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Introduction



Self-consistent Vlasov-Fokker-Planck
Consider a system of particles Rd × Rd , described at time t ≥ 0 by its
phase-space distribution function F (t, x , v), satisfying

∂tF + v · ∇xF −∇x (ΨF + V ) · ∇vF = ∇v · (vF +∇vF )

I Random fluctuations and damping of the velocity (Fokker-Planck)
I Particles localized in a region of space by an outside force ∇xV
I Particle at y affects particle at x with a force ∇xk(x − y)

ΨF (x) =
∫
R2d

k(x − y)ρF (y)dy , ρF (x) =
∫
Rd

F (x , v)dv .

Why this equation is interesting/hard at first glance:
I Degeneracy: diffusion in v only and vanishes on G(v) = e−|v|2/2

(2π)d/2

I Non-linearity is non-local
A less obvious reason:
I Phase transition in the strongly non-linear (large mass) regime

∂tG + v · ∇xG −∇x (MΨG + V ) · ∇vG = ∇v · (vG +∇vG)

where M =
∫
R2d F (t)dxdv is the (conserved) mass and G = F/M
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Interaction potential

Symmetric and skew-symmetric parts of the convolution operator:

Kρ =

∫
Rd

k(x − y)ρ(y)dy , Kαρ =

∫
Rd

kα(x − y)ρ(y)dy

associated with the even and odd parts of the kernel k:

ke(x) = 1
2 (k(x) + k(−x)) , ko(x) = 1

2 (k(x)− k(−x)) .

“Ideal” example we have in mind
I In plasma physics: K is symmetric and positive

(Coulomb) kC(x) =
I
|x | , d = 3, I > 0.

“Bad” examples we have in mind
I In particle accelerator physics: K is non-symmetric and k ∈ W 1,∞:
I Kuramoto k = − cos(ωx) : K is symmetric but negative
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Positive symmetric potentials: example of a plasma

Consider the Vlasov-Poisson-Fokker-Planck in dimension 3
∂tF + v · ∇xF −∇x (ΨF + V ) · ∇vF = ∇v · (vF +∇vF ) ,
−λ2∆ΨF (t, x) = ρF ,

F |t=0 = Fin.

corresponding to the Coulomb potential kC(x) = I
|x| with I = Cλ−2.

Theorem (Bouchut, Dolbeault ’95 : unconditional cvg)
Assume that Fin satisfies physical bounds (mass, entropy, total energy)
and ∇ΨF ∈ L∞

t locL∞
x , then

F (t) t→∞−−−→ F? in L1(R3
x × R3

v ) ,

where F? is the unique steady state.

First quantitative results by [Hérau, Thomann ’16] in weakly nonlinear
regime (λ� 1)
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Asymmetric potentials: example of a particle accelerator

[Source: synchrotron-soleil.fr] [Roussel, PhD thesis, ’14]
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Asymmetric potentials: micro-bunching instabilities

Numerical evidences and linear stability analysis shows that
I At low currents I � 1 (weakly nonlinear), there is a unique

asymptotically stable steady state.
I At high currents I � 1 (strongly nonlinear), dynamics is more complex

[Evain et. al., Nature Physics ’19]
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Motivations

Characterize steady states and asymptotic stability regimes for

∂tF + v · ∇xF −∇x (KρF + V ) · ∇vF = ν∇v · (vF +∇vF ) ,

with as general as possible K and V , and quantitatively.

What we want to address:
I Strongly nonlinear regime; K large (at least in some sense)
I Consideration of asymmetric interaction kernels

7 / 25



Steady states of VFP



Gibbs steady states

For symmetry reasons any reasonable solution to

v · ∇xF? −∇x (ΨF?
+ V ) · ∇vF? = ν∇v · (vF? +∇vF?)

with ΨF? = KρF? cancels both sides:
I Vlasov: v · ∇xF? −∇x (ΨF? + V ) · ∇vF? = 0 (‘‘odd” wrt v)
I Fokker-Planck: ∇v · (vF? +∇vF?) = 0 (‘‘even” wrt v)

Therefore
F?(x , v) = ρ?(x)G(v)

with ρ? is a solution of the

Gibbs fixed point problem

ρ? = T (ρ?) :=
S(ρ?)

‖S(ρ?)‖L1
, S(ρ) := e−V−Kρ .

a.k.a. Haissinski eq. in particle accelerator community [Haissinski ’73].
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Assumptions on potentials

Assume that the confinement potential V satisfies, for some N ≥ 2

∀n ≤ N, |∇nV | N
n e−V ∈ L1 ∩ L∞ ,

∫
Rd

e−V dx = 1

Assume K is bounded for some p, q ∈ [2,∞] and monotonous:

K : L1 ∩ L2 → Lp , ∇K : L1 ∩ L2 → Lq

ρ ≥ 0 ⇒ Kρ ≥ 0

Assume the following behavior of K against the confinement profile e−V :

K∗ (e−V ) ∈ L∞
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Well-posedness of the steady state problem

Theorem (G, Herda. ’24)
The stationary solutions to Vlasov-Fokker-Planck equation are of the form

F?(x , v) = ρ?(x)M(v), ρ? = e−V? ,

with ρ? a solution of the Gibbs fixed point problem.
I Under the previous hypotheses, there exists at least one solution.
I If we assume for some 0 < κe � 1 and any zero-mean h ∈ L1 ∩ L2

〈Kh, h〉 = 〈Keh, h〉 ≥ −κe‖h‖2
L1∩L2 ,

then the steady state is unique.

See also [Carrillo, Gvalani, Pavliotis, Schlichting ’20], [Cesbron, Herda
’24].
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Uniqueness

Let us introduce the free energy functional

F [ρ] :=

∫
Rd

(
V +

1
2K

e(ρ)

)
ρdx +

∫
Rd
ρ log ρdx

If Ko 6= 0, the classical argument no longer works:

ρ fixed point 6⇔ ρ critical point of F

Indeed, for all zero mean h

ρ fixed point ⇒ dρF [ρ] · h = −
∫
Rd

Ko(ρ)h dx

But it still holds that strict convexity of F ⇒ uniqueness for ρ = T (ρ):

ρ0, ρ1 two fixed points =⇒ (dρF [ρ1]− dρF [ρ0]).(ρ1 − ρ0) = 0

therefore ρ0 = ρ1
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A case of non-uniqueness: Kuramoto k(x) = −I cos(2πx)
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x

Three steady states for I = κe = 3
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A case of non-symmetric potential

Interaction k(x) = IkS(x)
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Algo for numerical resolution [Warnock, Bane ’18].
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Quantitative stability



Assumptions on the confining potential

We make the following integrability and boundedness conditions:(
1 + |∇V |2

)
e−V ∈ L1 ∩ L∞ and

∫
Rd

e−V (x)dx = 1 .

Moreover, in order that the hierarchy{
Hs (Rd , e−V dx

)}
0≤s≤1 “behaves” like

{
Hs (Td ,dx

)}
0≤s≤1

we also assume that for any ε > 0

∀x ∈ Rd , |∇2V (x)| ≤ ε|∇V (x)|+ Cε ,

and the measure e−V dx admits a Poincaré inequality∫
Rd

|u|2e−V dx −
(∫

Rd
ue−V dx

)2
≤ CP

∫
Rd

|∇xu|2e−V dx .
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Assumptions on the interaction potential

For some p, q ∈ [2,∞] with q > d , one has the regularity estimates

‖Kαρ‖Lp + ‖∇Kαρ‖Lq ≤ κα‖ρ‖L1∩L2 , α = e, o .

There is κe > 0 such that one has the bound from below

〈Keh, h〉 ≥ −κe‖h‖2
L1∩L2 , for all h ∈ L1 ∩ L2 s.t.

∫
h = 0.

Finally we assume the monotonicity property

ρ ≥ 0 ⇒ Kρ ≥ 0, for all ρ ∈ L1 ∩ L2.
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Quantitative local asymptotic stability

Theorem (G, Herda. ’24)
There are constants δe > 0 and δo > 0 such that if

κe < δe(θ, κmax,RV ) and κo < δo(κmax,RV , κ
e, ν),

the unique steady state of VFP is stable in the following sense. For any
s ∈ [0, 1] such that

s > sc :=
3
2

(
d
q − 1

3

)
,

there is a constant R > 0 such that if

‖Fin − F?‖Hs
x L2

v (F
−1
? ) < R ,

then VFP has a unique solution F ∈ C([0,∞);Hs
xL2

v (F−1
? )). Moreover,

there are constants C > 0 and λ such that for all t > 0

‖F (t)− F?‖Hs
x L2

v (F
−1
? ) ≤ C‖Fin − F?‖Hs

x L2
v (F

−1
? )e

−λt

Finally, Fin 7→ F is Lipschitz continuous. 16 / 25



Corollary: Vlasov-Poisson-Fokker-Planck K = (−λ2∆)−1

Hypotheses on the potential
I Regularity assumptions on K and ∇K are consequences of

Hardy-Littlewood-Sobolev / elliptic regularity.
I No smallness for λ because of positivity and symmetry of −∆:

K = Ke =
(
−λ2∆

)−1 ≥ 0 ⇒ κo = κe = 0

Consequences of our result
I Quantitative decay estimate with constructive constants
I Holds for any Debye length λ (but constants are O(λ−2))
I Regularity on initial data (Hs

xL2
v , s > 1/4) is lowered compared to

former results [Hérau, Thomann ’16], [Toshpulatov ’23]
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Linearized VFP
I Perturbative setting around Gibbs steady state

F = F?(1 + f )

I Hilbertian setting
‖f ‖2 =

∫∫
R2d

f 2F?dxdv

and ∇∗
v and ∇∗

x adjoints for the corresponding scalar product.
I The VFP equation rewrites in linearized form

(∂t + Λ)f (t) + v · ∇xKρf (t) = ∇∗
vϕ[f ], f |t=0 = fin .

with the linear part

Λ := ν∇∗
v∇v + v · ∇x −∇xV? · ∇v =: Λsym + Λskew

and the nonlinear part

ϕ[f ] = f ∇xKρf and Kρf =

∫∫
k(· − y)f (y ,w)F?(y ,w)dydw
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Hypocoercivity in a nutshell: a 2D toy model

dy
dt =

(
0 1
−1 −1

)
y

EigenV = −1
2 ± i

√
3

2

I Decay y(t) = O
(
e−t/2) can’t be deduced from the energy estimate:

1
2

d
dt |y(t)|

2 = −y2
2 (t)

I By introducing the equivalent (squared) norm (|η| < 1)

H(y) = y2
1 + y2

2 + 2ηy1y2

one has
1
2

d
dt H(y(t)) ≤ −ληH(y(t))

This strategy also works in infinite dimension!
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L2 hypocoercivity
I Λ is not coercive for the canonical norm:

〈Λf , f 〉 = ν‖∇v f ‖2 & ‖f − Πf ‖2 , Πf =

∫
f G dv

We wish to add a cross term 〈Af , f 〉 making it coercive:

d
dt 〈Af , f 〉 =

〈
AΛskewf , f

〉
+ · · · & ‖Πf ‖2 +O

(
‖f − Πf ‖2)

I Solution from [Dolbeault, Mouhot, Schmeiser ’15]:

A :=
(
Id+

(
ΛskewΠ

)∗
ΛskewΠ

)−1
(ΛskewΠ)∗ , ‖ΛskewΠ‖ ≥ c‖Πf ‖

which is chosen so that

AΛskewΠ =
|ΛskewΠ|2

1 + |ΛskewΠ|2
≥ c2

1 + c2Π

I Λ is coercive for the equivalent norm ‖f ‖2 + η 〈Af , f 〉
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The linearized free energy norm
I If the linear interaction term is viewed as a perturbation of Λ

(∂t + Λ)f (t) + v · ∇xKρf (t) = ∇∗
vϕ(t)

asymptotic stability will be obtained only for ‖K‖ � 1 !

I Change Hilbert geometry as in [Addala, Dolbeault, Li, Tayeb, ’23]:
I When K is symmetric, kinetic free energy=Lyapunov functional:

Fkin[F ] :=

∫
R2d

F log F dxdv +

∫
Rd

ρF

(
1
2K

eρF + V
)

dxdv

⇒ its linearization provides a ‘‘natural” norm:

|||f |||2 :=

∫
R2d

f 2F?dxdv +

∫
Rd
(Keρf )ρf dx = d2

ρFkin[F?] · (f )2

I New Hilbert structure ⇒ new symmetric/skew decomposition:

Λ̃ := ν∇∗
v∇v + v · ∇x −∇x V? · ∇v + v · ∇xKeρf =: Λ̃sym + Λ̃skew

I Apply L2–hypocoercivity in this new Hilbert structure to

(∂t + Λ̃)f (t) + v · ∇xKoρf (t) = ∇∗
vϕ(t)

where the interaction term is a small perturbation of size ‖Ko‖ � 1.
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L2–hypocoercivity on x derivative

We also use the previous L2–hypocoercivity on the x derivative of VFP:

∂t (∇x f ) + Λ̃ (∇x f ) + v · ∇xKoρ∇x f = ∇∗
v (∇xϕ) + . . . .

Interpolation yields hypocoercivity in Hs
xL2

v (F?dxdv) with s ∈ [0, 1]

Proposition
Assuming κe < δe and κo < δo , there exists λ and C such that

sup
t≥0

e2λt‖f (t)‖2
Hs

x L2
v (F?)

+

∫ ∞

0
e2λt‖∇v f (t)‖2

Hs
x L2

v (F?)
dt

≤ C
(
‖fin‖2

Hs
x L2

v (F?)
+

∫ ∞

0
e2λt‖ϕ(t)‖2

Hs
x L2

v (F?)
dt
)
.
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Hypoellipticity: regularizing version of hypocoercivity
Zeroth order estimate:

1
2

d
dt E0(f ) + ‖∇v f ‖2 ≤ 0 . (1)

First order estimates:

1
2

d
dt ‖∇v f ‖2 + c‖∇2

v f ‖2 ≤ ε‖∇x f ‖2 + Cε(. . . ) . (2)

1
2

d
dt ‖∇x f ‖2 + c‖∇v∇x f ‖2 ≤ C

(
‖∇x f ‖2 + . . .

)
(3)

The famous cross term estimate [Hérau, Nier], [Villani]...

d
dt 〈∇x f ,∇v f 〉+ c‖∇x f ‖2 ≤ ε‖∇x∇v f ‖2 + Cε(. . . ) (4)

Combination of (1)–(4) with time weights ⇒ decay/regularization

‖∇x f (t)‖ ≤ Ce−λtt−3/2‖fin‖ . . .
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Interpolation and nonlinear estimates
We interpolate the previous results on the linear flow (ϕ, fin) 7→ f

‖ϕ‖2
Hs =

∫ ∞

0
e2λt

(
t3(1−s)‖ϕ‖2

H1
x L2

v (F?)
+ . . .

)
dt

‖f ‖2
X s := sup

t>0
e2λt

(
‖f ‖Hs

x L2
v (F?) + t3(1−s)‖f ‖2

H1
x L2

v (F?)
+ . . .

)
+

∫ ∞

0
e2λt

(
t2(1−s)‖f ‖2

H1
x L2

v (F?)
+ . . .

)
dt

Proposition
For any given s ∈ [0, 1],

‖f ‖X s ≤ C
(
‖fin‖Hs

x L2
v (F?) + ‖ϕ‖Hs

)
.

If additionally s > sc := 3
2

(
d
q − 1

3

)
, then

‖f ∇xψg‖Hs ≤ C‖f ‖X s‖g‖X s .
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Concluding remarks



Concluding remarks

Takeaway message
I About Ke

I Uniqueness of steady states lost if Ke is very negative
I Natural Hilbert norm includes Ke : no upper-bound necessary

I About Ko

I Stability may be lost if Ko is large but not uniqueness
I Mixing hypocoercivity techniques (L2 and H1) : finer estimates +

reduce regularity assumption on initial data
Perspectives
I Phase transitions in strongly nonlinear regime
I McKean-Vlasov limit (diffusive regime)
I Non-perturbative regime (unique steady states is attractive ?)
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Thanks for your attention!
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