A mathematical model on black market

Chenlin GU

 $\mathsf{DMA}/\mathsf{ENS}$

LPSM, May 13, 2019

joint work with Alvin E. ROTH and Qingyun WU (Stanford)

Chenlin GU (DMA/ENS)

A mathematical model on black market

May 13, 2019 1 / 36

Outline

Introduction

- Model
- Question
- Heuristic analysis

2 Main results

Phase diagrams

3 Ideas of the proof

• Combinations of several simple probabilistic tools

Generalisation

- A model with parameter non-constant
- Stabilisation

Motivation

• We want to study why some illegal black market exists and cannot be extinguished.

Chenlin GU (DMA/ENS)

Motivation

- We want to study why some illegal black market exists and cannot be extinguished.
- Combat between three types of populations : for, against, and neutral.

Figure: Drug user

Figure: Drug hater

Figure: Neutral

Chenlin GU (DMA/ENS)

A mathematical model on black market

May 13, 2019 4 / 36

Outline

Model

- Question
- Heuristic analysis
- - Phase diagrams
- - Combinations of several simple probabilistic tools
- - A model with parameter non-constant
 - Stabilisation

3

I ≡ ►

Model

- The process $(X_t, Y_t, Z_t)_{t \in \mathbb{N}}$ starting from (X_0, Y_0, Z_0) is discrete time \mathbb{N}^3 -valued Markov chain.
- X_t = number of drug users.
- Y_t = number of drug haters.
- $Z_t =$ neutral.

イロト 人間ト イヨト イヨト

Model

- An outsider joins the system every system.
- He has probability p to be a drug hater (of type Y).
- - probability (1 p) of be a drug user or neutral (of type X or Z).
 - He tries to find drug and success with probability $q = \frac{X_t}{X_t + rY_t}$.
 - He is reasonable, so he tries to find the drug only when $\frac{X_t}{Y_t} > Kr$.

Introduction

Model

Model

- The process $(X_t, Y_t, Z_t)_{t \in \mathbb{N}}$ starting from (X_0, Y_0, Z_0) is discrete time \mathbb{N}^3 -valued Markov chain.
- Matrix of transition

$$\begin{cases} P((x+1,y,z)|(x,y,z)) = (1-p)\frac{x}{x+ry}\mathbf{1}_{\{\frac{x}{y} > Kr\}} \\ P((x,y+1,z)|(x,y,z)) = p \\ P((x,y,z+1)|(x,y,z)) = (1-p)\frac{ry}{x+ry}\mathbf{1}_{\{\frac{x}{y} > Kr\}} + (1-p)\mathbf{1}_{\{\frac{x}{y} \le Kr\}} \end{cases}$$

- Parameters :
 - $p \in [0,1]$ probability to be drug hater.
 - $r \in [0,1]$ probability of reporting to police (for Y_t).
 - $K \in [0,\infty]$ punishment to be caught.

- 4 @ > - 4 @ > - 4 @ >

Outline

- Model
- Question
- Heuristic analysis
- 2 Main results
 - Phase diagrams
- 3 Ideas of the proof
 - Combinations of several simple probabilistic tools
- 4 Generalisation
 - A model with parameter non-constant
 - Stabilisation

• • = • • = •

Introduction

Question

Question

- Extinction := $\left\{\lim_{t\to\infty}\frac{X_t}{X_t+Y_t+Z_t}=0\right\}$
- By the law of large number, $\lim_{t\to\infty} \frac{X_t}{X_t+Y_t+Z_t} = p$, thus we define $R_t := \frac{X_t}{Y_t}$ and we have

$$\mathsf{Extinction} = \{\lim_{t \to \infty} R_t = 0\} = \{\lim_{t \to \infty} R_t \le Kr\}.$$

- Main questions :
 - Under which condition, the extinction of black market happens with probability 1 ?
 - 2 If there is no extinction (we say the market **survives** in this case), then what will be the limit (if exists) of the proportion $\left(\frac{X_t}{X_t+Y_t+Z_t}, \frac{Y_t}{X_t+Y_t+Z_t}, \frac{Z_t}{X_t+Y_t+Z_t}\right)$?

Heuristic analysis

Outline

Introduction

- Model
- Question
- Heuristic analysis

• Phase diagrams

Combinations of several simple probabilistic tools

- A model with parameter non-constant
- Stabilisation

A B A A B A

Fixed point argument

- Suppose that we do not consider the utility (K plays no role) and $\lim_{t\to\infty} \frac{X_t}{Y_t} = \bar{R}$, the increment of X and Z has limit of proportion $\frac{\bar{R}}{r} \Rightarrow \lim_{t\to\infty} \frac{X_t}{Z_t} = \frac{\bar{R}}{r}$.
- This implies that

$$\lim_{t \to \infty} \left(\frac{X_t}{X_t + Y_t + Z_t}, \frac{Y_t}{X_t + Y_t + Z_t}, \frac{Z_t}{X_t + Y_t + Z_t} \right) = \left(\frac{(1-p)\bar{R}}{\bar{R}+r}, p, \frac{(1-p)\bar{r}}{\bar{R}+r} \right).$$

$$\bullet \quad \boxed{\bar{R} := \frac{1-p-pr}{p}}.$$

• Compare \overline{R} and Kr and take in account of the function of K.

Phase diagrams

Outline

Introduction

- Model
- Question
- Heuristic analysis
- 2 Main results• Phase diagrams

B Ideas of the proof

• Combinations of several simple probabilistic tools

4 Generalisation

- A model with parameter non-constant
- Stabilisation

-

< ∃ >

Theorem (Controllable and uncontrollable black markets)

There exist three cases,

- **Controllable:** p(1 + r + Kr) > 1. In this situation, the market will become extinct with probability 1 and $R_t \stackrel{a.s.}{\rightarrow} 0$.
- **Output** Borderline: p(1 + r + Kr) = 1. If 1 − p ≥ 2pr ⇔ K ≥ 1 then it behaves like the controllable case; if 1 − p < 2pr ⇔ K < 1, then it behaves like the uncontrollable case.</p>
- **Our controllable:** p(1 + r + Kr) < 1. The market survives with positive probability. And when it survives, $R_t \stackrel{a.s.}{\rightarrow} \overline{R}$.

- * 帰 * * き * * き * … き

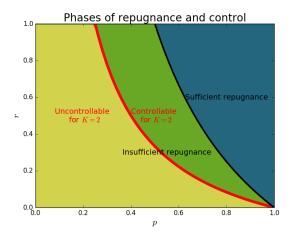


Figure: Phases of controllability

Chenlin GU (DMA/ENS)

A mathematical model on black market

May 13, 2019

▶ < 프 ► < 프 ►</p>

15 / 36

We can think of I := p(1 + r) as an index reflecting the repugnance with which the market is perceived. We define that $\tau = \inf\{t | R_t \le Kr\}$.

Lemma (Long time behaviour)

Conditional on $\tau = \infty$, $R_t \stackrel{a.s.}{\rightarrow} \overline{R} \lor 0$. Concretely,

- **Insufficient repugnance:** If p(1 + r) < 1, then the limit of R_t is almost surely \overline{R} .
- **Sufficient repugnance:** If $p(1 + r) \ge 1$, then the limit of R_t is almost surely 0.

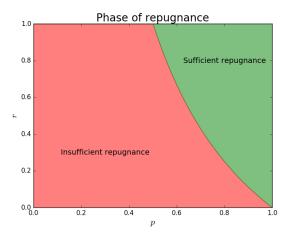


Figure: Phases of repugnance

Chenlin GU (DMA/ENS)

A mathematical model on black market

< E May 13, 2019

- ₹ 🗦 🕨

17 / 36

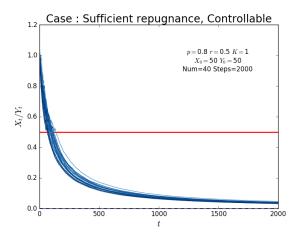


Figure: Phases of sufficient repugnance phase

Chenlin GU (DMA/ENS)

A mathematical model on black market

▶ < ≧ ▶ < ≧ ▶ ≧ May 13, 2019

18 / 36

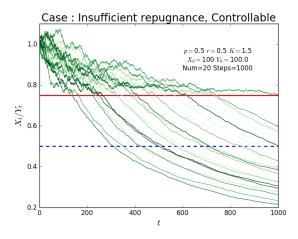


Figure: Phases of controllable phase

Chenlin GU (DMA/ENS)

A mathematical model on black market

< Ξ > < Ξ > May 13, 2019

19 / 36

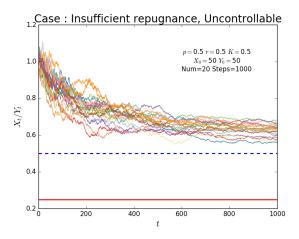


Figure: Phases of uncontrollable phase

Chenlin GU (DMA/ENS)

A mathematical model on black market

→ < ≧ → < ≧ → May 13, 2019

20 / 36

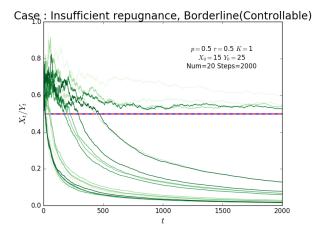


Figure: Phases of controllable, borderline phase

Chenlin GU (DMA/ENS)

A mathematical model on black market

▶ < 置 ▶ < 置 ▶ Ξ → Ѻ Q (? May 13, 2019 21 / 36

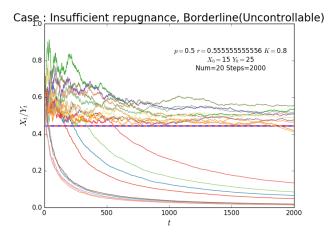


Figure: Phases of uncontrollable, borderline phase

3

A B < A B </p>

Outline

- Model
- Question
- Heuristic analysis
- 2 Main results
 - Phase diagrams

3 Ideas of the proof

• Combinations of several simple probabilistic tools

Generalisation

- A model with parameter non-constant
- Stabilisation

3

★ 3 > < 3</p>

Embedding to a continuous time stochastic process

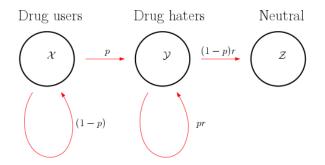


Figure: We can embed the process $(X_n, Y_n, Z_n)_{n \in \mathbb{N}}$ into a Markov jump process $(\mathcal{X}_t, \mathcal{Y}_t, \mathcal{Z}_t)_{t>0}$.

• We can do it even better to define all the process $((\mathcal{X}_t, \mathcal{Y}_t, \mathcal{Z}_t)_{t \ge 0}, p, r)$ in a same probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Analysis of martingale 1

- The key is to analyse $\mathcal{W}_t = \mathcal{Y}_t (\bar{R})^{-1} \mathcal{X}_t$.
- $\mathbb{E}[\mathcal{X}_t] = \mathcal{X}_0 e^{(1-p)t}, \mathbb{E}[\mathcal{W}_t] = \mathcal{W}_0 e^{prt}.$
- (X_t)_{t≥0} process of Yule and (e^{-(1-p)t}X_t)_{t≥0} converges to a limit of law exp(1).
- $\frac{\chi_t}{\mathcal{Y}_t} = \frac{e^{-(1-p)t}\chi_t}{e^{-(1-p)t}\mathcal{W}_t + (\bar{R})^{-1}e^{-(1-p)t}\chi_t}$ converges to different limit.
- This proves the long time behaviours and also the controllable case p(1 + r + Kr) > 1.

Coupling with a random walk

- Uncontrollable case p(1 + r + Kr) < 1.
- $S_t = X_t KrY_t$.
- $S_{t+1} = S_t + \mathbf{1}_{\{p \le U_{t+1} < 1\}} \mathbf{1}_{\{0 \le V_{t+1} < \frac{X_t}{X_t + rY_t}\}} Kr \mathbf{1}_{\{0 \le U_{t+1} < p\}}.$
- $\bar{S}_{t+1} = \bar{S}_t + \mathbf{1}_{\{p \le U_{t+1} < 1\}} \mathbf{1}_{\{0 \le V_{t+1} < \frac{\kappa}{1+\kappa}\}} Kr \mathbf{1}_{\{0 \le U_{t+1} < p\}}$ defines a simple random walk.
- $\mathbb{E}[\bar{S}_{t+1} \bar{S}_t] > 0$, thus $(\bar{S}_t)_{t \in \mathbb{N}}$ has a positive drift and is transient. • $S_t \ge \bar{S}_t$ before $\frac{X_t}{Y_t} < Kr$.

Critical case p(1 + r + Kr) = 1.

Lemma

In the borderline case, i.e. when $\overline{R} = Kr$:

- Small variance: 1 − p < 2pr ⇔ K < 1. Then T has a positive probability to be infinite and (X_t, Y_t) has a positive probability to always stay above the slope R
 , in other words, the market has a positive probability of surviving.
- ② Big variance: 1 − p ≥ 2pr ⇔ K ≥ 1. Then T is almost surely finite and (X_t, Y_t) will finally pass the slope, meaning the market always becomes extinct.

• • = • • = •

Analysis of martingale 2

•
$$1 - p - 2pr > 0$$
:

$$\mathbb{E}[\mathcal{W}_{t}^{2}] = \mathcal{W}_{0}^{2}e^{2prt} + \mathcal{W}_{0}(e^{2prt} - e^{prt}) + \frac{A}{1 - p - 2pr}\mathcal{X}_{0}(e^{(1 - p)t} - e^{2prt}),$$

and the typical size of $\mathbb{E}[\mathcal{W}_t^2]$ is at the order of $e^{(1-p)t}$. • 1-p-2pr=0:

$$\mathbb{E}[\mathcal{W}_t^2] = \mathcal{W}_0^2 e^{2prt} + \mathcal{W}_0(e^{2prt} - e^{prt}) + A\mathcal{X}_0 t e^{2prt}$$

and the typical size is of te^{2prt} .

•
$$1 - p - 2pr < 0$$
:

$$\mathbb{E}[\mathcal{W}_{t}^{2}] = \mathcal{W}_{0}^{2}e^{2\rho t} + \mathcal{W}_{0}(e^{2\rho t} - e^{\rho t}) + \frac{A}{2\rho t - (1-\rho)}\mathcal{X}_{0}(e^{2\rho t} - e^{(1-\rho)t}).$$

This expression is the same as in the first case, but its typical size is of e^{2prt} .

Chenlin GU (DMA/ENS)

Outline

- Model
- Question
- Heuristic analysis
- 2 Main results
 - Phase diagrams

Ideas of the proof Combinations of several simple probabilistic tools

Generalisation

- A model with parameter non-constant
- Stabilisation

< ∃ >

A model with parameter non-constant

• Same model and same question about long time behaviors.

$$\begin{cases} P((x+1,y,z)|(x,y,z)) &= (1-p)\frac{x}{x+ry} \mathbf{1}_{\{\frac{x}{y} > Kr\}} \\ P((x,y+1,z)|(x,y,z)) &= p \\ P((x,y,z+1)|(x,y,z)) &= (1-p)\frac{ry}{x+ry} \mathbf{1}_{\{\frac{x}{y} > Kr\}} + (1-p) \mathbf{1}_{\{\frac{x}{y} \le Kr\}} \end{cases}$$

- What happens if (p, r, K) are non-constant ?
- One varied model: $p := p\left(\frac{y}{x+y+z}\right), r := r\left(\frac{y}{x+y+z}\right)$.

A model with parameter non-constant

• One varied model:

$$p\left(\frac{y}{x+y+z}\right) := 0.5 + 0.3 \sin\left(\frac{10y}{x+y+z}\right), r := 0.1, K = 0.5.$$

Several different possible limits ?

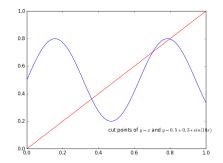


Figure: We believe that the limit should be the fixed point of $\theta = p(\theta)$.

Chenlin GU (DMA/ENS)

I ∃ ►

Outline

- Model
- Question
- Heuristic analysis
- 2 Main results
 - Phase diagrams
- Ideas of the proof
 Combinations of several simple probabilistic tools

Generalisation

- A model with parameter non-constant
- Stabilisation

Numerical simulations

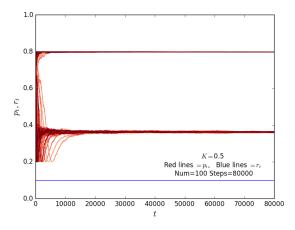


Figure: Stabilisation of *p*.

Chenlin GU (DMA/ENS)

A mathematical model on black market

May 13, 2019 3

イロト イヨト イヨト イヨト

33 / 36

Numerical simulations

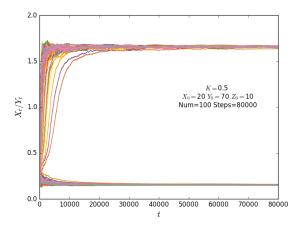


Figure: Stabilisation of X_t/Y_t .

Chenlin GU (DMA/ENS)

A mathematical model on black market

May 13, 2019

- 4 回 ト - 4 回 ト

34 / 36

Stochastic approximation

- $N_t = X_t + Y_t + Z_t, \theta_t = \frac{X_t}{N_t}$.
- $\theta_{t+1} = \theta_t \frac{1}{N_t+1} \left(\theta_t \mathbf{1}_{\{U_{t+1} \le \rho(\theta_t)\}} \right).$
- θ_t converges to the fixed points of $\theta^* = p(\theta^*)$. (Robbins-Monro)
- Unstable points are not possible. (i.e Saddle points in SGD are not stable. Proof non trivial.)

くほと くほと くほと

Thanks for your attentions.

Chenlin GU (DMA/ENS)

A mathematical model on black market

May 13, 2019 36 / 36