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Introduction



Self-consistent Vlasov-Fokker-Planck

Consider a system of particles R? x RY, described at time t > 0 by its
phase-space distribution function F(t, x, v), satisfying

OF +v-VF — Vi (Vr+ V)-V,F =V, (VF +V,F)

» Random fluctuations and damping of the velocity (Fokker-Planck)
> Particles localized in a region of space by an outside force V, V
» Particle at y affects particle at x with a force V,k(x — y)

VeG) = [ kx— ey, pe() = [ Flxodv.
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VeG) = [ kx— ey, pe() = [ Flxodv.

Why this equation is interesting/hard at first glance:
e . —v?/2
» Degeneracy: diffusion in v only and vanishes on G(v) = W
» Non-linearity is non-local
A less obvious reason:

» Phase transition in the strongly non-linear (large mass) regime
HhG+v- VG-V, (MVs+V)-V,G=V, (vG+V,G)
where M = [,,, F(t)dxdv is the (conserved) mass and G = F/M
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Interaction potential

Symmetric and skew-symmetric parts of the convolution operator:
Kp = / k(x=y)p(y)dy, K= / k*(x = y)p(y)dy
RY Rd
associated with the even and odd parts of the kernel k:
1
Ke(x) = 5(k0) +k(=x)), R(x) = 5(k(x) = k(=)

“ldeal” example we have in mind

» In plasma physics: K is symmetric and positive
(Coulomb) ke(x) =

"Bad"” examples we have in mind
» In particle accelerator physics: IC is non-symmetric and k € W1°:

» Kuramoto k = — cos(wx) : K is symmetric but negative
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Positive symmetric potentials: example of a plasma

Consider the Vlasov-Poisson-Fokker-Planck in dimension 3
WhF+v -ViF -V, (Vg+V)-V,F=V, - (VvF+V,F),

~“N2AVE(t, x) = pr,
Flt:O = Fin-

corresponding to the Coulomb potential kc(x) = - with / = CA72.

Ix|

Theorem (Bouchut, Dolbeault '95 : unconditional cvg)

Assume that F;, satisfies physical bounds (mass, entropy, total energy)
and VVg € L2 L2°, then

tloc=x 7

t—o0

F(t) == F, in L'R:xR3),
where F, is the unique steady state.

First quantitative results by [Hérau, Thomann "16] in weakly nonlinear
regime (A > 1)
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Asymmetric potentials: example of a particle accelerator

[Source: synchrotron-soleil.fr]

ks(x) = 2/cosh [2sinh~! x] — cosh [sinh_1 X

sinh [2 sinh™! x}
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Asymmetric potentials: micro-bunching instabilities

Numerical evidences and linear stability analysis shows that

> At low currents | < 1 (weakly nonlinear), there is a unique
asymptotically stable steady state.

» At high currents [ > 1 (strongly nonlinear), dynamics is more complex

a b Naturally existing bursting solution
a [n=50 n= n=1,050 n=1,550
5 5
Electron storage ring i 5]
= e
5] ]
H \_j
§ --------- >Coexisting regular solution (but unstable)
e 4 a n=50 n=550 n=1,050 n=1,550
s e
]
T A, é z z z z
5 g d ' Induced terahertz emission
Terahertz Relativistic electron  ——— ER 1 : 4
coherent bunch with < : :
synchrotron microstructures z H 1 H |
radiation Ry . T
0 500 1,000 1,500

Turn number n

[Evain et. al., Nature Physics '19]
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Motivations

Characterize steady states and asymptotic stability regimes for
OtF +v-VyF =V, (Kpr+V)-V,F=vV, - (VF+V,F),

with as general as possible IC and V/, and quantitatively.

What we want to address:
> Strongly nonlinear regime; K large (at least in some sense)

» Consideration of asymmetric interaction kernels
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Steady states of VFP



Gibbs steady states

For symmetry reasons any reasonable solution to
v-ViFe =V (Vg + V) -V, F=vV, - (VF, + V., F)

with Wg = KCpg, cancels both sides:
> Viasov: v-VyiFy — Vi (Vg, + V) -V, F =0 ("odd” wrt v)
» Fokker-Planck: V, - (vF, + V,F,) =0 ("‘even” wrt v)
Therefore

Fu(x,v) = p(x)G(v)

with p, is a solution of the

Gibbs fixed point problem

_ o S(ps) — o= V—Kp
pe=T0) = 5 S0 = '

a.k.a. Haissinski eq. in particle accelerator community [Haissinski '73].
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Assumptions on potentials

Assume that the confinement potential V satisfies, for some N > 2
Vn< N, |[V'V|[re VellnL™®, / e Vdx =1
Rd

Assume K is bounded for some p, g € [2, 0] and monotonous:
K:l'ni? -t~ VK:L'nL? =19

p=0=Kp=>0

Assume the following behavior of K against the confinement profile e=":

K*(e7V)eL>
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Well-posedness of the steady state problem

Theorem (G, Herda. '24)
The stationary solutions to Vlasov-Fokker-Planck equation are of the form
Fo(x,v) = p(x)M(v), p.=e"",

with p, a solution of the Gibbs fixed point problem.
» Under the previous hypotheses, there exists at least one solution.

> If we assume for some 0 < k¢ < 1 and any zero-mean h € [* N L?
(KCh, by = (KC¢h, h) > —&°||hllFir e
then the steady state is unique.

See also [Carrillo, Gvalani, Pavliotis, Schlichting '20], [Cesbron, Herda
'24].
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Uniqueness

Let us introduce the free energy functional

Fo] = /R (V—I—;/Ce(p)) pdx—&—/delogpdx

If K° £ 0, the classical argument no longer works:
p fixed point ¢ p critical point of F
Indeed, for all zero mean h

p fixed point = d,Flp]-h= —/ K°(p)hdx
Rd

But it still holds that strict convexity of 7 = uniqueness for p = T (p):
po, p1 two fixed points = (d,F[p1] — d,F[po]).-(p1 — po) =0
therefore pg = p1
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A case of non-uniqueness: Kuramoto k(x) = —/ cos(2mx)
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A case of non-symmetric potential

Interaction k(x) = lks(x)

0.4 0 T
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Position (relative to reference particle)

Algo for numerical resolution [Warnock, Bane '18].
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Quantitative stability



Assumptions on the confining potential

We make the following integrability and boundedness conditions:
(1+|VV]) e Vel'nL™® and / e VMdx =1.
Rd

Moreover, in order that the hierarchy

{HS(]Rd,e_de)}OSsgl “behaves” like {HS("]I‘G’,dx)}OSsgl

we also assume that for any € > 0
Vx eRY, |V2V(x)| <e|VV(X)| + C.,

and the measure e~Ydx admits a Poincaré inequality
2
/ luPPeVdx — (/ ue_vdx> < Cp/ |V ul?e™Vdx.
Rd Rd Rd
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Assumptions on the interaction potential

For some p, g € [2,00] with g > d, one has the regularity estimates
1K= pllis + VK= pllis < 7 llpllines, o = e

There is kK > 0 such that one has the bound from below
(Keh, k) > —k°||h||21n2,  forall he PN L% st /h =0.

Finally we assume the monotonicity property

p>0=Kp>0, forall pe LN L2

15/25



Quantitative local asymptotic stability
Theorem (G, Herda. '24)
There are constants 6¢ > 0 and 6° > 0 such that if
ﬁe < 66(97 Emax-, RV) and EO < 5O(Ernaxa RV:« ﬁe', V)a

the unique steady state of VFP is stable in the following sense. For any
s € [0, 1] such that
<= 5 q 3/

there is a constant R > 0 such that if
1Fin = Full ez ey < R

then VFP has a unique solution F € C([0,00); HSL2(F[1)). Moreover,
there are constants C > 0 and X such that for all t > 0

[IF(t) = Fell pszprry < CllFin — F*”H:Li(FIl)e_/\t

Finally, Fi, — F is Lipschitz continuous. 1625



Corollary: Vlasov-Poisson-Fokker-Planck K = (—\?A)™!

Hypotheses on the potential

» Regularity assumptions on I and VX are consequences of
Hardy-Littlewood-Sobolev / elliptic regularity.

» No smallness for A because of positivity and symmetry of —A:
K=Ke=(-XA)">0 = ®=x"=0

Consequences of our result
» Quantitative decay estimate with constructive constants
> Holds for any Debye length A (but constants are O(A~?))
» Regularity on initial data (H5L2, s > 1/4) is lowered compared to

X v

former results [Hérau, Thomann "16], [Toshpulatov '23]
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Linearized VFP

> Perturbative setting around Gibbs steady state

F=F.(1+f)

|\f\\2:// f2F,dxdv
R2d

and V?} and V} adjoints for the corresponding scalar product.
» The VFP equation rewrites in linearized form

» Hilbertian setting

(0 + N)F(t) + v - Vi lpr(t) = Viplf], fle—o = fin -
with the linear part
N=vViV, 4+ v V= V.V, V, = A" 4 Askew
and the nonlinear part

o[f] = FV.Kpr and Kpr = // k(- = y)f(y, w)Fi(y, w)dydw
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Hypocoercivity in a nutshell: a 2D toy model

dy 0 1
dr (—1 —1>y

, 1. V3
EigenV = —5 + i

» Decay y(t) = O (e’t/z) can't be deduced from the energy estimate:

S V(O = 43 (0)
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Hypocoercivity in a nutshell: a 2D toy model

dy (0 1
ar  \-1 -1)Y

1
EigenV = —5 +i—

oI5

» Decay y(t) =0 (e’t/2) can't be deduced from the energy estimate:

1d
S V(O = 43 (0)

» By introducing the equivalent (squared) norm (|n| < 1)

H(y) = yi + v3 + 2ny1y2

one has
S SHO() < M)

This strategy also works in infinite dimension!
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L2 hypocoercivity
» A is not coercive for the canonical norm:
(NFLFY = v||V 2 2 |If — 1|12, nf= / fGdv

We wish to add a cross term (Af, ) making it coercive:

CAT 1) = (AN £) o 2 NP+ O (IF — 1)
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L2 hypocoercivity
» A is not coercive for the canonical norm:
(NFLFY = v||V 2 2 |If — 1|12, nf= / fGdv

We wish to add a cross term (Af, ) making it coercive:

CAT 1) = (AN £) o 2 NP+ O (IF — 1)

» Solution from [Dolbeault, Mouhot, Schmeiser "15]:
. ~1
A= (Id+ (Wem) Askerm) ey, A > o

which is chosen so that
|/\skewl-| |2 C2

A/\skewl—l _
1+‘/\skew|‘||2 — ].+C2
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» Solution from [Dolbeault, Mouhot, Schmeiser "15]:
. -1
A= (Id+ (Wem) Askerm) ey, A > o

which is chosen so that
|/\skewr| |2 C2

A/\skewl—l _
1+‘/\skew|‘||2 — ].+C2

> A is coercive for the equivalent norm ||f||> + n (Af, f)
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The linearized free energy norm

» If the linear interaction term is viewed as a perturbation of A
(O + N)F(t) + v - V. Cpr(t) = Vip(t)
asymptotic stability will be obtained only for ||| <« 1!
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= its linearization provides a ‘‘natural” norm:
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> New Hilbert structure = new symmetric/skew decomposition:

A= vVoVy+ v -V = ViV, -V, +v. VK pr =: ASY™ 4 ASkew
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The linearized free energy norm

» If the linear interaction term is viewed as a perturbation of A
(O + N)F(t) + v - V. Cpr(t) = Vip(t)

asymptotic stability will be obtained only for ||| <« 1!
» Change Hilbert geometry as in [Addala, Dolbeault, Li, Tayeb, 23]
» When K is symmetric, kinetic free energy=Lyapunov functional:

FRF] = /RM Flog F dxdv + /Rd PF (%KePF + V) dxdv

= its linearization provides a ‘‘natural” norm:

[l ::/de f2F.dxdv + /Pl(icepf)pfdx = & F"FR]- ()

> New Hilbert structure = new symmetric/skew decomposition:
A= ViV, + v Vi — ViVi -V, + v+ VI pr =1 AV 4 Ak
> Apply L2~hypocoercivity in this new Hilbert structure to
(8 + N)F(t) + v - V. Kpr(t) = Vigp(t)

where the interaction term is a small perturbation of size ||[K°|| < 1.
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L?~hypocoercivity on x derivative

We also use the previous [°~hypocoercivity on the x derivative of VFP:
B (Vi f) + AN(Vif) + v - ViKopy = VE (Vi) + ... .
Interpolation yields hypocoercivity in HSL2 (F,dxdv) with s € [0,1]

Proposition

Assuming k€ < §€ and R° < §°, there exists \ and C such that
2 2 * 5 2
sup (O st | e IVLAO e

[ee]
<C (Hﬁn”i[;L%(F*) +/0 62At||(p(t)||ile3(F*)dt> |
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Hypoellipticity: regularizing version of hypocoercivity

Zeroth order estimate:

1 d
z 1% < 1
S &l + VAP <0, M)
First order estimates:
1 d 2 2712 2
VAP + el VUFI < el Vif " + G(). (2)
2dt|\V FIP + el VoVl < C IVl + ) (3)

The famous cross term estimate [Hérau, Nier|, [Villani]...

d
a<vxf,vvf> + ||V f|I? < e[| VAV |2 + C(...) (4)

Combination of (1)—(4) with time weights = decay/regularization

IVLF(0)] < Ce™ 2| f
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Interpolation and nonlinear estimates

We interpolate the previous results on the linear flow (¢, fi,) — f

o0
el = [ (B0l + ) e

[[£[|%: := sup e2)‘t(||f||HjL§(F*) + O 2y + - )
t>0 o
+/ 62>\t(t2(1—s)||f||f_llL2(F*) +) dt

Proposition

|

For any given s € [0,1],
Ifllas < C (Ifillmerz(r,y + llollm) -
If additionally s > s := 3 (4 — —) then

q

£ Vtbglls < ClIf[|xsllgll s -
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Concluding remarks

Takeaway message
> About K¢

> Uniqueness of steady states lost if K¢ is very negative
» Natural Hilbert norm includes K¢ : no upper-bound necessary

» About K°
> Stability may be lost if K° is large but not uniqueness

» Mixing hypocoercivity techniques (L? and H!) : finer estimates +
reduce regularity assumption on initial data

Perspectives
> Phase transitions in strongly nonlinear regime
> McKean-Vlasov limit (diffusive regime)

» Non-perturbative regime (unique steady states is attractive 7)
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Thanks for your attention!

[G, Herda., Well-posedness and long-time behavior for self-consistent
Vlasov-Fokker-Planck equations with general potentials.
arXiv:2408.16468]

[Cesbron, Herda, On a Vlasov-Fokker-Planck equation for stored electron
beams. Journal of Differential Equations, 2024]
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