘lj(pa£07\70) :EO) V= 0p20 +4(I)(p)a
where we have defined
(8.1.7) Eo == |owo|* and  Jo := |dyo A Swol/|dwo| =: sina,

which are respectively (twice) the energy and the impact parameter, m —« being the angle between dwg
and dyo (notice that aw > 7 /2 for pre-collisional situations). In the limit case when o = 0, the movement
is confined to a line since ¢ = 0.

We consider the sets corresponding to pre- and post-collisional configurations:

(8.1.8) S§* = {(dy,0w) € 8§ xR, iy dw >0},

where S’f_l is the unit sphere centered at the origin in R?; in spherical coordinates pre-collisional

configurations correspond to p =1 and p < 0 while post-collisional configurations correspond to p =1
and p > 0.

Lemma 8.1.2 (Description of the reduced motion). — For the differential equation (8.1.5)
with pre-collisional datum (dyo,0wo) € S, there holds |dy(T)| > p« for all T > 0, with the notation

(819) P :p*(go,jo) = max{pe (Oa 1)) ‘I’(P’go,jo) 280}7
and for T, defined by

1
(8.1.10) T = 2/ (Eo — U (p, &0, To)) " dp,

*
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the configuration is post-collisional (p=1, p > 0) at T = T,.

Proof. — Solutions to (8.1.6) satisfy p = w(p)(& — \Il(p))1/2, with ¢(p) = +£1, possibly changing
values only on {¥ = &}, by Darboux’s theorem (a derivative function satisfies the intermediate value
theorem). The initial configuration being pre-collisional, there holds initially ¢ = —1, corresponding
to a decreasing radius. The existence of p, satisfying (8.1.9) is then easily checked: we have |dyo| = 1
and dyp - dwg # 0, so there holds ¥ (1, &y, Jo) < &, and Y is increasing as p is decreasing. The set
{T > 0,p(1) > ps} is closed by continuity. It is also open: since ® is nonincreasing, then 9,V # 0
everywhere and in particular at (p«, &, Jo). So & — ¥ changes sign at p,., which forces, by (8.1.6),
the sign function ¢ to jump from — to + as p reaches the value p, from above. This proves p > p. by
connexity. The minimal radius p = p, is attained at 7./2, where 7 is defined by (8.1.10), the integral
being finite since 0, ¥ does not vanish. Assume finally that for all 7 > 0, there holds p(7) < 1. Then
on [1./2,400), p is increasing and bounded, hence converges to a limit radius, which contradicts the
definition of p,. This proves p = 1 at 7 = 7, a time at which p > 0, since ¢ has jumped exactly once,
by definition of p,. [

Remark 8.1.3. — Denoting A : (y,w) — (y,—w), and ¢; : R?** — R2? the flow of (8.1.5), we find
that ¢y = Aogro A, implying Ao ¢ o0 Ao ¢y = 1d, and time-reversibility of the two-particle dynamics.

apse line

dy

FIGURE 3. Reduced dynamics

The reduced dynamics is pictured on Figure 3, where the half-deflection angle 6 is the integral of the
angle ¢ as a function of p over [p,, 1] :

L&’ T -
(8111) 0 :/ 0 2 L (50 - \I/(p?5071-0)) 1z dp)

s

With the initialization choice ¢y = 0, the post-collisional configuration is (p, ¢)(7) = (1,26); it can
be deduced from the pre-collisional configuration by symmetry with respect to the apse line, which by
definition is the line through the origin and the point of closest approach (dy(7./2),dw(7./2)). The
direction of this line is denoted w € S{~*.
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8.2. Scattering map

We shall now define a microscopic scattering map & that sends pre- to post-collisional configurations:
Go:  (8yo,0wg) € S~ — (0y(T.), dw(Ty)) = ér. (6y0, dwo) € ST .

By uniqueness of the trajectory of (8.1.5) issued from (dyo,dwg) (a consequence of the regularity
assumption on the potential, via the Cauchy-Lipschitz theorem), the scattering is one-to-one. It is also
onto, by Remark 8.1.3: the pre-image of (dy,dw) € ST by the scattering is A o ¢, (dy, —dw) € S~.

Back in the macroscopic variables, we now define a corresponding scattering operator for the two-
particle dynamics. In this view, we introduce the sets

Sei = {(21,2’2) e RY, |1 — 22 =, £(x1 — x2) - (v1 — v2) > 0}.
We define, as in (8.1.7),

|(x1 — 22) A (V1 — v2)]
elvr — g

(821) 50 = |’U1 - U2|2 and jo =

=:sina.

Definition 8.2.1 (Scattering operator). — The scattering operator is defined as

. — VA A A +
oc (21,01, T2,v2) € ST — (2], vy, 75, v5) € S,

where
1 ETx € ETx
Ty = §(m1 + x9) + 7(7)1 +v9) + §§y(7*) =-—x1+w- (2] —T2)w+ 7(01 + v9),
1 ETx € ETx
xh = =(x1 +22) + —(v1 +v2) — =0y(7) = —22 —w - (1 — Ta)w + —(v1 + v2),
(8.2.2) 2 2 2 2

1 1
vy = 5(111 +v9) + 5(511)(7'*) =v—w- (v —v2)w,

1 1
vy 1= 5(111 + v9) — 5(511}(7'*) =votw- (v —v2)w,

where T, is the microscopic interaction time, as defined in Lemma 8.1.2, (8y(7«), dw(7y)) is the micro-
scopic post-collisional configuration: (§y(7), 0w(m)) = do((z1 — x2)/e,v1 — v2), and w is the direction
of the apse line. Denoting by v := (x1 — x2)/|r1 — 22| we also define

oo(v,v1,v2) 1= (V’,v{,vé).

The above description of (2, v]) and (x4, v4) in terms of w is deduced from the identities
dv(r) = dvg — 2w - dvgw and  Jy() = —dyo + 2w - dyo w
in the reduced microscopic coordinates.

By 9,¥ # 0 in (0,1) and the implicit function theorem, the map (£, J) — p«(€,T) is C? just like .
Similarly, 7. € C2. By Definition 8.2.1 and C* regularity of V® (Assumption 1.2.1), this implies that
the scattering operator o. is C!, just like the flow map of the two-particle scattering (denoted ¢ in
Remark 8.1.3). The scattering o, is also bijective, for the same reason that the microsopic scattering &g
is bijective; the inverse map is 0! := A o 0. 0 A, with notation introduced in Remark 8.1.3.

Proposition 8.2.1. — Let R > 0 be given and consider
SZni={(z1,2) € RTx Bp)?, a1 — wa] = &, + (01— v2) - (@1 — w2) > 0}

The scattering operator o is a bijection from S_ p to SS:R.
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The macroscopic time of interaction T, = T.(Eo, Jo) := €T«, where T, is defined in (8.1.10), is uniformly
bounded on compact sets of R\ {0} x [0, 1].

Proof. — We already know that o. is a bijection from S to SI. By (8.1.4), it also preserves the
velocity bound. Hence o is bijective S_ p — S;R.

Now given & > 0 and Jp € [0, 1], we shall show that 7, can be bounded by a constant depending only
on &. Since ®(p,) < /4, then p, > ®~1(&£y/4). Let us then define ig € (0,1) by

. 1 1,&

ig:=—=0"1(=),

0 2\/5 ( 4 )

so that p? > 8i2.

On the one hand it is easy to see, after a change of variable in the integral, using

d 260T§ 260T5
dfp(f;o —V(&, Jo,p)) = %JO —42'(p) > 2;70 > 28075

that there holds the bound
! /50(1—J02>dy<2 1-73
B 50‘702 0 \/g B j(?\/‘%

So if Jy > ig, we find that
16

2
Te < = .
f— . 2
VER  VE(e ()
On the other hand for Jy < ip we define v := ®~1(&;/8) and we cut the integral defining 7, into two
parts:

-
=147 with M = 2/ (& — \I/(rc;o,jovp))il/2 dp.

Notice that since p? > 8i2 and Jy < ig, then /4 — EgTE/4p% > TE0/32 > Eo/8 so

e (35 o ()

The first integral 7351) is estimated using the fact that ®' does not vanish outside 1 as stated in
Assumption 1.2.1: defining

R 4 !/
M(®) := iogfgv\@ (p)| >0,
we find that on [ig, ],
d 260 T8
dfp(go — U (&, Jo,p)) = ;3 O — 49/ (p) > 4M (D)

SO

L E2-&R Ve
ST M(®) = V2M ()

For the second integral we estimate simply

2 2 42

< r < = =
(€0/2 = E0T§/7?)?  (E0/2—&/8) 30
The result follows. O

Nl
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1
1- p2)
then the proof of Proposition 8.2.1 shows that T, may be bounded from above by a constant of the order

of C/\/eo(1 +logeg) if & > eq.

1
Remark 8.2.2. — If ® is convex then M (®) = |®'(y)|. Moreover if ® is of the type — exp(—
ps

8.3. Scattering cross-section and the Boltzmann collision operator

The scattering operator in Definition 8.2.1 is parametrized by the impact parameter and the two
ingoing (or outgoing) velocities. However in the Boltzmann limit the impact parameter makes no
longer sense: the observed quantity is the deflection angle or scattering angle, defined as the angle
between ingoing and outgoing relative velocities. The next paragraph defines that angle as well as the
scattering cross-section, and the following paragraph defines the Boltzmann collision operators using
that formulation.

8.3.1. Scattering cross-section. — With notation from the previous paragraphs, the deflection
angle is equal to ™ — 20 where © := « + 0, the angle « being defined in (8.2.1) and 6 being defined
in (8.1.11), so that

1
d
© = 6(60, 1) i= arcsin o + i [ U
L1420 _ Jo
Eo p?
The following result, and its proof, are due to [39]:
Lemma 8.3.1. — Under Assumption 1.2.1, assume moreover that for all p € (0,1),

(8.3.1) p®" (p) + 28" (p) > 0.
Then for all & > 0, the function Jy — (&, Jo) € [0,7/2] satisfies ©(Ey,0) = 0 and is strictly
monotonic: 97,0 >0 for all Jy € (0,1). Moreover, it satisfies

jlgglo 07,0 € (0,00] and .71;211 07,0 =0.

Proof. — An energy & > 0 being fixed, the limiting values ©(&y,0) = 0 and O(&y, 1) = /2 are found
by direct computation. To prove monotonicity, the main idea of Saffirio and Simonella is to use the
change of variable

40 2
sin® = 5ip) + %

which yields

= arcsi T __siny
(&, Jo) = arcsin Jp + /ammj o 290 de.
S0 ) E0Jo
Computing the derivative of this expression with respect to Jy gives
00 1 S/ )
22 (0 To) = e (1= 20
o5, 0P = =7 (1~ 2w
z £272p*sin o
+/ 0vYo (,0@”[)4—2‘1)/[)4-(1)/[)2)(1(,0
arcsin Jg (\70250 —pg(I)’(p))3 ( ) ( ) 50‘702( ( ))
where ¢ is defined by
J5 | 22(p) .

i 2
sin” p = —- +
v p? &o
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In view of the formula giving 07,0, it turns out assumption (8.3.1) implies 97,0 > 0 for all Jp € (0, 1),
and also the limits
lim 97,0 € (0,00] and lim 05,0 =0

Jo—0 Jo—1
as soon as ®'(1) = 0 (if not then jliml 07,0 = 00). The result follows. O
0o—
Remark 8.3.2. — Note that one can construct examples that violate assumption (8.3.1) and for which

monotonicity fails, regardless of convexity properties of the potential ® ([39]).

By Lemma 8.3.1, for each & we can locally invert the map ©(&y, ), and thus define J; as a smooth
function of & and ©. This enables us to define a scattering cross-section (or collision kernel), as follows.

FIGURE 4. Spherical coordinates

For fixed x1, we denote do; the surface measure on the sphere {y € RY |y — 1| = ¢}, to which
2o belongs. We can parametrize the sphere by (o, ), with ¢ € Sﬁl_Q, where « is the angle defined
in (8.2.1). There holds
doy = ¥ (sin o) 2dady.
The direction of the apse line is w = (©,v), so that, denoting dw the surface measure on the unit
sphere, there holds
(8.3.2) dw = (sin ©)4~2dOds).
By definition of « in (8.2.1), there holds
(1 —22) - (v1 — v2) = €|lvy — V2| cos
so that
1 d—1 : d—2
- (1 — 23) - (v1 — v2) doy = &% H{vy — V2| cos a (sin )™ dady)
= e Yoy — wo| TI2dTodib
where in the second equality we used the definition of Jy in (8.2.1). This gives

1
(833) g (.131 — .732) . (’Ul — ’Ug) d0'1 = €d71|?]1 — ’Ug‘jod_Qae)jo d@dw,

wherever 9gJp is defined, that is, according to Lemma 8.3.1, for J, € [0,1).
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Definition 8.3.3. — The scaltering cross-section is defined for |v; — va| > 0 and © € (0,7/2]
by b(w, ©)/|w|, where

(8.3.4) b(vy — v2,0) := |v1 — va| T 206 Jo(sin ©)% ¢
Abusing notation we shall write b(vy — v, ©) = b(vy — v, w).

By Lemma 8.3.1, the cross-section b is a locally bounded function of the relative velocities and scattering
angle.

8.3.2. Scattering cross-section. — The relevance of b is made clear in the derivation of the Boltz-
mann hierarchy, where we shall use the identity

1
(8.3.5) —(z1 — x2) - (v1 — vo) doy = e 1b(vy — v, w)dw,

€

derived from (8.3.2), (8.3.3) and Definition 8.3.3. As in Chapter 4 (see in particular Paragraph 4.4),
we can formally derive the Boltzmann collision operators using this formulation: we thus define

f(s+1) t, Z Z/ v (veq1—vi)>0 V" (Us+1 )

11) 41
X (f(s (t,xl,vl,...,xi,vf,...,a:s,vs,a:i,vzﬂ)—f(s )(t,Zs,l'i,Us+1))dl/dUs+1,

(8.3.6)

where (v}, v}, ) is obtained from (v;,vs11) by applying the inverse scattering operator oy ! using

Tj — Tg41 % * )

_ X; — X
) 1(V73Haviavs+l) = (‘ |7Ui7vs+1

Ti — Tyl T — Toy1
This can also be written using the cross-section:
f(g—H) t Z Z/ b V1 — Vo, W
(8.3.7)
X (f(sﬂ)(t, L1 VL, ey Ty Uy ooy Ly Vs Ty Vg 1) — f(sﬂ)(t, Zs,mi,vsﬂ))dwdvsﬂ .
Remark 8.3.4. — It is not possible to define an integrable cross-section if the potential is not com-

pactly supported, no matter how fast it might be decaying. This issue is related to the occurrence of
grazing collisions and discussed in particular in [46], Chapter 1, Section 1.4. However it is still possible
to study the limit towards the Boltzmann equation, if one is ready to change the formulation of the
Boltzmann equation by renouncing to the cross-section formulation ([39]).

The question of the convergence to Boltzmann in the case of long-range potentials is a challenging
open problem; it was considered by L. Desuillettes and M. Pulvirenti in [16] in the linear case, while
L. Desuvillettes and V. Ricci studied grazing collisions in [17].



CHAPTER 9

TRUNCATED MARGINALS AND THE BBGKY HIERARCHY

Our starting point is the Liouville equation (1.2.2) satisfied by the N-particle distribution function fy.
We reproduce here equation (1.2.2):

1 —
(9.0.1) afn+ Y v Vafv— > 6v<1><”””:”J)-vmszo.

1<i<N 1<i#j<N

The arguments of fy in (9.0.1) are (¢, Zx) € Ry x Qp, where we recall that
Oy = {ZN e RN i+, xﬁéxj}.

As recalled in Part II, Chapter 4, the classical strategy to obtain a kinetic equation is to write the
evolution equation for the first marginal of the distribution function fy, namely

J(Vl)(t,zl) ::/ fn(t z1,22,...,2n) dze .. . dzy
R24(N-1)

which leads to the study of the hierarchy of equations involving all the marginals of fx

(902) ](\?)(ta Zé) = / fN(t7ZSaZs+17"'aZN) dzs+1"'dZN~
R2d(N—s)

In Section 9.1 it is shown that due to the presence of the potential, and contrary to the hard spheres
case described in Paragraph 4.2, it is necessary to truncate those marginals away from the set Q.
An equation for the truncated marginals is derived in weak form in Section 9.2. In order to introduce
adequate collision operators, the notion of cluster is introduced and described in Section 9.3. Then
collision operators are introduced in Section 9.4, and finally the integral formulation of the equation
is written in Section 9.5.

9.1. Truncated marginals

From (9.0.1), we deduce by integration that the untruncated marginals defined in (9.0.2) solve

() - (s) 1< T — ()
A fN (t, Zs) +;Ui.vmfN (t,Z:) = = > ve <€> Vo In(t, Zs)

i,j=1

(9.1.1) i#J
N-—sg T; — T s
- € Z/V(I) <E+1> . v1)¢f1(V+1)(tv Zs, Zs+1) dzsi1 -
=1
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There are several differences between (9.1.1) and the BBGKY hierarchy for hard spheres (4.3.2)-(4.3.3).
One is that the transport operator in the left-hand side of (9.1.1) involves a force term. Another is that
the integral term in the right-hand side of (9.1.1) involves velocity derivatives. Also, that integral term
is a linear integral operator acting on higher-order marginals, just like (4.3.2), but, contrary to (4.3.2),
is not spatially localized, in the sense that the integral in xsy; is over the whole ball B(z;,¢), as
opposed to an integral over a sphere in (4.3.2).

This leads us to distinguish spatial configurations in which interactions do take place from spatial
configurations in which particles are pairwise at a distance greater than e, by truncating off the
interaction domain {ZN, |z; — ;] < e for some ¢ # j} in the integrals defining the marginals. For the
resulting truncated marginals, collision operators will appear as integrals over a piece of the boundary
of the interaction domain, just like in the case of hard spheres. The scattering operator of Chapter 8
(Section 8.2) will then play the role that the boundary condition plays in the case of hard spheres in
Chapter 4.

Suitable quantities to be studied are therefore not the marginals defined in (9.0.2) but rather the
truncated marginals

(912) ~](\}s)(t,ZS) 2:/2d(N )fN(t, ZS,ZS_H,...,ZN) H ]]-|xi—xj|>g dZs+1'~~dZN,
R2d(N-s ;
ey
where | - | denotes the euclidean norm. Notice that
(f](\/})_ ](Vl))(thl):/ fN(t7217227"'7zN) H (1_ﬂ\z1—z_j|>s) dzg---dzn
R24(N-1)
je{2,...,N}
so that
(9.1.3) Y = £ @) e mzay < CN = De | £ (1) o (@20)

We therefore expect both functions to have the same asymptotic behaviour in the Boltzmann-Grad
limit Ne¢~! = 1. This is indeed proved in Lemma 11.1.2.

Given 1 <7 < j < N, we recall that dZ(; ;) denotes the 2d(j — i + 1)-dimensional Lebesgue mea-
sure dz;dz;y1 . .. dz;, and dX(; ;) the d(j — i+ 1)-dimensional Lebesgue measure dz;dz;11 ...dz;. We
also define

(9.1.4) DY = {XN e RN V(i,j) € [L,s] x [s + 1, N], |z — ;] > e} :
where [1, s] is short for [1,s] NN = {k € N, 1 < k < s}. Then the truncated marginals (9.1.2) may be
formulated as follows:

(915) A}(\}‘?)(t’ Zs) = Ami(N— ) fN(ta Zsazs+17~'~7ZN) H ]]-|rt—xj|>61I-XN€DJSV dZs+1,N~

i€(1,s]
J€ls+1,N]
The key in introducing the truncated marginals (9.1.5), following King [30], is that it allows for a
derivation of a hierarchy that is similar to the case of hard spheres. The main drawback is that
contrary to the hard-spheres case in (4.2.3), truncated marginals are not actual marginals, in the sense
that

(9.1.6) 7z + / MmO Znans) s,
R

for any B c R4+ in particular if B = R+ simply because D3 is not included in Df\,ﬂ.
Indeed, conditions |z; — zs41| > ¢, for j < s, hold for Xn € D%, but not necessarily for Xy € D]SV“.
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Furthermore, D3, intersects all the D™, for m € [I,N — s]. A consequence is the existence of
higher-order interactions between truncated marginals, as seen below in (9.4.8). Proposition 10.3.1 in
Chapter 10 states however that these higher-order interactions are negligible in the Boltzmann-Grad
limit.

9.2. Weak formulation of Liouville’s equation

Our goal in this section is to find the weak formulation of the system of equations satisfied by the

family of truncated marginals (ﬁ)) [1,N] defined above in (9.1.5). The strategy will be similar to

se
that followed in Chapter 4 in the hard spheres case. From now on we assume that fx decays at infinity

in the velocity variable.

Given a smooth, compactly supported function ¢ defined on R x R2? and satisfying the symmetry
assumption (1.1.1), we have

N

N
1 T; — T
8fN+ ’U"V,ifN** Vo <H>~VifN (t,ZN)
(9.2.1) /11+XR2<1N( ' ; o 6;%: e )
X ¢(taZs)ﬂXNeva dZth =0.

Note that in the above double sum in i and j, all the terms vanish except when (i,j) € [1,s]? and
when (i, j) € [s + 1, N]?, by assumption on the support of F.

We now use integrations by parts to derive from (9.2.1) the weak form of the equation in the
marginals f}\f). On the one hand an integration by parts in the time variable gives

/ Ofn(t, ZN)O(t, Zs)Lx ey, dZndt = —/ IN(0,ZN)9(0, Zs) L x yeps, dZn
R xR2IN

R2dN

—/ In(t, ZN)0ip(t, Zs) U xyeps, dZNdt,
R, xR2N
hence, by definition of fl(\f ),

/ 8th(t7 ZN)¢(t7 ZS)]IXNED?V dZth: _/ AS)(O7ZS)¢(O7 ZS) dZs
R+><R2dN R2ds

—/‘ PO (t, Z)0u(t, Z4) dZdt .
1?{'+ XRst

Now let us compute

R2dN

N

Z/ ;- Va, fn(t, ZN)d(t, Zs)Uxyeps, dZn = / divxy (Vv fn(t, Zn))¢(t, Zs)Lxyeps, dZn
1 JR2av
using Green’s formula. The boundary of Dj; is made of configurations with at least one pair (4, j),
satisfying 1 <i<sand s+1<j <N, with |z; —z;| =«.
Let us define, for any couple (4,7) € [1, N]?,
i g) = { Xy € RN,z —ajl =

(9.2.2)
mdv%&eﬂ@xb+LM\%ﬁﬁm—wbw}
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We notice that £3 (4, ) is a submanifold of {Xx € R, |z; — z;| = £}, which is a smooth, codi-
mension 1 manifold of RV (locally isomorphic to the space S¢ x RN _1)), and we denote by doj\’,j
its surface measure, induced by the Lebesgue measure. Configurations with more than one collisional
pair, i.e., (4,5) and (¢/,5') with 1 < ¢,7' < s, s+ 1 < 4,5/ < N, with |z; — x| = |zs — x| = €,
and {i,j} # {i’,7'}, are subsets of submanifols of RV of dimension at least two, and therefore con-
tribute nothing to the boundary terms. Denoting n®/ the outward normal to 3% (i,j) we therefore
obtain by Green’s formula:

N

Z/ i+ Va, fn(t, ZN)d(t, Zs)Uxyepy, dZn dt
= JR xR24N

- Z/ 24N fN(t’ ZN)Ui ’ Vziéf’(t, Zs)]lXNGDfV dZndt
i=1 YR+ xR

+ Z / n' -V fn(t Zn)o(t, Zs) doyf dVidt .

1<i£j<N Ry xRNV x 24 (4,5)

By symmetry (1.1.1) and recalling that v/ = (z; — x;)/|z; — x;| this gives

N
/ . (U infN(t, ZN)gf)(t, Zs)]lXNEDf\, dZN dt
i=1 R+><R
= —Z/ fN(t,ZN)’Ui 'Vm(b(t,zs)ﬂxNeDs dZth
‘27 JRxR2IN N
N—sg i,54+1 i
+—> Vst (ugy — ) vt Zn)é(t, Zs) do dVidt

V2 1 JRLXRIN XT3, (4,9)

so finally by definition of fl(\f), we obtain

N

) / Vi - Vo, I ZN)6(t Z) U x yeny, dZy dt
i—1 R+><R2dN
9.2.3) ==y / Pt Z)vs -V, 8(t, Z,) dZ,dt
R, xR2ds
N-sg it ij
+—=> ST (vgq — i) In(t ZN)o(t, Zs) do'f AVt .

V2 1 JRLXRIN XT3, (4,9)

Now let us consider the contribution of the potential in (9.2.1). We split the sum as follows:

— T
722/ RN <Ej> . V’UifN(tﬂ ZN)¢(t7Zs)ﬂXN€DfV dZth
i i BEX
1 : Ty — Ty
== Ve =) Vufn(, ZN)(t Zs)Lxyepy, dZndt
R+><R

i,g=1

NE
+ € Z / e 'V”‘fN(t ZN)¢(t ZS)HX eps, dZndt.
Jr><deN £ i ) s N s

i j=s+1
J#i
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We notice that the second term in the right-hand side vanishes identically. It follows that

- Z Z/ <_%> Vo, In(t, Zn)(t Zs) U x yepy, dZndt
R, xR24N £

A

1< -z .
=z X / Ve <x%> Vo, 8t Z) N (¢, Z4) dZdt
R4 xR2ds 3

i,j=1
J#i
so in the end we obtain

7(s) . 1< Ty —Tj
t. 20,6 + divy. (Vog) — = o (L% v, )t 2.) dZ.dt
fo o 020 (204 v, (V) - 2 3 w0 () 9.0)0,2)

i,j=1
i

(9.2.4) - _/ F900, 2)6(0, Z,) dZ,
R2ds
N —s
V2

Remark 9.2.1. — Using the weak form of Liouville’s equation, we see that multiple collisions (which
occur as a boundary integral on a zero measure subset of OD%;) can be neglected.

S

> / Vst (ugy — ) In(t, Zn)o(t, Zs) do’ Tt
R xX% (2,54+1)

9.3. Clusters

We want to analyze the second term on the right-hand side of (9.2.4). We notice that in the space-
velocity integration the variables x,yo,...,zyN are integrated over R¥N—s-1) (with the restriction
that they must be at a distance at least & from X;) whereas xsy1 must lie in the sphere centered
at x; and of radius €. It is therefore natural to try to express that contribution in terms of the

A}VSH)(ZHQ. However as pointed out in (9.1.6),

/ FED(Zpi1) deas # T2 (Z0).

The difference between those two terms is that on the one hand

marginal

VXy € D', onehas |v; — 2441 | > e forall j > s+ 2,
which is not the case for X € DY, and on the other hand
VXny € Dy, onehas|z; —xsp1]| >cforalj<s,
a condition which does not appear in the definition of DR}H.
This leads to the following definition.

Definition 9.3.1 (e-closure). — Given a subset Xn = {z1,...,2n} of R and an integer s
in [1, N], the e-closure E(Xs, Xn) of Xs in Xn is defined as the intersection of all subsets Y of Xy
which contain Xs and satisfy the separation condition

(9.3.1) VyeY, VeeXy\Y, |z—yl>e.
We denote |E(X4, XN)| the cardinal of E(X4, XN).

Now let us introduce the following notation, useful in situations where Xy belongs to X% (i,s + 1),
defined in (9.2.2).
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Notation 9.3.2. — If Xsim = E(Xs, Xstm) and if for some integers jo < s < ko < s+ m, there
holds |5 — zx| > ¢ for all (7, k) € [1,5] X [s+ 1,5+ m] \ {(jo, ko)}, then we say that E(Xy, Xosm) has
a weak link at (jo, ko), and we denote Xqym = Ejo ko) (Xs, Xstm)-

Moreover the following notion, following King [30], will turn out to be very useful.

Definition 9.3.3 (Cluster). — A cluster of base X, = {z1,...,25} and length m is any
point {Tsi1,-- . Tsrm} i RI™ such that E(Xy, Xeim) = Xerm. We denote A,,(X,) the set of
all such clusters.

The proof of the following lemma is completely elementary.

Lemma 9.3.4. — The following equivalences hold, for m > 1:

(9.3.2) @NXmXN):X;MJ<¢¢ QﬂXmX;MQ:Q&+mandXNelﬁfm>

E<i75+1> (XS7 Xé—f—m) — Xé-i—m

E(Xs,XN) = Xstm
9.3.3 — Xv € Ds+m
(9.3.3) ( Xy € 5%, s+ 1) M=o

i

|zi — s =€

as well as the implication, for m > 2,

(9.3.4) (E<i,s+1>(xs,xs+m) :Xs+m) — ({ms+27...,xs+m} e Am,l(xsﬂ)).

Xs+m XN\ Xs+m

ngklin 5
| D | —
(= L+
o N
‘\ + J / ™

Cluster of basis xs+1
And length m-1

Xs XN\XS

FIGURE 5. Clusters with weak links
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9.4. Collision operators

With the help of the notions introduced in Section 9.3, we now can reformulate the boundary integral
n (9.2.4).

Given 1 < s < N —1 and Xy in 2%(¢,s + 1), there holds |xs41 — x;] = ¢, so that zs11 belongs
to E(X,, Xn), implying |E(X,, Xn)| > s+ 1. We decompose X% (4, s + 1) into a disjoint union over
the possible cardinals of the e-closure of X, in Xy :
(9.4.1) SxGs+)= Y (23(@,5 + 1) (Y, [BY, Ya)| = s+ m}) :

1<m<N-s
implying

/ Vot (g = vi) fn(ZN)6(Zs) doy™ dVy
R4AN x 33, (i,5+1)

= > / Wi, X st V0 (0 = 00) f(Zn)6(Zs) oy P dVy
1<m<N—s / RIVXER (irs+1)

By assumption of symmetry (1.1.1) for fn and ¢, if |E(Xs, Xn)| = s +m, we can index the particles
so that E(Xs, Xn) = Xeim : we obtain

/RdN ws.( +11)|E(XS,XN)\:s+m Vot (g1 — v) fn(ZN)3(Zs) do'y T dVy
x 3% (2,8
(9.4.2) b

=CN o / Up(x xn)=Xep T (Vo1 = 03) fN(ZN)S(Z5) do™ dViy .
RAN x 33, (i,5+1)
We use equivalence (9.3.3) from Lemma 9.3.4 and Fubini’s theorem to write

/ ]lE(XS,XN):XS+mVi,s+1 (Vg1 — vi)fN(ZNW(Zs)de\’,stVN
Rd4N XES (’L s+1)

=2 VST (vg g1 — ) 9(Zs)

SE(Ii)XRd

s+
X <L2d(m1) ﬂE(i,s+l>(X37X3+m):Xs+7n I(V Tn) (Z‘9+m)dZ(s+las+m)> dO’i(I’S+1) ?

with do; the surface measure on S.(z;) := {z € R?, [z — x| = ¢}. With (9.3.4), if m > 2, then the
above integral over R2¥™~1) appears as an integral over Ap—1(zs41). We also remark that in the
case m = 1, we have a simple description of E; ¢4 1y(Xs, Xs11) = Xeq1 ¢

|£I,'i — x5+1| <e
(943) <]]'E(i,5+l)(X87XS+1)=XS+1 % 0) < . . .

|z; —xsq1| > e for je[l,s]\ {i}

This leads to the following definition of the collision term of order m > 1, for s + m < N : we define

CosimIN T (Z0) = mCR_, Z/ VI (0 g1 — vy)
(9.4.4) S.(z;)xRd
xG ;ns+11) ( (S+m))(Zs+1) doi(rsq1)dvsy,

where for m =1, by (9.4.3):

(945) GE?,)5+1)(~1(\?+1)) ( H ﬂ\zg+1 x7|>5> A(s+1)(Zs+1)v

1<j<s
J#i
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and for m > 2:

m—1 s+m
GU U (Zag)

(9.4.6) o)

::/ nE(i,s+1)(X51Xs+m):Xs+m N (Zs+m)dZ(5+27S+m)'
A1 (zs41)xRAm=1)

The complex-looking indicator function Lp, . (x. X, ;m)=X.;,, Will, in the estimates of the next
chapters, be simply bounded from above by one. This will be the case for instance in an estimate
showing that higher-order collision operators (9.4.6) are negligible in the thermodynamical limit; this
estimate is (10.3.2) in Proposition 10.3.1. One should notice on the other hand that the operator Cs s+1
is very similar to the corresponding collision operator (4.3.2) in the hard-spheres situation.

With (N — s)Cw=! | =mC%__, we can now reformulate (9.2.4) into

7(s) . 1< Ti—Tj
t, Z) (00 + divx. (Vid) — =~ o (20 v, 6)(t, Z,) dZ.dt
/MWN(, (00 +divx, (Vo) =2 DV ( - )v1¢)< )

i,j=1

(9.4.7) s

+ 70, Z,)$(0, Z) dZ, = Z/ Z)Cosrm [T, Z,) dtdZ,

R2ds + x R2ds

so that A}\‘;) appears as a (formal) weak solution to

S S 1 S S+m
948)  afY+ > v VoY - Y V(I)( ) T = Zcmm +m)

1<i<s 1<1;£J<s

9.5. Mild solutions

We now define the integral formulation of (9.4.8). Denote by ®,(t) the s-particle Hamiltonian flow,
and by H; the associated solution operator:

(9.5.1) H, (1) : f€C(QyR) = f(®s(—t,-) € CO(Q;R).
The time-integrated form of equation (9.4.8) is

(9.5.2) FOt, Z,) = Hy (1) f(0, Zs) +Z/ H,(t — 7)Corspmfy "™ (7, Z) dr .

The total flow and total collision operators H and Cy are defined on finite sequences Gy = (gs)1<s<nN
as follows:
Vs <N, (H(t)Gn), == Hs(t)gs,

(9.5.3) Nos
VSSN_17 (CNGN chs+mgs+m7 (CNGN)NZO

m=1

We define mild solutions to the BBGKY hierarchy (9.5.2) to be solutions of
t

(9.5.4) Fn(t) = H(t)Fy(0) +/ H(t - 7)CnEn(r)dr,  Fy=(f{)icsen.
0

Remark 9.5.1. — At this stage, the use of weak formulations could seem a little bit suspicious since
they are used essentially as a technical artifice to go from the Liouville equation (1.2.2) to the mild form
of the BBGKY hierarchy (9.5.2). In particular, this allows to ignore pathological trajectories involving
multiple collisions. Nevertheless, the existence of mild solutions to the BBGKY hierarchy (to be proved
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in the next two chapters) provides the existence of weak solutions to the BBGKY hierarchy, and in
particular to the Liowville equation (which is nothing else than the last equation of the hierarchy). The
classical uniqueness result for kinetic transport equations then implies that the object we consider, that
is the family of truncated marginals, is uniquely determined (almost everywhere).

9.6. The limiting Boltzmann hierarchy

This limit of the BBGKY collision operators (9.4.4) was obtained formally in Section 8.3.2, following
the formal derivation of the hard-spheres case in Paragraph 4.4, assuming higher-order interactions
can be neglected. We recall the form of the collision operator as given in (8.3.7):

Lt 002 =3 [ b=

1 1
X (f(s+ )(tvxla U1y .oy T,y U;;ka s 7‘r8av87$i7v:+1) - f(8+ )(ta stxivvs"rl))dwdvs"rl .

where (v}, v}, ) is obtained from (v;,vs41) by applying the inverse scattering operator o ' defined in
Definition 8.2.1 and b(w,w) is the cross-section given by Definition 8.3.3.

The asymptotic dynamics are therefore governed by the following integral form of the Boltzmann
hierarchy:

t

(9.6.1) FO) = So() 15 + / Ss(t— 1) fET (1) dr,
0

where S4(t) denotes the s-particle free-flow.

Similarly to (4.3.7), we can define the total Boltzmann flow and collision operators S and C as follows:
Vs > 1, (S(t)G), :=Ss(t)ys,
Vs>1, (COG)S = CS7S+1gs+1 ,

so that mild solutions to the Boltzmann hierarchy (9.6.1) are solutions of

(9.6.2)

(9.6.3) F(t) = S(t)F(0) + /t S(t—7)C°F(r)dr,  F=(f")1.
0

Note that if f(*)(t, Z,) H f(t,2) (meaning f(*)(t) is tensorized) then f satisfies the Boltzmann

=1
equation (2.1.1)-(2.1.2), with the cross-section b(w,w) given by Definition 8.3.3.






CHAPTER 10

CLUSTER ESTIMATES AND UNIFORM A PRIORI ESTIMATES

In view of proving the existence of mild solutions to the BBGKY hierarchy (9.5.2), we need continuity
estimates on the linear collision operators Cs 54, defined in (9.4.4)-(9.4.5)-(9.4.6), and the total collision
operator Cy defined in (9.5.3).

We first note that, by definition, the operator Cs s, involves only configurations with clusters of
length m. Classical computations of statistical mechanics, presented in Section 10.1, show that the
probability of finding such clusters is exponentially decreasing with m.

It is then natural to introduce functional spaces encoding the decay with respect to energy and the
growth with respect to the order of the marginal (see Section 10.2, where norms are introduced,
generalizing the norms introduced in Chapter 5 for the hard spheres case). In these appropriate
functional spaces, we can establish uniform continuity estimates for the BBGKY collision operators
(Section 10.3). These will enable us in Section 10.4 to obtain directly uniform bounds for the hierarchy
as in Chapter 5.

10.1. Cluster estimates

A point X, € R% being given, we recall that A,,(X,) is the set of all clusters of base X, and length m
(this notation is introduced in Definition 9.3.3 page 70).

Lemma 10.1.1. — For any symmetric function ¢ on RV any s € [I, N — 1], any X, € R, the
following identity holds:

/ P(XN)dX(s41,n) :/ Ixyeps o(Xn) dX(s41,n)
R(N—s)d RA(N—s)

(10.1.1) N-—s
+ E Cmis/ (/ 1 stm O(XN) dX (s4m ) AX (541 s4m) »
m=1 N A (Xs) RA(N—s—m) XNED; ( N) (s+m+1,N) (s+1,54m)

implying, for ¢ > 0,

1

(10.1.2) -

/ AX (s+1,54m) < (™ exp (Chal(s +m)e?)
A (X.)
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and
(™ tlexp (= Cha(m + 1)e?

(10.1.3) o~

) /A ( dX(am+1) < C(1—exp (= (rae?)),
m(T1

m>1

where kg is the volume of the unit ball in RY.

Proof. — The first identity (10.1.1) is obtained by a simple partitioning argument, which extends the
splitting used to define Cs sy, in (9.4.4) in the previous chapter. We recall that, given any X, € R,
the family

{(xs+1,...,a:N), |E(Xs, XN)| = s—i—m} for 0<m<N-—s,

is a partition of RW=%)4 Then we use the symmetry assumption, as we did in (9.4.2), to find

/ P(XN)dX(my = D, CR-, / L p(x, X0 )=Xopm P(XN)AX (s11,n3) -
R(N—s)d OSmSN—s R(N—s)d
Tt then suffices to use equivalence (9.3.2) from Lemma 9.3.4, noting that the set of all (xs41,..., Ts4m)

in R™4 such that F(X,, Xs1m) = Xsim coincides with A,,(X,). This proves (10.1.1).

Estimates (10.1.2) and (10.1.3) come from the counterpart of (10.1.1) at the grand canonical level, i.e.
when the activity (! is fixed, rather than the total number N of particles; Remark 5.1.3 expands on
this terminology.

For any bounded A C R%, the associated grand-canonical ensemble for n non-interacting particles is
defined as the probability measure with density

& exp Al)
pul(X,) = PUECAD Ty
1<i<n

The s-point correlation function g, and the truncated s-point correlation function g, are defined by

oo

n!
gS(XS) = Z (7 /11(n—s)d Qpn(Xn)dX(s+1,n) )

—g)!
= (n—s)!

. > n!
9s(Xs) = / Lx, 5 ¢n(Xn)dX (st1,m) -
s S) JR(n—s)d

We compute

A
/ SDn(Xn)dX(s+1,n) = CS exp ( - C|A| C| ‘ H ]193 €N
R(n=s)d 1<i<s
so that
(10.1.4) 9s(Xs) = (" exp (= C|A[) )=¢" [] Leien-

k=0 T 1<i<s 1<i<s
Similarly, by definition of DZ in (9.1.4),
/ ﬂXﬂ,E'D;‘; H ]lriGA dX(s-‘rl,n) = ’A N ( ﬂ CBE(‘rl))’ = |A N CBE(XS)| y
Rln=2)d s+1<j<n 1<i<s

where we denote B.(X) := U B (z;), with B.(z;) := {y € R, |y — x;] < e}. This implies
1<i<s

CANBXI)"™

_ |
(n—s)! 1Ziss

gs(Xs) = CS exp ( - <|A|) Z

n>s
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If Be(z;) C Aforall 1 <i<s, then |A| — |[AN°B.(X;)| = |B:(X5)|.- We obtain

(10'1'5) gs(Xs) =¢° exp(_de(Xs)D , if BE(XS) CA.
Besides, by (10.1.1),
gs(Xs) = gs(Xs)
0o n—s TLCm

+ Z Z 'fl — 8 A (X) (/R(n_s_m)d IaneDfL‘*'mgs(Xn) dX(s—&-m-&-l,n)) dX(s+1,s+m) .

n=sm=1

By Fubini, we get

o n—s TLCm
Z Z — HX,,Lepfl‘F’"(pn(Xn) dX(s+m+1,n) dX(s+1,s+m)
Tl S A (X)) R(n—s—m)d

n=sm=1
oo N—s n!
=33 i Lo, o Preems ) Xk ) X1
n=sm=1 ’ : k—s{2s "
oy L oo X,)dX dX
- kz (k —s)! E:k (n =k Ja, . (x) \Jr-ra Lx, e n(Xn) AXt1.m) (s+1,k)
=s+1 n= B—s\s

1 ~
= > W/A ~x )gk<Xk)dX(s+1,k)-
: k—s s

k=s+1

We have proved that

~ - 1
(10.1.6) 9:(Xs) = Gu(Xo) + Y /A ( )gk(Xk)dX<s+1,k>~
k—s(X

We now show how identities (10.1.4)-(10.1.5)-(10.1.6) imply the bounds (10.1.2)-(10.1.3).

We first retain only the contribution of £k = s + m in the right-hand side of (10.1.6). Given ¢ > 0
and X, € R we choose A large enough so that B.(Y) C A for all Y € A,,(X,). This gives

1
CS > %/ (x CSer €xp ( - €|Bs(Xs+m)|) dX(s+1,s+m) ’

and now |Bo(Xsim)| < kqe?(s +m) implies (10.1.2).

We finally fix an integer K > 2 and choose s = 1 in (10.1.6). Given ¢ > 0 and x; € R?, we choose A
large enough so that B.(Yx) C A for all Y € Ak (z1). This gives

¢ - Cexp (— ¢|Ba(a) Z/A . Cep (= dIB-()) dX e

and bounding the volumes of balls from above, we find

k

+1
i exp (- Crq(k + 1)e%) / dX (2 k+1) -
Ag(w1)

¢(1 —exp( —Ckhage?) Z

It then suffices to let K — oo to find (10.1.3). This ends the proof of Lemma 10.1.1. O
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10.2. Functional spaces

To show the convergence of the series defining mild solutions (9.5.2) to the BBGKY hierarchy, we need
to introduce some norms on the space of sequences (f(s))gzl. Given € > 0, § > 0, an integer s > 1,
and a continuous function g, : 25 — R, we let

(10.2.1) 95,55 = sup (|gs(Zs)|exp (BE.(Zy)))

s€8s

where for € > 0, the function E. is the s-particle Hamiltonian

_ |vi]? : (¥
(10.2.2) B.(Zy) = Z S Z O.(z; —xp), with @.(z) ~—‘I’(g)-
1<i<s 1<i<k<s

Notice that this norm does coincide with its counterpart defined in Paragraph 5.1 in the limit described
in Remark 1.0.1.

Definition 10.2.1. — For ¢ > 0 and 8 > 0, we denote X. ;3 the Banach space of continuous
functions Qs — R with finite | - | s g norm.

By Assumption 1.2.1, for e > 0 (and 8 > 0) there holds exp(8E-(Zs)) — oo as Zs approaches 9. This
implies for g; € X, s 5 the existence of an extension by continuity: gs € C°(R??; R) such that gs =0
on 082, and gs = g on €.

For sequences of functions G = (gs)s>1, with g5 : 5 = R, we let for e >0, 5> 0, p € R,
1G e 1= 59D (194 ]e.0.5 exp(us) ) -
s>1

Definition 10.2.2. — For e > 0, § > 0, and u € R, we denote X, g, the Banach space of se-
quences G = (gs)s>1, with gs € X s g and ||G||c,8,, < 0.

As in (5.1.4), he following inclusions hold:
(10.2.3) if / <Pandp <p,then X.op CXesp, Xopw CXepgp-

Finally similarly to Definition 5.1.4 we define norms of time-dependent functions as follows.

Definition 10.2.3. — Given T > 0, a positive function B and a real valued function p defined
on [0, T] we denote X g,,, the space of functions G : t € [0,T] — G(t) = (gs(t))1<s € Xc g(¢),u(t), sSuch
that for all Z, € R%4* the map t € [0,T] — gs(t, Zs) is measurable, and

(10.2.4) IGlle.g.pe := sup [|G@)le,p(t),u(t) < 00-
0<t<T

Notice that the following conservation of energy properties hold, as for (5.2.1):

(10.2.5) [H, (t)gsle.s.p = |9sle.s,5 and  [[H(t)G |

e,8,n = HGNHE,ﬁ,,u 9

for all parameters 3 > 0, p € R, and for all g; € X, 5 3, GN = (9s)1<s<n € Xc 5,, and all ¢ > 0.
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10.3. Continuity estimates

We now establish bounds, in the above defined functional spaces, for the collision operators defined
n (9.4.4)-(9.4.6), and for the total collision operator Cy defined in (9.5.3).

Notice that in the case when m = 1 the estimates are the same as in Chapter 5: in particular thanks
to (10.2.5) the following bound holds:

t
(10.3.1) eS| [ (t — 7)Cy 5419541 (T) dT o S €Bos o, A DG e,

0 €,s,80—

for all Gn = (gs+1)1<s<n € Xe g, With €(So, po, A, T) computed explicitly in (5.3.11).

The following statement is the analogue of Proposition 5.3.1 in the hard spheres case, but in the present
situation higher order correlations must be taken into account.

Proposition 10.3.1. — Given 8 > 0 and p € R, form > 1 and 1 < s < N — m, the collision
operators Cs sim satisfy the bounds, for all Gy = (9s)1<s<n € Xe g,

(103.2)  |Costm@sim(Zs)| < €™ 1Cue™4(B/Cy)™ %( Y |>e

1<i<s

B

for some Cq > 0 depending only on d.

Ife < et="a(B/2m)%2, then for all 0 < B’ < B and ' < p, the total collision operator Cy satisfies the
bound

1 1 1
(10.3.3) ICN Gl < Call+ 673 (

-5 + 7> IGN e, -

Considering the case m > 1 in (10.3.2), for which the upper bound is O(g), we see that higher-order
interactions are negligible in the Boltzmann-Grad limit.

Proof. — We shall only consider the case m > 2, as the case m = 1 is dealt with exactly as in the

proof of Proposition 5.3.1. From the definition of G(m +11> in (9.4.6), we obtain

m—1
|G(z 5+1) (gs+m)(zs+l)‘ < ‘gs+m‘s,s+m,ﬁ/ exXp ( - BEE(Zs+m))dZ(s+2,S+m) )
AnL—l(ws+1)XRd(m'_l)
where the norm | - | 5 g is defined in (10.2.1), and the Hamiltonian E. is defined in (10.2.2). For the
collision operator defined in (9.4.4), this implies the bound
(10.3.4) |Cs,s+mGs+m(Zs)| < MOK_|gstmle,s+m,p X Z Lim (V) X Jim(X5),
1<i<s
where I, ,, is the velocity integral

s+m

Lim (Vs) = (Jvsg1] + |vs]) exp ( — s Z 1% )dVis41,540m) »
i 2

j=1
and J; ,, is the spatial integral

Jim(Xs) == / exp ( -8 Y (wy—- xk))da(xsﬂ)dx(ﬁg,sm) :
S (ZEL)XAm 1(Ib+1) 1<j<k<s+m
The velocity integral is a product of Gaussian integrals and can be exactly computed:

(10.3.5) Lin(Va) < (B/Ca)~ "% (Ivz|+5 )exp(—* Z \vg\)

1<5<s
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For the spatial integral, there holds

S Sep (=8 3T @uley )izl [ X
Am 1(T

1<j<k<s v
< exp ( - B Z O (z; — :vk)> X kged™1 x ((m —1)lglm=bd exp(mnd)> ,

1<j<k<s

where in the last bound we used identity (10.1.2) from Lemma 10.1.1 with s = 1 and ¢ = ¢~¢. This
implies

|Cs,s+7ngs+m(zs)| S Cdemil((N_S)Ed 1)m mﬁd( /Cd) (Sﬂié + Z ‘Ui|>

1<i<s
o~ BB=(Z2)

In the Boltzmann-Grad scaling Ne9~! = 1, this gives (10.3.2). Above and in the following, C; denotes
a positive constant which depends only on d, and which may change from line to line.

We turn to the proof of (10.3.3), which is similar to the proof of (5.3.2) up to the control of higher

correlations. From the pointwise inequality (5.3.3) we deduce for the above velocity integral I; ,,(V5)
the bound, for 0 < 8’ < 83,

S e ((8/2) 3 105P) Ln(Va) < Ca(B/Ca)~ % (5574 + ¥ (8- 5)7H).
1<i<s 1<j<s
From the above bound in J; ,(X5), we deduce immediately, for 0 < 5’ < 3,
[nax exp (5 Z O, (z; — :ck))JLm(XS) < Ka(m — 1) emragmd=1,
1<j<k<s
With (10.3.4), these bounds yield, in the Boltzmann-Grad scaling,
eﬂ/EE(Zs)-H/s s,s+mgs+m(Zs)’ < gm—lcd(ﬂ/cd)—%demndeuls (Sﬂ_% + Sé(ﬂ - 5/)—%)

X |gs+m|e,s+m,ﬁ .

Summing over m, we finally obtain, for Cp defined in (9.5.3),
|57ﬂ,7/1', S OdHGN”E,,B,y, sup ((sﬂ_% —+ S%(/B _ 6/)_%)6_(N—H/)s)
1<s<N

x 3 eTmmenTl(5/Cy)”

1<m<N-s

|CnGN

If ¢ is small enough so that ee®¢~#(Cy/B)%? < 1, then the above series is convergent, and

e d—ﬂ<cu/6yﬂ2

—m( ,»gd) m—1 md/2
Z we (Ca/B) = 1—cera—n(Cy/B)2

1<m<N-—s

We conclude as in the proof of Proposition 5.3.1. Proposition 10.3.1 is proved. O

Remark 10.3.1. — We do not use the extra decay provided by the contribution of the potential in
the exponential of the Hamiltonian. This is quite obuvious in the bound for J; m(Xs) in the proof
of Proposition 10.3.1, where we bound e P Xnsick<otm Pel@i—k) by e Blisicnss P (@imTR) Then e
might be tempted to replace E. by the free Hamiltonian Eq in the definition of the functional spaces.
The kinetic energy, however, is not a conserved quantity, so that in X s g spaces the conservation of
energy does not hold.
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This leads to the following lemma, which is the key to the proof of the uniform bound stated in
Theorem 9 in the next paragraph. It is the analogue of Lemma 5.3.1.

Lemma 10.3.2. — Let 5y > 0 and py € R be given. There is T > 0 depending only on By and pg
such that for an appropriate choice of X in (0, y/T), there holds for all t € [0,T)

(10.3.6) H /Ot H(t — 7)CnGy(r)dr

G
€,80—At,po— )\t ||| N|H€ﬂp,

Proof. — We follow closely the proof of Lemma 5.3.1. The difference is that here we take into account
higher-order collision operators Cs sym, with m > 2. Using notation (5.3.7), Estimate (10.3.2) from
Proposition 10.3.1 gives

A
660

s,s+mYs+m (t/a Zs) ‘
< Emilcdemﬁd (QW/ﬁS(t/))md/Z‘QS-&-m (t/) ,

A(ﬂ)( ( d/2_|_ Z g ) A =) Be(Zs)

1<i<s

Using also (5.3.8) with s + 1 replaced by s + m, we get

t
H/ H(t — t)CnGy(t') dt’
0

=B (1), (1)
(10.3.7)

olepn( X Ca) sw [Ttz

1<m<N—s Z €R2ds
where C,, = Cdamflem(”d*”S(T))(Cd/ﬂé\(T))md/z, and C is defined in (5.3.9) and satisfies (5.3.10)

which we recall here:

t Cy 1
(10.3.8) 28561;13)2“/0 C(r.t, Z) d7<7( (BT ))d/z)

Under the assumption that

(10.3.9) eoe” =0 (T (2 BY(T))¥? < 1/2,

we find

(10.3.10) ST G < 2CaeT R D(BY(T)) 2.
1<m<N-s

The upper bounds in (10.3.8) and (10.3.10) are independent of s, and their product is equal
to 2¢(Bo, po, A, T). Tt then suffices to choose A so that 2¢(5y, 10, A, T) < 1/2 and taking the supremum
in s in (10.3.7) then yields the result. O

10.4. Uniform bounds for the BBGKY and Boltzmann hierarchies

The results of the previous section enable us, exactly as in the hard spheres case page 35, to deduce
directly the following bounds on the BBGKY hierarchy defined in (9.5.4) page 72.

Theorem 9 (Uniform bounds for the BBGKY hierarchy). — Let §y > 0 and puo € R be given.
There is a time T > 0 as well as two nonincreasing functions B > 0 and p defined on [0,T], satisfy-
ing B(0) = Bo and u(0) = pg, such that in the Boltzmann-Grad scaling Ne%=' = 1, any family of initial



82 CHAPTER 10. CLUSTER ESTIMATES AND UNIFORM A PRIORI ESTIMATES

marginals F (0) = (N(S)(O))1<S<N in Xe gy.uo gives rise to a unique solution Fn(t) = (f](\f)(t))lgsgv
in Xc 8, to the BBGKY hierarchy (9.5.4) satisfying the following bound:

[Nl < 211 EN O)le, 0,110 -

In the case of the Boltzmann hierarchy associated with the collision operator (8.3.6), the same existence
result as in Theorem 7 holds, again with the same proof.

Theorem 10 (Existence for the Boltzmann hierarchy). — Assume the potential satisfies As-
sumption 1.2.1. Let By > 0 and pg € R be given. There is a time T > 0 as well as two nonincreasing
functions B > 0 and p defined on [0,T), satisfying B(0) = By and u(0) = po, such that any family of
initial marginals F(0) = (f() (0)) 5, in Xo,gou, gives rise to a unique solution F(t) = (S (t)s>1
in Xo,g,u to the Boltzmann hierarchy (5.0.2), satisfying the following bound:

I1E7o0,m,. < 2[1F(0)]

0,80,p0 -



CHAPTER 11

CONVERGENCE RESULT AND STRATEGY OF PROOF

The main goal of this chapter is to reduce the proof of Theorem 5 stated page 17 to the term-by-term
convergence of some functionals involving a finite (uniformly bounded) number of marginals with only
first-order collisions, bounded energies and a finite number of collision times, exactly as was performed
in Chapter 7 (see Section 11.3).

Before doing so we define, as in the hard spheres case, the notion of admissible initial data in Sec-
tion 11.1. We give the precise version of Theorem 5 in Section 11.2.

11.1. Admissible initial data

The characterization of admissible initial data is very similar to the hard spheres case studied in
Paragraph 6.1.1. The only new aspect concerns the fact that marginals have been truncated, and that
feature will be dealt with in this section.

Definition 11.1.1 (Admissible Boltzmann data). — Admissible Boltzmann data are defined as
families Fy = (fés))szl, with each fé” nonnegative, integrable and continuous over g, such that

(11.1.1) N FE( 2, 2e1) dzags = £7(2),

and which are limits of BBGKY initial data ﬁO,N = (J?(()fz)v)lésSN € Xc By,u0 0 the following sense: it
is assumed that

(11.1.2) ]svu>p1 | Fo.nle o < 00, for some By >0, uo € R, as Ne¥1 =1,

and that for each given s € [1, N|, the truncated marginal of order s defined by

(11.1.3) 1(2e) = /R e 103 XN (Z8)AZ 1), 1S5 <N,

converges in the Boltzmann-Grad limit:

(11.1.4) Agsj)v — fés) ., as N — oo with Ne@=! =1, locally uniformly in € .

The following result is proved very similarly to Proposition 6.1.1.
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Proposition 11.1.1. — The set of admissible Boltzmann data, in the sense of Definition 11.1.1, is
the set of families of marginals Fy as in (11.1.1) satisfying a uniform bound || Fy|lo,8,,ue < 00 for
some By > 0 and pg € R.

We shall not give the proof of that result, as the only difference with Proposition 6.1.1 lies in the
presence of a truncation in the marginals, whose effect disappears asymptotically as stated in the
following lemma.

Lemma 11.1.2. — Given ﬁON = (0S Ji<s<n satisfying (11.1.2) and (11.1.3) from Defini-

N

tion 11.1.1, with associated family Fy n = (fé ) Ji<s<n of untruncated marginals:

(11]‘5) f(g’s])\](Zs) = / 2d(N—2) fé]yv)(ZN) dZ(s—‘,—l,N) , 1<s< N7 Zs € QS7 Fng\[) = O(,JV]\I) )
R s

there holds the convergence

fON ON — 0, for fixed s > 1, as N — oo with Ne®~! = 1, uniformly in €, .

Proof. — We apply identity (10.1.1) from Lemma 10.1.1 to féf}j\,), and obtain after integration in the
velocity variables

(11.1.6) é:;])v(Z) A(g) ZCN S/ f(§+m)( s+m)dZ(s+1,s+m)~

m=1 AT”(XS)XRdm

Then, denoting Cy = sup || Fo,amlle,Bo,u0, @ finite number by assumption, from
M>1

SN (Zom) < exp (= pols +m) = BoEe(Zssm)) Co
< exp( po(s+m) — (Bo/2) Z |v; ] )C’o,
1<i<s

we deduce, first by integrating the velocity gaussians and then by using the cluster bound (10.1.2) in
Lemma 10.1.1 with ¢ = ¢~ ¢, the bound

/ 5 Zan)Zais s < Caf B2y [ dX i)
A (Xs)xRAm A (X5)

< m!(Cd/ﬂo)md/ZEmde(fid—uo)(s—km)CO )

If 2eea=Ho(Cy/Bo)¥? < 1, then

N—s

S CR_aml(Ca/Bo) /2 elram i) (4m) < o=l 5 (92¢u=t0(Cyf o) 2)™ — 0

m=1 m>1
as € — 0, implying fésl)v - fésl)v — 0 for fixed s, uniformly in €. O
Remark 11.1.3. — We can reproduce the above proof in the case of a time-dependent family of

bounded marginals, i.e., Fy € X¢ gy, with sup || Fn||e,8,n < 00, with the notation of Definition 10.2.1.
N>1

This gives uniform convergence to zero, in time t € [0,T] and in space Xs € Qs, of the difference

between truncated and untruncated marginals: A](\‘,S) (9) — 0.

We consider therefore families of initial data: Boltzmann initial data Fy = ( fés))seN such that

1 Follo,8o.m0 = sulgI S;lp (exp(,BoEo(Zs) + uos)fés)(Zs)) < 40
se s
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and for each N, BBGKY initial data ﬁN,O = (JA[}\}G,)O)lgsgN such that

Sup 1FN 0l 0.0 = SUp Sup Sup (exp(BoBe(Zs) + pos) fyn(Zs)) < +oo,

s

satisfying (11.1.3) and (11.1.4). These give rise to a unique, uniformly bounded solution Fy to the
BBGKY hierarchy thanks to Theorem 9 page 81, and to a unique solution F' to the Boltzmann hierarchy
thanks to Theorem 10 page 82.

11.2. Convergence to the Boltzmann hierarchy

Our main result is the following.

Theorem 11 (Convergence). — Assume the potential satisfies Assumption 1.2.1 as well as (8.3.1).
Let By > 0 and po € R be given. There is a time T > 0 such that the following holds. For any admissible
Boltzmann datum Fy in Xo g,,u, associated with a family (ﬁO,N)N21 of BBGKY data in X¢ gy u,, the
solution Fy to the BBGKY hierarchy satisfies, in the sense of Definition 6.2.1,

Fx 5 F
uniformly on [0,T], where F is the solution to the Boltzmann hierarchy with data Fy.

Corollary 11.2.1. — Assume the potential satisfies Assumption 1.2.1 as well as (8.3.1). Let By > 0
and pog € R be given. There is a time T > 0 such that the following holds. For any admissible
Boltzmann datum Fy in Xo g,,., associated with a family (ﬁO,N)N21 of BBGKY data in X gy uy, the
associate family of untruncated marginals Fn satisfies

Fy 5 F,

uniformly on [0,T], where F is the solution to the Boltzmann hierarchy with data Fy.

Proof. — By Proposition 11.1.1, the family Fj is an admissible Boltzmann datum. Denoting ﬁow
an associated BBGKY datum, let 7" > 0 be an existence time for the BBGKY hierarchy F v with
datum ﬁo, ~, given by Theorem 9. By Theorem 11 the convergence I, (A}VS) —f (s)) — 0 holds uniformly
in [0, T] and locally uniformly in €.

Then, by Lemma 11.1.2 and Remark 11.1.3, there holds fz(\/?) — A}\f) — 0, for fixed s, uniformly in [0, 7] x
Q. By Lemma 6.2.2, this implies I, ( ](\f) - ~J(\f)) — 0, uniformly in [0, 7] and locally uniformly in €.
We conclude that fl(\‘; ) f), uniformly in [0, T7. O

In the next paragraph we shall prove that in the sum defining f}\f) (t) one can neglect all higher-order
interactions and restrict our attention to the case when m; = 1 for each i € [1,n] and each n € N.
Then we can, exactly as in the hard spheres case discussed in Chapter 7, consider only a finite number
of collisions, and reduce the study to bounded energies and well separated collision times.
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11.3. Reductions of the BBGKY hierarchy, and pseudotrajectories

In this paragraph, we first prove that the estimates obtained in Chapter 10 enable us to reduce the
study of the BBGKY hierarchy to the equation

t
(11.3.1) %@wZQ:HAQyRQ&)+/IL@—TW”HQﬁ”@Zng 1<s<N-—1.
0

Estimate (10.3.2) in Proposition 10.3.1 shows indeed that higher-order collisions are negligible in the
Boltzmann-Grad limit. For the solution to the BBGKY hierarchy, this translates as follows.

Proposition 11.3.1. — Let By > 0 and pg be given. Then with the same notation as Theorem 9,
in the Boltzmann-Grad scaling Ne®~* = 1, any family of initial marginals Fy(0) = ( ](\f) (O))1<S<N

in Xe go.uo gives rise to a unique solution Gy € X. 8.u of (11.3.1) and there holds the bound

IGN e < 20ENO)le 0,0 -

Besides, the solution éN to the modified hierarchy (11.3.1) is asymptotically close to the solution ﬁN
to the BBGKY hierarchy (9.5.4):

(11.3.2) G~ = Fnlle,s.n < 2¢[1FN (0)lle 80,0 -

Proof. — We find the bound for G N, in the same way as for Theorem 9. We turn to the proof
of (11.3.2). There holds

Gy —F < H‘ St —t)Coapr (G — FUTY ) dt’
IGN = Fxllepp < )Cs.s+1(9n N ) reoen @l s
+ H‘/ St —t) Corspm ™ (H ) dt’ .
2<W§N_S IO e Wl
With (10.3.1), this implies
F < H‘ - S, 8T+tm (S+m ) ! Y
G = Flle s < co t=t) D Cost ) coan . 5,
2<m<N—

with ¢g := (1 — &(Bo, po, A, T))fl7 which is indeed strictly positive by assumption. We conclude as in
the proof of Proposition 10.3.1 and Lemma 10.3.2. O

One has the following formulation for gﬁ;') in terms of the initial datum:

0 t t1 tn—1
:Z//“/ H,(t — t1)Co o1 Hos1(t1 — t2) ... Hopn (£2) FST™(0) dty, ... dty .
— 0 0 0

We define the functional

Z / 90.9 s (t - tl)cs,s+1Hs+1(tl - t2)cs+1,s+2
T (t)

o Coqrmn, s Hopr(te — tk+1)f1(\f7$k)didV;

and following Chapter 7, the reduced elementary functional

Ifl’c&(tst) = /%(VS)/ H,(t —t1)Cs,sr1Hsr1(t1 — t2)Coy1,542
(11.3.3) Ths(t)

o Copr1 st Hoyn(te — ter1) e (2, <R f}\f;k)dist :
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We can reproduce the proofs of Propositions 7.1.1, 7.2.1 and 7.3.1 to obtain the following result, as in
Corollary 7.4.1.

Proposition 11.8.2. — With the notation of Theorem 9, given s € N* and t € [0,T], there are two
positive constants C' and C' such that for all n € N*,

Fnyo

|8,Bo,uo .

n
||Is(t) - Zlficé(t)HLoo(Rds) < C(zin + €7C,R2 + 5)||@||L°°(Rds)
k=0

As in the hard-spheres case, in the integrand of the collision operators Cs 41 defined in (9.4.4), we can
distinguish between pre- and post-collisional configurations, as we decompose

_ ot -
CS,SJrl - Cs,erl - Cs,erl

where

S

(11.3.4) CE gt = 3 e gt

m=1
the index m referring to the index of the interaction particle among the s “fixed” particles, with the
notation

(C:§T1§(S+l))(zs) = (N —s)e?™ /Sdil Rd(’/ (Vg1 — Um))ig(sﬂ)(zs, Ty + EV, Vsq1)
X

1

X H n\zjfms+1|25 dl/dvs-i—l ;
1<j<s
j#m
the index + corresponding to post-collisional configurations and the index — to pre-collisional config-
urations, according to terminology set out in Chapter 8.

The elementary BBGKY observables we are interested in can therefore be decomposed as
k

(11.3.5) X)) => (Hji)lf;f(t, J, M)(Xy)

JM i=1
where the elementary functionals If,’f (t,J, M) are defined by

I = [V [ B - )OI (6 - )T,
Tk,s(t)
o Han (e — i) Le g, <me g dThdVy

with

J = (1, jx) € {+ =} and M := (mq,...,my) with m; € {1,...,s+i—1}.

As in the hard spheres case, we still cannot study directly the convergence of I sl?;f(t, J, M) —
12;,575(75, J, M) since the transport operators Hy do not coincide everywhere with the free transport
operators Sy, which means — in terms of pseudo-trajectories — that there are recollisions. Note that,
because the interaction potential is compactly supported, recollisions happen only for characteristics
such that there exist 7,5 € [1, k] with 7 # j, and 7 > 0 such that

|(z; — Tv;) — (; — Tv;)| < €.
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We shall thus prove that these recollisions arise only for a few pathological pseudo-trajectories, which
can be eliminated by additional truncations of the domains of integration. This is the goal of Part IV,
which deals with the hard-spheres and the potential case simultaneously.



PART IV

TERM-BY-TERM CONVERGENCE






CHAPTER 12

ELIMINATION OF RECOLLISIONS

This last part is the heart of our contribution. We prove the term-by-term convergence of the series
giving the observables, both in the case of hard spheres and in the case of smooth hamiltonian systems.

We have indeed seen in Corollary 7.4.1 (for the hard-spheres case) and Proposition 11.3.2 (for the
potential case) that the convergence of observables reduces to the convergence to zero of the elementary
functionals If;f — Ig”lf”’é, where If;f is defined in (7.3.1) in the hard-spheres case and in (11.3.3) for

the potential case, and Ig’,f 0 is defined in (7.3.1). These functionals correspond to dynamics

— involving only a finite number s + k of particles,

— with bounded energies (at most R?),

— such that the k additional particles are adjoined through binary collisions,
at times separated at least by 9.

What we shall establish is that recollisions can occur only for very pathological pseudo-trajectories,
in the sense that the velocities and impact parameters of the additional particles in the collision trees
have to be chosen in small measure sets.

We point out the fact that, even in the case of hard spheres, these bad sets are generally not of zero
measure because they are built as non countable unions of zero measure sets. The arguments are
actually very similar whatever the precise nature of the microscopic interaction.

The only differences we shall see between the case of hard spheres and the case of smooth potentials
are the following:

— the parametrization of collisions by the deflection angle is trivial in the case of hard spheres since it
coincides exactly with the impact parameter;

— there is no time shift between pre-collisional and post-collisional configurations in the case of hard
spheres since the reflection is instantaneous.

These two simplifications will enable us to obtain explicit estimates on the convergence rate in the case
of hard spheres. For more general interactions, this convergence rate can be expressed as an implicit
function depending on the potential.
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12.1. Stability of good configurations by adjunction of collisional particles

In this paragraph we momentarily forget the BBGKY and Boltzmann hierarchies, and focus on the
study of pseudo-trajectories.

Definition 12.1.1 (Good configuration). — For any constant ¢ > 0, we denote by Gi(c) the set
of “good configurations” of k particles, separated by at least ¢ through backwards transport: that is the
set of (X, Vi) € R% x BY% such that the image of (X, Vi) by the backward free transport satisfies the
separation condition

VT207 VZ#KL |.’177;—.’Ej_7—(vi_vj)|zc7

i particular it is never collisional.

We recall that BY := {Vk e R¥* /|| < R} and in the following we write Br := B.

Our aim is to show that “good configurations” are stable by adjunction of a collisional particle provided
that the deflection angle and the velocity of the additional particle do not belong to a small pathological
set. Furthermore the set to be excluded can be chosen in a uniform way with respect to the initial
positions of the particles in a small neighborhood of any fixed “good configuration”.

Notation 12.1.2. — In dll the sequel, given two positive parameters 1 and 12, we shall say that

m < ne if m < Cn

for some large constant C' which does not depend on any parameter.

In the following we shall fix three parameters a, &g, < 1 such that
(12.1.1) a <K ey <Lnd.

We recall that the parameter § scales like time while we shall see that 7, like R, scales like a velocity.
The parameters a and &q, just like e, will have the scaling of a distance.

Proposition 12.1.1. — Leta,co,n < 1 satisfy (12.1.1). Given Z), € Gy (o), there is a subset By, (Zy)
of Sf_l X Br of small measure: for some fized constant C > 0 and some constant C(®,n, R) > 0,
_ d—1 d—1
Bu(Zo)| < Ck(Bn* + RY( =) +R(T) )
0

in the case of hard spheres

(12.1.2) B e e
1Bk(Z)| < Ck(Rnd‘1 +C(®, R, 1) Rd<%) +C(9,R, n)R(FO) )

in the case of a smooth interaction potential @ ,

and such that good configurations close to Z;, are stable by adjunction of a collisional particle close
to Tx, and not belonging to By(Z},), in the following sense.

Consider (v,v) € (897! x Br)\ Br(Z1) and let Zy, be a configuration of k particles such that Vi, = V),
and | X — Xi| < a.

o Ifv-(v—1) <0 then for all € > 0 sufficiently small,

VZ#']E l,k, x; —70;) — (x; — TU; 257
vr >0, { LK, | ) — (a5 — 73|

12.1.3
( ) Viel,k], |(zk+ev—rTv)—(2; —70;)| >€.
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Moreover after the time 0, the k + 1 particles are in a good configuration:

(12.1.4) (Xy, — 0V, Vi, o + v — 6v,v) € Gry1(20/2) .

o Ifv-(v—1ug) >0 then define for j € [1,k — 1]

(257, 2%) = 0~ (2, (zp +ev,v))  and 25" = () — 05, 05)

in the hard-spheres case, where o is defined in (4.4.2), and

(25, 25%) =0t (zk, (zk + ev, v)) and 25" = (x; — .05, 0;5)

in the potential case, where o is the scattering operator as in Definition 8.2.1 and where t. < § denotes
the scattering time between zy, and (xy + ev,v). Then for all ¢ > 0 sufficiently small,

Vi#£j el k], o5 — 7o) — (25 — TsY)| > €,
v7>0,{ (1K), [(af ) — (25 il

(12.1.5)

Vi€ Lk, [T —71v) = (25 —Tvi)[ > €.

Moreover after the time 0, the k + 1 particles are in a good configuration:
(12.1.6) (X;;‘* — (6 — )V VE o — (6 — tg)ve*,v5*> € Gri1(c0/2)

with t. := 0 in the hard-spheres case.

The proof of the proposition may be found in Section 12.3. It relies on some elementary geometrical
lemmas, stated and proved in the next section. The first one describes the bad trajectories associated
with (free) transport. The other ones explain how they are modified by collisions, both in the case of
hard spheres and in the case of smooth interactions.

Remark 12.1.3. — For the sake of simplicity, we have assumed in the statement of Proposition 12.1.1
that the additional particle collides with the particle numbered k. Of course, a simple symmetry argu-
ment shows that an analogous statement holds if the new particle is added close to any of the particles

The proof of Proposition 12.1.1 shows that if Zi, = Zj, then the factor e0/2 in (12.1.4) and (12.1.6)
may be replaced by eo. The loss if Z, # Z}, comes from the fact that the set to be excluded has to be

chosen in a uniform way with respect to the initial positions of the particles in a small neighborhood
Of Yk

12.2. Geometrical lemmas

We first consider the case of two particles moving freely, and describe the set of velocities vy leading
possibly to collisions (or recollisions).

Here and in the sequel, we denote by K (w,y, p) the cylinder of origin w € RY, of axis y € R? and
radius p > 0 and by B,(y) the ball centered at y of radius p.
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12.2.1. Bad trajectories associated to free transport. —

Lemma 12.2.1. — Givena > 0 satisfying e < a < €y, consider T1,Zs in R? such that |Z1—Z2| > o,
and v1 € Bgr. Then for any x1 € Ba(Z1), any xo € B;(Z2) and any va € Bg, the following results
hold.

o Ifvy ¢ K(vy,T1 — Zo,6Ra/eg), then
V>0, |(z1—vi7)— (22 —voT)| > €;
° If (%) ¢K(Ul,f1—.’f2,650/5)

VTZ(S, |(.’E1—’L)1’7')—(£L’2—’UQT)‘>EQ.

Proof. — e Assume that there exists 7, such that
[(z1 —v17%) — (2 —v2Ts)| < €.
Then, by the triangular inequality and provided that e is sufficiently small,
|(T1 — ZT2) — Tu(v1 —v2)] < e+2a < 3a.
This means that (v; — v2) belongs to the cone of vertex 0 based on the ball centered at Z; — T2 and of

radius 3@, which is a cone of solid angle (3a/|Z; — Z2|)?~! (since a < o).

The intersection of this cone and of the sphere of radius 2R is obviously embedded in the cylinder of
axis T — Ty and radius 6Ra/eg, which proves the first result.

e Similarly assume that there exists 7* > § such that
[(x1 —v17i) — (22 — v2Ts)| < 0.
Then, by the triangular inequality again,
[(Z1 — Z2) — Tu(v1 —v2)| < g0+ 2a < 3gg.
In particular, for any unit vector n orthogonal to &1 — %o,
T (v —v2)| = n- ((T1 — T2) — Tu(v1 — v2)) | < 3eo.
This tells us exactly that v, — va belongs to the cylinder of axis Z; — Z and radius 3eq/9.

The lemma is proved. O

12.2.2. Modification of bad trajectories by hard sphere reflection. —

We now consider the case when particles 1 and 2 undergo a hard sphere collision before being trans-
ported, and look at impact parameters v and velocities v, leading possibly to collisions (or recollisions).
Lemma 12.2.2. — Consider p < R, and (y,w) € R x Bg. For any vy in Bgr, define
N*(w,y, p) (1) 1= {(,v2) €SI x Br / (vy —v1) v > 0,
vi € K(w,y,p) orvy € K(w,y,p)},
where
vii=v—v- (v —v)v and vy :i=vy+ v- (v —v2) V.
Then
N (w,y, p)(v1)] < CaRp™™?,

where the constant Cy depends only on the dimension d.
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Proof. — Denote by r = |v; —va| = |[vF —v5|. The reflection condition shows that, as v varies in 8§,
the velocities v and v3 range over a sphere of diameter r.

The solid angle of the intersection of such a sphere with the cylinder K (w,y, p) is less than

C, min <1, (ﬁ)(“)

which implies that

d—1
HmwwﬁemM%mwﬁeKW%mHf@/”Amm@(Q )W
< CqRp*t.

This proves Lemma 12.2.2. [

12.2.3. Modification of bad trajectories by the scattering associated to ®. —

The last geometrical lemma requires the use of notation coming from scattering theory, introduced in
Chapter 8: it states that if two particles z;, 2 in R?? are in a post-collisional configuration and if v,
or ve belong to a cylinder as in Lemma 12.2.1, then the pre-image z5 of z5 through the scattering
operator belongs to a small set of R??,

Lemma 12.2.3. — Consider two parameters p < R and n < 1, and (y,w) € R% x Br. For any v
in Bg, define

N*(w,y, p)(vy) == {(V7’U2) € S‘lif1 X Br/(va—v1)-v>n,
vi € K(w,y,p) orvy € K(w,y,p)},

where (v, v§,v3) = ot (v,v1,v2) with the notations of Chapter 8. Then
IV* (w,y, p)(v1)| < C(@, R,m)Rp™™

where the constant depends on the potential ® through the L norm of the cross-section b on the
compact set Bag X [n/2R, /2] defined in Chapter 8.

Proof. — Denote by r = |v; — va| = |vf — v3|, and by w the deflection angle.

From the proof of the previous lemma, we deduce that

r

d—1
v /01 € Ky or 15 € Kl | < o [~ i (1,(2)" ) ar
< Cdde_l .

According to Chapter 8, the change of variables (v, v; —vs9) — (w, v1 —v2) is a Lipschitz diffeomorphism
away from v - (v; — v2) = 0. We therefore get the expected estimate. O

Remark 12.2.4. — Note that the geometrical Lemmas 12.2.1 to 12.2.3 consist in eliminating sets in
the velocity variables and deflection angles only, and do mot concern the position variables.
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12.3. Proof of the geometric proposition

In this section we prove Proposition 12.1.1. We fix a good configuration Z;, € Gi(go), and we consider
a configuration Z;, € R?%  with the same velocities as Z},, and neighboring positions: | X3 — X ;| < a.
In particular we notice that for all 7 > 0 and all 7 # j,

(1237) |1‘7, — X —T(@i —@j)| > |fz — —T(@i —@j)| — 2a > 60/2

since a < g¢. This implies that Zy, € Gi(0/2). Next we consider an additional particle (zy, +ev, vgp41)
and we shall separate the analysis into two parts, depending on whether the situation is pre-collisional
(meaning v - (vg4+1 — U) < 0) or post-collisional (meaning v - (vgy1 — Ux) > 0).

12.3.1. The pre-collisional case. — We assume that
V- (Uk+1 —@k) <0,

meaning that (zx +ev, vgy1) and 2z form a pre-collisional pair. In particular we have for all times 7 > 0
and all e > 0

|(zk + v — vp17) — (wp — OkT)| > €.
Furthermore up to excluding the ball B, () in the set of admissible vi41, we may assume that
|’Uk+1 — @k‘ >n.
Under that assumption we have for all 7 > ¢ and all € > 0 sufficiently small,

‘($k+€V—vk+1T)—($k—17kT)| ZT|U}€+1—’T)]€|—E
>0n—e>ep/2.

Furthermore we know that Zj belongs to Gi(g0/2) thanks to (12.3.7).

Now let j € [1,k — 1] be given. According to Lemma 12.2.1, we find that for any vi41 belonging to
the set B \ K(v;,%; — Zx,6Ra/co + 60 /0), we have

Vr >0, |(xg+ev—vpgT) — (x; —0,7)] > €,

and
Vr >0, [(xgp+ev—uvpsT)— (2, — ;7)) > e0.

Notice that

ot 5, s | < () R(2) )

Defining ./\/l_(7k) = U K(T)j,.fj — 50;@,6Ra/50 +6€0/5) and

Jj<k—1
B, (Zy) :==S{* x (Bn(ﬁk) UM*(71€))
we find that
] 1 )

and (12.1.3) and (12.1.4) hold as soon as (v, vg11) & By, (Zk).



12.3. PROOF OF THE GEOMETRIC PROPOSITION 97

12.3.2. The post-collisional case with hard sphere reflection. —

We now assume that

V- (Uk+1 —@k) >0,
meaning that (zy + ev,vp+1) and z; form a post-collisional pair. In particular, at time 7 = 0+, the
configuration is changed and we have the pre-collisional pair (zy + ev, v ;) and (x,vy) where vy

and vy, are defined by the usual reflection condition. Furthermore, we have for all times 7 > 0 and
alle >0

|(xk+€1/fv}:+17') — (xkvaT)’ >e.

We can then repeat the same arguments as inthe pre-collisional case replacing vk, vg+1 by vE, vi, -
Excluding the ball B, () in the set of admissible viy1, we find that

|(xk +€V*UZ+1T) — (:Ek 7v27)| > T|ogtr — Uk — €
>0n—e>ep/2.

According to Lemma 12.2.1, if v, v;, ; belong to the set Bg\ K(v;,%; — Zy,6Ra/eo + 6e0/J), we have
V7T >0, [(or+ev—vp 1) — () —0;7) > €,
(e —vpT) — (2 —;7)[ > €,

and
Vr>6, |(xx+ev—vp 1) — (x5 —9,7) > €0

|(zk — vkT) — (2 —0;7)| > €0

Combining Lemmas 12.2.1and 12.2.2, we therefore obtain that (12.1.3) and (12.1.4) hold as soon
as (v,vp41) ¢ By (Z)) where

Bl (Zx) =87 x By(ox)U |J N*(v),%; — Tk, 6Ra/en + 6o /5) (0k) -
j<k—1
In particular,

185 ()| < Ok + R R(Z)").

12.3.3. The post-collisional case with smooth scattering. —

In the case of a smooth interaction potential, dealing with the post-collisional case is a little bit more
intricate because of the time shift. Furthermore, using Lemma 12.2.3 instead of Lemma 12.2.2, we lose
the explicit estimate for the bad set B; (Zy).

Let us first define

(12.3.8) C(Zy) = {(V, Uks1) € ST X Br, v+ (Upq1 — U) < 77}7
which satisfies
IC(Zk)| < CRy* 1.

Choosing (v,vg41) € (S§ x Br) \ C(Z}.) ensures that the cross-section is well defined (see Defini-
tion 8.3.3), and that the scattering time t. is of order C(®, R,n)e by Proposition 8.2.1.
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Considering the formulas (8.2.2) expressing (2%, 25% ) in terms of (2, (zx + €V, vg41)), we know that
1, ., - 1
S+ afh) = on s+ 3ok — 20)
< Rt. +e < C(P,R,n)e,

1, . . 1
@+ 2fn) = (@ + zoa) |+ 12k = 2h4)]

< Rt.+e < C(®,R,n)k.

Note that due to (12.3.7), all particles z; with j < k—1 are at a distance at least €9/2—¢ > €¢/3 of the
particles zj, and xx +cv. Since they have bounded velocities, they cannot enter the protection spheres
of these post-collisional particles during the interaction time t., provided that ¢ is small enough:

Rts <<€0/3.

1 «
23" — anl < glai —afl+

(12.3.9) )
|2k — (@ +ev)| < Slai — 2] +

Since the dynamics of the particles j < k—1 is not affected by the scattering, we get that Z;* ; belongs
to gk_1(60/2):
(12.3.10) VT >0,V(i,5) € L,k =1 with i # 5, [27* — 25" — 7(vf" —v5")| > €0/2.

? J

The pair (2%, 27% 1) is a pre-collisional pair by definition, so we know that for all 7 > 0,
(k" — 7oi") — (@3 — TRl = €.
Excluding the ball B, (7)) in the set of admissible vg41, we find as above that
Vr >0, ot =2 —1(vp" —viliy)| =2 nd —e > e,
for e sufficiently small, since €y < nd.

Next for j < k—1 we have for ¢ sufficiently small, recalling that the uniform, rectilinear motion of the
center of mass as described in (8.1.3),

|25 — 2] < |25" — 25 + |z; — 75| < Rte +a < 2a

27" — Zn| < [2f" — 2kl + |2k — k| < Rte +e+a < 2a
|51 — Bkl < |27 — @ha] + ok ey — 3] < Bte +2e+a < 2a.
By Lemma 12.2.1, provided v;* and v§’ ; do not belong to
K (v;,%; — Tk, 12Ra/eq + 1260/6) N Br,

we get since v5* = vj,

V>0, |zif— 5" — 1ot — UJE*)| >e,

and |xpt, — 25" — 7(vihy —viT)| >
as well as
VT >6/2, |ait -2t = T(vpt —v5T)| > e0/2,

J
and |2ty — 25" — (v —v5) > e0/2.

Lemma 12.2.3 bounds from the above the size of the set N*(v;,Z; — Zy, p) of all (v, v41) belonging
to (S{ x Bg) \ C(Z},) such that vi* or v{* | belongs to K (v;,Z; — Zj, p). We let p = 12Ra/eq + 1250 /9,
and define
B,j(?k) = C(?k) @] (Silil X Bn('l_}k)) U N*(’l_Jj,i'j — Tk, 12Ra/€0 + 1260/5)(’?%) .
J<k—1
By Lemma 12.2.3,

‘B;(Zk)‘ < CkRn* 1 + C(9, R, n)R(Rgg n %o)d—1
0
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and (12.1.5) and (12.1.6) hold as soon as (v,v) ¢ B} (Z)). Proposition 12.1.1 is proved. O

Note that, in order to prove that pathological sets have vanishing measure as ¢ — 0, we have to
choose 1 small enough, and then a and g even smaller in order that (12.1.1) is satisfied and that
(12.1.2) is small. Moreover, if we want to get a rate of convergence, we need to have more precise
bounds on the cross-section b in terms of the truncation parameters R and 7.






CHAPTER 13

TRUNCATED COLLISION INTEGRALS

Our goal in the present chapter is to slightly modify (in a uniform way) the functionals T f,f (defined

in (7.3.1) in the hard-spheres case and in (11.3.3) for the potential case) and Igy’,f’[s, defined in (7.3.1),
in order for the corresponding pseudo-trajectories to be decomposed as a succession of free transport
and binary collisions, without any recollision. This will be possible thanks to Proposition 12.1.1. We
then expect to be able to compare these approximate observables, which will be done in the next
chapter.

13.1. Initialization

The first step consists in preparing the initial configuration Z so that it is a good configuration. We
define

= ds s . > }
Ag(eo) {Zs € R* x By / 1§%g£§5 |z, —xj| > €0y,

and we shall assume from now on that Z; belongs to A;(eg). We also define for convenience

X — dS : _ . > }'
AL (e0) {XS e R/ 1§é2f]"§s |z — 2] > €0

Proposition 13.1.1. — For all X, € AX(g), there is a subset M4(X,) of R% such that

M. (X,)| < CRs? ((R;)dl + (?)d1> 7

and defining Py := {ZS € As(e0)/ Vs ¢ MS(XS)}, then

V>0, Lp, oTs(r)=1p, oSy(7)
in the hard-spheres case,
(13.1.1) Vr >0, lp, oHy(r)=1p, oSy(7)
in the potential case, and

V>4, lLp, oSs(r)=1Lp, 0Ss(r)o g, () -

denoting abusively by 14 the operator of multiplication by the indicator of A.
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Proof. — The proof is very similar to the arguments of the previous chapter. For any Z, in A4(eg),
we apply Lemma 12.2.1 which shows that outside a small measure set M (X,) C R% of veloci-

|M5(XS)| < CRs> ((R;)d—l N (20),1_1) |

the backward nonlinear flow is actually the free flow and the particles remain at a distance larger
than e to one another for all times:

Vr>0, V£ e{l,....s}, |(wi—wver)— (zor —v0T)| > ¢,

ties (v1,...,vs), with

and that
Vr>6, V40 ¢ {1,...,8}, [xp—ve7) — (xpr —vT)| > €0
By construction, M (Xs) depends continuously on Xj; the result follows by definition of Ps. O

13.2. Approximation of the Boltzmann functional

We recall that we consider a family of initial data Fy = ( fés)) satisfying

| Follo,go, e = sull\)I s;p (exp(ﬁoE(Zs) + uos) és)(Zs)) < 400
EIS s

and after the reductions of Chapters 7 and 11, the observable we are interested in is the following:

173 (1,0, M) (X,) = / A / Sl WS 1~
Th,s(t

oo Seqk(th = try1) L (2., ) <R? féHk)dist ,

(13.2.2)

€0
(5

d—1 _
By Proposition 13.1.1, up to an error term of order CRSQ((RE) )d 1), we can assume that
€0

the initial configuration Z, is a good configuration, meaning that

0,R,8 0,51,m 0,52,m
BRI = [ ) [ S e S )T
R s s k,5

Ik, s+k
OOl S (b — by ) (20 < f8T dTRAV,

) e \d-1 g0 d—1
+0 <ck,J,MRs ((R) + (—) > IIFollo,Bo,;L(,) ;
[511) (5
where Z Z ¢k, = 1 and

k J,M
(Cg”;r’Tf(SH))(ZS) = / (V541 = Vm) - Vay1) - T (Zg, 2, ve41) dvgsrdvggr  and
S¢-1xRd
(Cg,’;q@f(ﬁl))(zs) = /d 1 (SUSH —Um) - Vs+1)+f(s+1)(zlw~‘vxmav:m . ~aZs>$m’”:+1)st+1d“5+1‘
ST™ xR

Now let us introduce some notation which we shall be using constantly from now on: given Z; €
Ag(g0), we call Z2(7) the position of the backward free flow initiated from Z, at time ¢; < 7 < t.
Then given j; € {+,—}, my € [1,s], a deflection angle vy, and a velocity vs41 we call Z0,(7) the
position at time to < 7 < t; of the Boltzmann pseudo-trajectory initiated by the adjunction of the
particle (Vg4 1,v441) to the particle 20, _(t1) (which is simply free-flow in the pre-collisional case j; = —,
and free-flow after scattering of particles 20, (f1) and (ve41,vs41) in the post-collisional case j; = +).
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Similarly by induction given Z, € Ay(eo), T,J and M we denote for each 1 < k < n by Z2_,(7)
the position at time t4+1 < 7 < ti of the pseudo-trajectory initiated by the adjunction of the parti-
cle (Veq, vstr) to the particle 20, (tx) (which is simply free-flow in the pre-collisional case j, = —,
and free-flow after scattering of particles z)), (tx) and (Vsik,vstk) in the post-collisional case ji = +).

Notice that 7+— Z2,,(7) is pointwise right-continuous on [0, ;).

With this notation, the elementary functional Ig,’,f” 9 may be reformulated as

stsos(Vs)/

1909 (4, M) (X,) = /
Th,s(t)

di/ AWy 11dVs 41 (V541 — Uy, (1) - Vsg1) 4
Br\M,(X.) Si-1x B

R

s+k
~~~/S?1XBZVs+kdUs+k:((Us+k — v, (tr) - Vs+lc)+]1E0(Zg+k(O))§R2f(§ * )(ZSM(O))

+0 <Ck,J,MR32 ((R;O)dl + (?)0”) ||F0||07,307M0> ;

where Z Z ck,gm = 1. Let a,e09,m7 < 1 be such that
k JM

a<KegKnd.

According to Proposition 12.1.1, for any good configuration Z,;_1 € R?*¥ k=1 we can define a set

Bl (Zarr1) = (ST x Br) \ Bl (Zotk1),

such that good configurations Zs 1 = (Xsix_1, Vssr_1) With | X1 x_1 — Xsir_1] < Ca are stable

by adjunction of a collisional particle zs1r = (Tm, +EVits, Vits) With (Vkys, Vkys) € CBZ_’“k_l(ZSJrk,l).

We further notice that thanks to Remark 12.1.3, if the adjoined pair (vsig,vst+k) belongs to the
set cBﬂ“k_l(Zg+k_1(tk)) with Z2+k_1(tk) € Gst+k-1(g0), then Zg+k(tk+1) belongs to G4k (20).

As a consequence we may define recursively the approximate Boltzmann functional

TR X = [ W) [ am,

Br\M(Xs) Th,s(t)
/ AV 1dvs i1 (Vsg1 — Vo (B1) * V1),
(13.2.3) B (Z29(t1))
. / . dVS+kdUs+k(US+k - ’Ugnk (tk) . Vs+k)jk
CBsfk71(Zg+kf1(tk))

s+k
X Lgy(z0,, (0) <R ot )(Zg+k(0))~

The following result is an immediate consequence of Proposition 12.1.1, together with the continuity
estimates for the Boltzmann collision operator in Proposition 5.3.2.

Proposition 13.2.1. — Let a,e0,m < 1 satisfying (12.1.1). Then, we have the following error esti-
mates for the observables associated to the Boltzmann dynamics:
— with the cross-section associated to hard-spheres,

n
303 B (I = I0E2) k0, M) < Cnls +m)
k=0 J,M

(et () ()
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— with the cross-section associated with a smooth short-range potential @,

30D e (I8 = J2E2) (1,4, M) < Cnls + )
k=0 J,M
€0

< (Rt 4 c@an RR(E)T + 0@ RR(Z) ) Rl

13.3. Approximation of the BBGKY functional

We recall that after the reductions of Chapters 7 and 11, the elementary functionals we are interested
in are
— in the case of hard spheres:

I = [V [ Tl = mCR Tt~ )T,
T,s(t)
O Tkt — tesn) U, (7, <2 g dTkdVs
where Fiy o = (fj(\,s’)o)lgsgj\[ satisfies

1EN0lle. 00 = sup sup (exp(BoBo(Zs) + p08)fp(Zs)) < +o0;

seN Z;€Ds

— in the case of a smooth interaction potential ®:

I = [@uV) [ B 0)CHT s (6~ 1)CH T
Tk,s(t)
el o et — te) Ug (2 <re Fag - dTkdVe,
where Fiy o = (J?J(\?,)o)lSsSN satisfies

(s)

|\ﬁN70||5,507M0 = sulg sup (exp(ﬂoEE(Zs) + pos) N,O(Zs)) < +00.
sE 3

Zs
Since both formulas are quite similar, we shall deal with the case of smooth potentials and will indicate
— if need be — simplifications arising in the case of hard spheres.

Thanks to Proposition 13.1.1, we have
It J, M)(X,) = / %(VS)/ S.(t — t1)lg, (o) I Hop (t — £2)C237"2,
BRr\M(X;) Tre,s ()

el et — te) g,z op<re fy g dTedV

+0 (Ck,J’MRsz ((R;)d_l + (?)d_l> ||ﬁN,O||s,ﬁo,uo> ;

where recall that ¢, ;s denotes a sequence of positive real numbers satisfying Z Z ckgm = 1.
k JM

Then using the notation introduced in the previous paragraph for the Boltzmann pseudo-trajectory,
let us define the approximate functionals

inj(tv J, M)(X) = / %(VS)/ S,(t — tl)llgs@o)@}ngHsH(tl —t3)
Br\M,(Xs) Th,s(t)

O Hean (e — b ) e (2, op <2 fo T dTRaV
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where the modified collision operators are obtained by elimination of the pathological set of impact
parameters and velocities

(C;tﬂlrl?fl,s+kg(s+k)) (Zsyr—1) == (N —s—k+ 1) / (Vstk * (Vsph — Umy (t8))) £

CBZkka(Zngkfﬂtk))

Xg(s+k)(~7xmk(tk) + eVsik, sk (tr)) H ]ll(mj—1m,k)(tk)—€Vs+k|Z€ AV, dvgt; -
1<j <o th-1
JFEME

By construction, we know that the remaining collision trees are nice, in the sense that collisions involve
only two particles and are well-separated in time. Using the pre/post-collisional change of variables,
we can rewrite the gain terms as follows

g, (eor2) (CHM i Hasn (e — ths1) 9" ™) (Zosnor)

= (N —s—k+ l)fd_l]lgwkq(eo/Q)/ m (VSJrk : ('USJrk — Umy, (tk)))Jr
B (22,1 (tr))
X Hgyp(ty — thyr — tE(ZS+k))g(s+k)(-7x;knk7u;knk7 e T Vs
X H U2~ ) (b)) —evern] e Vs ks 41
1<j<s+k—1
J#EME

denoting as previously by (2}, , Vs Tsirs Veys) the pre-image by the scattering operator o. of the

pOiIlt (x'mk y Umy, (tk)v Ly, (tk) + EVstk, Us+k(tk))'

Note that this last step is obvious in the case of hard spheres since there is no time shift : ¢, = 0.

As in the Boltzmann case described above, the following result is an immediate consequence of Propo-
sition 12.1.1 together with the continuity estimates for the BBGKY collision operator in Proposi-
tions 5.3.1 and 10.3.1.

Proposition 13.3.1. — Let a,e9,n < 1 satisfying (12.1.1). Then, for e sufficiently small, we have
the following error estimates for the observables associated to the BBGKY dynamics:
— in the case of hard-spheres

503 e (155 = a5 .5.00) = Ot ) (R 5 1 () 4 R (22) ol
k=0 J,M

— in the case of some smooth short-range potential ®

S5 e (108 = I (M) < Conls 4 m)
k=0 J,M

€o

< (Rt c@an R (L)o@ RR(Z) ) 1ol

The functional Jf,’f can be written in terms of pseudo-trajectories, as in (13.2.3). Let us therefore
introduce some notation which we shall be using constantly from now on: given Z, € A;(gp), we
call Z%(7) the position of the backward free flow initiated from Z,, at time t; < 7 < t. Then
given ji € {+,—}, m1 € [1,s], an angle v, (or equivalently a position z,41 = a9, (1) + eve41) and
a velocity ve1 we call ZZ,i(7) the position at time t; < 7 < ¢; of the BBGKY pseudo-trajectory
initiated by the adjunction of the particle z5y1 to the particle z?nl (t1).
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Similarly by induction given Z, € A4(go), T, J and M we denote for each 1 < k < n by Z ,(7) the
position at time tpy1 < 7 < t; of the BBGKY pseudo-trajectory initiated by the adjunction of the
particle zgyj to the particle z,, (tx). We have

N —s)!
JEO (g, M) (X)) = (75"3(‘1—1) / dVeps(Vs) / dT
’ (N —s—k)! Br\M,(X,) Tis(t)

»ZBS(Z_Q(tl)) dvsp1dvsr (Vors - (Va1 =V, (0050 ] Wiy, ) (1) —evasn |2

1<j<s
(13.3.4) i#ma
.. / i Avs 1 dvsyr, (Vstk - (Vsik — Uy, (tk')))jk
CBsik—l(Zgﬁ»k—l(tk))
T(s+k
< TI Neswmpto—evecnlze LBz <z FN 0" (Z5:4(0)) -
1<j<s+k—1
JEM

Thanks to Propositions 13.2.1 and 13.3.1 the proof of Theorems 8 and 11 reduces to the proof of the
convergence to zero of Jf,’f — JSO”,f 0 This is the object of the next chapter.



CHAPTER 14

CONVERGENCE PROOF

In this chapter we conclude the proof of Theorems 8 and 11 by proving that Jf]f - Jg’,f‘ 0 goes to zero

in the Boltzmann-Grad limit, with the notation of the previous chapter, namely (13.2.3) and (13.3.4).
The main difficulty lies in the fact that in contrast to the Boltzmann situation, collisions in the BBGKY
configuration are not pointwise in space (nor in time in the case of the smooth Hamiltonian system).
At each collision time ¢ a small error is therefore introduced, which needs to be controlled.

We recall that, as in the previous chapters, we consider dynamics

— involving only a finite number s + k of particles,

— with bounded energies (at most R? > 1),

— such that the k additional particles are adjoined through binary collisions at times separated at least
by § < 1.

The additional truncation parameters a, &g, n < 1 satisfy (12.1.1).

14.1. Proximity of Boltzmann and BBGKY trajectories

This paragraph is devoted to the proof, by induction, that the BBGKY and Boltzmann pseudo-
trajectories remain close for all times, in particular that there is no recollision for the BBGKY dynamics.

We recall that the notation Z)(t) and Z(t) were defined in Paragraphs 13.2 and 13.3 respectively.

Lemma 14.1.1. — Fiz T € Tp5(t), J, and M and given Zs in Ag(eo), consider for alli € {1,...n},

an impact parameter vsy; and a velocity vsy; such that (Vsyi,Vsti) & Bs+i,1(Zg+i_1(ti)). Then, for e

sufficiently small, for alli € [1,n], and all k < s+,
— for the hard sphere dynamics

(14.1.1) |l‘i(ti+1) — l‘g(ﬁi+1)| < i and Ulc(ti—H) = Ug(ti+1),
— for the hamiltonian dynamics associated to ®
(14.1.2) |l‘i(ti+1) — l‘%(ti+1)| S C(CD, R, T])&i and 'Uk(ti-i-l) = Ug(tH_l) 5

where the constant C(®, R,n) depends only on ®, R, and 7.

Proof. — We proceed by induction on 4, the index of the time variables ¢;;1 for 0 <i < n.
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We first notice that by construction, Zs(t1) — Z%(t;) = 0, so (14.1.2) holds for i = 0. The initial
configuration being a good configuration, we indeed know — by definition — that there is no possible
recollision.

Now let ¢ € [1,n] be fixed, and assume that for all £ <
(14.1.3) Vk<s+/0-—1, |25 (t)) — x2(te)| < Ce(f —1) and  wvg(ty) = vi(te),
with C =1 for hard spheres.

Let us prove that (14.1.3) holds for £ =i + 1. We shall consider two cases depending on whether the
particle adjoined at time ¢; is pre-collisional or post-collisional.

e As usual, the case of pre-collisional velocities (vg;, v, (t;)) at time ¢; is the most simple to handle.
We indeed have V7 € [t;y1, ]

Vi <sH4i, a2(1)=ax2(t;) + (T —t;)vd(ts), V(1) = v2(t:),
i (T) =, (6) + (T = t)vssi,  V0p(T) = Ve
Now let us study the BBGKY trajectory. We recall that the particle is adjoined in such a way

that (Vs44,vsyi) belongs to “Bsii—1 (Zgﬂ-_l(ti)). Provided that ¢ is sufficiently small, by the induction
assumption (14.1.3), we have

Vi <s4i—1, |o5(t;)—ad(t)] <Ce(i—1)<a,
with C =1 for hard spheres.
Since Z?2,;_,(t;) belongs to Gs1;—1(c0) (see Paragraph 13.2), we can apply Proposition 12.1.1 which
implies that backwards in time, there is free flow for Z7, ;. In particular,
Vi <s+4i, xp(1)=2a(t;)+ (T —t;)vk(t;), v (1) = vg(t;) ,
Ts1i(T) = T, (L) + eVsri + (T = t)Vsti,  Vsyi(T) = Vs -

We therefore obtain

(14.1.4) Vk<s+i, V7E[tit1,t:], vp(r)— v,g(T) = vg(t;) — vg(ti) =0,
and
(14.1.5) Vk<s+i, V7E[tizi,ti], |oa(r)—ad(r)] <Ce(i—1)+e¢,

with C' =1 in the case of hard spheres.

e The case of post-collisional velocities (vs4i, Um, (t;)) at time ¢; for the hard sphere dynamics is very
similar. We indeed have V7 € [t; 11, ;]

Vk <s+1i, k#my, x%(T) = x%(ti) + (7 — ti)vg*(ti) , vg(T) = vg(ti) ,
w0, (1) = (L) + (T = ta)ope (t) s oR(r) = i (t),
x(s)+i(7—) = x?n (t:) + (1 —ti)vsy, U(s)+i(7—) =5

Now let us study the BBGKY trajectory. We recall that the particle is adjoined in such a way
that (ve4,vs4i) belongs to °BLY, (Z2,;_,(t;)). Provided that ¢ is sufficiently small, by the induction
assumption (14.1.3), we have

VE<s+i—1, |og(t) —ap(t) <e(i—1).
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Since Z2,;_,(t;) belongs to Gspi—1(g0) (see Paragraph 13.2), we can apply Proposition 12.1.1 which
implies that backwards in time, there is free flow for Z7 ;. In particular,

(14.1.6) Vk<s+i, V7TE[tirti], ve(T)—vp(T) =vi(t]) —vi(t;) =0,
and
(14.1.7) Vk<s+i, V7€t ti, |op(r)—an(r)| <e(i—1)+e<ice.

e The case of post-collisional velocities is a little more complicated since there is a (small) time interval
during which interaction occurs.

Let us start by describing the Boltzmann flow. By definition of the post-collisional configuration, we
know that the following identities hold:

(’Ug)nia Ug—',—i)(T) = (U?,:(Z (ti)a U:-i-i) with (V:J,-iv U?,;: (ti)a U:-i-i) = U()_I(V5+ia 11,9,“ (ti)v Us—‘ri)
Vi ST <ti, T, (T) = @, (83) + (7 = ti)vgy (), 2014 (7) = alyi(t) + (T — ti)viy,

Vi ¢ {mi,s+1}, v?(r) = U?(ti) , x?(T) = x?(ti) + (T — ti)v?(ti) ,
where og denotes the scattering operator defined in Definition 8.2.1 in Chapter 8.
First, by Proposition 12.1.1, we know that for j ¢ {m;,s + i} and V7 € [t;11,],
zi(7) = z;(t) + (1 —ta)v; (ti), () =v;(ta),

so that by the induction assumption (14.1.3) we obtain
Vi ¢ {mi,s +i}, V7 € [tipa ], Jay(r) = 2f(7)] = Jay(t) — 25(t:)] < Ce(i - 1)

and v;(1) = UJO-(T) .

(14.1.8)

We now have to focus on the pair (s + 4,m;). According to Chapter 8, the relative velocity evolves
under the nonlinear dynamics on a time interval [t; — te,t;] with t. < C(®, R,n)e (recalling that by
construction, the relative velocity |vsy; — Um, (¢;)] is bounded from above by R and from below by 7,
and that the impact parameter is also bounded from below by n). Then, for all 7 € [t;y1,t; — t.],

(14.1.9) si(T) = 0l = 00 (T) s v, (7) = gy () = v (t) = v, (7).
In particular,
(14.1.10) Vsri(tivn) = vipi(tiv) and v, (tiv1) = vy, (i) -
The conservation of total momentum as in Paragraph 12.3.3 shows that
1

5(1'57“ (ti - ts) + $§+i(ti - ts)) - %(Z‘?nl (ti — ta) + ‘r2+i(ti _ ta))’
= [ () + 1) — %, 00) + 2% (00)|
g

9 .
B ts) — 0. (0)] + 5 < Celi— 1)+ <

On the other hand, by definition of the scattering time ¢,
|25, (8 — te) — x5y (t — 1) = ¢,
|:r21i (ti —t.) — xgﬂ'(ti - t5)| = t5|v;;i - v;‘ﬂ-\ <C(®,R,n)e.

We obtain finally
(14.1.11) |28, (t; —t-) — 20, (t; —t.)| < Cei and |25 ;(t; —t.) — 2%, (t; —t.)| < Cei

mg

provided that C' is chosen sufficiently large (depending on ®, R and 7).
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Now let us apply Proposition 12.1.1, which implies that for all 7 € [t;11,t; — t.] the backward in time
evolution of the two particles x5 ,;(t; —t.) and x5, (t; — tc), is that of free flow: we have therefore,
using (14.1.9),

al, (tiv1) — a0 (tig1) = @b, (ti — to) —ab, (ti —to),
wy i (tivr) — 20y (tigr) = a5, (t — to) — a0, (8 — to) .

From (14.1.11) we therefore deduce that the induction assumption is satisfied at time step ¢;y1, and
the proposition is proved. O

Note that, by construction,
ZJ:1,(0) € Gori(eo)
so that an obvious application of the triangular inequality leads to
Z11(0) € Gsyr(0/2) -
Note also that the indicator functions are identically equal to 1 for good configurations. We therefore
have the following
Corollary 14.1.2. — Under the assumptions of Lemma 14.1.1, the functional Jf”;f(t, J, M) defined
in (13.3.4) may be written as follows:
N —s)!
TS0, M) (X = e / AVps(V2) / dTy,
’ (N —s—k) Br\M.(X.) Tos (1)
/ dvsi1dvsyq (Vs+1 : ('US-H — Umy (tl)))jl
B (Z29(t1))
/ . AVs 1 AVs ik (Vsin - (Vsik — Uy, (tk)))jk
Bl 1 (201 ()

s+k
X ﬂEs(ZsH(O))SR’Zﬂzs+k(0)egs+k<so/2>f}v,o N(Z2,4(0)).

14.2. Proof of convergence for the hard sphere dynamics: proof of Theorem 8

In this section we prove Theorem 8, which concerns the case of hard spheres. The potential case will
be treated in the following section.

From Corollary 7.4.1, we know that any observable associated to the BBGKY hierarchy can be ap-
proximated by a finite sum : more precisely, given s and ¢ € [0, T}, there are two positive constants C
and C’ such that

n R,5 —n _ ' p2
(14.2.12) | L.t) = > 1% (Ol poe ey S CR7" He CE 1 8) 1l Lo (ras) 1 Fw,0le, 8o 0 -
k=0
Similarly, for the Boltzmann hierarchy, we get
R,é —n el /2
(14.2.13) 12900) = S I8 ]| ey < O™ 4O 4 8) ] o ety [ Pl oo -

k=0
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Then, from Propositions 13.2.1 and 13.3.1, we obtain the error terms corresponding to the elimination
of pathological velocities and impact parameters

oo D07 (IO = J2582) k0, M)| < Cnls +m)
(14.2.14) k=0 I

B a\d—1 g0\ 41
(B B A R(T) ) IFollos o lellim e

and

n

‘HAS(EO) Z Z (Lflf - J;?]’f)(t, J, M)‘ <Cn(s+n)

(14.2.15) k=0J,M
B a\d-1 g0\ 41
(Bt R(S) T A R(F) ) IEw ol oo llellim e
The end of the proof of Theorem 8 consists in estimating the error terms in Jf,’f — Jg’,f 0 coming

essentially from the micro-translations described in the previous paragraph and from the initial data.

14.2.1. Error coming from the initial data. —

Let us replace the initial data in inf by that of the Boltzmann hierarchy, defining;:
~ N — s)!
T4, 0, M)(X,) == (7‘9)@’6(‘1—1) / dVips(Vs) / dTy,
’ (N —s—k)! Br\M.(X.) Thos (1)

L s g 0 @ s = ()
°Bs s (t1

/ . Vs ik dvs ik (Vsth - (Vs = Vmy (E1))) 53
CBs«#’ck—l(Zg#»kfl(tk))

s+k
X ﬂE()(zM(o))smﬂzg+k(o>egs+k<60/2)fé (Zei1(0))

Since, by definition of admissible Boltzmann data, we have for any fixed s
ésj)v — fés) as N — oo with Ne?~! =1, locally uniformly in €, ,

we expect that
3 (4, M)(Xo) = T (T, M)(X.) = 0

as N — oo with Ne?~! = 1, locally uniformly in €.

Lemma 14.2.1. — Let Fy be an admissible Boltzmann datum and Fy n an associated BBGKY datum.
Then, in the Boltzmann-Grad scaling Ne?~' =1, for all fived s,k € N and t < T,

T (4 I M)(X) = T35 (¢, J, M) (Xs) = 0,
locally uniformly in Q.
For tensorized initial data

SN (Zn) = 25 Mz enn fEN (Zn)  with || foexp(Bolv]?)|| . < +o0,
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we further have the following error estimate :

[Tax () ZZ D)t T, M)(Xs)| < Cels + )l Follo,go o 9]l e (Rt
k=0 J,M

Proof. — By definition of the good sets Gi(c), the positions in the argument of J"(SHC fés+k) satisfy

the separation condition |z; — x| > ¢/2 > ¢ for i # j :

(e+k) f(s+k)

9+k (s+k
0 ):]lg3+k(50/2)1|‘ﬁ§+k(60/2)( I P

Il'gs+k(50/2)(

So we can write

~ N —s)!
g = T ) = B [ v [
(N —s—k)! Br\M(X.) T ()

/ st—i—ldUs-i-l(Vs-‘rl ! (US+1 — Umy (tl)))jl
B (Z9(th))

. / . dvs kdvs i (Vs+k : ('Us+k — Umy, (tk)))jk
CBs+kk: 1(Z§+k 1(t5))

s+k s+k
X Up. (zz,  (0n<r2 LA, (0/2)( J(V,o b fy,

and we find directly that

CRk(dH)tk (s+k) (s+k)

5 TR,§
Loy e (I (4.0, 00) = T34, 1. M))(X)| < 05— s aeorm (USSP = 15|

Lo

Note that, summing all the elementary contributions (i.e. summing over J, M and k), we get the
convergence to 0, but with a very bad dependence with respect to R and n.

In the case of tensorized initial data, this estimate can be improved using some explicit control on the
convergence of the initial data. Looking at the proof of Proposition 6.1.2, we indeed see that

Iz,.ep, /5 — ész)v = (1 - ZzT/lZN—s)]lZseDsf(?s + Z;,lZ(bSJFLN)]lzseDsf(S@S

with

— Z[;lZN—s 7(‘5‘"’1)

< (1 —ekalfolperr) ™ — 1 < eskalfolporr (1 — ekal fol Lo 1)
according to Lemma 6.1.2, and

_ —(s+1
Zle(bs-&-l,N) < €Sﬁd‘f0|LooLl (1 — Elid|f0|LocL1) ( ) .

Using the continuity estimate in Proposition 5.3.1, we then deduce that

]lAg((EO) (ijf(t, J, M) - ‘Tsl?léé(t’ J, M))(XS)

< e(s+k)kal folpee Lt 1F0l0,0,110 191 Loe (A=) Ch 701 -

denoting by (ck,s,nm) a sequence of nonnegative real numners such that 3, >, ¢k sm = 1. This
concludes the proof of Lemma 14.2.1. O
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14.2.2. Error coming from the prefactors in the collision operators. —

As € — 0 in the Boltzmann-Grad scaling, we have

(N =) k(d—1)

—_— 1.

N_s—ki°
Defining

e nanec) = [ WipuVe) [
Br\M,(Xs) Tr,s(t)
/ st+1dUs+1 (Vs—i-l . (Us—i-l - Um, (tl)))_ﬁ

(14.2.16) B (Z3(1)

. / Avs g dvs g (Vs+k : (Us+k — Umy, (tk))).jk
B

m

s+kk71(zg+k71(tk))
1 1 (k) (Z, (0
X Wy (2w <r21ze, (0)eduiitco/fo  (Zstk(0)),

and using again the continuity estimate in Proposition 5.3.1, we have the following obvious convergence.

Lemma 14.2.2. — In the Boltzmann-Grad scaling Ne@™' =1,

7 —=R,5
[Lax e 22 D00 = T L M)(X)| < O ol e ey
k=0 J,M

n
(s +n)?
Follo,80,u0 -

14.2.3. Error coming from the divergence of trajectories. —

We can now compare the definition (13.2.3) of J27’£’5(t, J, M):

‘]37’,?’5@’ J, M)(Xg) = / dVg(ps(Vg) / di/ st+1dUs+1((Us+1 — ’Ug’h (tl) . V3+1)j1
Br\M, (Xs) The,s () B (Z9(t1))
. / . dl/s+kd’l)5+k((’l)5+k — U?nk (tn) . Vs+k)jk
cB.c+kk—1(Zg+k_1(tk))

s+k
X ]1E0<zg+k<o>>smfé (20,4(0)) .
and the formulation (14.2.16) for the approximate BBGKY hierarchy.
Lemma 14.1.1 implies that at time 0 we have
[ Xs4£(0) = X044 (0)] < Cke,  and Vs (0) = V2, (0).

(s+k)

Since f; is continuous, we obtain the expected convergence as stated in the following lemma.

Lemma 14.2.3. — In the Boltzmann-Grad scaling Ne®~' =1, for all fived s,k € N and t < T,
T, T, M) (X)) — T80 (4, J, M)(X,) — 0.

For tensorized Lipschitz initial data, we further have the following error estimate :

n
Iaxeo) D D (T = JNE0)(t, J, M) (X,)] < Cenl|Va follo || Fo
k=0 J,M

Oaﬂo,MOHWHLm(Rds) .
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Notice that putting together Lemmas 14.2.1, 14.2.2 and 14.2.3, along with the estimates (14.2.12)-
(14.2.13) and (14.2.14)-(14.2.15), end the proof of Theorem 8 up to the rate of convergence. This is
the object of the next paragraph.

14.2.4. Optimization for tensorized Lipschitz initial data. — We can now conclude the
proof of Theorem 8. Gathering the results of Lemmas 14.2.1, 14.2.2 and 14.2.3, together with the
estimates (14.2.12)-(14.2.13) and (14.2.14)-(14.2.15), we get

—n _ ' p2
120(8) = 220 ey SO@ 4™ 4 )l e gty S5 Fi e o

a

A1 d d—1 €0 d—1
+On(s ) (B B Z) HR(T) ) IEwolle ool e

+ Ce(s + )| Follo,po.uo |l Lo (reas)

(s +n)?

+ O llellpee mas) 1 Fo

|0,50,M0

+ Cne||Va foll Lo |0l Loe (res) | Foll0, 80,110

Therefore, choosing

n~ Ci|loge|, R*~ Cs|loge|
for some sufficiently large constants C; and Cy, and

§ = e@=D/d+1) oo d/(d+1)

we find that the total error is smaller than Ce® for any o < (d —1)/(d + 1).

This ends the proof of Theorem 8.

14.3. Convergence in the case of a smooth interaction potential: proof of Theorem 11

Let us now prove Theorem 11.

The same arguments as in the previous section provide the convergence for any smooth short-range

potential satisfying (8.3.1). Let us only sketch the proof and point out how to deal with the following

minor differences.

— The elimination of multiple collisions gives an additional error term : from Propositions 11.3.1
and 11.3.2, we indeed deduce the analogue of (14.2.12):

FN,OHsﬂo,}to :

—n ' p2

(14.3.17) | Z5(t) — zf;f(t)HLw(Rds) <Ce+2"+e 9 +8)]oll Lo (ras)

— The error term coming from the elimination of pathological velocities and impact parameters depends
(in a non trivial way) on the local L> norm of the cross-section: estimate (14.2.14) becomes

[ Waseor D2 D0 (08 = I 0,0, )|
k=0 J,M

3 a\d-1 eq d—1
< Cnfs +n) (R~ + C@, RR (=) +C@RmR(Z) ) IFollosomolleli=me) -
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— Additional error terms come from the difference between truncated marginals and true marginals
(namely on the initial data) : by Lemma 11.1.2, there holds the convergence

f(sj)\, 0 N — 0, for fixed s > 1, as N — oo with Ne¢~! = 1, uniformly in €, .
Together with Lemma 14.2.1, this implies that
T (40, M)(X) = T (8 T M)(X.) = 0.

— The micro-translations between the “good” Boltzmann and BBGKY pseudo-trajectories depend on
the maximal duration of the interactions to be considered

[Xat5(0) = X21(0) < C(@, Romke, and Vix(0) = V24 (0)
so that the convergence
T, T M)(X,) — T (t, T, M) (X,) = 0
may be very slow.

Combining all estimates shows that for any fixed s € N and any t < T
L(t)(Xs) = I (1) (Xs) = 0

locally uniformly in 4, which concludes the proof of Theorem 11.






CHAPTER 15

CONCLUDING REMARKS

15.1. On the time of validity of Theorems 9 and 8

Let us first note that, for any fixed N, the BBGKY hierarchy has a global solution since it is formally
equivalent to the Liouville equation in the phase space of dimension 2Nd, which is nothing else than a
linear transport equation. The fact that we obtain a uniform bound on a finite life span only, is therefore
due to the analytical-type functional spaces X 3, we consider. Belonging to such a functional space
requires indeed a strong control on the growth of marginals.

An important point is that the time of convergence is exactly the time for which these uniform a priori
estimates hold. By definition of the functional spaces, we are indeed in a situation where the high order
correlations can be neglected (see (14.2.12) and (14.3.17)), so that we only have to study the dynamics
of a finite system of particles. The term-by-term convergence relies then on geometrical properties of
the transport in the whole space, which do not introduce any restriction on the time of convergence.

A natural question is therefore to know whether or not it is possible to get better uniform a priori
estimates and thus to improve the time of convergence. Let us first remark that such a priori estimates
would hold for the Boltzmann hierarchy and thus for the nonlinear non homogeneous Boltzmann equa-
tion. As mentioned in Chapter 2, the main difficulty is to control the possible spatial concentrations
of particles, which would contradict the rarefaction assumption and lead to an uncontrolled collision
process.

15.2. More general potentials

A first natural extension to this work concerns the case of a compactly supported, repulsive potential,
but no longer satisfying (8.3.1). As explained in Chapter 8, that assumption guarantees that the
cross section is well defined everywhere, since the deflection angle is a one-to-one function of the
impact parameter. If that is no longer satisfied, additional decompositions are necessary to split the
integration domain in subdomains where the cross-section is well-defined : we then expect to be able to
extend the convergence proof, up to some technical complications due to the resummation procedures
(see [39] for an alternative method). Note that, if the deflecttion angle can be locally constant as a
function of the impact parameter, the method does not apply, which is consistent with the fact that
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we do not expect the Boltzmann equation to be a good approximation of the dynamics (see the by
now classical counterexample by Uchiyama [15]).

From a physical point of view it would be more interesting to study the case of long-range potentials.
Then the cross section actually becomes singular, so a different notion of limit must be considered,
possibly in the spirit of Alexandre and Villani [3]. One intermediate step, as in [16], would be to
extend this work to the case when the support of the potential goes to infinity with the number of
particles. Then one could try truncating the long-range potential and showing that the tail of the
potential has very little effect in the convergence.

Note that in the case when grazing collisions become predominant, then the Boltzmann equation
should be replaced by the Landau equation, whose derivation is essentially open; a first result in that
direction was obtained very recently by A. Bobylev, M. Pulvirenti and C. Saffirio in [4], where a time
zero convergence result is established.

15.3. Other boundary conditions

As it stands, our analysis is restricted to the whole space (namely Xy € RV). It is indeed important
that free flow corresponds to straight lines (see in particular Lemmas 12.2.1 and 12.2.3 as well more
generally as the analysis of pathological trajectories in Chapter 12).

It would be very interesting to generalize this work to more general geometries. A first step in that
direction is to study the case of periodic flows in X . The geometric lemmas must be adapted to that
framework, and in particular it appears that a finite life span must a priori be given before the surgery
of the collision integrals may be performed (see [5]).

The case of a general domain is again much more complicated, and results from the theory of billiards
would probably need to be used.
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NOTATION INDEX

Bpr, ball of radius R centered at zero in RY,
page 26

B3, ball of radius R centered at zero in R%,
page 26

Bg(z), ball of radius R centered at z in R4,
page 76

Bi(Z},) asmall setiof angles and velocities of a par-
ticle adjoined to Zj (or a neighboring configura-
tion), leading to pathological trajectories, page 92

b(w,w)/|wl, cross-section, page 64

Cy, BBGKY hierarchy collision operator, page 29
for the hard-spheres case and page 64 for the po-
tential case

C% Boltzmann hierarchy collision operator,
page 31 for the hard-spheres case and page 73 for
the potential case

Cs,s+1, BBGKY collision operator, page 29 for the
hard-spheres case and page 71 for the potential
case

Cs,s+m, BBGKY collision operator involving m ad-
ditional particles, page 71

cgs 11, Boltzmann collision operator, page 31 for
the hard-spheres case and page 64 for the potential
case

Dy, domain on which the hard-spheres dynamics
take place, page 25

Dy, artificial set on which the Hamiltonian dy-
namics take place, page 66

A, (Xs), m-particle cluster based on X, page 70
Ag, well-separated initial configurations, page 101
A%, well-separated initial positions, page 101
daf\’,j , surface measure on X% (4, j), page 67

do, surface measure on S (x;), page 71

dZ ;), 2d(j — i + 1)-dimensional Lebesgue mea-
sure, page 43

E(Xs, X,), e-closure of X, in Xy, page 70

Eciyjo>(Xs, Xy), e-closure of X in Xy with a
weak link at (¢o, jo), page 70

E.(Zs), s-particle Hamiltonian, page 78

Ey(Z,), s-particle free Hamiltonian, page 33

f ](\f ), marginal of order s of the N-particle distri-
bution function, page 27 for the hard-spheres case,
page 65 for the potential case

~1(\f), truncated marginal of order s of the N-
particle distribution function, page 66

f®), marginal of order s associated with the Boltz-
mann hierarchy, page 31

®_, rescaled potential, page 78

Gr, set of good configurations of k particles,
page 92
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H,(t), s-particle flow in the potential case, page 72
H(t), BBGKY hierarchy flow in the potential case,
page 72

I, observable (average with respect to momentum

variables), page 47

I,(t)(Xs) BBGKY observable, page 50 for the
hard-spheres case, page 86 for the potential case

I9(t)(X,) Boltzmann observable, page 50

I(f;f (t)(Xs) reduced BBGKY observable, page 53
for the hard-spheres case, page 86 for the potential
case

Igf"s(t)(Xs) reduced Boltzmann observable,
page 53

K(w,y,p), cylinder of origin w € RY, of axis
y € R?% and radius p > 0, page 93

kg, volume of the unit ball in R?, page 37

n®J, outward normal to Xy (i,7), page 28

v*7 | direction of x; — x;, page 5

M (Xs), good set of initial velocities associated
with well separated positions, page 101

‘P, the set of continuous densities of probability in
R??, page 45

px, distance of minimal approach, page 58

Ss(t), s-particle free flow, page 31
S(t), total free flow, page 31
S‘ffl, unit sphere in R%, page 11

S.(x;), sphere in R? of radius ¢, centered at x;,
page 71

o, scattering operator in the hard-spheres case,
page 31

0., scattering operator in the case of a potential,
page 60

09, Boltzmann scattering operator, page 60
¥ n(i,7), boundary of Dy, page 28
¥%,(4,7), boundary of the artificial set D3, page 67

NOTATION INDEX

T,(t), s-particle flow for hard spheres, page 30
T(t), total flow for hard spheres, page 30

t. = €7y, nonlinear interaction time, page 58
Tn(t), set of collision times, page 52

7;L,5 (t)y
page 52

set of well-separated collision times,

Xc,s,p function space for BBGKY marginals,
page 33 for the hard-spheres case and page 78 for
the potential case

Xo,s,p function space for Boltzmann marginals,
page 33

Xe,3,u function space for the BBGKY hierarchies,
page 34 for the hard-spheres case and page 78 for
the potential case

Xo,3,, function space for the Boltzmann hierar-
chies, page 34

X 8,u function space for the uniform existence
to the BBGKY hierarchies, page 34 for the hard-
spheres case and page 78 for the potential case

Xo,3,n function space for the uniform existence to
the Boltzmann hierarchies, page 34

W, (t), s-particle hard-spheres flow, page 30

w, direction of the apse line, page 59
Qpy, phase space for the Liouville equation,
page 41

Z N, partition function, page 42

| - |e,s,5 norm for the BBGKY marginal of order s,
page 33 for the hard-spheres case and page 78 for
the potential case

| - |o,s,s norm for the Boltzmann marginal of or-
der s, page 33

Ile,8,, norm for the BBGKY hierarchy, page 34
for the hard-spheres case and page 78 for the po-
tential case

l|-l0,8, norm for the Boltzmann hierarchy, page 34

Il [lz,8,u, norm in X, g,,, page 34 for the hard-
spheres case and page 78 for the potential case

Il - lo,8,» norm in Xo g, page 34



