Université de Paris
From Boltzmann to Navier-Stokes with polynomial initial data

Pierre Gervais

Introduction
The scaled Boltzmann equation
Relation with the incompressible Navier-Stokes-Fourier system
Construction of solutions and convergence Initial data with Gaussian decay (Bardos-Ukai/Gallagher-Tristani) Initial data with polynomial decay

Proof of the theorem
Strategy
Splitting of the equation
control of the polynomial part
Study of the Gaussian part

Introduction

The scaled Boltzmann equation

Boltzmann equation $=$ evolution of particles density $F^{\varepsilon}(t, x, v) \geq 0$, mean free path (Knudsen number) $=\varepsilon$ and $x \in \Omega=\mathbb{R}^{d}, \mathbb{T}^{d},(d=2,3)$

$$
\begin{gathered}
\varepsilon \partial_{t} F^{\varepsilon}+v \cdot \nabla_{x} F^{\varepsilon}=\frac{1}{\varepsilon} Q\left(F^{\varepsilon}, F^{\varepsilon}\right) \\
Q(F, G)(v)=\int_{\mathbb{R}_{v_{*}}^{d} \times \mathbb{S}_{\sigma}^{d-1}}\left|v-v_{*}\right|\left(F\left(v^{\prime}\right) G\left(v_{*}^{\prime}\right)-F(v) G\left(v_{*}\right)\right) \mathrm{d} v_{*} \mathrm{~d} \sigma \\
v^{\prime}=\frac{v+v_{*}}{2}+\sigma \frac{\left|v-v_{*}\right|}{2}, \quad v_{*}^{\prime}=\frac{v+v_{*}}{2}-\sigma \frac{\left|v-v_{*}\right|}{2}
\end{gathered}
$$

Introduction

The scaled Boltzmann equation

Boltzmann equation $=$ evolution of particles density $F^{\varepsilon}(t, x, v) \geq 0$, mean free path (Knudsen number) $=\varepsilon$ and $x \in \Omega=\mathbb{R}^{d}, \mathbb{T}^{d},(d=2,3)$

$$
\varepsilon \partial_{t} F^{\varepsilon}+v \cdot \nabla_{x} F^{\varepsilon}=\frac{1}{\varepsilon} Q\left(F^{\varepsilon}, F^{\varepsilon}\right)
$$

Conserved macroscopic observables:

- Mass : $R^{\varepsilon}=\int F^{\varepsilon} \mathrm{d} v$
- Momentum : $R^{\varepsilon} U^{\varepsilon}=\int F^{\varepsilon} v \mathrm{~d} v$
- Energy : $\frac{1}{2} R^{\varepsilon}|U|^{2}+\frac{d}{2} R^{\varepsilon} T^{\varepsilon}=\int F^{\varepsilon} \frac{|v|^{2}}{2} \mathrm{~d} v$

Introduction

Relation with the incompressible Navier-Stokes-Fourier system

Gas at thermodynamic equilibrium (constant heat, mass density, at rest) :

$$
M=(2 \pi)^{-d / 2} \exp \left(-|v|^{2} / 2\right)
$$

Statistical fluctuation of order ε :

$$
F^{\varepsilon}=M+\varepsilon f^{\varepsilon}, F_{\mid t=0}^{\varepsilon}=M+\varepsilon f_{\mathrm{in}}
$$

Macroscopic fluctuations of order ε :

$$
\begin{aligned}
R^{\varepsilon}(t, x) & \approx 1+\varepsilon \rho^{\varepsilon}(t, x), \\
U^{\varepsilon}(t, x) & \approx 0+\varepsilon u^{\varepsilon}(t, x), \\
T^{\varepsilon}(t, x) & \approx 1+\varepsilon \theta^{\varepsilon}(t, x)
\end{aligned}
$$

Introduction

Relation with the incompressible Navier-Stokes-Fourier system
Gas at thermodynamic equilibrium (constant heat, mass density, at rest) :

$$
M=(2 \pi)^{-d / 2} \exp \left(-|v|^{2} / 2\right)
$$

Statistical fluctuation of order ε :

$$
F^{\varepsilon}=M+\varepsilon f^{\varepsilon}, F_{\mid t=0}^{\varepsilon}=M+\varepsilon f_{\mathrm{in}}
$$

"Linearized" equation:

$$
\left\{\begin{array}{l}
\partial_{t} f^{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\mathcal{L}+\varepsilon v \cdot \nabla_{x}\right) f^{\varepsilon}+\frac{1}{\varepsilon} Q\left(f^{\varepsilon}, f^{\varepsilon}\right) \\
f_{\mid t=0}^{\varepsilon}=f_{\mathrm{in}}
\end{array}\right.
$$

where

$$
\mathcal{L}:=Q(M, \cdot)+Q(\cdot, M)
$$

Introduction

Relation with the incompressible Navier-Stokes-Fourier system

Definition-Theorem (microscopic, macroscopic)

- We say $f(x, v)$ is macroscopic if it satisfies the equivalent conditions
- $\mathcal{L} f=0$
- $f(x, v)=\left(\rho(x)+u(x) \cdot v+\frac{1}{2}\left(|v|^{2}-d\right) \theta(x)\right) M(v)$
and well-prepared if $\nabla_{x} \cdot u(x)=0, \rho(x)+\theta(x)=0$.
- We say f is microscopic if

$$
\int f(v) \varphi(v) M(v) \mathrm{d} v=0, \varphi(v)=1, v,|v|^{2}
$$

Introduction

Relation with the incompressible Navier-Stokes-Fourier system

Theorem (1991-2004)

If $F^{\varepsilon}=M+\varepsilon f^{\varepsilon}$ is a "renormalized" solution to the Boltzmann equation, then f^{ε} converges in a weak sense to

$$
f^{0}(t, x, v)=\left(\rho(t, x)+u(t, x) \cdot v+\frac{1}{2}\left(|v|^{2}-d\right) \theta(t, x)\right) M(v)
$$

where (ρ, u, θ) are Leray solutions to the Navier-Stokes-Fourier

$$
\left\{\begin{array}{l}
\partial_{t} u+u \cdot \nabla_{x} u=\mu \Delta_{x} u-\nabla_{x} p \tag{INSF}\\
\partial_{t} \theta+u \cdot \nabla_{x} \theta=\kappa \Delta_{x} \theta, \\
\nabla_{x} \cdot u=0, \quad \rho+\theta=0
\end{array}\right.
$$

and $\mu, \kappa>0$ depend only on Q and M.

Construction of solutions and convergence

Initial data with Gaussian decay (Bardos-Ukai/Gallagher-Tristani)

- Functional space : $\mathbf{G}=L_{v}^{\infty} H_{x}^{s}\left(M^{-1 / 2}\langle v\rangle^{\beta} \mathrm{d} v\right)$
- Spectral study of $\mathcal{L}+v \cdot \nabla_{x}$ from R. Ellis, M. Pinsky, S. Ukai (c.f. figure)
- "Grad's decomposition" of \mathcal{L}

Construction of solutions and convergence

Initial data with Gaussian decay (Bardos-Ukai/Gallagher-Tristani)

Duhamel formulation, initial data $f_{\mid t=0}^{\varepsilon}=f_{\text {in }}$

$$
\begin{gather*}
\partial_{t} f^{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\mathcal{L}+\varepsilon v \cdot \nabla_{x}\right) f^{\varepsilon}+\frac{1}{\varepsilon} Q\left(f^{\varepsilon}, f^{\varepsilon}\right), \\
\downarrow \\
f^{\varepsilon}(t)=U^{\varepsilon}(t) f_{\text {in }}+\Psi^{\varepsilon}(t)\left(f^{\varepsilon}, f^{\varepsilon}\right),
\end{gather*}
$$

Where we denote

$$
\begin{aligned}
U^{\varepsilon}(t) & :=\exp \left(\frac{1}{\varepsilon^{2}}\left(\mathcal{L}+\varepsilon v \cdot \nabla_{x}\right)\right) \\
\Psi^{\varepsilon}(t)\left(f^{\varepsilon}, f^{\varepsilon}\right) & :=\frac{1}{\varepsilon} \int_{0}^{t} U^{\varepsilon}\left(t-t^{\prime}\right) Q\left(f^{\varepsilon}\left(t^{\prime}\right) \mathrm{d} t^{\prime}, f^{\varepsilon}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Construction of solutions and convergence

Initial data with Gaussian decay (Bardos-Ukai/Gallagher-Tristani)

$$
f^{\varepsilon}(t)=U^{\varepsilon}(t) f_{\text {in }}+\Psi^{\varepsilon}(t)\left(f^{\varepsilon}, f^{\varepsilon}\right)
$$

- Bardos-Ukai (1991):
- uniform bounds on U^{ε} and Ψ^{ε}
- convergence of U^{ε} and Ψ^{ε}
- \rightarrow global solutions for $\left\|f_{\text {in }}\right\|_{\mathbf{G}} \ll 1$, then strong limit
- Gallagher-Tristani (2019)
- Well-prepared part of $f_{\text {in }} \rightarrow$ strong f^{0} solution of (INSF) on $[0, T]$
- Write equation on $f^{\varepsilon}-f^{0}$ - ac. waves, fixed point, then limit

Construction of solutions and convergence

Initial data with Gaussian decay (Bardos-Ukai/Gallagher-Tristani)

Reminder

- Mass density : $\int F^{\varepsilon} \mathrm{d} v$
- Energy : $\frac{1}{2} R^{\varepsilon}|U|^{2}+\frac{d}{2} R^{\varepsilon} T^{\varepsilon}=\int F^{\varepsilon} \frac{|v|^{2}}{2} \mathrm{~d} v$

Question: Can we only assume $f_{\text {in }} \in[\ldots]_{x} L_{v}^{1}\left(\langle v\rangle^{2} \mathrm{~d} v\right)$?

Construction of solutions and convergence

Initial data with polynomial decay

Theorem (G. 2021)

Let $s>\frac{d}{2}, k>3, f_{\text {in }} \in L_{v}^{1} H_{x}^{s}\left(\langle v\rangle^{k}\right)$, there exists $T \in(0, \infty]$ s.t.

- for $\varepsilon \ll 1$, the equation $\left(B^{\varepsilon}\right)$ has a a unique solution

$$
\begin{aligned}
& f^{\varepsilon} \in \mathcal{C}_{b}({\left.[0, T) ; L_{v}^{1} H_{x}^{s}\left(\langle v\rangle^{k+1}\right)\right) } \\
& \cap L^{1}\left([0, T) ; L_{v}^{1} H_{x}^{s}\left(\langle v\rangle^{k+1}\right)\right)
\end{aligned}
$$

- $f^{\varepsilon}=f^{0}+u_{\mathrm{ac}}^{\varepsilon}+u_{1}^{\varepsilon}+u_{\infty}^{\varepsilon}$, where f^{0} is the strong solution to (INSF) generated by the well-prepared part of $f_{\text {in }}$,

$$
u_{1}^{\varepsilon}(t)=O\left(e^{-\lambda t / \varepsilon^{2}}\right), u_{\infty}^{\varepsilon}(t)=o(1), u_{\mathrm{ac}}^{\varepsilon} \rightharpoonup 0
$$

- macroscopic part of $f_{\text {in }}$ well-prepared $\Rightarrow u_{w}^{\varepsilon}=0$
- $f_{\text {in }}$ purely macroscopic (micro. part $\left.=0\right) \Rightarrow u_{1}^{\varepsilon}=0$

Construction of solutions and convergence

Initial data with polynomial decay

Functional space: $\mathbf{P}:=L_{v}^{p} H_{x}^{s}\left(\langle v\rangle^{\beta} \mathrm{d} v\right)$

- C. Mouhot (2005): Enlargement Theory
- M.P. Gualdani, S. Mischler, C. Mouhot (2017): strong solution for $\left(B^{\varepsilon}\right)$ when $\varepsilon=1$ and $\left\|f_{\text {in }}\right\|_{\mathbf{P}} \ll 1$
- M. Briant, S. Merino, C. Mouhot (2019): weak hydrodynamic limit
- write $f^{\varepsilon}=g^{\varepsilon}+h^{\varepsilon} \in \mathbf{G}+\mathbf{P} \rightarrow$ coupled system
- uniform estimates on h^{ε} and g^{ε}

Proof of the theorem

Strategy

Grad's decomposition: $\mathcal{L}=-\nu(v)+K$

$$
\nu_{0}\langle v\rangle \leq \nu(v) \leq \nu_{1}\langle v\rangle, K \rightarrow \text { moment gain }
$$

GMM decomposition: $\mathcal{L}=\mathcal{B}+\mathcal{A}$

$$
\mathcal{B}=-\nu+\text { perturbation, } \mathcal{A}: \mathbf{P} \xrightarrow{\text { bounded }} \mathbf{G}
$$

- Split $f^{\varepsilon}=h^{\varepsilon}+g^{\varepsilon}$ in the way of Briant-Merino-Mouhot
- h^{ε} satisfies nice equation
- Build g^{ε} close to $f^{0}=$ solution to (INSF) on $[0, T)$ in the way of Gallagher-Tristani

$$
\begin{gathered}
\mathcal{A} f(v):=\int \Theta\left(M_{*}^{\prime} f^{\prime}+M^{\prime} f_{*}^{\prime}-M f_{*}\right)\left|v-v_{*}\right| \mathrm{d} v_{*} \mathrm{~d} \sigma \\
\Theta \in \mathcal{C}_{c}^{\infty}
\end{gathered}
$$

Proof of the theorem

Splitting of the equation

- Use the GMM splitting $\mathcal{L}=\mathcal{B}+\mathcal{A}$

$$
\mathcal{B} h \approx-(1+|v|) h, \quad \mathcal{A}: \mathbf{P} \xrightarrow{\text { bded. }} \mathbf{G}
$$

- Write $f^{\varepsilon}=h^{\varepsilon}+g^{\varepsilon} \in \mathbf{P}+\mathbf{G}$

$$
\begin{gathered}
\partial_{t} f^{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\mathcal{L}+\varepsilon v \cdot \nabla_{x}\right) f^{\varepsilon}+\frac{1}{\varepsilon} Q\left(f^{\varepsilon}, f^{\varepsilon}\right), \\
\Uparrow \\
\mathbf{P}: \partial_{t} h^{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\mathcal{B}+\varepsilon v \cdot \nabla_{x}\right) h^{\varepsilon}+\frac{1}{\varepsilon} Q\left(h^{\varepsilon}, h^{\varepsilon}+2 g^{\varepsilon}\right), \\
\mathbf{G}: \partial_{t} g^{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\mathcal{L}+\varepsilon v \cdot \nabla_{x}\right) g^{\varepsilon} \underbrace{\frac{1}{\varepsilon^{2}} \mathcal{A} h^{\varepsilon}}_{\in \mathbf{G}}+\frac{1}{\varepsilon} Q\left(g^{\varepsilon}, g^{\varepsilon}\right), \\
\left(h^{\varepsilon}, g^{\varepsilon}\right)_{\mid t=0}=\left(f_{\text {in,mic }}, f_{\text {in,mac }}\right) \in \mathbf{P} \times \mathbf{G}
\end{gathered}
$$

Proof of the theorem

control of the polynomial part

$$
\partial_{t} h^{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\mathcal{B}+\varepsilon v \cdot \nabla_{x}\right) h^{\varepsilon}+\frac{1}{\varepsilon} Q\left(h^{\varepsilon}, h^{\varepsilon}+2 g^{\varepsilon}\right),
$$

- Energy estimate:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|h^{\varepsilon}(t)\right\|_{\mathbf{P}} \leq- & \frac{\Lambda}{\varepsilon^{2}}\left\|\langle v\rangle h^{\varepsilon}(t)\right\|_{\mathbf{P}} \\
& +\frac{M}{\varepsilon}\left\|\langle v\rangle h^{\varepsilon}(t)\right\|_{\mathbf{P}}\left\|h^{\varepsilon}(t)\right\|_{\mathbf{P}}+(\ldots)
\end{aligned}
$$

- Grönwall for some $0<\lambda<\Lambda$:

$$
\begin{aligned}
& \sup _{0 \leq t<T}\left(e^{\lambda t / \varepsilon^{2}}\left\|h^{\varepsilon}(t)\right\|_{\mathbf{P}}+\frac{\Lambda-\lambda}{\varepsilon^{2}} \int_{0}^{t} e^{\lambda t^{\prime} / \varepsilon^{2}}\left\|\langle v\rangle h^{\varepsilon}\left(t^{\prime}\right)\right\|_{\mathbf{P}} \mathrm{d} t^{\prime}\right) \\
&=:\left\|h^{\varepsilon}\right\|_{\mathbf{P}^{\varepsilon}} \leq C \varepsilon\left\|h^{\varepsilon}\right\|_{\mathbf{P}^{\varepsilon}}\left(\left\|h^{\varepsilon}\right\|_{\mathbf{P}^{\varepsilon}}+\left\|g^{\varepsilon}\right\|_{L_{t}^{\infty} \mathbf{G}}\right)+\left\|f_{\text {in,mic }}\right\|_{\mathbf{P}}
\end{aligned}
$$

Proof of the theorem

Study of the Gaussian part

- Duhamel formulation:

$$
\begin{gathered}
g^{\varepsilon}(t)=U^{\varepsilon}(t) f_{\mathrm{in}, \mathrm{mac}}+\Psi^{\varepsilon}(t)\left(g^{\varepsilon}, g^{\varepsilon}\right)+\frac{1}{\varepsilon^{2}} U^{\varepsilon} * \mathcal{A} h^{\varepsilon}(t), \\
\frac{1}{\varepsilon^{2}} U^{\varepsilon} * \mathcal{A} h^{\varepsilon}(t):=\frac{1}{\varepsilon^{2}} \int_{0}^{t} U^{\varepsilon}\left(t-t^{\prime}\right) \mathcal{A} h^{\varepsilon}\left(t^{\prime}\right) \mathrm{d} t^{\prime}
\end{gathered}
$$

- Usual Duhamel form of $\left(B^{\varepsilon}\right)$ but $\left\|h^{\varepsilon}(t)\right\| \lesssim e^{-\lambda t / \varepsilon^{2}}$
\rightarrow convolution bounded but not small

$$
\begin{aligned}
U^{\varepsilon}(t) & :=\exp \left(\frac{1}{\varepsilon^{2}}\left(\mathcal{L}+\varepsilon v \cdot \nabla_{x}\right)\right) \\
\Psi^{\varepsilon}(t)\left(f^{\varepsilon}, f^{\varepsilon}\right) & :=\frac{1}{\varepsilon} \int_{0}^{t} U^{\varepsilon}\left(t-t^{\prime}\right) Q\left(f^{\varepsilon}\left(t^{\prime}\right), f^{\varepsilon}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Proof of the theorem

Study of the Gaussian part

Lemma (G. 21)

Uniformly in t and ε,

$$
\begin{aligned}
\frac{1}{\varepsilon^{2}} U^{\varepsilon} * \mathcal{A} h^{\varepsilon}(t) & =U^{\varepsilon}(t) f_{\mathrm{in}, \mathrm{mic}}+O(\varepsilon)+O\left(e^{-\lambda t / \varepsilon^{2}}\right) \\
& =o(1)+O\left(e^{-\lambda t / \varepsilon^{2}}\right)
\end{aligned}
$$

Proof: Denote $V^{\varepsilon}(t):=\exp \left(\frac{t}{\varepsilon^{2}}\left(\mathcal{B}+\varepsilon v \cdot \nabla_{x}\right)\right)$

$$
\begin{aligned}
\text { Duhamel } & \rightarrow\left\{\begin{array}{l}
U^{\varepsilon}=V^{\varepsilon}+\frac{1}{\varepsilon^{2}} U^{\varepsilon} \mathcal{A} * V^{\varepsilon}, \\
h^{\varepsilon}=V^{\varepsilon} f_{\text {in,mic }}+\frac{1}{\varepsilon} V^{\varepsilon} * Q\left(h^{\varepsilon}, h^{\varepsilon}+2 g^{\varepsilon}\right)
\end{array}\right. \\
& \rightarrow \frac{1}{\varepsilon^{2}} U^{\varepsilon} * \mathcal{A} h^{\varepsilon}(t)=U^{\varepsilon}(t) f_{\text {in,mic }}+(\text { bi }) \text { linear in } \frac{h^{\varepsilon}}{\varepsilon} \\
& \xrightarrow[\text { a priori bound on } h^{\varepsilon}]{\text { spectral study }} o(1)+O\left(e^{-\lambda t / \varepsilon^{2}}\right)
\end{aligned}
$$

Proof of the theorem

Study of the Gaussian part

- New unknown $\bar{g}^{\varepsilon}:=g^{\varepsilon}-f^{0}-O\left(e^{-\lambda t / \varepsilon^{2}}\right)$ - aco. waves

$$
\begin{gathered}
g^{\varepsilon}=U^{\varepsilon} f_{\text {in,mac }}+\Psi^{\varepsilon}\left(g^{\varepsilon}, g^{\varepsilon}\right)+\frac{1}{\varepsilon^{2}} U^{\varepsilon} * \mathcal{A} h^{\varepsilon}, \\
\downarrow \\
\bar{g}^{\varepsilon}=o(1)+\underbrace{\{\text { Linear }\}}_{\text {contraction }}\left(\bar{g}^{\varepsilon}\right)+\underbrace{\{\text { Bilinear }\}}_{\text {bounded }}\left(\bar{g}^{\varepsilon}, \bar{g}^{\varepsilon}\right),
\end{gathered}
$$

- \{Linear\} and $\{$ Bilinear $\}$ depend on f^{0} \rightarrow use norm equivalent to $\|\cdot\|_{L^{\infty} \mathbf{G}} \rightarrow\{$ Linear\} is a contraction
- \ldots and on $\boldsymbol{h}^{\varepsilon} \rightarrow$ generalize some estimates/convergence on U^{ε} and Ψ^{ε} to \mathbf{P}.
- Factorization techniques using $\mathcal{L}=\mathcal{B}+\mathcal{A}$
- Estimates/convergence in $\mathbf{G} \rightarrow$ Estimates/convergence in \mathbf{P}

Thank you for your attention!

