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Self-consistent Vlasov-Fokker-Planck
Consider a system of particles Rd × Rd , described at time t ≥ 0 by its
phase-space distribution function F (t, x , v), satisfying

∂tF + v · ∇xF −∇x (ΨF + V ) · ∇vF = ∇v · (vF +∇vF )
I Particles are moving in space
I Random fluctuations and damping of the velocity (Fokker-Planck)
I Particles localized in a region of space by an outside force ∇xV
I Particle at y affects particle at x with a force ∇xk(x − y)

ΨF (x) =
∫
Rd

k(x − y)ρF (y)dy , ρF (x) =
∫
Rd

F (x , v)dv .

Why this equation is interesting/hard at first glance:
I Degeneracy: diffusion in v only and vanishes for F = ρ(t, x)e−|v|2/2

I Non-linearity is non-local
A less obvious reason:
I Phase transition in the strongly non-linear (large mass) regime

∂tG + v · ∇xG −∇x (MΨG + V ) · ∇vG = ∇v · (vG +∇vG)

where M =
∫
R2d F (t)dxdv is the (conserved) mass and G = F/M
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Interaction potential

Even and odd parts of the interaction kernel:

ke(x) = k(x) + k(−x)
2 , ko(x) = k(x)− k(−x)

2 , k = ke + ko .

“Well behaved” example (unique attractive steady state)
I In 3D plasma physics: k is symmetric with positive Fourier modes

k(x) = I
|x | , I > 0 , k̂(ξ) ∝ I|ξ|−2.

“Degenerate” examples (non-unique or unstable steady states)
I In particle accelerator physics: k is non-symmetric and k ∈ W 1,∞:
I Kuramoto k = − cos(ωx): k is symmetric but k̂ is negative
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Positive symmetric potentials: example of a 3D plasma
3D Vlasov-Poisson-Fokker-Planck (Coulomb potential k(x) ∝ λ−2|x |−1)

∂tF + v · ∇xF −∇x (ΨF + V ) · ∇vF = ∇v · (vF +∇vF ) ,
−λ2∆ΨF (t, x) = ρF ,

F |t=0 = Fin.

Theorem (Bouchut, Dolbeault ’95 : unconditional cvg)
Assume that Fin satisfies physical bounds (mass, entropy, total energy)
and ∇ΨF ∈ L∞

t locL∞
x , then

F (t) t→∞−−−→ F? in L1(R3
x × R3

v ) ,

where F? is the unique steady state.

Quantitative exponential convergence rate:
I [Hérau, Thomann ’16] (weakly nonlinear λ� 1)
I [Toshpulatov, ’23], [Gervais, Herda, ’24] (strongly nonlinear λ� 1)
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Asymmetric potentials: example of a particle accelerator
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High currents (large mass) ⇒ cyclical/instable behavior (microbunching)

[Roussel, PhD, ’14], [Evain et al., Nature Physics ’19]
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Assumptions on the confining potential
Assumption on the confinement: (eg. V (x) ≈ |x |a with a > 1)

We make the following regularity assumption for any ε ∈ (0, 1):(
1 + |∇V |2

)
e−V ∈ L1 ∩ L∞ , |∇2V (·)| ≤ ε|∇V (·)|+ Cε ,

and assume the measure dµ = e−V dx admits a Poincaré inequality:∫
Rd

|u|2 dµ−
(∫

Rd
udµ

)2
.
∫
Rd

|∇xu|2dµ .

Assumption on the interactions:

The interaction operator is regularizing: for p ∈ [2,∞] and q ∈ (d ,∞]

‖kα ∗ ρ‖Lp + ‖∇kα ∗ ρ‖Lq ≤ κα‖ρ‖L1∩L2 , α = e, o .

The interaction kernel has bounded negative Fourier modes
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∫
ρ = 0.
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<
(∫

Rd
k̂(ξ) |ρ̂(ξ)|2 dξ

)
≥ −κe‖ρ‖2

L1∩L2 , ∀ρ ∈ L1 ∩ L2 s.t. ρ̂(0) = 0.
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Quantitative local asymptotic stability

Theorem (G, Herda. ’24)
Existence and uniqueness: The equation has at least one equilibrium,
which is unique if the interactions are almost positive (κe � 1).

Stability: If furthermore the interactions are almost symmetric (κo � 1),
it is stable: for any s ∈ [0, 1] and intial datum such that

s > sc :=
3
2

(
d
q − 1

3

)
, ‖Fin − F?‖Hs

x L2
v (F

−1
? ) � 1,

VFP has a unique solution F ∈ C(R+;Hs
xL2

v
(
F−1
? )
)
, and

‖F (t)− F?‖Hs
x L2

v (F
−1
? ) . ‖Fin − F?‖Hs

x L2
v (F

−1
? )e

−λt ,

and is instantly H1 in space:

‖F (t)− F?‖H1
x L2

v (F
−1
? ) . ‖Fin − F?‖Hs

x L2
v (F

−1
? )t

− 3
2 (1−s)e−λt .

Every constant is constructive and symmetric part can be large (κe � 1).
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Corollary: Vlasov-Poisson-FP k ∗ (·) = (−λ2∆)−1

Hypotheses on the potential
I Regularity on k,∇k: Hardy-Littlewood-Sobolev or elliptic regularity.
I Valid for λ� 1 and λ� 1:

k ∗ (·) = ke ∗ (·) =
(
−λ2∆

)−1 ≥ 0 ⇒ κo = κe = 0

Consequences of our result
I Constructive estimates but constants degenerate as λ→ 0
I Regularity on initial data H

1
2+x,v [Hérau, Thomann ’16], [Toshpulatov

’23] lowered to H
1
4+x L2

v (in particular, no regularity in v)
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Stability analysis: A natural Hilbert norm
The free energy functional

F [F ] =
∫

F (x , v)
(

|v |2
2︸︷︷︸

kinetic
energy

+ V (x)︸ ︷︷ ︸
confinement

energy

+ ΨF (x)︸ ︷︷ ︸
interaction

energy

+ log F (x , v)︸ ︷︷ ︸
entropy

)
dxdv

is a Lyapunov functional for symmetric interactions (κo = 0)
d
dtF [F ] +D[F ] = O (κo) , D[F ] ≥ 0 .

Functional framework for stability: fluctuation f and Hilbert norm

F = F?(1 + f ) , F [F ] ≈ d2F [F?].(F?f ,F?f ) =: |||f |||2

|||f ||| =
(∫

F?(x , v)f (x , v)2 dxdv +

∫
ke ∗ ρf (x)ρf (x)dx

)1/2
.

where |||·||| is well defined because ke is almost positive (κe � 1).

Idea to use |||·||| originally from [Addala, Dolbeault, Li, Tayeb, ’19].
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Stability analysis: hypocoercivity

The fluctuation f satisfies

∂t f + Tf = Lf +O(κo) , where L ≤ 0 , T ∗ = −T

I Problem: ker(L) 6= 0 ⇒ incomplete energy estimate
I Solution: hypocoercivity

2D toy-model for hypocoercivity
dy
dt =

(
0 1
−1 −1

)
y

Eigenvalues = −1
2 ± i

√
3

2
I Incomplete energy estimate d

dt |y(t)|
2 = −2y2

2 (t) 6⇒ decay O
(
e−t/2)

I Introduce the equivalent (squared) norm (|η| < 1)
H(y) = y2

1 + y2
2 + 2ηy1y2 ⇒ d

dt H(y(t)) + H(y(t)) ≤ 0 .
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Stability analysis: linear study
Exponential decay: DMS strategy [Dolbeault Mouhot, Schmeiser, ’15]:

A = A(T ,Πker(L)) , E(f ) := |||f |||2 + η 〈〈Af , f 〉〉 ≈ ‖f ‖2
L2

x,v (F?)

We recover exponential decay for κo � 1:

d
dt E(f ) + µ E(f ) . κoE(f ) ⇒ ‖f (t)‖L2

x,v (F?) . e−λt‖fin‖L2
x,v (F?)

Similar for E(∇x f ) ⇒ exponential decay in H1
x L2

v (F?) also

Regularization estimate: Hypoellipticity strategy of Hérau,Villani… :

H(f ) := E(f ) + α1(t)‖∇v f ‖2 + α2(t) 〈∇x f ,∇v f 〉+ α3(t)‖∇x f ‖2

For the right αi(t) with αi(0) = 0, uniform regularization estimate:

d
dtH(f ) ≤ 0 ⇒ ‖∇x f ‖L2

x,v (F?) . t−3/2e−λt‖fin‖L2
x,v (F?)

Interpolation: Combine all estimates by interpolation for s ∈ [0, 1]:
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Stability analysis: source term and nonlinear estimates
VFP with a source: ∂t f + Tf = Lf +O(κo)− (∇v − v)ϕ measured by

‖ϕ‖2
Hs :=

∫ ∞

0
e2λt

(
t3(1−s)‖ϕ‖2

H1
x L2

v (F?)
+ . . .

)
dt

where ϕ = f ∇xψf in the original perturbation equation.

Proposition
For any given s ∈ [0, 1] there holds

‖f ‖X s . ‖fin‖Hs
x L2

v (F?) + ‖ϕ‖Hs .

If additionally s > sc := 3
2

(
d
q − 1

3

)
, then

‖f ∇xψg‖Hs . ‖f ‖X s‖g‖X s .

Taking ϕ = f ∇xψf and fin small ⇒ ∃! solution f ∈ X s by fixed point.
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Perspectives

I Phase transition in the strongly non-linear regime

Example: Kuramoto k(x) = −κe cos(ωx) ⇒ negative modes at ±ωThree steady states for κe � 1

Q1: Stability/instability ?

Q2: Infinite modes ?

Q3: Non-symmetric k ?

Q4: Numerics ?
See [Carrillo et al. ’20] for the torus x ∈ R/Z with V = 0.

I Diffusive approximation: long-time and strong randomness/damping
I Numerical schemes for McKean-Vlasov
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I Diffusive approximation: long-time and strong randomness/damping

ε∂tF ε + v · ∇xF ε −∇x(ΨFε + V ) · ∇vF =
1
ε
∇v · (vF ε +∇vF ε)

Then F ε(t, x , v) ε→0−−−→ ρ(t, x)e−|v|2/2 where

∂tρ−∇x · (∇xρ+ ρ∇(ψρ + V )) = 0 (McKean-Vlasov)

NB: Same steady state equation for MV and VFP
I Numerical schemes for McKean-Vlasov
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Thank you for your attention!

[G, Herda., Well-posedness and long-time behavior for self-consistent
Vlasov-Fokker-Planck equations with general potentials.
arXiv:2408.16468]


