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Model

Motivation: pandemic since the beginning of 2020

Figure: Various methods are applied to stop the pandemic: social distancing,
masks, lockdown, quarantine, vaccine, etc.
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Model

Motivation: pandemic since the beginning of 2020

How can the contact tracing help us in controlling the spread of
epidemic ?
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Model

Model: GFI process

GFI = growth-fragmentation-isolation process.

Starting from a single active vertex as patient zero.
Different states:

vertex: active, inactive;
edge: open, closed.

Three operations: infection (growth), information decay
(fragmentation), confirmation and contact-tracing (isolation).
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Model

Model: GFI process

GFI = grow-fragmentation-isolation process.

Starting from a single active vertex as patient zero.

Growth (Infection): every active vertex v independently attaches a
new vertex in an exponential time with parameter β. When a new
vertex u is created and attached, it is active and the link between
them is open.

Fragmentation (information decay): every open edge e independently
becomes closed in an exponential time with parameter γ.

Isolation (confirmation and contact-tracing): every active vertex
independently gets “confirmed” in an exponential time with
parameter θ, then its associated cluster is isolated and every vertex on
this cluster becomes inactive.
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Model

GFI process: growth

Figure: Growth: starting from vertex 0, the vertrices are attached one by one, and
it forms a recursive tree.
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Model

GFI process: fragmentation

Figure: Fragmentation: the information of some links is no longer available after a
while, for example the link {0, 6}, {1, 4}, {2, 8} in the image.
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Model

GFI process: isolation

Figure: Isolation: the vertex 2 is confirmed, then all the vertices in the same
clusters defined by open edges are isolated. These are the vertices in blue
{0, 1, 2, 3, 5, 7} in the image.
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Model

GFI process

Figure: The isolated vertices are no longer active, while the other active vertices
continue to attach new vertices.
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Model

Questions

Notations:

Decompose the graph into clusters by connectivity.

Xt := {active clusters at time t},
Yt := {inactive clusters at time t},
τ := inf{t |Xt = ∅}.

Questions:
1 Is there phase transition ?
2 Is there a limit for the growth rate ?
3 What other mathematical properties can we say from this model ?

Challenges: It is quite difficult to write down the transition probability
explicitly.
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Model

Phase transition

Extinction = {τ <∞},
Survival = {τ =∞}.
Recall:

β: growth rate;
γ: fragmentation rate;
θ: isolation rate.

Preliminary result

We fix rate of growth β > 0,

for θ > β, or θ > γ, GFI process extincts almost surely.

for θ < β and γ � θ, GFI process has positive probability to survive.

Proof: coupling argument.
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Model

Phase transition

Figure: Diagrams of phases
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Model

Figure: A simulation with β = 0.6, θ = 0.03, γ = 0.15 with 247 active vertices and
73 inactive vertices.
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Model

Figure: A simulation with β = 0.6, θ = 0.03, γ = 0.1 with 87 active vertices and
214 inactive vertices.
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RRT structure

Recursive tree

Recursive tree = labeled tree defined on finite V ⊂ R, with the
minimum label as its root, and for all v ∈ V , the path from root to v
is increasing.

Sometimes it is also called increasing tree.

Label the vertices in GFI process with the birth time, it is the natural
structure in clusters.
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RRT structure

Equivalence class of recursive tree

Equivalence class: t1 a recursive tree on V1 and t2 a recursive tree on
V2, then t1 ∼ t2 iff there exists an order-preserving function
ψ : V1 → V2, such that ψ is also a bijection between the graphs t1

and t2.
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RRT structure

Equivalence class of recursive tree

Tn = the set of recursive trees of size n up to the equivalence
relation ∼.

The recursive trees defined on {1, · · · , n} as a representative of the
equivalence class.

Figure: All the recursive trees (as representatives of equivalence classes) in T4.

T :=
⋃∞
n=1 Tn, the whole space of finite recursive trees.
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RRT structure

Random recursive tree

RRT = (uniform) random recursive tree.

Tn: uniformly distributed on Tn, i.e.

∀t ∈ Tn, P[Tn = t] =
1

(n− 1)!
.

Construction 1: by Yule process.

Construction 2: by splitting property.
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RRT structure

Splitting property of RRT

Meir and Moon (1974) discovered the following property.

Splitting property of RRT

Let n > 2 and Tn the canonical random recursive tree of size n. We
choose uniformly one edge in Tn and remove it. Then Tn is split into two
subtrees T 0

n and T ∗n , corresponding to two connected components, where
T 0
n contains the root of Tn and T ∗n does not. Then we have

P [|T ∗n | = j] =
n

n− 1
1

j(j + 1)
, j = 1, 2, · · · , n− 1.

Furthermore, conditionally on |T ∗n | = j, T 0
n and T ∗n are two independent

RRT’s of size respectively (n− j) and j.
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RRT structure

Size process

Empirical measure: let M be punctual measure on N+,

Xt =
∑
C∈Xt

δ|C|, Yt =
∑
C∈Yt

δ|C|,

and we call (Xt, Yt)t>0 size process of GFI process.

Key observation: for every t > 0, conditioned on the size of clusters,
every cluster (active or inactive) is a RRT and they are independent.

Consequence: (Ft)t>0 natural filtration for (Xt, Yt)t>0, then
(Xt, Yt)t>0 is a M2-valued Markov process under (M2, (Ft)t>0,P).
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RRT structure

Branching process

(Xt)t>0 is an infinite-type branching process.
Transitions rates: for a cluster of size n, it

i) becomes an isolated cluster of size n at rate θn;
ii) becomes a RRT of size (n+ 1) at rate βn;
iii) splits into two RRTs of size (n− j, j) at rate γn 1

j(j+1) , for
n > 2, 1 6 j 6 n− 1.
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RRT structure

Generator

Let F : R2 → R a bounded Borel function. We set

Ff,g : (µ, ν) ∈M2 → F (〈µ, f〉 , 〈ν, g〉) ∈ R,

then we have

AFf,g(µ, ν)

=
∞∑
n=1

µ({n})βn (F (〈µ+ δn+1 − δn, f〉 , 〈ν, g〉)− F (〈µ, f〉 , 〈ν, g〉))

+
∞∑
n=1

µ({n})θn (F (〈µ− δn, f〉 , 〈ν + δn, g〉)− F (〈µ, f〉 , 〈ν, g〉))

+
∞∑
n=1

µ({n})γ(n− 1)
n−1∑
j=1

(
n

n− 1
1

j(j + 1)

)
×

(F (〈µ+ δj + δn−j − δn, f〉 , 〈ν, g〉)− F (〈µ, f〉 , 〈ν, g〉)) .
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RRT structure

Main result 1: Malthusian exponent

Theorem (Malthusian exponent)

The following limits exist and coincide and are finite

λ := lim
t→∞

1
t

log(E[|Xt|]) = lim
t→∞

1
t

log(E[|Yt|]) ∈ (−∞,∞).

Here |Xt| (resp. |Yt|) is the number of active (resp. inactive) clusters at
time t. If λ 6 0, then extinction occurs a.s. : P[τ <∞] = 1. Otherwise,
survival occurs with positive probability P[τ =∞] > 0.

Classification of phases:

Subcritical phase: λ < 0;

Critical phase: λ = 0;

Supercritical phase: λ > 0.
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RRT structure

Main result 2: limit of size

Theorem (Law of large numbers for (Xt)t>0)

Assume that λ > 0. Then there exists a probability distribution π on N+

and a random variable W > 0, such that for any function f : N+ → R of
at most polynomial growth, we have

e−λt〈Xt, f〉
t→∞−−−→W 〈π, f〉, a.s. and in L2.

Besides, {τ =∞} = {W > 0} a.s. and on this event

〈Xt, f〉
〈Xt, 1〉

t→∞−−−→ 〈π, f〉 a.s..
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Perron’s root

Classical method: Perron-Frobinius theorem

Perron-Frobinius theorem

(A)16i,j6n positive matrix with Ai,j > 0 for all 1 6 i, j 6 n. Then there
exits a leading positive eigenvalue λ called Perron’s root, such that

any other eigenvalue λi (possibly complex) in absolute value is strictly
smaller than λ, i.e. |λi| < λ;

it has associated left and right eigenvectors π, h such that

πA = λπ, Ah = λh.

Consequence: µAn = λnπ + o(λn).

Interpretation: in multi-type branching, A as the production matrix
and π is the limit distribution of types.

Question: How can we generalize it to infinite dimension ?

Chenlin Gu (NYU Shanghai) Branching on RRTs October 18, 2021 28 / 47



Perron’s root

First moment semigroup

Pδn and Eδn for initial condition (X0, Y0) = (δn, 0).

Mtf(n) := Eδn [〈Xt, f〉]
Its generator is

Lf(n)

= βn(f(n+ 1)− f(n))︸ ︷︷ ︸
I

−θnf(n)︸ ︷︷ ︸
II

+ γ(n− 1)
n−1∑
j=1

n

n− 1
1

j(j + 1)
(f(j) + f(n− j)− f(n))

︸ ︷︷ ︸
III

.

I, II, III are respectively the growth, the isolation and the
fragmentation.
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Perron’s root

Existence of Perron’s root in size process

Method: Bansaye, Cloez, Gabriel, and Marguet (2019) - a
non-conservative Harri’s method.
A sufficient condition: we need to find a couple of functions (ψ, V )
and a < b, ξ > 0 such that

LV 6 aV + ζψ, and bψ 6 Lψ 6 ξψ.
for any R large enough, the set K = {x ∈ N+ : ψ(x) > V (x)/R} is a
non-empty finite set and for any x, y ∈ K and t0 > 0,

Mt0(x, y) > 0.

It ensures the existence of Perron’s root for L and (ψ, V ) also
controls the size of (π, h), i.e. h . V, π . V −1.
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Perron’s root

Existence of Perron’s root in size process

Perron’s root for (Xt)t>0

There exists a unique triplet (λ, π, h) where λ ∈ R and π = (π(n))n∈N+ is
a positive vector and h : N+ → (0,∞) is a positive function, s.t. for all
t > 0,

πMt = eλtπ, Mth = eλth,
∑
n>1

π(n) =
∑
n>1

π(n)h(n) = 1.

Moreover, we have

h is bounded: 0 < infn>1 h(n) 6 supn>1 h(n) <∞;

π decays fast: for all p > 0,
∑
n>1 π(n)np <∞;

for every p > 0 there exists C,ω > 0 s.t. for any n,m > 1, t > 0,∣∣e−λtMt(n,m)− h(n)π(m)
∣∣ 6 Cnpm−pe−ωt.
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Perron’s root

Many-to-two formula

Many-to-two formula:

Eδx
[
〈Xt, f〉2

]
= Mt(f2)(x)

+ 2
∫ t

0

∑
n>1

Ms(x, n)

 ∑
16j6n−1

κ(n, j)Mt−sf(j)Mt−sf(n− j)

 ds.

Idea: write down the genealogy of active clusters and find the
common ancestor.
Application 1: Mt = e−λt 〈Xt, h〉 is a L2 positive martingale
converging to r.v. W .
Application 2: L2 bound: define
‖ f ‖p:=

∑
m>1 |f(m)|m−(p+2) ∈ (−∞,∞), then

E
[
〈Xt, f〉2

]
6 C0e

2λt
(
| 〈π, f〉 |2+ ‖ f ‖p e−σt

)
.
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Law of large number

Main result 2: limit of size

Theorem (Law of large numbers for (Xt)t>0)

Assume that λ > 0. Then there exists a probability distribution π on N+

and a random variable W > 0, such that for any function f : N+ → R of
at most polynomial growth, we have

e−λt〈Xt, f〉
t→∞−−−→W 〈π, f〉, a.s. and in L2.

Besides, {τ =∞} = {W > 0} a.s. and on this event

〈Xt, f〉
〈Xt, 1〉

t→∞−−−→ 〈π, f〉 a.s..
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Law of large number

Law of large number for (Xt)t>0

Martingale Mt + L2 estimate + Borel-Cantelli =⇒ e−λt 〈Xt, f〉
converges in L2 and a.s. along any discrete time {k∆}k>1.

Control of fluctuation in interval [k∆, (k + 1)∆).

Argument of Athreya (1968): same argument applies to both
multi-type branching and countable-type branching for the
convergence of one type.
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Law of large number

Argument of Athreya (1968)

Xt(n) := number of clusters of size n.

A sufficient and necessary condition:
lim
t→∞

e−λtXt(n) >Wπ(n), almost surely for all n > 1.

lim
t→∞

e−λtXt(n)h(n)

= lim
k→∞

∑
i>1

e−λtkXtk(i)h(i)−
∑

i>1,i 6=n
e−λtkXtk(i)h(i)


6W −

∑
i>1,i 6=n

lim
k→∞

e−λtkXtk(i)h(i)

6W −
∑

i>1,i 6=n
Wπ(i)h(i)

= Wπ(n)h(n).
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Law of large number

Argument of Athreya (1968)

An observation:

∀t ∈ [k∆, (k + 1)∆), Xt(n) > Xk∆(n)−Nk,∆(n),

where Nk,∆(n) is the number of active clusters of size n at time k∆
that will encounter at least one event within (k∆, (k + 1)∆).

Thus it only involves the jump rate of one type.
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Law of large number

Law of large number for (Xt)t>0

Martingale Mt + L2 estimate + Borel-Cantelli =⇒ e−λt 〈Xt, f〉
converges in L2 and a.s. along any discrete time {k∆}k>1.

Control of fluctuation in interval [k∆, (k + 1)∆).

Argument of Athreya (1968): applies to the convergence of one type
e−λtXt(n)→ π(n).

Cutoff and coupling argument wit an increasing process (X̃t)t>0

improve the result to arbitrary f with polynomial increment.
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Law of large number

Main result 2: limit of size

Bias of the limit distribution π̃(n) := π(n)n∑∞
j=1 π(j)j

.

Corollary (Law of large number for (Yt)t>0)

For any function f : N+ → R of at most polynomial growth, we have that

e−λt〈Yt, f〉
t→∞−−−→W

(
θ

λ

) ∞∑
j=1

π(j)j

 〈π̃, f〉, almost surely and in L2,

and

〈Yt, f〉
〈Yt, 1〉

t→∞−−−→ 〈π̃, f〉, almost surely on {τ =∞}.

Interpretation: there are unobserved small active clusters.
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Law of large number

Law of large number for (Yt)t>0

Heuristic argument:

lim
s↘t

E[〈Ys, f〉 − 〈Yt, f〉|Ft]
s− t

= θ〈Xt, [x]f〉 ∼t→∞ θeλtW 〈π, [x]〉〈π̃, f〉,

Polynomial function [xp](n) := np.

Observation: Ht := 〈Xt, h〉 −
(
λ
θ

)
〈Yt, h/[x]〉 is a martingale.

General function by decomposition

Hf
t := 〈Xt, f〉 −

(
λ

θ

)
〈Yt, f/[x]〉

= 〈π, f〉Ht +At +Bt

At = 〈Xt, f − 〈π, f〉h〉

Bt =
(
λ

θ

)
〈Yt, (f − 〈π, f〉h)/[x]〉 ,

At and Bt are small as they remove the principle eigenvector.
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Law of large number

Main result 3: limit on T

Theorem (Limit of empirical measure of clusters)

Consider any p > 0 and f : T → R such that

sup
t∈T

|f(t)|
|t|p

<∞.

Then on the event {τ =∞}

1
|Xt|

∑
C∈Xt

f(C) t→∞−→ E[f(Tπ)],
1
|Yt|

∑
C∈Yt

f(C) t→∞−→ E[f(Tπ̃)] a.s..
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Law of large number

Law of large number on T

Once again: Cutoff argument + argument of Athreya.

It suffices ∀n ∈ N+,∀t ∈ Tn, lim
t→∞

e−λtXt(t) >W π(n)
(n−1)! , because

lim
t→∞

e−λtXt(t) = lim
k→∞

 ∑
t′∈Tn

e−λtkXtk(t
′)−

∑
t′∈Tn,t′ 6=t

e−λtkXtk(t
′)


6Wπ(n)−

∑
t′∈Tn,t′ 6=t

lim
k→∞

e−λtkXtk(t
′)

6Wπ(n)−
∑

t′∈Tn,t′ 6=t
W

π(n)
(n− 1)!

= W
π(n)

(n− 1)!
.

The control of fluctuation is like that of Xt(n).
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Further discussion

Existence of phases

Continuity of (β, γ, θ) 7→ λ(β, γ, θ).

Monotonicity.

Test function to show the existence of Lf < 0 and Lf > 0.
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Further discussion

General initial condition

We go back to GFI model. Same results apply to a deterministic initial
condition G0 = (V0, E0). We can randomize the initial condition with a
RRT TV0 , and then the absolute continuity helps apply previous results

PG0
d= PTV0 [· | TV0 = G0].

Chenlin Gu (NYU Shanghai) Branching on RRTs October 18, 2021 45 / 47



Further discussion
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Further discussion
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Further discussion

Thank you for your attention.
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