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Introduction

The Boltzmann equation

Assume...
1. Particles travel in straight lines
2. Only pairs of particles interact
3. Conservation of mass / momentum / energy
4. Strength of interaction = (distance) 7, with 2 < p < oo,

...then the density of particles F' = F(t,x,v) at position z € R traveling at
velocity v € R3 evolves according to the Boltzmann equation:

(0, +v- V) Ft,a,v) = Q(F(t,x), F(t,x)) (v)
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Definition of the collision operator

v =0 (v,04,0), v, =v"(v,04,0)

Q(F,F)(v) = / [v — vy |"b(cos 0) | F(vl,)F(v") — F(vy)F(v)|dodv,

S2 xR3,
b(cos ) ~ 9~ (2+25)

1 p—>5
= — 0,1 =— -3,1
S p_16(7)v Y 6( ’)



Introduction

Macroscopic quantities and equilibria

» Conservation of mass, momentum, energy :

1
Oy /F v | dv p+V,- /F v®v dv /Q v dv=20

o] vlv?



Introduction

Macroscopic quantities and equilibria

» Conservation of mass, momentum, energy :

1
Oy /F v | dv p+V,- /F v®1} dv /Q v dv=20
v[? vl

» Dissipation of entropy (H-Theorem):

Oy {/Flongv}—l—Vw-{/vFlongv} z/Q(F,F)longv <0



Introduction

Macroscopic quantities and equilibria

» Conservation of mass, momentum, energy :

1
Oy /F v | dv p+V,- /F v®1} dv /Q v dv=20
v[? vl

» Dissipation of entropy (H-Theorem):

Oy {/Flongv}—l—Vw-{/vFlongv} z/Q(F,F)longv <0

.. minimized by «maxwellians» :

lv—UJ?
QF.F) =0 3(R,UT), F = Rexp |~ 55—

= M =exp ( ‘“—l) is an equilibrium.



Perturbation of equi. : space homogen. case

Linearization of the equation
Consider F' = F'(v) and linearize around the equi. F'(v) = M (v) + f(v):

Ohf=Lf+Q(f, )

where we defined

£f:Q(M7f)+Q(f7M)
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Perturbation of equi. : space homogen. case
Linearization of the equation
Consider F' = F'(v) and linearize around the equi. F'(v) = M (v) + f(v):

Ohf=Lf+Q(f, )

where we defined

Lf=QM, f)+Q(f, M)

» Microscopic conservation laws + M (v) M (v.) = M (v") M (v},) imply

(Lf, g>L2(JV1*1dv) =(f £g>L2(M*1dv)
» Null space and the L2-othogonal of the range differ by a factor M:

o =1,v,]v]* = L(eM) =0, and /go(ﬁf)dv =0
» Linearized H-Theorem:
0> [ og(h + HQUM + f)do = (Lf. Przau-an + OSIP)

Conclusion: = L2 (M ’1dv) is a natural functional space



Space homog. equation with gaussian weights

Linearization of the equation with gaussian weights
Weighted linearization F' = M + M*/? f:

hf=LI+T(ff)

» L is self-adjoint in L?
» [ has a 5-dimensional null-space :

N(L) = {Ml/gaﬂlMl/Q,U2M1/27ngl/Q, |’U|2M1/2}

2 .
Hs:* +

fLN(L) = (Lf. f)rz = = fIle..

» L dissipates some quantity || f|

Lf:= M2 {Q(A\/, MY2F) + QM2 F, J/)} ,
L(f.g) == M~2Q(MY2f, M%)



Space homog. equation with gaussian weights

Properties of the non-linearity T’

Ohf=Lf+T(ff)

» The non-linearity is orthogonal to N (L) :

» The non-linearity can be controlled by the energy and the dissipation :

(C(f9): bz < Whllmze (lallee 1 less + 1F 112z gl s )



Space homog. equation with gaussian weights
Cauchy theory

Of =Lf+T(f.f)
» Propagation of fi, L N(L):
fin LN(L) = f(t) L N(L)

» Good energy estimate:

d
G I+ AF e S 1l 11

Conclusion

For fi, € N(L)* small, there exists a unique global weak solution f () s.t.

A

sup || £(£)]12: +§/ 1F )17z - dt < N fillZ
t>0 0



Space homog. equation with gaussian weights

The dissipated quantity
For pairwise interactions of order (distance) ?, with p > 2

> Landau (p = 2) with A(z) = (I - 5® ﬁ)
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Space homog. equation with gaussian weights

The dissipated quantity
For pairwise interactions of order (distance) ?, with p > 2

> Landau (p = 2) with A(z) = (I - 5® ﬁ)

|z

Q(F,F)(v) =V,- . A(va*)[F(v*)VvF(v)fVUF(v*)F(v) do,

» Boltzmann (p > 2): differential-like (|0 — /| ~ 0o — v.|, b~ 0 2%

Q(F, F)(v) =~ / v, v — v, |72
R3

Vs

/ 4o F)EQ) — F(v,)F(v)

|’U _ ,Ul|2+25

analog to
F@') - F(v)
_Av SE ~ /
a0 s [



Space homog. equation with gaussian weights

The dissipated quantity

Optimal comparison with classical fractional Sobolev spaces :

Yys o Yig
1o)== FIITs + 1602 FllFry S M e S 10D 25 FIly
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Space homog. equation with gaussian weights

The dissipated quantity

Optimal comparison with classical fractional Sobolev spaces :

Jd4g X Jig
(o) 2 flI e + 1) 2 fllEry S U S I 0)2 5

» ~v+2s >0 <« L has a spectral gap
» v+ 2s > 0 = L has a discrete spectrum

Landau case (s = 1), denoting P(v) = ﬁ ® ﬁ:

15 = I 2 Fl1Z + 10 2 Vo flTe + 11(0) % (0 A Vo) 17



Space homog. equation with gaussian weights

The dissipated quantity

Optimal comparison with classical fractional Sobolev spaces :

a . a dig
(o)== FlIZe + 10) = fllEry S U W S 1 0)2 2

» v+ 2s >0 < L has a spectral gap
» ~ 4 2s > 0 = L has a discrete spectrum

Landau case (s = 1), denoting P(v) = Eank

|'u

115 = 1(0) 2 F 172 + 1) E Vo2 + [(0) % (0 A V) f 72

Boltzmann case (0 < s < 1) :

1N Zee = o) 2H2F 12+ 140) 2 fIlRy + [1(0) 2




Space homog. equation with gaussian weights

The dissipated quantity o
AMUXY. (v —v'| = 0lv —v.|and b ~ 027%)
1 W3 = () 3120 + / v — v.[b(cos B)(f(v) — £(¢'))*dv.dvdo

S s - U/ 2
~ |(v)2t f”V _|_/ dv,dv|v — v, 712 H/d |v_vlj|;(+2)8)



Space homog. equation with gaussian weights
The dissipated quantity )
AMUXY. (v —v'| = 0lv —v.|and b ~ 027%)

1F11Zree = [1(0) 27 f 1172 + / [0 = v.]"b(cos 0) (f(v) — f(v'))*dv.dvdo

s s v) — f(v
~ [l{0) e £l 22 / dv,dvfo — v, [1+2 +1/d v—v’|2(+2)>

@ incorporates collision kernel — easy to estimate I" using L? and H3*
© abstract



Space homog. equation with gaussian weights

The dissipated quantity
AMUXY. (o —

£\ Zree = (0} 2 £ +/ [0 = v.]"b(cos 0) (f(v) — f(v'))*dv.dvdo

s s v) — f(v
~ [l{0) e £l 22 / dv,dvfo — v, [1+2 +1/d |v—v’|2(+2))

~ Olv — v,| and b &~ §=225)

@ incorporates collision kernel — easy to estimate I" using L? and H**
P y g v

© abstract
Gressman-Strain, denoting the distance §(v,v’) = ’ (v, @) — (v’, |v;|2) ’ :
L+4s pp ~/+25+1 F(v'))?
1A Bee = )23 + Ve I T v
! S(vw')<1 d(v,v")

~ [|(0) 37 fllia 4 [[(0) /21 = Ap)*2 f]| e



Space homog. equation with gaussian weights

The dissipated quantity
AMUXY. (jv —

£\ Zree = (0} 2 £ +/ v — ] "b(cos 0)(f(v) — f(v'))*dv.dudo

V, Vs, 0

_ 2
~ [[(v)2 +§f||]’ / dv.dv|v — v, |’Y+25+1/d () = F))*

'U _ ,U/|2+29

~ ()‘( _ ],*‘ and b ~ 62 Qs)

@ incorporates collision kernel — easy to estimate I" using L? and H3*
© abstract

2

Ths o %w%ﬂ (v) — f())?
I flI7re.- = H</U>2+'f||ig + 5(v, v')2t2s dv'dv

d(v,v")<1

~ [|(0) 37 fllia 4 [[(0) /21 = Ap)*2 f]| e

2 12
Gressman-Strain, denoting the distance §(v,v’) = ’(v, ﬂ) — (v’, '] ) ’ :

@ explicit and uses collisional geometry
© studied using Littlewood-Paley-type decomposition on the paraboloid

{(v,]v|?/2) : veR3}



Space inhom. equation with gaussian weights

The missing macroscopic quantities

Of=(L-v-Vao)f +T(f, f)

Difference with spatially homogeneous case :
fin LN(L) 7= f(t) L N(L)

Problem: no control of 7 f = projection on N (L) :

(L=v- VL) S = = e

HRLG

But v - V, is not antisymmetric for every inner product — find a suitable one
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Space inhom. equation with gaussian weights

The missing macroscopic quantities

Hypocoercivity: find (-,-)g1r2 = (-, ) g1p2 + (%, %) g1 2 such that

(@=0-Vff) S =elmf s = I = 7

HlL2
Impossible because of the dispersion coming from v - V,,

However we can find (-, ) 172 = (-, ) gip2 + (%, %) 1 12 such that

((L A Vﬂc) s f>H1L2 5 _HVITFfHQLfL? - ||f - WfH?—[;H;*

= —|fl%

Difficulty: L — v -V, does not control ||z f||z2 12 — avoid it:

i)

glla + gl 22

(T(f,9), M) azee S hlla ([ fllz2e2



From gaussian weights to polynomial weights

Problem: Linearization F = M 4 M'/2 f too strong/not physical
Better: F' with finite mass/energy, i.e.

/F(l + [v]*)dv < 00
New linearization F' = M + (v) "k f

Of =Lf —v-Vof +T(f, [)

Lf= )" {QM, ()" /) +QUf)*f. M)}
L(f,9) = () Q) *f, (f)*g)
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~

2
Hy ™"



From gaussian weights to polynomial weights

» L is not self-adjoint but satisfies for a norm H* similar to H;"*
(Lf, f)rz S =Allf|If:« + lower order terms
» Decompose (L —v -V, — xo0) + xo =: B+ xo for a bump function xq:

Vh e L1217 <Bh7h’>L% S _||h|

~

2
Hy ™"

> Write F = M + M'/2g + (v)~*h and consider the system

Oth = Bh + I'(h, h) + coupling terms,  hi, = fin,
g =(L—v-Va)g+TI(g,9)+xh, gn=0,

where x = xoM /2 (v)*



From gaussian weights to polynomial weights

O:h = Bh + T'(h, h) + coupling terms of order O(||h]|),  hin = fin,
Oig=(L—v-Vy)g+T(g,9) +xh, gn=0,
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From gaussian weights to polynomial weights

Oih = Bh + T'(h, h) + coupling terms of order O(||||),  hin = fin,
0ig=(L—v-Vg)g+ F(g,g) +xh,  gin =0,

» Equation on h : “easy” and we can estimate its decay

» Equation on g : same as previously but with coupling term yh —
need decay estimate on h

Theorem (Carrapatoso, G. — 2022)

Forany fi, = Fy, — M small in H2L? <<’U>2kd’u>, with k > 1, there exists a
unique global weak solution F(t) = M + (v)~* f(t) such that

oo
sup | (B)Fazz + / {192 (0 s+ £ () g - bt S il



Thank you for your attention
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