An iterative algorithm for the Dirichlet problem with random conductances

Chenlin GU

DMA/ENS

Journées de Probabilités 2019

June 25, 2019

Outline

Introduction

- Motivation
- Preliminary
- 2 Algorithm
 - Iterative algorithm
 - Proof
- 3 Numerical experience

Further applicationsModel

Outline

1 Introduction

- Motivation
- Preliminary
- 2 Algorithn
 - Iterative algorithm
 - Proof
- 3 Numerical experience
- Further applicationsModel

Motivation

Random stationary medium

Random conductance model

- (\mathbb{Z}^d, E_d) standard d-dimension lattice.
- $\mathbf{a}: E_d \to [\Lambda^{-1}, \Lambda]$ with $\Lambda > 1$. $\{\mathbf{a}(e)\}_{e \in E_d}$ i.i.d. called random conductances.
- The discrete divergence operator $-\nabla\cdot \mathbf{a}\nabla$ is defined by

$$-\nabla \cdot \mathbf{a} \nabla u(x) := \sum_{y \sim x} \mathbf{a}(x, y)(u(x) - u(y)).$$

•
$$\square_m := \left(-\frac{3^m}{2}, \frac{3^m}{2}\right)^d \cap \mathbb{Z}^d.$$

• Object : Find an algorithm to solve the elliptic Dirichlet problem quickly for big *m*,

$$\begin{cases} -\nabla \cdot \mathbf{a} \nabla u = f & \text{ in int}(\Box_m), \\ u = g & \text{ on } \partial \Box_m. \end{cases}$$
(1.1)

Naive method takes time when m big

- Why could it be a problem ?
- Jacobi iterative method pprox The stationary solution of random walk.
- Let $P(x, y) := \frac{\mathbf{a}(x, y)}{\sum_{z \sim x} \mathbf{a}(x, z)}$ be the semigroup generated by \mathbf{a} and $\tilde{f}(x) = f(x)/(\sum_{z \sim x} \mathbf{a}(x, z)).$
- u is the unique solution of the equation $u = Pu + \tilde{f}$.
- We do iteration $u_0 = g$, $u_{n+1} = J(u_n, \tilde{f})$ that

$$u_{n+1}=Pu+\tilde{f}.$$

• $\lim_{n\to\infty} u_n = u$.

• When \Box_m is big, it takes time. At least $O(r^2)$ iterations for $r = 3^m$.

Outline

1 Introduction

- Motivation
- Preliminary
- 2 Algorithr
 - Iterative algorithm
 - Proof
- 3 Numerical experience
- Further applicationsModel

Multigrid method

Efficient method for $\mathbf{a} \equiv const.$ i.e. for the problem $-\Delta u = f.$

- Try to solve $-\Delta u = f$, we do the Jacobi iteration and $u_1 = J^M(u_0, f)$.
- 2) $f_1 = f (-\Delta u_1)$, coarsen the grid by 2, and $u_2 = J^{M/2}(0, f_1)$.
- **3** $f_2 = f_1 (-\Delta u_2)$, coarsen the grid by 2, and $u_3 = J^{M/4}(0, f_2)$.
- û = u₁ + u₂ + u₃. Iterate this procedure and only O(log(r)) iterations required.

Probabilistic interpretation : coarsened grid \approx random walk with big step size.

Chenlin GU (DMA/ENS)

An iterative algorithm for the Dirichlet proble

Homogenized solution

- Using the homogenized solution to approximate the real solution : Early work of Kozlov, Papanicolaou, Varadhan, Yurinski etc.
- When $m
 ightarrow \infty$, we have an effective solution $ar{u}$ for

$$\begin{cases} -\nabla \cdot \bar{\mathbf{a}} \nabla \bar{u} = f & \text{ in } \operatorname{int}(\Box_m), \\ u = g & \text{ on } \partial \Box_m, \end{cases}$$
(1.2)

with a effective conductance.

• $\frac{1}{3^m} \|u - \bar{u}\|_{L^2(\Box_m)} \xrightarrow{m \to \infty} 0.$ • $\bar{\mathbf{a}} \neq \mathbb{E}[\mathbf{a}].$

Homogenized solution

Several disadvantages :

- Loss of microscale information : Locally, \bar{u} and u is never similar.
- Limit of precision : $\frac{1}{3^m} \|u \bar{u}\|_{L^2(\Box_m)} \simeq 3^{-\frac{m}{2}}$. For *m* fixed, using \bar{u} can never go pass this precision.

Precise object : An algorithm quick but also with more precision.

Outline

Introduction

- Motivation
- Preliminary
- Algorithm
 Iterative algorithm
 Proof
 - 3 Numerical experience
 - Further applicationsModel

Iterative algorithm

Iterative algorithm

- The iterative algorithm proposed by Armstrong, Hannukainen, Kuusi, Mourrat.
- Start from an initial guess $u_0 := g$. One iteration is to solve the following equations with the null Dirichlet boundary condition:

$$\begin{cases} (\lambda^2 - \nabla \cdot \mathbf{a} \nabla) u_1 &= f + \nabla \cdot \mathbf{a} \nabla u_0 & \text{ in } \operatorname{int}(\Box_m), \\ -\nabla \cdot \bar{\mathbf{a}} \nabla \bar{u} &= \lambda^2 u_1 & \text{ in } \operatorname{int}(\Box_m), \\ (\lambda^2 - \nabla \cdot \mathbf{a} \nabla) u_2 &= (\lambda^2 - \nabla \cdot \bar{\mathbf{a}} \nabla) \bar{u} & \text{ in } \operatorname{int}(\Box_m), \end{cases}$$
(2.1)

then let $\hat{u} := u_0 + u_1 + u_2$ and we put \hat{u} in the place of u_0 to restart the iteration.

• All the three equations are easy to solve. The second one can be handled by the multigrid method, while the first and third one take less time $(O(\frac{1}{\lambda^2})$ iterations) thanks to the regularization.

Main theorem

Let
$$\mathcal{Z} = \sup_{u_0, f, g} \frac{\|\nabla(\hat{u}-u)\|_{L^2(\Box_m)}}{\|\nabla(u_0-u)\|_{L^2(\Box_m)}}$$
, $\ell(\lambda) = 1$ for $d \ge 3$ and $\ell(\lambda) = \log^{\frac{1}{2}}(\lambda)$, and $r = 3^m$.

Theorem ((Armstrong, Hannukainen, Kuusi, Mourrat 18)(Gu 19+)) For any $s \in (0,2)$, there exists a constant $C(m,\Lambda,s,d)$ such that for any y > 0 $\mathbb{P}[\mathcal{Z} \ge y] \le \exp\left(-\left(\frac{y}{C\lambda^{\frac{1}{2}}\ell(\lambda)\log^{\frac{1}{s}}(r)}\right)^{s}\right).$

- It suggests a practical choice of λ that $\frac{1}{r} \ll \lambda \ll \frac{1}{\log(r)}$.
- Complexity := $O(\log(r))$ iterations, very close to the one of multigrid.

Outline

1 Introduction

- Motivation
- Preliminary

Algorithm

- Iterative algorithm
- Proof
- 3 Numerical experience
- Further applicationsModel

Proof

Two-scale expansion

- Combing the first and second step of the iteration and we obtain $-\nabla \cdot \bar{\mathbf{a}} \nabla \bar{u} = -\nabla \cdot \mathbf{a} \nabla (u u_0 u_1).$
- The third equation gives $(\lambda^2 \nabla \cdot \mathbf{a} \nabla) u_2 = (\lambda^2 \nabla \cdot \bar{\mathbf{a}} \nabla) \bar{u}.$
- Two-scale expansion $w := \bar{u} + \sum_{k=1}^{d} (\mathcal{D}_{e_k} \bar{u}) \phi_{e_k}$ with $\{\phi_{e_k}\}_{1 \leq k \leq d}$ the first order corrector.
- We have

$$|\hat{u} - u| = |u - (u_0 + u_1 + u_2)| \leq |(u - u_0 - u_1) - w| + |w - u_2|,$$

so it suffices to know how close the two-scale expansion can be.

- First rigorous result in periodic homogenization : Allaire.
- Quantitative analysis in stochastic homogenization setting : Armstrong, Kussi, Mourrat, Gloria, Neukamm and Otto etc.

Numerical experience

- d = 2, size $= 128 \times 128$, $\mathbf{a} \in \{\frac{1}{\sqrt{2}}, \sqrt{2}\}$ with law Bernoulli $(\frac{1}{2})$.
- f = 1 and g = 0.
- λ = 0.1.
- The first 22 rounds of iteration give a convergence of errors
 ε_n := ||f − (−∇ · a∇u_n)||_{L²(□_m)}.

$$\begin{split} \{\varepsilon_n\}_{1\leqslant n\leqslant 22} &= \{34.43, 18.56, 9.99, 5.38, 2.89, 1.56, 0.84, \\ &0.45, 0.24, 0.13, 0.0709, 0.0382, 0.0206, \\ &0.0111, 0.0059, 0.0032, 0.0017, 0.0009, \\ &0.0005064, 0.0002730, 0.0001472, 7.94 \times 10^{-5} \} \end{split}$$

Figure: A numerical experience of the algorithm gives a very high precision of the solution.
Chenin GU (DMA/ENS) An iterative algorithm for the Dirichlet proble June 25, 2019 17/26

Outline

Introduction

- Motivation
- Preliminary
- 2 Algorithr
 - Iterative algorithm
 - Proof
- 3 Numerical experience

Further applicationsModel

Dirichlet problem on percolation cluster

- \bullet Apply the same algorithm on the same problem on percolation setting. (Gu 19+)
 - $\mathbf{a}: \dot{E_d} \to \{0\} \cup [\Lambda^{-1}, 1].$
 - a(e) > 0 represents an open bond and a(e) = 0 represents a closed bond.
 - Supercritical percolation $\mathbb{P}[\mathbf{a} \neq 0] = \mathfrak{p} > \mathfrak{p}_c(d)$.
 - Dirichlet problem on the maximal cluster in the cube \Box_m .
- More technical : the random conductance also influences the domain of the solution, and the random graph structure is challenging for PDE analysis.

Dirichlet problem on percolation cluster

Figure: Can you tell all the connected components in the graph ?

Dirichlet problem on percolation cluster

Figure: The cluster in blue is the maximal cluster in the cube

- d = 2, size = 256 × 256, p = 0.6, $\mathbf{a} \in \{0\} \cup [0.5, 1]$, $\lambda = 0.1$.
- $-\nabla \cdot \mathbf{a} \nabla \phi_{e_1,L} = -\nabla \cdot \mathbf{a} \nabla I_{e_1}$ with null boundary condition.
- Initial error $\varepsilon_0 = 1.12085310602$.

round	errors
1	0.0282597982969
2	0.0126490361046
3	0.00707540548365
4	0.00435201077274
5	0.00282913420116
6	0.00190945842802
7	0.00132483912845
8	0.000939101476657

Figure: A table of errors

Figure: A simulation of the corrector on the maximal cluster of a cube 256×256 .

Chenlin GU (DMA/ENS) An iterativ

An iterative algorithm for the Dirichlet proble

Figure: A simulation of the corrector on the maximal cluster of a cube 256×256 .Chenlin GU (DMA/ENS)An iterative algorithm for the Dirichlet probleJune 25, 201925 / 26

Thank you for your attention.