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Introduction Motivation

Random stationary medium
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Introduction Motivation

Random conductance model

(Zd ,Ed) standard d-dimension lattice.

a : Ed → [Λ−1,Λ] with Λ > 1. {a(e)}e∈Ed
i.i.d. called random

conductances.

The discrete divergence operator −∇ · a∇ is defined by

−∇ · a∇u(x) :=
∑
y∼x

a(x , y)(u(x)− u(y)).

�m :=
(
−3m

2 ,
3m

2

)d ∩ Zd .

Object : Find an algorithm to solve the elliptic Dirichlet problem
quickly for big m, {

−∇ · a∇u = f in int(�m),
u = g on ∂�m.

(1.1)
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Introduction Motivation

Naive method takes time when m big

Why could it be a problem ?

Jacobi iterative method ≈ The stationary solution of random walk.

Let P(x , y) := a(x ,y)∑
z∼x a(x ,z)

be the semigroup generated by a and

f̃ (x) = f (x)/(
∑

z∼x a(x , z)).

u is the unique solution of the equation u = Pu + f̃ .

We do iteration u0 = g , un+1 = J(un, f̃ ) that

un+1 = Pu + f̃ .

limn→∞ un = u.

When �m is big, it takes time. At least O(r2) iterations for r = 3m.
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Introduction Preliminary

Multigrid method

Efficient method for a ≡ const. i.e. for the problem −∆u = f .

1 Try to solve −∆u = f , we do the Jacobi iteration and u1 = JM(u0, f ).

2 f1 = f − (−∆u1), coarsen the grid by 2, and u2 = JM/2(0, f1).

3 f2 = f1 − (−∆u2), coarsen the grid by 2, and u3 = JM/4(0, f2).

4 û = u1 + u2 + u3. Iterate this procedure and only O(log(r)) iterations
required.

Probabilistic interpretation : coarsened grid ≈ random walk with big step
size.
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Introduction Preliminary

Homogenized solution

Using the homogenized solution to approximate the real solution :
Early work of Kozlov, Papanicolaou, Varadhan, Yurinski etc.

When m→∞, we have an effective solution ū for{
−∇ · ā∇ū = f in int(�m),
u = g on ∂�m,

(1.2)

with ā effective conductance.
1
3m ‖u − ū‖L2(�m)

m→∞−−−−→ 0.

ā 6= E[a].
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Introduction Preliminary

Homogenized solution

Several disadvantages :

Loss of microscale information : Locally, ū and u is never similar.

Limit of precision : 1
3m ‖u − ū‖L2(�m)

' 3−
m
2 . For m fixed, using ū

can never go pass this precision.

Precise object : An algorithm quick but also with more precision.
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Algorithm Iterative algorithm

Iterative algorithm

The iterative algorithm proposed by Armstrong, Hannukainen, Kuusi,
Mourrat.

Start from an initial guess u0 := g . One iteration is to solve the
following equations with the null Dirichlet boundary condition:

(λ2 −∇ · a∇)u1 = f +∇ · a∇u0 in int(�m),
−∇ · ā∇ū = λ2u1 in int(�m),
(λ2 −∇ · a∇)u2 = (λ2 −∇ · ā∇)ū in int(�m),

(2.1)

then let û := u0 + u1 + u2 and we put û in the place of u0 to restart
the iteration.

All the three equations are easy to solve. The second one can be
handled by the multigrid method, while the first and third one take
less time (O( 1

λ2
) iterations) thanks to the regularization.
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Algorithm Iterative algorithm

Main theorem

Let Z = supu0,f ,g

‖∇(û−u)‖L2(�m)

‖∇(u0−u)‖L2(�m)
, `(λ) = 1 for d > 3 and `(λ) = log

1
2 (λ),

and r = 3m.

Theorem ((Armstrong, Hannukainen, Kuusi, Mourrat 18)(Gu 19+))

For any s ∈ (0, 2), there exists a constant C (m,Λ, s, d) such that for any
y > 0

P[Z > y ] 6 exp

(
−

(
y

Cλ
1
2 `(λ) log

1
s (r)

)s)
.

It suggests a practical choice of λ that 1
r � λ� 1

log(r) .

Complexity := O(log(r)) iterations, very close to the one of multigrid.
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Algorithm Proof

Two-scale expansion

Combing the first and second step of the iteration and we obtain
−∇ · ā∇ū = −∇ · a∇(u − u0 − u1).

The third equation gives (λ2 −∇ · a∇)u2 = (λ2 −∇ · ā∇)ū.

Two-scale expansion w := ū +
∑d

k=1(Dek ū)φek with {φek}16k6d the
first order corrector.

We have

|û − u| = |u − (u0 + u1 + u2)| 6 |(u − u0 − u1)− w |+ |w − u2|,

so it suffices to know how close the two-scale expansion can be.

First rigorous result in periodic homogenization : Allaire.

Quantitative analysis in stochastic homogenization setting :
Armstrong, Kussi, Mourrat, Gloria, Neukamm and Otto etc.
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Numerical experience

Numerical experience

d = 2, size = 128× 128, a ∈ { 1√
2
,
√

2} with law Bernoulli(12).

f = 1 and g = 0.

λ = 0.1.

The first 22 rounds of iteration give a convergence of errors
εn := ‖f − (−∇ · a∇un)‖L2(�m)

.

{εn}16n622 = {34.43, 18.56, 9.99, 5.38, 2.89, 1.56, 0.84,

0.45, 0.24, 0.13, 0.0709, 0.0382, 0.0206,

0.0111, 0.0059, 0.0032, 0.0017, 0.0009,

0.0005064, 0.0002730, 0.0001472, 7.94× 10−5
}
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Numerical experience

Figure: A numerical experience of the algorithm gives a very high precision of the
solution.
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Further applications Model

Dirichlet problem on percolation cluster

Apply the same algorithm on the same problem on percolation
setting. (Gu 19+)

a : Ed → {0} ∪ [Λ−1, 1].
a(e) > 0 represents an open bond and a(e) = 0 represents a closed
bond.
Supercritical percolation P[a 6= 0] = p > pc(d).
Dirichlet problem on the maximal cluster in the cube �m.

More technical : the random conductance also influences the domain
of the solution, and the random graph structure is challenging for
PDE analysis.
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Further applications Model

Dirichlet problem on percolation cluster

Figure: Can you tell all the connected components in the graph ?
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Further applications Model

Dirichlet problem on percolation cluster

Figure: The cluster in blue is the maximal cluster in the cube
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Further applications Model

Calculate the corrector in a cube

d = 2, size = 256× 256, p = 0.6, a ∈ {0} ∪ [0.5, 1], λ = 0.1.

−∇ · a∇φe1,L = −∇ · a∇le1 with null boundary condition.

Initial error ε0 = 1.12085310602.
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Further applications Model

Calculate the corrector in a cube

round errors

1 0.0282597982969
2 0.0126490361046
3 0.00707540548365
4 0.00435201077274
5 0.00282913420116
6 0.00190945842802
7 0.00132483912845
8 0.000939101476657

Figure: A table of errors
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Further applications Model

Calculate the corrector in a cube

Figure: A simulation of the corrector on the maximal cluster of a cube 256× 256.
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Further applications Model

Calculate the corrector in a cube

Figure: A simulation of the corrector on the maximal cluster of a cube 256× 256.
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Further applications Model

Thank you for your attention.
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